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1 Introduction

A recent literature pioneered by Duffie, Gârleanu, and Pedersen (2005) (DGP hereafter) uses

search theory to model the trading frictions characteristic of over-the-counter (OTC) markets.1

The search-based approach is appealing because it can parsimoniously rationalize standard

measures of liquidity such as bid-ask spreads, execution delays, and trade volume, and can be

used to study how market conditions influence these measures. A virtue of DGP’s formulation

is that it is analytically tractable, so all these mechanisms can be well understood.

The literature spurred by DGP, however, keeps the framework tractable by imposing a

stark restriction on asset holdings, namely, that agents can only hold either 0 units or 1 unit

of the asset. In effect, investors’ ability to respond to changes in market conditions is limited

rather severely by this restriction. In this paper we develop a search-based model of liquidity in

asset markets with no restrictions on investors’ asset holdings. The model is close in structure

and spirit to DGP, but captures the heterogeneous responses of individual investors to changes

in market conditions. From the broader perspective of search and matching theory, a striking

feature of the model we develop is that it remains analytically tractable despite the large degree

of heterogeneity among agents, which is propagated endogenously by random matching with

unrestricted asset holdings.2 We provide a full characterization of the equilibrium, including

transitional dynamics and the endogenous distribution of investors’ asset positions.

Our methodological contribution provides new insights into how trading frictions affect

outcomes in financial markets. We find that as a result of the restrictions they impose on asset

holdings, existing search-based theories neglect a critical feature of illiquid markets, namely, the

fact that market participants can mitigate trading frictions by adjusting their asset positions to

reduce their trading needs.3 The key theoretical observation is that an investor’s asset demand

in an OTC market depends not only on his valuation for the asset at the time of the trade,

1The search-theoretic literature on financial markets also includes Duffie, Gârleanu, and Pedersen (2007),
Gârleanu (2006), Miao (2006), Rust and Hall (2003), Spulber (1996), and Weill (2007).

2DGP restricted asset holdings for the same technical reasons why Kiyotaki and Wright (1993) restricted
money holdings to {0, 1}, i.e., to keep the endogenous distribution of asset holdings manageable. Aside from a
few exceptions, such as Green and Zhou (2002), the recent monetary literature, e.g., Lagos and Wright (2005),
allows for unrestricted portfolios and keeps the analysis tractable by making assumptions that render the equi-
librium distribution of money holdings degenerate. By way of comparison, the model we develop here allows for
unrestricted asset holdings and remains tractable, even though we make no attempt to harness the heterogeneity
that is generated by the model dynamics.

3The importance of this mechanism in the context of another class of models–those with exogenous trans-
action costs–has been stressed by Constantinides (1986) for the case of proportional transaction costs, and by
Lo, Mamaysky, and Wang (2004) for the case of fixed transaction costs.
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but also on his expected valuation over the holding period until his next opportunity to trade.

A reduction in trading delays makes investors less likely to remain locked into an undesirable

asset position and therefore induces them to put more weight on their current valuation. As a

result, reductions in trading frictions induce an investor to demand a larger asset position if his

current valuation is relatively high, and a smaller position if it is relatively low. We find that

these responses of individual asset demands are a key determinant of market efficiency and asset

prices as well as bid-ask spreads, trade volume, and trading delays–precisely the dimensions of

market liquidity that search-based theories of financial intermediation are designed to explain.

From an investor’s standpoint, bid-ask spreads constitute the main out-of-pocket transaction

cost in an illiquid market. We show that spreads depend not only on the ease with which

investors can find alternative trading partners (a mechanism identified in the existing literature),

but also on the degree of mismatch between investors’ endogenous asset positions and their

current valuations of the asset. Our model predicts a distribution of transaction costs, both

across trade sizes–with spreads that increase with the size of the trade–as well as within a

given trade-size category–across investors with different valuations.

Trade volume is a manifestation of the ability of the exchange mechanism to reallocate assets

across investors. We find that a reduction in trading delays shifts the equilibrium distribution

of asset holdings in a way that tends to increase trade volume. Our theory reveals that from an

investor’s point of view, an increase in the market power of dealers is isomorphic to an increase

in trading delays. Hence, trade volume will tend to be small in markets where dealers enjoy a

large degree of market power. These effects are implicitly assumed away if asset holdings are

restricted to lie in {0, 1}.
Finally, we allow for free entry of dealers as a way to endogenize trading delays–a distin-

guishing feature of the microstructure of an OTC market. We find that when interacted with

investors’ unrestricted asset holding decisions, the dealers’ incentives to make markets generate

a liquidity externality that can give rise to multiple steady states. This finding suggests that

all the symptoms of an illiquid market–large spreads, small trade volume, and long trading

delays–can simultaneously arise as a self-fulfilling phenomenon in asset markets with an OTC

structure.

2



2 Environment

Time is continuous, starts at t = 0, and goes on forever. There are two types of infinitely lived

agents: a unit measure of investors and a unit measure of dealers. There is one asset, one

perishable consumption good called fruit, and another consumption good defined as numéraire.

The asset is durable, perfectly divisible, and in fixed supply, A ∈ R+. Each unit of the asset
produces a unit flow of fruit. There is no market for fruit, so holding the asset is necessary

to consume this good. The numéraire good is produced and consumed by all agents. The

instantaneous utility function of an investor is ui(a) + c, where a ∈ R+ represents the fruit
consumption (which coincides with the investor’s asset holdings), c ∈ R is the net consumption
of the numéraire good (c < 0 if the investor produces more of these goods than he consumes),

and i ∈ X = {1, ..., I} indexes a preference type. The utility function ui(a) is twice continuously
differentiable, strictly increasing, and strictly concave.4 Each investor receives a preference

shock with Poisson arrival rate δ. This process is independent across investors. Conditional

on the preference shock, the probability the investor draws preference type i is πi > 0, withPI
i=1 πi = 1. These preference shocks capture the notion that investors will value the asset

differently over time, thereby generating the need to rebalance their asset positions.5 Dealers

do not hold positions and their instantaneous utility is c, their consumption of the numéraire

good.6 All agents discount at rate r > 0.

Dealers can trade the asset continuously in a competitive interdealer market. Investors

periodically contact dealers who can trade in this market on their behalf. Meetings with dealers

occur at random according to a Poisson process with arrival rate α.7 Once a dealer and an

4Just as in DGP, our specification associates a certain utility to the investor as a function of his asset holdings.
The utility from holding an asset position could be simply the value from enjoying the asset itself, as would be
the case for real assets such as cars or houses. An alternative interpretation that leads to the same formulation
would be to assume that there is a single consumption good, that investors are risk-neutral and able to borrow
and lend freely at rate r, and regard the asset as physical capital used to produce the consumption good with
the production technology ui. As yet another possibility, one could adopt the preferred interpretation of DGP,
namely that ui is in fact a reduced-form utility function that stands in for the various reasons why investors may
want to hold different quantities of the asset, such as differences in liquidity needs, financing or financial-distress
costs, correlation of asset returns with endowments (hedging needs), or relative tax disadvantages. By now,
several papers that build on the work of DGP have formalized the “hedging needs” interpretation. Examples
include Duffie, Gârleanu, and Pedersen (2007), Gârleanu (2006), and Vayanos and Weill (2008).

5 In Appendix B, we allow preference shocks to follow a general continuous-time Markov chain and find that
most of the substantive results generalize under appropriate regularity conditions.

6The restriction that dealers cannot hold assets is immaterial when analyzing steady-state equilibria. Lagos,
Rocheteau, and Weill (2007) study dynamic equilibria where dealers may choose to hold asset positions.

7Although our description of the trading process is stylized, it captures the salient features of the actual
trading arrangements in OTC markets. We refer the interested reader to Schultz (2001) as well as the discussion

3



investor have contacted each other, they negotiate over the quantity of assets that the dealer

will acquire for the investor and the intermediation fee that the dealer charges for his services.

After the transaction has been completed, the dealer and the investor part ways.

Asset holdings and preference types lie in the sets R+ and X, respectively, and vary across
investors and over time. We describe this heterogeneity with a probability space (S,Σ,Ht),

where S = R+ × X, Σ is the σ-field generated by the sets (A,I), where A ⊆ R+ and I ⊆ X,
and Ht is a probability measure on Σ that represents the distribution of investors across asset

holdings and preference types at time t.

3 Equilibrium

Let Vi (a, t) denote the maximum expected discounted utility attainable by an investor who has

preference type i and is holding a assets at time t. The value function Vi (a, t) satisfies

Vi(a, t) = Ei
∙Z Tα

t
e−r(s−t)uk(s)(a)ds

+ e−r(Tα−t){Vk(Tα)[ak(Tα)(Tα), Tα]− p(Tα)[ak(Tα)(Tα)− a]− φk(Tα)(a,Tα)}
¸
, (1)

where Tα denotes the next time the investor contacts a dealer and k(s) ∈ X the investor’s

preference type at time s. The expectations operator, Ei, is over the random variables Tα and

k(s) and is indexed by i to indicate that it is conditional on k(t) = i. The first term on the right

side of (1) contains the expected discounted utility flows over the time interval [t, Tα], whose

length is exponentially distributed with mean 1/α. The flow utility is indexed by the preference

type, k(s), which follows a compound Poisson process. The second term on the right side of

(1) is the expected discounted utility from the time when the investor next contacts a dealer,

Tα, onward. At this time Tα, the dealer purchases ak(Tα)(Tα)− a in the market (or sells if this

quantity is negative) at price p(Tα) on behalf of the investor; the investor readjusts his asset

holdings from a to ak(Tα)(Tα) and pays the dealer an intermediation fee φk(Tα)(a, Tα). Both the

fee and the asset price are expressed in terms of the numéraire good.8

in Section 2.1 in Lagos and Rocheteau (2006).
8Since the intermediation fee is determined in a bilateral meeting, it may depend on the investor’s preference

type and asset holdings. Our notation for the investor’s new asset position, ak(Tα)(Tα), makes explicit that it
may depend on time and on the investor’s preference type at the time of the trade. Below (condition (3)), we
will find that the investor’s new asset position is independent of the asset position he was holding at the time
of the trade. To simplify the notation we anticipate this result and do not include a as an argument of his new
asset position.
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LetW (t) denote the maximum expected discounted utility attainable by a dealer. It satisfies

W (t) = E
½
e−r(Tα−t)

∙Z
S
φi(a, Tα)dHTα +W (Tα)

¸¾
,

where the expectations operator, E, is over the next time the dealer meets an investor, Tα.
Random matching implies that the investor whom the dealer meets is a random draw from

HTα , the distribution of investors across preference types and asset holdings at time Tα.

We turn to the determination of the terms of trade in a bilateral meeting at time t between

a dealer and an investor of type i who is holding a. Let a0 denote the investor’s post-trade

asset holdings and φ the intermediation fee. We take (a0, φ) to be the outcome corresponding

to the Nash solution to a bargaining problem where the dealer has bargaining power η ∈ [0, 1].
The utility of the investor is Vi(a0, t)− p (t) (a0 − a)− φ if an agreement (a0, φ) is reached, and

Vi(a, t) in case of disagreement. Therefore, the investor’s gain from trade is Vi(a0, t)−Vi(a, t)−
p (t) (a0 − a) − φ. Analogously, the utility of the dealer is W (t) + φ if an agreement (a0, φ) is

reached and W (t) in case of disagreement, so the dealer’s gain from trade is the fee, φ. The

bargaining outcome is

[ai(t), φi(a, t)] = arg max
(a0,φ)

[Vi(a
0, t)− Vi(a, t)− p (t) (a0 − a)− φ]1−ηφη, (2)

where the maximization is subject to a0 ≥ 0.9 The solution (2) can be written as

ai (t) = argmax
a0≥0

£
Vi(a

0, t)− p(t)a0
¤

(3)

φi (a, t) = η {Vi [ai (t) , t]− Vi(a, t)− p(t) [ai (t)− a]} . (4)

We now turn to the investor’s problem. Substitute (3) and (4) into (1) to obtain

Vi(a, t) = Ei
∙Z Tα

t
e−r(s−t)uk(s)(a)ds

+ e−r(Tα−t){(1− η)max
a0≥0

£
Vk(Tα)(a

0, Tα)− p(Tα)(a
0 − a)

¤
+ ηVk(Tα)(a, Tα)}

¸
. (5)

It is apparent from (5) that the investor’s payoff is the same he would get in an alternative

environment where he meets dealers according to a Poisson process with arrival rate α, but
9 It would be equivalent to set φ = (p̂−p (t))(a0−a) in (2) and reformulate the bargaining problem as a choice

of (a0 − a, p̂). If a0 > a the investor is a buyer and p̂ > p (t) can be interpreted as the ask price he is charged by
the dealer. Conversely, if a0 < a the investor is a seller and p̂ < p (t) is the bid price he is paid by the dealer. In
Appendix C, we formulate several strategic bargaining games, each with a unique subgame perfect equilibrium
outcome that coincides with the axiomatic Nash solution we have adopted here.
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instead of bargaining, he readjusts his asset position and extracts the whole surplus with prob-

ability 1−η, whereas with probability η he cannot readjust his asset position and enjoys no gain
from trade. Therefore, from the standpoint of the investor, keeping the paths of the aggregate

variables unchanged, the environment we are analyzing is payoff-equivalent to an alternative

one in which he meets dealers according to a Poisson process with arrival rate κ = α(1−η) and
has all the bargaining power in bilateral negotiations. Based on this observation, the following

lemma offers an equivalent formulation of the investor’s choice of asset holdings that appears

on the right side of (5).

Lemma 1 An investor with preference type i and asset holdings a who readjusts his asset

position at time t solves

max
a0≥0

£
ūi(a

0)− q(t)a0
¤

(6)

where

ūi(a) =
(r + κ)ui(a) + δ

P
j πjuj(a)

r + κ+ δ
(7)

q(t) = (r + κ)

∙
p(t)− κ

Z ∞

0
e−(r+κ)sp(t+ s)ds

¸
. (8)

In Lemma 1, ūi(a)/ (r + κ) is the expected discounted utility and q (t) / (r + κ) = p(t) −
E[e−r(Tκ−t)p(Tκ)] the present value of the expected capital loss to the investor from holding

a from t until the next (effective) time Tκ when he readjusts his holdings, where Tκ − t is

exponentially distributed with mean 1/κ. A choice of asset holdings, ai (t), must satisfy

ū0i [ai(t)] ≤ q(t), “ = ” if ai(t) > 0. (9)

Given q (t), the following lemma shows how to recover p (t).10

Lemma 2 If limt→∞ e−rtp(t) = 0, the price of the asset is

p(t) =

Z ∞

t
e−r(s−t)

∙
q(s)− q̇(s)

r + κ

¸
ds. (10)

At this point we can simplify the expression for the intermediation fee. From (4), φi(a, t) =

η {Vi [ai(t), t]− Vi(a, t)− p(t) [ai(t)− a]}, with ai(t) characterized by (9). If we substitute the

value functions (e.g., (27) from the appendix), we arrive at

φi(a, t) =
η {ūi [ai(t)]− ūi (a)− q(t) [ai(t)− a]}

r + κ
. (11)

10 In Appendix D, we show that p (t) must satisfy limt→∞ e−rtp(t) = 0 in any equilibrium, so we can appeal to
this condition without loss of generality.
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Since each investor contacts a dealer with equal probability, the quantity of assets supplied

in the interdealer market over a small interval of time dt is αdtA.11 Similarly, the measure of

type-i investors who contact dealers is αdtni(t), where

ni(t) = e−δtni(0) + (1− e−δt)πi (12)

is the measure of investors with preference type i at time t, so the demand for assets in the

interdealer market is αdt
PI

i=1 ni(t)ai(t). The clearing condition for the asset market is

IX
i=1

ni(t)ai(t) = A. (13)

At any point in time, investors differ in asset holdings and preference types. Consider a set

of asset holdings A and a set of preference types I, then for all (A,I) ∈ Σ, Ht (A, I) gives the
measure of investors whose asset holdings and preference types lie in A and I, respectively. We
characterize this probability measure in the following lemma, where I{a∈A} denotes an indicator
function that equals 1 if a ∈ A.

Lemma 3 The measure of investors across individual states at time t satisfies

Ht (A, I) =
X
i∈I

IX
j=1

∙
n0ji(A, t) +

Z t

0
I{aj(t−τ)∈A}nji(τ, t)dτ

¸
(14)

for all (A, I) ∈ Σ, where

n0ji(A, t) = e−αt
h³
1− e−δt

´
πi + e−δtI{i=j}

i
H0(A, {j}) (15)

and

nji(τ, t) = αe−ατ
h³
1− e−δτ

´
πi + e−δτ I{i=j}

i
nj(t− τ). (16)

At time 0, the market starts with investors distributed across preference types and asset holdings

according to the initial probability measure H0. Subsequently, there are two types of investors:

those who have not contacted a dealer since time 0 and those who have. The time-t measure

of those who started at time 0 with preference type j and assets in A, whose preference type
is i at the current time t, and who have never traded (so their asset holdings are still in A)
is n0ji(A, t) as given in (15). Analogously, nji (τ, t) in (16) gives the time-t density of investors
11See Duffie and Sun (2007) for a derivation of the law of large numbers in random-matching environments.
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whose last trade was at time t − τ when their preference type was j and who have preference

type i at time t.

We are now ready to define equilibrium.

Definition 1 An equilibrium is a time-path h{ai(t)}, q(t), p(t), {φi(a, t)},Hti that satisfies (9),
(10), (11), (13), and (14), given an initial condition H0.

Proposition 1 There exists a unique equilibrium.

To illustrate how a reduction in trading delays affects the equilibrium, consider the limiting

case α → ∞. From (7), ūi(a) → ui(a) and from (8) and (9), u0i [ai (t)] ≤ q(t) = rp(t) − ṗ(t)

for all i. From (13), q (t) → q∗(t), which solves
P

i∈I+t ni (t)u
0−1
i [q∗(t)] = A, where I+t =

{i ∈ X : ai (t) > 0}. From (11), φi(a, t) → 0 for all a, i and t. With regard to the distribution

of investors, α→∞ implies that every investor holds his desired asset position at all times.12

Thus, as frictions vanish, investors choose ai (t) continuously by equating their current marginal

utility from holding the asset to its effective cost q∗ (t), and the equilibrium fees, asset price,

and distribution of asset holdings are the ones that would prevail in a Walrasian economy.

3.1 Efficiency

Consider a social planner who wishes to maximize the sum of all agents’ expected discounted

utilities, subject to the same meeting frictions that agents face in the decentralized formulation.

Specifically, over a small time interval of length dt, the planner can only reallocate assets among

a measure αdt of investors chosen at random from the population.

Since the utility of consumption and the disutility of production of the numéraire good net

out to zero across agents, the planner solves

max
{ai(t)}Ii=1

(
K0 +

Z ∞

0

IX
i=1

e−rtαni(t)Ûi [ai(t)] dt

)

s.t.
IX

i=1

αni(t)ai(t) ≤ αA, (17)

12To see this, first note that (15) implies the measure of agents who have not contacted a dealer since time 0
vanishes; i.e., n0ji(A, t)→ 0 for all i and j, all t and all A ⊆ R+ as α→∞. The time-t density of agents who have
not contacted a dealer since time t− τ > 0 is n (τ, t) = I

i,j=1 nji (τ, t). From (16), α→∞ implies n (τ, t)→ 0
for all τ > 0, i.e., investors can find a dealer instantly when α is arbitrarily large, so the measure of investors who
have not met a dealer between t− τ and t is zero for all τ > 0. As for those investors who have met a dealer this
“instant,” from (16), nji (0, t) = 0 for i 6= j and nii (0, t) = ni (t). Therefore, Ht (A,I) → i∈I I{ai(t)∈A}ni(t)
as α→∞, i.e., every investor of type i holds ai (t) at every t.
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(12), and ai (t) ≥ 0 for i ∈ X, where

Ûi [ai(t)] = Ei
∙Z Tα

t
e−r(s−t)uk(s) [ai(t)] ds

¸
,

K0 ≡
R
S Ûi(a)dH0, and H0 is given. The constant K0 captures the utility of all investors before

they trade for the first time. The second term in the objective states that over a time interval

of length dt, there is a measure αni(t)dt of investors of type i whose asset holdings can be

rebalanced.

Proposition 2 The equilibrium is efficient if and only if η = 0.

When an investor conducts a trade, he anticipates that the fee he will be charged to rebalance

his asset holdings in his next encounter with a dealer will be increasing in the gains from that

future trade. Hence, η > 0 inefficiently discourages investors from taking positions that tend

to lead to large asset reallocations in the future.

3.2 Steady state

Next, we characterize the limit of the equilibrium allocations and prices as t→∞.13

Proposition 3 For any H0, the equilibrium allocations and prices described in Definition

1, h{ai(t)}, q(t), p(t), {φi(a, t)},Hti, converge to the unique steady-state allocations and prices
h{ai}, q, p, {φi(a)}, Hi, that satisfy p = q/r,

ū0i (ai) ≤ q “ = ” if ai > 0, (18)
IX

i=1

πiai = A, (19)

φi(a) =
η [ūi (ai)− ūi (a)− q (ai − a)]

r + κ
(20)

H({ai}, {j}) =
δπiπj + απiI{i=j}

α+ δ
(21)

and H (A,I) = 0 for all (A,I) ∈ Σ such that
IS

j=1
{aj} ∩A = ∅.

In what follows, when we analyze the steady state we will denote an individual investor’s state

(ai, j) ∈ {ai}Ii=1×X by (i, j) ∈ X2 and H({ai}, {j}) by nij . Also, at times we use φji to denote
φi (aj) for (i, j) ∈ X2.
13We omit the “t” argument in an endogenous variable when we refer to its steady-state value.
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4 Asset holdings, prices, and trade volume

In this section we focus on the steady state to study the effects of trading frictions on individual

asset holdings, asset prices, and trade volume. Hereafter we assume u0i (∞) = 0 and u0i (0) =∞
for each i.14 Condition (18) becomes

ū0i(ai) = rp. (22)

Let ai = gi(κ; p) denote the choice of asset holdings characterized by (22). Then

∂gi(κ; p)

∂κ
=

δ
h
u0i (ai)−

PI
j=1 πju

0
j (ai)

i
−ū00i (ai) (r + κ+ δ)2

(23)

has the sign of u0i (ai)−
PI

j=1 πju
0
j (ai), i.e., an investor whose current marginal valuation exceeds

his expected marginal valuation over the expected holding period increases his demand when

κ increases. If u0i (ai) >
PI

j=1 πju
0
j (ai), the investor anticipates that his valuation is likely to

revert toward
PI

j=1 πju
0
j (ai) in the future, and that when this happens, he may be unable to

rebalance his asset position for some time. Consequently, from (22), his choice of ai is lower

than u0−1i (rp), what he would choose in a world with no trading delays. If α increases, the

investor is more likely to find a dealer faster; if η decreases, it will be cheaper for the investor

to readjust his asset holdings once he finds a dealer. In both cases, the investor assigns more

weight to current marginal utility from holding the asset relative to the expected value, so his

demand increases. Conversely, an investor with a current marginal valuation that is below his

expected marginal valuation over the holding period reduces his demand when κ increases.15

Next, we show how these reallocation effects shape the implications of trading frictions for asset

prices and trade volume.

Standard frictionless models emphasize two sets of factors that affect the determination of

equilibrium asset prices, i.e., intrinsic properties of the asset and the characteristics of investors
14These conditions imply that the investor’s problem has a solution for all q > 0, and that the nonnegativity

constraints in (6) are slack at every date for every investor in the unique equilibrium. This will simplify the
notation but is otherwise inessential for our results. See Lagos and Rocheteau (2006) for utility specifications
that do not satisfy the Inada conditions.
15 In Appendix B, we show that this insight does not rely on preference shocks being independently and

identically distributed (i.i.d.). We derive an expression analogous to (23) when preference shocks follow a general
Markov process and provide several sufficient conditions that allow us to sign ∂gi(κ, p)/∂κ. We show, for instance,
that for κ sufficiently large, ∂gi(κ, p)/∂κ > 0 if and only if u0i(ai) <

I
j=1 πiju

0
j(ai), where πij is the probability

that an investor with preference type i draws type j conditional on his receiving a preference shock. This
condition is equivalent to the condition in part (i) of Proposition 2 in Gârleanu (2006). See Proposition 9 in
Appendix B for details.
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who buy it. Search theory identifies a third element: the manner in which the asset is traded,

i.e., the details of the microstructure of the asset market, such as the rate at which investors

contact dealers and the market power of dealers. The following proposition characterizes the

effects of these trading frictions on asset prices.

Proposition 4 Let ui(a) = εiu(a). If [u0(a)]2 /u00(a) is strictly decreasing in a, then dp/dκ > 0.

If [u0(a)]2 /u00(a) is increasing in a, then dp/dκ ≤ 0 (with “=” if [u0(a)]2 /u00(a) is constant).

For the class of preferences in Proposition 4, ūi (a) = ε̄iu(a), where ε̄i =
(r+κ)εi+δε̄
r+κ+δ and ε̄ =PI

j=1 πjεj, and (22) becomes ε̄iu
0(ai) = rp. For a given p, the demands of investors with

relatively low valuations (εi < ε̄) fall, while those of investors with high valuations (εi > ε̄)

rise as κ increases. Whether an increase in κ causes the asset price to rise depends on the

curvature of the individual demand for the asset as a function of ε̄i, i.e., on the slope of

∂ai/∂ε̄i = − [u0(ai)]2 / [u00(ai)rp]. If u is not too concave, ai is a convex function of ε̄i. For
this case, Jensen’s inequality implies that the increases in ai for relatively large values of εi

outweigh the decreases in ai for relatively low values of εi, and the aggregate demand for the

asset increases in response to an increase in κ. In turn, this implies that the equilibrium price

of the asset increases with κ. Conversely, the asset price is decreasing in κ if u is sufficiently

concave. For example, if u(a) = a1−σ/(1 − σ) with σ > 0, then dp/dκ < 0 (> 0) if σ > 1

(< 1).16

It is clear from (23) that regardless of the ultimate effect of trading frictions on the asset

price, an increase in κ induces high-valuation investors to take larger positions and low-valuation

investors to take smaller positions. This seems to suggest that the distribution of asset holdings

will spread out if frictions are reduced. However, this intuition is only partial because (23) keeps

the equilibrium asset price constant. In the following proposition we characterize the general

equilibrium effect of trading frictions on the dispersion of the distribution of asset holdings.

Proposition 5 (i) Let ui(a) = εia
1−σ/(1 − σ) with σ > 0. An increase in κ causes the

equilibrium distribution of asset holdings to become riskier, in the second-order stochastic sense.

(ii) For all i ∈ {1, .., I}, ai → A as r + κ→ 0.

16 If u (a) = log a, then ai is linear in ε̄i and dp/dκ = 0. This particular result is reminiscent of the findings
in Constantinides (1986), Gârleanu (2006), and Heaton and Lucas (1995) that the equilibrium asset price is not
(much) affected by transaction costs. In Appendix B, we show that this finding generalizes to the more general
case of Markovian preference shocks.
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Part (i) of Proposition 5 confirms that for a particular class of preferences, the distribution

of asset holdings spreads out if frictions are reduced. According to part (ii), the dispersion

of the distribution of asset holdings approaches zero as trading frictions become very severe,

provided that investors are sufficiently patient. This result holds for general preferences and

will be useful in our analysis of transaction costs and trade volume.17

Let V denote trade volume, defined as

V = α

2

IX
i,j=1

nij |aj − ai| . (24)

An increase in κ has three distinct effects on V. First, the measure of investors in any individual
state (i, j) ∈ X2 who gain access to the market and are able to trade increases, which tends
to increase V. Second, the proportion 1 −PI

i=1nii of agents who are mismatched to their

asset position–the fraction of agents who wish to trade–decreases, which tends to decrease

V. Finally, the distribution of asset holdings spreads out, which tends to increase the quantity
of assets traded in many individual trades. With (21) and (24), it is possible to show that the

first two effects combined lead to an increase in V. Although it is difficult to sign the third
effect in general due to the general equilibrium effects of the price on the distribution of asset

holdings, we provide analytical results for three special cases. First, with I = 2 it is possible to

show that an increase in κ unambiguously leads to an increase in V. The second special case
allows for richer heterogeneity in types, but adopts a specification of preferences for which the

equilibrium asset price is independent of trading frictions. The third case considers the limiting

economy where trading frictions become very severe and investors are patient.

Proposition 6 (i) Let ui(a) = εia
1−σ/(1 − σ) with σ > 0, and assume that I = 2. Trade

volume increases with κ.

(ii) Let ui(a) = εi ln a. Trade volume increases with κ. Moreover, for any pair (κ, κ0) such

that κ0 > κ, the distribution of trade sizes associated with κ0 first-order stochastically dominates

the one associated with κ.
17 In part (iii) of Proposition 11 (Appendix B), we show that part (ii) of Proposition 5 also holds for more

general preference shock processes. The proof of part (i) of Proposition 5 relies on the assumption of i.i.d.
preference shocks and its immediate mean-reverting property. The i.i.d. specification, however, is without loss
of generality for the case I = 2. (This is the case analyzed by DGP and much of the subsequent literature.)
For I > 2, an increase in trading frictions need not compress the cross-sectional distribution of asset holdings.
As pointed out by Gârleanu (2006), it is possible that for certain ranges of κ, an investor with a high current
valuation (relative to the cross-section of current valuations) may increase his asset holdings in response to an
increase in trading frictions. The general insight, however, is that investors always react to more severe trading
frictions by choosing asset positions that reduce the expected sizes of their future asset reallocations.
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(iii) Trade volume approaches zero as r + κ→ 0.

5 Transaction costs

Intermediation fees and the implied bid-ask spreads constitute the out-of-pocket transaction

costs borne by investors and are commonly used measures of market liquidity.18 At the same

time, these spreads determine the revenue of dealers, and hence are a key determinant of their

incentives to make markets and provide liquidity–a theme we explore in Section 6.

Intermediation fees depend on the rate at which investors can contact alternative dealers,

on their bargaining power in bilateral negotiations, and on the size of the trade. The following

result shows that, keeping the characteristics of an investor and a dealer constant, transaction

costs–both total and per unit of asset traded–increase with the size of the trade.19

Lemma 4 Consider an investor who holds asset position a ≥ 0 and wishes to trade |ai − a| > 0.
Both ∂φi(a)

∂a and ∂
∂a

h
φi(a)
|ai−a|

i
have the same sign as a− ai.

In the general equilibrium, trading frequencies and bargaining power affect transaction costs

through three channels. Consider for example φi (aj), the fee paid by an investor who currently

has preference type i, and whose preference type was j at the time of his last trade. A larger α

tends to reduce the fees that dealers can extract for any given trade size (e.g., it increases the

denominator of (20)). Intuitively, a larger α implies better search options for the investor–

the competition effect of reduced trading frictions emphasized in the previous literature. But

here an increase in α also changes the investor’s expected utility from holding his current asset

position, aj, relative to the expected utility from holding his desired asset position, ai (i.e., it

changes ūi in (20)). This effect may decrease or increase the intermediation fee depending on the

specific values of aj and ai. Finally, α affects the actual and desired asset positions, aj and ai,

themselves. A larger α can induce investors to conduct larger asset reallocations (Proposition

18See footnote 9 for the theoretical link between intermediation fees and bid-ask spreads.
19The theory generates a distribution of transaction costs, not only across trade-size categories, but also among

trades of equal size, which is in accordance with the evidence from the OTC market for municipal bonds (Green,
Hollifield, and Schurhoff, 2007). The increasing relationship between trade size and transaction cost for given
α is consistent with the empirical evidence on foreign exchange markets (Burnside, Eichenbaum, Kleshchelski,
and Rebelo, 2006, Table 12). In contrast, empirical studies on municipal and corporate bond markets document
that larger trades tend to be executed at a discount (Harris and Piwowar, 2006). Our model can rationalize this
observation if we allow for heterogeneous investors, some of which can contact dealers faster than others. See
Lagos and Rocheteau (2006).
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6) and by Lemma 4 this translates into larger fees for dealers, on average–the reallocation

effect of reduced trading frictions. These three effects can give rise to nonmonotonicities in the

dealers’ incentives to make markets in response to changes in the degree of trading frictions.

We prove this result for the case of patient traders, both for intermediation fees for individual

trades (Proposition 7) and for market-wide measures of transaction costs (Corollary 1).

Proposition 7 For each (i, j) ∈ X2, there exists r̄ > 0, such that for all r < r̄ and η ∈ (0, 1),
φji is nonmonotonic in κ and is largest for some κ ∈ (0,∞).

In very illiquid markets (as r + κ → 0), investors hedge against future preference shocks by

choosing asset holdings that reflect their average utility from holding the asset rather than

their current utility at the time they trade. Thus, trade sizes and fees are small. In very

liquid markets (as κ→∞) investors trade large quantities, but the fees they pay are also small
because of favorable search options. For intermediate values of κ, trade sizes are considerable

and dealers have a degree of market power that results in larger intermediation fees.

The average fee charged by dealers across the various types of trades is Φ =
PI

i,j=1 njiφji,

or using (20),

Φ = η
IX

i,j=1

nji
ūi (ai)− ūi (aj)

r + κ
. (25)

This average fee is the expected revenue of an individual dealer conditional on meeting an

investor, and is therefore a key determinant of the dealers’ incentives to make markets. The

following corollary of Proposition 7 characterizes how trading frictions affect these incentives,

which will play a key role in the following section.

Corollary 1 There exists r̂ > 0, such that for all r < r̂ and η ∈ (0, 1), Φ is nonmonotonic in
κ and is largest for some κ ∈ (0,∞).

Corollary 1 says that dealers are better off when they trade in markets that are neither too liquid

nor too illiquid. If κ is very large, dealers would find it profitable to shift the trading activity to

markets with larger η or smaller α. Conversely if κ is very small, perhaps surprisingly, dealers

would benefit from reductions in η or increases in α.
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6 Endogenous execution delays

In this section we allow for free entry of dealers in order to endogenize the supply of liquidity

services and the length of the trading delays. We formalize the notion that a dealer’s profit

depends on the competition for order flow that he faces from other dealers.

Suppose that α is a continuously differentiable function of the measure of dealers in the mar-

ket, υ, with ∂α(υ)/∂υ > 0 and ∂ [α(υ)/υ] /∂υ < 0. We also specify α(0) = 0, limυ→∞ α(υ) =∞
and limυ→∞ α(υ)/υ = 0. Since all matches are bilateral and random, the Poisson rate at which

a dealer contacts an investor is α(υ)/υ. For larger υ, each investor contacts dealers faster, but

the order flow decreases for each individual dealer.

There is a large measure of dealers who can choose to participate in the market. Dealers

who choose to operate incur a flow cost γ > 0 that represents the ongoing costs of running the

dealership.20 With (25), the free-entry condition, α(υ)
υ Φ = γ, can be written as

α(υ)

υ
η

IX
i,j=1

nji
ūi (ai)− ūi (aj)

r + α(υ) (1− η)
= γ. (26)

A steady-state equilibrium with free entry is a list h{ai}, q, p, {φi(a)}, {nji} , υi that satisfies
(18)—(21) and (26), with α = α (υ). It can be shown (see Lagos and Rocheteau, 2006) that for

any η > 0 there exists a steady-state equilibrium with free entry of dealers, and it has υ > 0.

The steady-state equilibrium with free entry need not be unique. Although the measure of

dealers, υ, is strictly increasing in Φ, according to Corollary 1 the dealers’ expected revenue,

Φ, can itself be a nonmonotonic function of α(υ). On the one hand, faster trade means more

competition among dealers, which tends to reduce intermediation fees. But an increase in α (υ)

also induces investors to take on more extreme asset positions, which means that on average,

dealers will intermediate larger trades and earn higher fees. For the case of patient traders,

the following result shows that the model necessarily exhibits multiple steady-state equilibria

if α(υ)/υ is not too elastic (the effect of an additional dealer on existing dealers’ order flow is

not too large) and γ is in an intermediate range.

Proposition 8 Assume η ∈ (0, 1) and α (υ) = υθ, with θ ∈ (0, 1). There exist r̃ > 0, θ̃ ∈ (0, 1),
γ > 0, and γ ∈ (0, γ) such that for all (r, θ) ∈ (0, r̃) × (θ̃, 1), there are multiple steady-state
equilibria if γ ∈ (γ, γ).
20Our formulation of the free entry of dealers is analogous to the free entry of firms in Pissarides (2000).

15



In the case of multiple equilibria, the market could be trapped in a low-liquidity equilibrium

where few dealers enter and investors engage in relatively small transactions.21 Regarding the

efficiency properties of equilibrium with entry, investors’ asset holdings are efficient only if

dealers have no bargaining power, just as in the formulation with a fixed population of dealers.

Therefore, since there is no equilibrium with υ > 0 when η = 0, an equilibrium with entry is

always inefficient.22

7 Conclusion

We have developed a model of trade in asset markets that contributes to a growing literature

that uses search theory to model the trading frictions characteristic of OTC markets. A novel

aspect of our theory is that it does not assume restrictions on asset holdings and therefore allows

market participants to accommodate trading frictions by adjusting their asset positions so as to

reduce their trading needs. We have found that this mechanism has important implications for

market efficiency and the way in which trading frictions shape asset prices as well as standard

measures of financial liquidity. Although we have emphasized the application to OTC markets

for financial securities, the structure and solution techniques we have developed should prove

useful for applications of search theory to other contexts where idiosyncratic uncertainty and

random matching give rise to nontrivial distributions of asset holdings.

21The strategic complementarity that leads to multiple equilibria in this model depends crucially on the
endogenous distribution of asset holdings. The multiplicity is not due to increasing returns in the meeting
technology, as in Diamond (1982) or Vayanos and Weill (2008), or to the cost of holding the liquid asset, as in
Rocheteau and Wright (2005).
22As r → 0, it can be shown that an equilibrium with free entry is efficient if and only if η = 0 and

υα0(υ)/α(υ) = η. Entry introduces a negative externality on other dealers’ order flow, and this externality
is internalized if and only if the elasticity of the contact technology α(υ) coincides with dealers’ bargaining
power–the so-called Hosios (1990) condition.
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A Proofs

Proof of Lemma 1. We can rewrite (5) as

Vi(a, t) = Ūi(a) + Ei[e−r(Tκ−t){p(Tκ)a+max
a0≥0

[Vk(Tκ)(a
0, Tκ)− p(Tκ)a

0]}], (27)

where

Ūi(a) = Ei
∙Z Tκ

t
e−r(s−t)uk(s)(a)ds

¸
= Ei

∙Z Tκ−t

0
e−rsuk(t+s)(a)ds

¸
. (28)

From (27), the problem of an investor with preference shock i who gains access to the market

at time t is given by

max
a0≥0

h
Ūi(a

0)− {p(t)− E[e−r(Tκ−t)p(Tκ)]}a0
i
. (29)

We proceed in two steps: (i) calculate Ūi(a), and (ii) calculate E
£
e−rTκp(t+ Tκ)

¤
.

Step (i). Equation (28) can be written recursively as

(r + κ) Ūi(a) = ui(a) + δ
IX

j=1

πj
£
Ūj(a)− Ūi(a)

¤
. (30)

(We provide an alternative, more detailed, derivation in Lagos and Rocheteau (2006).) Multiply

(30) through by πi, sum over i, solve for
P

j πjŪj(a), and substitute this expression back into

(30) to obtain Ūi(a) =
ūi(a)
r+κ , where ūi (a) is as in (7).

Step (ii). The expected discounted price of the asset at the next time when the investor

gets an opportunity to trade is

E[e−r(Tκ−t)p(Tκ)] = κ

Z ∞

0
e−(r+κ)sp (t+ s) ds. (31)

Finally, substitute Ūi(a) =
ūi(a)
r+κ and (31) into (29) and multiply through by (r + κ) to obtain

the formulation of the investor’s problem in the statement of the lemma.

Proof of Lemma 2. Rewrite (8) as

q(t) = (r + κ)

∙
p(t)− κ

Z ∞

t
e−(r+κ)(s−t)p(s)ds

¸
and differentiate with respect to t to obtain

rp (t)− ṗ (t) = q (t)− q̇ (t)

r + κ
.

Integrate this expression forward and use limt→∞ e−rtp(t) = 0 to arrive at (10).
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Proof of Lemma 3. We proceed in three steps: (i) derive nji(τ, t), (ii) derive n0ji(A, t), and
(iii) obtain Ht(A,I) for an arbitrary (A, I) ∈ Σ.

Step (i). The density measure of investors who last readjusted their asset holdings at

time t − τ > 0 is αe−ατ . The probability that an investor who last contacted a dealer

at time t − τ has a history of preference types involving k(t − τ) = j and k(t) = i is¡
1− e−δτ

¢
πi + I{i=j}e−δτ . Since the measure of investors with preference type j at time t− τ

is nj(t − τ), and the Poisson process for meeting dealers and the compound Poisson process

for preference shocks are independent, the density measure of investors who last traded at

time t − τ and who have a history of preferences involving k(t − τ) = j and k(t) = i, is

nji (τ, t) = αe−ατ
£¡
1− e−δτ

¢
πi + I{i=j}e−δτ

¤
nj (t− τ), as given by (16).

Step (ii). The measure of investors who have not contacted a dealer up to time t is e−αt.

Since the Poisson meeting process is independent of investors’ individual states, the time-t

measure of investors whose asset holdings and preference types lay in the set (A, {j}) at time 0
and who have not yet met a dealer at time t is e−αtH0 (A, {j}). The measure of investors who
were of preference type j at time 0 and are of type i at time t is

¡
1− e−δt

¢
πi+e−δtI{j=i}. Thus,

the time-t measure of investors who at time 0 had preference type j and assets in A, whose
preference type is i at the current time t, and who have never traded (so their asset holdings

are still in A) is n0ji(A, t) = e−αt
£¡
1− e−δt

¢
πi + e−δtI{j=i}

¤
H0(A, {j}), as given in (15).

Step (iii). Ht(A,I) is the measure of investors who have an individual state (a, i) ∈ (A,I)
at time t. The first term in Ht(A,I) is

P
i∈I
PI

j=1 n
0
ji(A, t), namely, those investors who

never contacted dealers but who were holding asset positions in the set A at time 0 and whose
preference types at t lie in I. The time-t measure of investors of type i who chose an asset
position in the set A the last time they traded, given that their preference type at that time

was j, is
R t
0 I{aj(t−τ)∈A}nji(τ, t)dτ . Thus, the second term in Ht(A,I), namely, the measure

of investors who the last time they traded chose asset positions that belong to the set A and

whose preference types at time t lie in I, is Pi∈I
PI

j=1

R t
0 I{aj(t−τ)∈A}nji(τ, t)dτ .

Proof of Proposition 1. For all t ≥ 0, the distribution {ni(t)}Ii=1 is unique and given by
(12). Define Ad

t (q) ≡
nPI

i=1 ni(t)ai(q) : ai(q) ∈ argmaxa0≥0 [ūi(a0)− qa0]
o
for q ∈ (q(t),+∞),

where q(t) = maxi∈X ū0i(∞)I{ni(t)>0}. (If q ≤ q(t) then (9) has no solution for some i such that

ni(t) > 0.) Given that ui (and hence ūi) is strictly concave and continuously differentiable, ai(q)

is uniquely determined for all q ∈ (q(t),+∞) and all i such that ni(t) > 0, and it is continuous.
Consequently, Ad

t (q) is singled-valued and continuous for q ∈ (q(t),+∞). Moreover, (9) implies
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that any interior choice ai(t) is a strictly decreasing function of q(t) for every i. Thus, Ad
t (q) is

strictly decreasing for all q ∈ (q (t) , q̄(t)), where q̄(t) = maxi∈X ū0i(0)I{ni(t)>0}, and Ad
t (q) = {0}

for all q ≥ q̄(t). As q ↓ q(t), Ad
t (q) → +∞, and as q ↑ q̄(t), Ad

t (q) → 0. So for each

t there is a unique q(t) ∈ (q (t) , q̄(t)) such that Ad
t [q (t)] = {A} or equivalently, such thatPI

i=1 ni(t)ai [q (t)] = A. Given this q(t), there is a unique {ai(t)}Ii=1 that solves (9). Given
q(t), (11) gives the fee φi(a, t) for every i and a. Finally, given {ai(t)}Ii=1 the distribution Ht is

given by (14).

Proof of Proposition 2. Calculations similar to those contained in part (i) of the proof of

Lemma 1 imply (r + α)Ûi(a) =
r+α

r+α+δui (a) +
δ

r+α+δ

PI
j=1 πjuj (a). Substitute this expression

into the planner’s objective functional to get

max
{ai(t)}

Z ∞

0

α

r + α

⎧⎨⎩
IX

i=1

⎡⎣ r + α

r + α+ δ
ui[ai(t)] +

δ

r + α+ δ

IX
j=1

πjuj [ai(t)]

⎤⎦ni(t)
⎫⎬⎭ e−rtdt

subject to
PI

j=1 nj(t)aj(t) ≤ A and ai(t) ≥ 0 for all i. Let

L(t) =
IX

i=1

"
r + α

r + α+ δ
ui[ai(t)] +

δ

r + α+ δ

IX
k=1

πkuk[ai(t)]

#
ni(t) + λ(t)

"
A−

IX
i=1

ni(t)ai(t)

#
,

where λ(t) is the Lagrange multiplier associated with the resource constraint. Since L(t) is
strictly jointly concave in {ai(t)}Ii=1, the first-order necessary and sufficient conditions for the
problem max{ai(t)} L(t) are

(r + α)u0i [ai(t)] + δ
PI

k=1 πku
0
k [ai(t)]

r + α+ δ
≤ λ(t), “ = ” if ai(t) > 0, (32)

for i = 1, ..., I. The resource constraint (17) at equality is

IX
i=1

ni(t)a
∗
i [λ(t)] = A, (33)

where a∗i [λ(t)] is the ai that satisfies (32). Comparing (33) with (13), (32) with (9), and setting

q(t) = λ(t), it becomes clear that (9) coincides with (32) if and only if η = 0.

Proof of Proposition 3. From (12), limt→∞ ni(t) = πi for each i. By an argument similar to

the one in the proof of Proposition 1, one can establish that there is a unique, time-invariant, q

that clears the asset market. Given this q, (9) implies a unique set of time-invariant optimal asset
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holdings {ai}Ii=1. Thus, {ai}Ii=1 and q satisfy (18) and (19). Given the fact that q (t) = q for all t,

(10) implies p = q/r. Given q and {ai}Ii=1, (11) implies (20), which determines the time invariant
fees {φi (a)}Ii=1. To derive (21), start from Lemma 3 and note that limt→∞ n0ji(A, t) = 0 for

all i, j ∈ X and all A ⊆ R+. Also, limt→∞ nji (τ, t) = αe−ατ
£¡
1− e−δτ

¢
πi + e−δτ I{i=j}

¤
πj ≡

nji (τ,∞) and limt→∞ aj (t− τ ) = aj , so

lim
t→∞Ht (A, I) =

X
i∈I

IX
j=1

∙Z ∞

0
I{aj∈A}nji (τ,∞)dτ

¸
≡ H (A,I)

for all (A,I) ∈ Σ. To conclude, observe that H({ai}, {j}) =
R∞
0 nij (τ,∞)dτ and carry out the

integration to obtain (21).

Proof of Proposition 4. Differentiate (19) to obtain

dp

dκ
=

PI
i=1 πi∂ai/∂κ

−PI
i=1 πi∂ai/∂p

.

The denominator of this expression is strictly positive (from (22)), so focus on the sign of the

numerator. Differentiate (22) to obtain ∂ai/∂κ, multiply by πi, and add over all i to arrive at

IX
i=1

πi
∂ai
∂κ

=
δ

(r + κ+ δ)2 rp

IX
i=1

πi
[u0(ai)]2

−u00(ai) (εi − ε̄) .

Suppose− [u0(a)]2 /u00(a) is strictly increasing in a. Let ā denote the a that solves (22) for ε̄i = ε̄.

Then, note that − [u0(ai)]2 (εi − ε̄) /u00(ai) ≥ − [u0(ā)]2 (εi − ε̄) /u00(ā) for each i, with strict

inequality for all i such that εi 6= ε̄. Thus,
PI

i=1 πi
∂ai
∂κ > 0 and consequently, dp

dκ > 0. Similar

reasoning implies dp
dκ < 0 if − [u0(a)]2 /u00(a) is strictly decreasing and dp

dκ = 0 if − [u0(a)]2 /u00(a)
is constant in a.

Proof of Proposition 5. (i) Let ai (κ) denote the individual demand of an investor with

preference type i in a market with effective contact rate κ. With ui(a) = εia1−σ/(1− σ),

ai (κ) =
API

j=1 πj
h
(r+κ)εj+δε̄
(r+κ)εi+δε̄

i1/σ . (34)

Consider κ0 > κ. We have a1 (κ0) < a1 (κ), since
(r+κ0)εj+δε̄
(r+κ0)ε1+δε̄ >

(r+κ)εj+δε̄
(r+κ)ε1+δε̄

for all j > 1, and

aI(κ
0) > aI(κ), since

(r+κ0)εj+δε̄
(r+κ0)εI+δε̄

<
(r+κ)εj+δε̄
(r+κ)εI+δε̄

for all j < I. The difference ai(κ0) − ai(κ) is

continuous in εi, so there exists ε̃ ∈ (ε1, εI) such that ai (κ0) = ai (κ) ≡ ã. Moreover, from (34),

∂ai (κ0)
∂εi

¯̄̄̄
εi=ε̃

=
(r + κ0)ã

σ [(r + κ0)ε̃+ δε̄]
>

(r + κ)ã

σ [(r + κ)ε̃+ δε̄]
=

∂ai (κ)

∂εi

¯̄̄̄
εi=ε̃

,
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so ai(κ0) as a function of εi intersects ai(κ) from below. Hence ε̃ is unique, and ai (κ0) < ai (κ)

for all εi < ε̃ and ai (κ
0) > ai (κ) for all εi > ε̃. With (21), the cumulative distribution of

assets indexed by κ, is Gκ(a) =
PI

j=1 I{aj(κ)≤a}πj. The fact that ai (κ
0) < ai (κ) for εi < ε̃

implies Gκ0(a) ≥ Gκ(a) for all a < ã. Thus,
R a
0 Gκ0(x)dx ≥

R a
0 Gκ(x)dx for all a < ã. Moreover,R aI(κ0)

0 Gκ0(x)dx =
R aI(κ0)
0 Gκ(x)dx, so

R a
0 Gκ0(x)dx−

R a
0 Gκ(x)dx =

R∞
a Gκ(x)dx−

R∞
a Gκ0(x)dx.

The right side of this expression is nonnegative for a ≥ ã because ai (κ0) ≥ ai (κ) for εi ≥ ε̃.

Thus,
R a
0 Gκ0(x)dx ≥

R a
0 Gκ(x)dx for all a ≥ ã. We conclude

R a
0 Gκ0(x)dx ≥

R a
0 Gκ(x)dx for all

a ≥ 0, i.e., Gκ second-order stochastically dominates Gκ0 .

(ii) From (7), as r+κ→ 0 then ūi(a)→ δ
PI

j=1 πjuj(a), which is independent of i. Together

with market clearing, this implies that ai → A for all i ∈ {1, .., I} as r + κ→ 0.

Proof of Proposition 6. (i) For I = 2, we have X = {1, 2} and

V = αδπ1π2
α+ δ

[a2 (κ)− a1 (κ)] ,

where ai (κ) is given by (34). Since ε1 < ε2, we have a1 (κ) < a2 (κ), and by part (i) of Propo-

sition 5, da1(κ)dκ < 0 < da2(κ)
dκ . To find dV

dκ , we consider two cases. (a) An increase in κ caused by

a decrease in η (keeping α constant). For this case, dV
dκ =

αδπ1π2
α+δ

h
da2(κ)
dκ − da1(κ)

dκ

i
> 0. (b) An

increase in κ caused by an increase in α, which implies dV
dκ =

³
δ

α+δ

´2
π1π2 [a2 (κ)− a1 (κ)] +

αδπ1π2
α+δ

h
da2(κ)
dκ − da1(κ)

dκ

i
> 0.

(ii) Since ui (a) = εi ln a, we have ai > 0 for all i, and ai 6= aj unless i = j. From (21),

the proportion of trades that involve buying ai and selling aj or vice versa (for i 6= j) is

(nij + nji) /(1−
PI

i=1 nii) = 2πiπj/(1−
PI

i=1 π
2
i ), which is independent of κ. From Proposition

4, dp/dκ = 0, so differentiating (22),

d [gi(κ; p)− gj(κ; p)]

dκ
=

δ (εi − εj)

rp (r + κ+ δ)2
.

Thus, |ai − aj | = |gi(κ; p)− gj(κ; p)| increases with κ for all i 6= j. The measure of trades of

size less than z ≥ 0 is
IX

i=1

X
j 6=i

πiπj

1−PI
i=1 π

2
i

I{|ai−aj |≤z},

which is decreasing in κ. This establishes that the distribution of trade sizes associated with κ0

first-order stochastically dominates the one associated with κ if κ0 > κ. Since every trade size

is larger in the market with a larger κ, we conclude that V increases with κ.

21



(iii) This follows immediately from (24) and part (ii) of Proposition 5.

Proof of Lemma 4. Differentiate (20) to obtain

∂φi(a)

∂a
= − η

r + κ

£
ū0i (a)− q

¤
.

Suppose that the nonnegativity constraint on ai is slack. Then, since ūi is strictly concave and

ū0i (ai)− q = 0, we know that ū0i (a)− q < 0 if and only if a− ai > 0, and ∂φi(a)
∂a has the same

sign as a− ai. If ai = 0, then a > ai and ū0i (a)− q < ū0i (ai)− q ≤ 0, so ∂φi(a)
∂a > 0, which is the

same sign as a− ai = a > 0. This establishes the first part. To show the second part, divide

(20) by (ai − a) and differentiate the resulting expression to get

∂

∂a

∙
φi (a)

ai − a

¸
=

η

r + κ

∙
ūi (ai)− ūi (a)− ū0i (a) (ai − a)

(ai − a)2

¸
,

which strictly negative, since ūi is strictly concave.

Proof of Proposition 7. Let q (κ, r), ai (κ, r) , and φji (κ, r) denote, respectively, the equilib-

rium q, ai, and φji that solve (18), (19), and (20) for all i, j ∈ X. We proceed in three steps:
(i) show that φji (κ, r) > 0 for all κ ∈ (0,∞) and all r ∈ [0,∞) provided ai (κ, r) 6= aj (κ, r)

and η > 0; (ii) establish that limκ→∞ φji (κ, r) = 0 for any r ≥ 0 and all (i, j) ∈ X2; (iii) show
that for each κ ∈ (0,∞) there is r̄ > 0 such that φji (0, r) < φji (κ, r) for all r ∈ (0, r̄). The
nonmonotonicity of φji (κ, r) with respect to κ for all r ∈ [0, r̄) will then follow from steps (i)

through (iii).

(i) From (20), φij =
η

r+κ {maxa0 [ūi (a0;κ, r)− qa0]− [ūi (aj ;κ, r)− qaj ]}, so φij (κ, r) > 0

for all κ ∈ (0,∞) and all r ∈ [0,∞) provided η > 0 and aj 6= argmaxa0≥0 [ūi (a0)− qa0] (i.e.,

provided the investor trades).

(ii) limκ→∞ q (κ, r) = q∗ and limκ→∞ ai (κ, r) = argmaxa0≥0 [ui (a0)− q∗a0] ≡ h∞i (q∗),

where q∗ is independent of r and solves
PI

i=1 πih
∞
i (q

∗) = A, which in turn implies q∗ ∈ (0,∞),
h∞i (q∗) <∞, and hence |ui (aj)− q∗aj | <∞ for all (i, j) ∈ X2. Therefore limκ→∞ φij (κ, r) = 0

for any r ≥ 0 and all (i, j) ∈ X2.
(iii) Let κ → 0 to obtain q (0, r) = q̃(r) and ai (0, r) = argmaxa0≥0 [ũi (a0)− q̃a0] ≡ h0i (q̃),

where ũi (a; r) =
rui(a)+δũ(a)

r+δ , ũ (a) =
PI

k=1 πkuk (a) and q̃ solves
PI

i=1 πih
0
i (q̃) = A. From

(20),

φji(0, r) = η

n
r [ui(ai)− ui(aj)] + δ

PI
k=1 πk [uk(ai)− uk(aj)]

o
− (r + δ) q̃(r) (ai − aj)

(r + δ) r
. (35)
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Observe that limr→0 ai (0, r) = ũ0−1 [q̃ (0)] = A, for each i ∈ X. Totally differentiate (18)

and (19) with respect to r and evaluate at κ = r = 0 to find ∂ai(0,0)
∂r =

q̃(0)+δq̃0(0)−u0i(A)
δ I

k=1 πku
00
k(A)

andPI
i=1 πi

∂ai(0,0)
∂r = 0. Combine these conditions to get q̃(0)+δq̃0(0)−ũ0(A)

δ I
k=1 πku

00
k(A)

= 0, which together

with the investor’s first-order condition, ũ0 (A) = q̃(0), implies q̃0(0) = 0 and hence ∂ai(0,0)
∂r =

q̃(0)−u0i(A)
δ I

k=1 πku
00
k(A)

. With this, apply L’Hôpital’s rule to (35) to find limr→0 φji (0, r) = 0.

Our assumptions on primitives imply that q (κ, r) and ai (κ, r) are continuous functions, so

φji (κ, r) is continuous. Hence, for each (i, j) with i 6= j and each κ ∈ (0,∞), there is some
r̄ > 0 such that for all r ∈ [0, r̄), we have limκ→∞ φji (κ, r) = 0 < φji (κ, r) (by (i) and (ii))

and φji (0, r) < φji (κ, r) (by (i) and (iii)), which establishes the nonmonotonicity of φij with

respect to κ.

Proof of Corollary 1. Write Φ (α, η, r) =
PI

i,j=1 nji (α)φji [α (1− η) , r], where nji (α) is

given by (21). Fix an arbitrary (α, η) ∈ (0,∞)×(0, 1). From part (i) of the proof of Proposition
7, φIj [α (1− η) , r] > 0 for j < I and all r ∈ [0,∞). Hence, Φ (α, η, r) > 0 for all α (1− η) ∈
(0,∞) and all r ∈ [0,∞). Following a similar reasoning as in part (iii) of the proof of Proposition
7, for each (i, j) ∈ X2, there is r̄ji > 0 such that for all r ∈ [0, r̄ji), φji (0, r) < Φ (α, η, r). Then
Φ (0, η, r) < Φ (α, η, r) for any r ∈ [0, r0), where r0 = min(i,j)∈X2 r̄ji. Finally, from part (ii)

of the proof of Proposition 7, for any r ≥ 0 we have limα0→∞Φ (α0, η, r) = 0 < Φ (α, η, r),

which establishes the nonmonotonicity of Φ with respect to α, and therefore with respect to

κ = α (1− η).

Proof of Proposition 8. In an equilibrium with entry the measure of dealers satisfies

Φ [α (υ) , η, r] = γυ1−θ. (36)

From Corollary 1, there is r̃ > 0 such that γ ≡ Φ (0, η, r) < supυ Φ [α (υ) , η, r] ≡ γ for all

r ∈ [0, r̃), and limυ→∞Φ [α (υ) , η, r] = 0 < γ. Note that as θ → 1, γυ1−θ converges uniformly

to γ on any closed interval [υ0, υ1] ⊆ (0,∞). Thus, for any γ ∈ (γ, γ), there is a θ̃ such that for
for all θ ∈ (θ̃, 1), there are multiple values of υ > 0 that satisfy (36).
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B Generalized preference shocks

In this appendix we generalize the stochastic process for preference shocks as follows. As be-

fore, each investor receives a preference shock with Poisson arrival rate δ, and this process is

independent across investors. But now we let Π = [πij] denote an I×I matrix and assume that

conditional on receiving a preference shock, an investor with preference type i draws preference

type j with probability πij > 0, with
PI

j=1 πij = 1 for all i ∈ X. The formulation studied in
the body of the paper corresponds to the i.i.d. case, πij = πj for all i.

Equilibrium. The investor’s value function Vi (a, t) still satisfies (1) and the dealer’s value

function is unchanged. The bargaining outcome is also unchanged, so Vi (a, t) also satisfies (5).

The following lemma generalizes Lemma 1.

Lemma 5 An investor with preference type i and asset holdings a who readjusts his asset

position at time t solves

max
a0≥0

£
ūi(a

0)− q(t)a0
¤

(37)

where

ūi(a) =
∞X
k=0

IX
j=1

μkπ
(k)
ij uj (a) for i = 1, ..., I, (38)

q(t) = (r + κ)

∙
p(t)− κ

Z ∞

0
e−(r+κ)sp(t+ s)ds

¸
, (39)

Πk = [π
(k)
ij ] for k ≥ 1, π(0)ij = I{j=i}, and μk =

³
r+κ

r+κ+δ

´³
δ

r+κ+δ

´k
.

Proof. As before, Vi (a, t) satisfies (27), so the problem of an investor with preference shock

i who gains access to the market at time t is given by (29) with Ūi(a) as in (28). Notice that

(31) is unchanged, so we only have to calculate Ūi(a). Equation (28) can be written as

(r + κ+ δ) Ūi(a) = ui(a) + δ
IX

j=1

πijŪj(a) for i = 1, ..., I,

or equivalently, µ
I− δ

r + κ+ δ
Π

¶
ū =

r + κ

r + κ+ δ
u, (40)

where I is the identity matrix, and ū and u are I×1 vectors with ith entry ūi (a) ≡ (r + κ) Ūi(a)

and ui (a), respectively. Since limk→∞
³

δ
r+κ+δΠ

´k
= 0,

³
I− δ

r+κ+δΠ
´−1

exists,
P∞

k=0

³
δ

r+κ+δΠ
´k
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converges, and
³
I− δ

r+κ+δΠ
´−1

=
P∞

k=0

³
δ

r+κ+δΠ
´k
. Thus, ū =

P∞
k=0

³
δ

r+κ+δΠ
´k

r+κ
r+κ+δuwhich

can be written as in (38). Substitute Ūi(a) =
ūi(a)
r+κ and (31) into (29) and multiply through by

(r + κ) to obtain the formulation of the investor’s problem as stated in the lemma.

Intuitively, ūi(a)/ (r + κ) is the expected discounted utility to an investor with preference type

i from holding a until the next (effective) time when he readjusts his holdings. We can write

ūi(a) =
∞X
k=0

μkū
(k)
i (a) ,

where μk is the probability the investor receives k preference shocks before his next effective

contact with a dealer, and

ū
(k)
i (a) ≡

IX
j=1

π
(k)
ij uj (a) (41)

is his expected utility conditional on preference type i and conditional on his receiving k prefer-

ence shocks over that time period. With this generalized expression for ūi(a), a choice of asset

holdings, ai (t), still satisfies (9), and Lemma 2 and (11) remain unchanged.

The law of motion for the measure of investors with preference type i is ṅi(t) = δ
PI

j=1 πjinj (t)−
δni (t), which implies n (t) = n (0) eδ(Π−I)t, where I is the I×I identity matrix and n (t) denotes
the 1× I vector with ith element ni (t). Thus,

ni(t) =
IX

j=1

ρji (t)nj (0) , (42)

where ρji (t) denotes the jith element of the matrix eδ(Π−I)t and represents the transition prob-

ability for an investor from preference type j to preference type i in a period of length t. The

clearing condition in the interdealer market is still (13), but with ni(t) given by (42). With

this, it is straightforward to show that Lemma 3 generalizes as follows.

Lemma 6 The measure of investors across individual states at time t satisfies (14) for all

(A,I) ∈ Σ, where

n0ji(A, t) = e−αtρji (t)H0(A, {j}) (43)

nji(τ, t) = αe−ατρji (τ)nj(t− τ). (44)
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An equilibrium is a time-path h{ai(t)}, q(t), p(t), {φi(a, t)},Hti that satisfies (9) (with ūi (a)
given by (38)), (10), (11), (13) (with ni (t) given by (42)) and (14) (with n0ji(A, t) and nji(τ, t)

by (43) and (44), respectively). The proof of Proposition 1 can be immediately extended to

show that there exists a unique equilibrium. In the limiting case α→∞, we have ūi(a)→ ui(a)

(from (40)) and u0i [ai (t)] ≤ q(t) = rp(t)− ṗ(t) for all i (from (8) and (9)). Also, q (t)→ q∗(t),

where q∗ (t) solves
P

i∈I+t ni (t)u
0−1
i [q∗(t)] = A and I+t = {i ∈ X : ai (t) > 0} (from (13)), and

φi(a, t) → 0 for all a, i and t (from (11)). Finally, α → ∞ implies that every investor holds

his desired asset position at all times. Thus, as before, the equilibrium fees, asset price, and

distribution of asset holdings converge to their Walrasian counterparts as frictions vanish.

Efficiency. Proposition 2 generalizes as follows. The planner’s problem is

max
{ai(t)}

Z ∞

0

α

r + α

IX
i=1

ûi [ai (t)]ni(t)e
−rtdt

subject to
PI

i=1 ni(t)ai(t) ≤ A, where ni (t) is given by (42) and ûi(a) =
∞P
k=0

μ̂kū
(k)
i , with μ̂k =

( r+α
r+α+δ )(

δ
r+α+δ )

k. The first-order necessary and sufficient conditions are: (a) û0i [ai (t)] ≤ λ(t)

for i = 1, ..., I (with “=” if ai(t) > 0), where λ (t) is the multiplier on the resource constraint,

and (b)
PI

i=1 ni(t)a
∗
i [λ(t)] = A, where a∗i [λ(t)] is the ai (t) that satisfies (a). Notice that

μ̂k = μk, and hence ûi = ūi if and only if η = 0. Hence, if we set q(t) = λ(t) we find that the

competitive allocation {ai (t)} coincides with the efficient allocation {a∗i (t)} if and only if η = 0.

Steady state. Our assumptions ensure that there exists a unique row vector π∗ = [π∗i ] such

that π∗ (Π− I) = 0 with
PI

i=1 π
∗
i = 1, and that limt→∞ ρji (t) = π∗i . Hence, (42) implies

limt→∞ ni(t) = π∗i for all i. The generalization of Proposition 3 is straightforward. The equi-

librium allocations and prices h{ai(t)}, q(t), p(t), {φi(a, t)}, Hti converge to the unique steady-
state allocations and prices h{ai}, q, p, {φi(a)},Hi that satisfy p = q/r, ū0i (ai) ≤ q (“=” if

ai > 0, with ūi as in (38)),
PI

i=1 π
∗
i ai = A, φi(a) as in (20), and limt→∞Ht (A,I) = H (A,I),

where H({aj}, {i}) = π∗j
R∞
0 αe−ατρji (τ) dτ and H (A, I) = 0 for all (A,I) ∈ Σ such that

IS
j=1
{aj} ∩A = ∅.

Asset positions, prices, and trade volume. Focus on the steady state and assume u0i (0) =
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∞ and u0i (∞) = 0 for each i. An investor’s asset choice satisfies
∞X
k=0

μkū
(k)0
i (ai) = rp. (45)

As before, when an investor with preference type i chooses his asset holdings, he evaluates

his expected marginal utility from holding the asset until the next trading time. If he is

hit by k preference shocks over the holding period, his expected marginal utility from ai is

ū
(k)0
i (ai). Since the number of preference shocks he experiences is random, the investor also

takes expectations over ū(k)0i (ai) using the (discounting-adjusted) probability distribution of

preference shocks, {μk}∞k=0.
Let ai = gi(κ; p) denote the choice of asset holdings characterized by (45). Then

∂gi(κ; p)

∂κ
=

P∞
k=0

³
δ

r+κ − k
´
μkū

(k)0
i (ai)

−ū00i (ai) (r + κ+ δ)
, (46)

which generalizes (23), has the sign of the numerator. From (45), notice that κ only affects the

probability distribution {μk}; intuitively, a marginal increase in κ increases the probability of

k preference shocks for k < δ
r+κ and decreases it for k > δ

r+κ . This means that an increase in

κ induces the investor to put more weight on ū(k)i ’s with smaller k. If shocks are i.i.d. as in the

body of the paper (i.e., πij = πj for all i), then ū
(0)0
i (ai) = u0i (ai) and ū

(k)0
i (ai) =

PI
j=1 πju

0
j (ai)

for all k ≥ 1, so in terms of preference shocks over the holding period, there are just two relevant
events: either none hit or at least one hits. An increase in κ raises the probability of the former

and reduces the probability of the latter, so it makes an investor with preference type i choose

a larger asset position if and only if u0i (ai) >
PI

j=1 πju
0
j (ai). Analogously, according to (46),

in this more general formulation an investor with preference type i increases his asset demand

in response to an increase in κ if and only if u0i (ai) >
P∞

k=1

³
δ

r+κ − k
´
μk−1ū

(k)0
i (ai). Since this

condition may seem intricate, we provide simpler conditions for some special cases.

Proposition 9 (i) Suppose the sequence {ū(k)0i (ai)}∞k=0 is monotone in k. Then ∂gi(κ;p)
∂κ > 0 if

and only if

u0i (ai) >
IX

j=1

π∗ju
0
j (ai) . (47)

(ii) Consider the frictionless limit, κ→∞. Then ∂gi(κ;p)

∂( 1
r+κ)

> 0 if and only if

u0i(ai) <
IX

j=1

πiju
0
j(ai). (48)
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(iii) Consider the case I = 2. Then for i, j ∈ {1, 2} (with j 6= i),

ūi(a) =
r + κ+ δπji

r + κ+ δ (π12 + π21)
ui (a) +

δπij
r + κ+ δ (π12 + π21)

uj (a) (49)

and ∂gi(κ;p)
∂κ > 0 if and only if u0i (ai) > u0j (ai).

Proof. (i) From (46), ∂gi(κ;p)
∂κ has the sign of

P∞
k=0(

δ
r+κ − k)μkū

(k)0
i (ai), so we sign the

latter. Let Z̄ = Z∩(−∞, δ
r+κ), where Z denotes the set of integers, and define k̄ = maxk∈Z̄ k.

Suppose that (47) holds. Then {ū(k)0i }∞k=0 is a decreasing sequence with ū
(0)0
i (ai) = u0i (ai) >PI

j=1 π
∗
ju
0
j (ai) = limk→∞ ū

(k)0
i (ai). Since ( δ

r+κ − k)μk > 0 for k < k̄ + 1 and ( δ
r+κ − k)μk ≤ 0

for k ≥ k̄ + 1, the fact that ū(k+1)0i ≤ ū
(k)0
i for all k implies

k̄X
k=0

³
δ

r+κ − k
´
μkū

(k̄)0
i (ai) +

∞X
k=k̄+1

³
δ

r+κ − k
´
μkū

(k̄+1)0
i (ai) ≤

∞X
k=0

³
δ

r+κ − k
´
μkū

(k)0
i (ai) .

Since
P∞

k=0(
δ

r+κ − k)μk = 0, the above inequality can be written as

0 ≤ [ū(k̄)0i (ai)− ū
(k̄+1)0
i (ai)]

k̄X
k=0

³
δ

r+κ − k
´
μk ≤

∞X
k=0

³
δ

r+κ − k
´
μkū

(k)0
i (ai) . (50)

If ū(k̄+1)0i (ai) < ū
(k̄)0
i (ai) , then the first inequality in (50) is strict. Alternatively, if ū

(k̄+1)0
i (ai) =

ū
(k̄)0
i (ai) then the second inequality is strict, since ū

(0)0
i (ai) > limk→∞ ū

(k)0
i (ai), which implies

that
Pk̄

k=0(
δ

r+κ−k)μkū(k̄)0i (ai) <
Pk̄

k=0(
δ

r+κ−k)μkū(k)0i (ai) or
P∞

k=k̄+1(
δ

r+κ−k)μkū(k̄+1)0i (ai) <P∞
k=k̄+1(

δ
r+κ − k)μkū

(k)0
i (ai) must hold. In any case,

∂gi(κ;p)
∂κ > 0 follows. Conversely, suppose

that
P∞

k=0(
δ

r+κ −k)μkū(k)0i (ai) > 0, but (47) does not hold, i.e., u0i (ai) ≤
PI

j=1 π
∗
ju
0
j (ai). Then

{ū(k)0i }∞k=0 is an increasing sequence, and
∞X
k=0

³
δ

r+κ − k
´
μkū

(k)0
i (ai) ≤

k̄X
k=0

³
δ

r+κ − k
´
μkū

(k̄)0
i (ai) +

∞X
k=k̄+1

³
δ

r+κ − k
´
μkū

(k̄+1)0
i (ai) .

This leads to

∞X
k=0

³
δ

r+κ − k
´
μkū

(k)0
i (ai) ≤ [ū(k̄)0i (ai)− ū

(k̄+1)0
i (ai)]

k̄X
k=0

³
δ

r+κ − k
´
μk ≤ 0,

a contradiction.

(ii) Let κ = (r + κ)−1 and differentiate (45) with respect to κ (with p given) to find

∂gi(
1
κ − r; p)

∂κ
=

1
(1+δκ)κ

P∞
k=0(k − δκ)

³
1

1+δκ

´³
δκ
1+δκ

´k
ū
(k)0
i (ai)

−ū00i (ai)
.
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The numerator can be written as

δ( 1
1+δκ )

2

∙
1− δκ
1 + δκ

ū
(1)0
i (ai)− ū

(0)0
i (ai) +O (κ)

¸
,

where O (κ) =
P∞

k=2(k − δκ)( 1
1+δκ )

k (δκ)k−1 ū(k)0i (ai). Since limκ→0O (κ) = 0, we have

lim
κ→0

∂gi(
1
κ − r; p)

∂κ
=

δ[ū
(1)0
i (ai)− ū

(0)0
i (ai)]

−ū00i (ai)
.

Finally, ū(0)0i (ai) = u0i (ai) and ū
(1)0
i (ai) =

PI
j=1 πiju

0
j(ai) imply that limκ→∞

∂gi(κ;p)

∂( 1
r+κ)

> 0 if and

only if (48) holds.

(iii) Let I = 2. For i = 1, (38) reduces to

ū1(a) =
³

r+κ
r+κ+δ

´ ∞X
k=0

³
δ

r+κ+δ

´k h
π
(k)
11 u1 (a) + (1− π

(k)
11 )u2 (a)

i
,

where π(k)11 =
π21

π12+π21
+ π12

π12+π21
(1− π12 − π21)

k, since π12 + π21 > 0. Collect terms to arrive at

(49) for i = 1. The expression for i = 2 is obtained similarly. The first-order condition (45)

specializes to

r + κ+ δπji
r + κ+ δ (π12 + π21)

u0i (ai) +
δπij

r + κ+ δ (π12 + π21)
u0j (ai) = rp.

This can be differentiated with respect to κ (for fixed p) to obtain

∂gi(κ; p)

∂κ
=

δπij [u0i (ai)− u0j (ai)]

−ū00i (ai) [r + κ+ δ (π12 + π21)]
2 .

This concludes the proof.

For the i.i.d. case analyzed in the body of the paper, we found that if trading frictions decrease,

an investor increases his asset holdings if his current marginal valuation exceeds his expected

marginal valuation over the expected holding period (condition (23)). Proposition 9 extends

this result and shows that the key insight does not rely on the preference shocks being i.i.d.

For the case of multiplicative preference shocks we analyzed in Section 4, for example, we have

ūi(a) = ε̄iu (a), with

ε̄i =
∞X
k=0

μkε̄
(k)
i (51)

and ε̄
(k)
i =

PI
j=1 π

(k)
ij εj . Note that limk→∞ ε̄

(k)
i =

PI
j=1 π

∗
j εj ≡ ε̄. Part (i) of Proposition 9

establishes that if this convergence is monotonic for i, then an investor with preference type
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i increases his asset holdings if and only if εi > ε̄. This is essentially the same condition we

derived in the i.i.d. case where π(k)ij = π∗j for all i and all k ≥ 1. For this multiplicative, case
the condition in part (ii) of the proposition reduces to εi > ε̄

(1)
i , and if we let δij ≡ δπij for

i 6= j and δii ≡ δ (1− πii), it can be written as

εi >

P
j 6=i δijεjP
j 6=i δij

. (52)

Proposition 9 parallels Proposition 2 in Gârleanu (2006). Notation aside, (52) is identical

to the condition in part (i) of his Proposition 2. The monotonicity condition in part (ii) of his

proposition plays the role of the monotonicity condition in part (i) of ours. The two-valuation

case in part (iii) of his proposition parallels part (iii) in ours.

An implication of the i.i.d. case that does not generalize is that if εi < εj and the agent

with preference type i increases his asset holdings in response to an increase in κ, then so does

the agent with preference type j.23 The robust insight instead is that an investor whose current

marginal valuation is large–in the sense that it exceeds his expected marginal valuation over

the expected holding period–increases his asset holdings if κ increases.

The following proposition characterizes the equilibrium price for a particular class of utility

functions and generalizes the discussion that followed Proposition 4. Just as in the i.i.d. case,

this price is independent of frictions as summarized by κ if the individual asset demand is linear

in the idiosyncratic valuation (as is the case with logarithmic preferences).

Proposition 10 Let ui(a) = εia
1−σ/(1− σ) with σ > 0. Then

p =

³PI
i=1 π

∗
i ε̄
1/σ
i

´σ
rAσ

where ε̄i =
P∞

k=0

PI
j=1 μkπ

(k)
ij εj. If ui(a) = εi ln a, then

p =

PI
j=1 π

∗
j εj

rA
.

Proof. Since ui (a) = εiu (a), we have ūi(a) = ε̄iu (a) with ε̄i given by (51), so (45)

becomes ε̄iu0 (ai) = rp. The parametric assumption implies ai = (ε̄i/ (rp))
1/σ so the steady-

state market-clearing condition,
PI

i=1 π
∗
i ai = A, yields the first expression for p. For σ = 1,

p = (rA)−1
PI

i=1 π
∗
i ε̄i, where

PI
i=1 π

∗
i ε̄i =

PI
j=1

P∞
k=0

PI
i=1 π

∗
i π
(k)
ij μkεj =

PI
j=1 π

∗
j εj .

23For example, with a more general process for preference shocks it is possible to have a parametrization
{εi, πij}Ii,j=1 with I

k=1 πikεk < εi < εj < I
k=1 πjkεk, which according to part (ii) of Proposition 9 implies

that, near the frictionless limit, the high valuation investor (the one with preference type εj) will reduce his asset
holdings and the low valuation investor will increase his asset holdings if κ increases.
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As in the i.i.d. case, it is difficult to sign the general equilibrium effects of α and η on trade

volume in general. We provide analytical results for three cases. The first has I = 2 and a

general preference specification, the second considers a market close to the frictionless limit,

and the third a market with severe trading frictions.

Proposition 11 (i) Let ui(a) = εia
1−σ/(1 − σ) with σ > 0, and assume that I = 2. Trade

volume increases with κ.

(ii) Let ui(a) = εi lna and suppose that ε̄j > ε̄i implies εj −
PI

k=1 πjkεk > εi −
PI

k=1 πikεk

for all i, j ∈ X2. Trade volume decreases with η in the frictionless limit (as κ→∞).
(iii) Trade volume approaches zero as r + κ→ 0.

Proof. (i) With I = 2, n12 = n21 =
δπ12π21

[α+δ(π12+π21)](π12+π21)
, so trade volume is

V = αδπ12π21
[α+ δ (π12 + π21)] (π12 + π21)

(a2 − a1) .

The preference specification together with (49) implies ai = (ε̄i/ (rp))
1/σ for i = 1, 2, where

ε̄1 =
r+κ+δπ21

r+κ+δ(π12+π21)
ε1 +

δπ12
r+κ+δ(π12+π21)

ε2 and ε̄2 =
r+κ+δπ12

r+κ+δ(π12+π21)
ε2 +

δπ21
r+κ+δ(π12+π21)

ε1. Since

rp =
π∗1 ε̄

1/σ
1 +π∗2 ε̄

1/σ
2

σ

Aσ ,

ai =
ε̄
1/σ
i

π∗1 ε̄
1/σ
1 + π∗2 ε̄

1/σ
2

A.

Differentiate this expression with respect to κ to find that ∂a2
∂κ has the sign of (ε2 − ε1) and

∂a1
∂κ has the opposite sign. Since ε1 < ε2, da1

dκ < 0 < da2
dκ . To find dV

dκ , we consider two

cases. (a) An increase in κ caused by a decrease in η (keeping α constant). For this case,
dV
dκ =

da2
dκ − da1

dκ > 0. (b) An increase in κ caused by an increase in α, which implies dV
dκ =h

δ
α+δ(π12+π21)

i2
π12π21 (a2 − a1) +

αδπ12π21
[α+δ(π12+π21)](π12+π21)

³
da2
dκ − da1

dκ

´
> 0.

(ii) Let κ = (r + κ)−1. Under ui(a) = εi lna, (45) implies ai = ε̄i/ (rp), where ε̄i =P∞
k=0 μkε̄

(k)
i , with ε̄

(k)
i =

PI
j=1 π

(k)
ij εj and μk = (

1
1+δκ )(

δκ
1+δκ )

k. Differentiate with respect to κ
to find

dai
dκ

=
1

(1 + δκ)κ

∞X
k=0

(k − δκ)μkε̄
(k)
i . (53)

We know from Proposition 10 that under this preference specification the equilibrium price is

independent of κ, so (53) captures the general equilibrium effect of κ on ai. Let κ → 0 as in

part (ii) of the proof of Proposition 9 to find

lim
κ→0

dai
dκ

=
δ[ε̄

(1)
i − ε̄

(0)
i ]

rp
.
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Therefore,
d (aj − ai)

dκ
=

δ

rp

n
ε̄
(1)
j − εj − [ε̄(1)i − εi]

o
.

The assumption that εj − ε̄
(1)
j > εi − ε̄

(1)
i if ε̄j > ε̄i implies

d(aj−ai)
dκ < 0 for aj > ai and

d(aj−ai)
dκ > 0 for aj < ai, so an increase in κ decreases the size of every trade. If the increase

in κ is due to an increase in η, i.e., keeping α constant, then the weights nij in (24) remain

constant and V decreases.
(iii) From (38), ūi(a) =

PI
j=1 ωij (r̄)uj (a) where ωij (r̄) =

P∞
k=0(

r̄
r̄+δ )(

δ
r̄+δ )

kπ
(k)
ij and r̄ =

r + κ. We first show that for any ε > 0,
¯̄̄
ωij (r̄)− π∗j

¯̄̄
< ε obtains for all r̄ close enough to 0.

For any r̄ > 0 and any N ∈ Z+,

¯̄
ωij (r̄)− π∗j

¯̄ ≤ ¯̄̄̄¯
NX
k=0

³
r̄

r̄+δ

´³
δ

r̄+δ

´k h
π
(k)
ij − π∗j

i¯̄̄̄¯+
¯̄̄̄
¯

∞X
k=N+1

³
r̄

r̄+δ

´³
δ

r̄+δ

´k h
π
(k)
ij − π∗j

i¯̄̄̄¯ .
Since limk→∞ π

(k)
ij = π∗j , choose N large enough so that the second term is strictly smaller than

ε/2 for any r̄ > 0. The first term is bounded above by
¯̄̄
1− ( δ

r̄+δ )
N+1

¯̄̄
, so it is strictly less than

ε/2 for all r̄ close enough to 0. Therefore, limr̄→0 ωij (r̄) = π∗j , and limr̄→0 ūi(a) =
PI

j=1 π
∗
juj (a)

for every i. In turn, (37) approachesmaxa0≥0
hPI

j=1 π
∗
juj (a

0)− q(t)a0
i
, so ai → A for all i. With

this, V → 0 as r + κ→ 0 is immediate from (24).

Part (i) of Proposition 11 is a generalization of part (i) of Proposition 6. Part (ii) of Proposition

11 is analogous to part (ii) of Proposition 6. The focus of the former on the frictionless

limit simplifies the analysis of the effects of trading frictions on individual asset demands (see,

e.g., part (ii) of Proposition 9). The additional assumption is a condition on the speed with

which preference shocks revert to their unconditional mean. For example, suppose ε̄j > ε̄i,

which means that the expected marginal valuation over the holding period for an investor who

currently has preference type j is larger than for an investor with preference type i. Then the

assumption requires that the expected change in the marginal valuation after a single preference

shock (e.g., εj−
PI

k=1 πjkεk for the agent with preference type j) must be larger for the investor

with the higher current expected valuation over the holding period. Part (iii) of Proposition 11

generalizes part (iii) of Proposition 6 as well as the notion–which for the i.i.d. case was proved

in part (ii) of Proposition 5 and used in the proofs of Proposition 7, Corollary 1, and Proposition

8–that if the investor is patient, the influence of his current valuation at the time of the trade

on his choice of asset holdings vanishes as the market becomes very illiquid. In other words, as

32



r + κ→ 0, the distribution of asset holdings converges to a mass point at A and trade volume

approaches zero. This has important implications for intermediation fees and dealer revenue:

both approach zero as trade sizes vanish, just as in the i.i.d. case. Note that intermediation

fees and revenue also go to zero as κ becomes large, so they are nonmonotonic functions of κ.

Therefore, the nonmonotonicity results we established for i.i.d. preference shocks (Proposition 7

and Corollary 1) generalize. Finally, these nonmonotonicities can generate multiple steady-state

equilibria, so Proposition 8, which we proved for the i.i.d. case, can also be generalized.
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C Strategic bargaining

In the body of the paper we assumed that when an investor and a dealer trade, the new asset

position of the investor, a0, and the fee, φ, are the solution to a Nash bargaining problem where

the dealer has bargaining power η ∈ [0, 1] and disagreement point W (t), and the investor has

disagreement point Vi (a, t). In this appendix we offer four strategic bargaining games, each

with a unique subgame perfect equilibrium outcome that coincides with the solution of the

axiomatic Nash bargaining problem we have adopted.

The four games we consider have the common feature that the relationship between the

investor and the dealer is short-lived in that the negotiation takes place in an “instant.” In the

first game, a proposer is chosen at random to make a take-it-or-leave-it offer. The second is a

standard bargaining game with alternating offers and a random termination of the negotiation.

We take the limit of this game as the expected time horizon for the negotiation goes to zero.

The third is the off-the-shelf bargaining game of Binmore, Rubinstein, and Wolinsky (1986)

incorporated into a discrete-time version of our model. Here we assume that the negotiation

takes place within a period but may involve an infinite number of bargaining rounds. Finally,

we consider a payoff-equivalent game that can involve at most two bargaining rounds. The fact

that the unique subgame perfect equilibrium outcome in each of these four games coincides

with the solution of the Nash problem as formulated in Section 3, is an indication that the

disagreement points we have adopted in our axiomatic formulation are the appropriate ones

when the relationship between dealers and investors is essentially instantaneous, as is the case

in our environment.

C.1 Take-it-or-leave-it offer by a randomly chosen proposer

Our theory is meant to model a fast-moving market where investors and dealers don’t form

long-lasting relationships, but rather contact each other at relatively high frequencies and must

trade on the spot, instantaneously, before they part ways. With this in mind, consider the

following natural and simple strategic bargaining game. Upon contact, with probability η,

Nature selects the dealer to make an instantaneous take-it-or-leave-it offer, which the investor

must either accept or reject on the spot. With complementary probability, Nature selects the

investor to make an instantaneous take-it-or-leave-it offer, which the dealer must either accept

or reject on the spot. The whole process is instantaneous, and the dealer and the investor part
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ways regardless of the outcome.24

Let

a1i (t) , φ

1
i (a, t)

®
denote the proposal that the dealer makes to an investor of type i who

is holding a at time t, and

a2i (t) , φ

2
i (a, t)

®
denote the offer that the latter makes to the former.

The set of offers that an investor of type i who is holding asset position a finds acceptable at

time t is

A2i (a, t) =
©
(a0, φ) : Vi

¡
a0, t

¢− p (t)
¡
a0 − a

¢− φ ≥ Vi (a, t)
ª
.

Similarly, the set of offers that a dealer finds acceptable at time t is A1 = {(a0, φ) : φ ≥ 0}. If
the dealer is selected as the proposer, he will offer

a1i (t) , φ
1
i (a, t)

®
= arg max

(a0,φ)
φ IA2i (a,t)(a

0, φ),

where the maximization is subject to a0 ≥ 0, and IA2i (a,t)(a0, φ) is an indicator function that is
equal to 1 if (a0, φ) ∈ A2i (a, t). It is easy to see that a1i (t) = ai (t), where ai (t) is as in (3), and

ηφ1i (a, t) = φi (a, t), where φi (a, t) is as in (4). If the investor makes the offer, he chooses
a2i (t) , φ

2
i (a, t)

®
= arg max

(a0,φ)

©£
Vi
¡
a0, t

¢− p (t)
¡
a0 − a

¢− φ
¤
IA1(a0, φ) +

£
1− IA1(a0, φ)

¤
Vi (a, t)

ª
where the maximization is subject to a0 ≥ 0, and IA1(a0, φ) is an indicator function that is equal
to 1 if (a0, φ) ∈ A1. Hence, a2i (t) = ai (t) and φ2i (a, t) = 0. Note that regardless of who gets

selected to make the offer, the outcome of the negotiation is that the investor exits the meeting

with asset position ai (t). The transaction fee equals φi (a, t) /η if the dealer makes the offer

and 0 if the investor makes the offer, so the expected fee (before Nature decides who will make

the offer) equals φi (a, t). It is easy to check that with these equilibrium outcomes the investors’

and dealers’ value functions are just as in the body of the paper and all our results go through

(subject to the obvious reinterpretation of φi (a, t) as an expected intermediation fee, which is

inconsequential).

C.2 Alternating offers in continuous time with random termination

Consider a strategic alternating offers bargaining game similar to the one analyzed by Rubin-

stein (1982), but extended to allow for exogenous breakdown in negotiations as in Binmore,

Rubinstein, and Wolinsky (1986). The game we analyze belongs to the class of stochastic se-

quential bargaining games studied by Merlo and Wilson (1995). Time is continuous, and we

24This type of bargaining procedure has been used extensively in search models of money, e.g., Burdett, Trejos,
and Wright (2001), as well as in search models of the labor market, e.g., Kiyotaki and Lagos (2007).
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assume that negotiations between an investor and a dealer who meet at time t take place at

τ = t, t + ∆, t + 2∆, ... , where ∆ > 0 is the length of the period of time between two

consecutive bargaining rounds. In every bargaining round, Nature selects a player to make

an offer (a0, φ); the dealer is selected with probability η (which we will also denote η1) and

the investor with probability 1 − η ≡ η2. If the recipient of the offer accepts it, the trade is

consummated instantaneously and the match is dissolved. If the recipient rejects the offer, the

pair waits for a period of length ∆ until the next bargaining round. During this period of

time between bargaining rounds, the dealer-investor match is subject to a Poisson destruction

process with arrival rate β. (This process is independent across matches and also independent

of the investor’s process for preference shocks.) If the match survives until the next bargaining

round, Nature again selects the player who will make the next offer, and so on. To keep the

analysis simple, we describe the negotiations that take place once the market has reached the

long-run steady state described in Proposition 3.

Consider an investor with asset holdings a who enters a negotiation round with a dealer.

The payoff to the dealer if an agreement (a0, φ) is reached at time τ ≥ t is e−r(τ−t)W(φ), where
W(φ) ≡ φ +W and rW = α

R
φi(a)dH(a, i). Similarly, the payoff to the investor from an

agreement (a0, φ) reached at time τ ≥ t when his preference type is i is e−r(τ−t)Ui(a0, φ), where
Ui(a0, φ) ≡ Vi(a

0)− p(a0 − a)− φ, with

Vi(a) =
ūi (a) + κ(pa+Ωi)

r + κ
, (54)

Ωi =
r+κ

r+δ+κ∆i+
δ

r+δ+κ

PI
j=1 πj∆j and∆i = maxa0≥0 [ūi (a0)− rpa0]. If no agreement is reached,

the (current value of) the payoff is W(0) to the dealer and Ui(a, 0) to the investor. There are
gains from trade between an investor with preference type i who holds a and a dealer if

Γi (a) ≡ max
a0≥0

£
Vi(a

0)− pa0
¤− [Vi(a)− pa] > 0, (55)

i.e., as long as a 6= ai ≡ argmaxa0≥0 [Vi(a0)− pa0]. For the time being, we focus on the case

where (55) holds; the analysis will be completed toward the end of the section.

A strategy for a player is a contingent plan that indicates which offer to make following

every history after which it is the player’s turn to make an offer, and which offers to accept or

reject after every history where it is the player’s turn to respond. The equilibrium concept we

adopt is subgame perfect equilibrium, and we restrict attention to stationary strategies.25 The
25 In our context, a strategy profile is stationary if the actions prescribed at any history depend only on the
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fact that the investor’s preference type follows a stochastic process implies that the gains from

trade also follow a stochastic process. In this setting, Merlo and Wilson (1995) have shown that

agreement may turn out to be delayed in the subgame perfect equilibrium. We carry out the

analysis under the conjecture that an agreement will not be delayed, and later verify that this

is indeed the case for the particular parametrization of the game that we deem relevant for our

application.

Let (a1i , φ
1
i ) denote the proposal that the dealer makes to an investor of type i who is

holding a, and (a2i , φ
2
i ) denote the offer that the latter makes to the former.

26 Assuming the

offers
©
(a2i , φ

2
i )
ªI
i=1

are accepted by dealers, the set of offers that an investor of type i who is

holding asset position a accepts is

A2i (a) =
⎧⎨⎩(a0, φ) : Ui(a0, φ) ≥ 1−β∆

1+r∆

⎡⎣δ∆ IX
j=1

2X
k=1

πjηkUj(akj , φkj )

+ (1− δ∆)
2X

k=1

ηkUi(aki , φki )
#
+ β∆
1+r∆

⎡⎣δ∆ IX
j=1

πjUj(a, 0) + (1− δ∆)Ui(a, 0)
⎤⎦⎫⎬⎭ .

On the left side of the inequality that defines the set A2i (a) is the utility to the investor with
preference type i and asset holdings a from immediate agreement to an offer (a0, φ). On the

right side of the inequality is his discounted expected utility from rejecting such an offer: he

may receive a preference shock (with probability approximately equal to δ∆), negotiations may

break down (with probability approximately equal to β∆), and in the event that negotiations

do not break down, he is selected to make an offer with probability η2 and to respond to the

dealer’s offer with probability η1. Similarly, the acceptance set of a dealer is

A1 =
⎧⎨⎩(a0, φ) :W(φ) ≥ 1−β∆

1+r∆

⎡⎣δ∆ IX
j=1

2X
k=1

πjηkW(φkj ) + (1− δ∆)
2X

k=1

ηkW(φki )
⎤⎦+ β∆

1+r∆W(0)
⎫⎬⎭ .

current offer and the investor’s current asset holdings and preference type. A subgame perfect equilibrium in
stationary strategies is often referred to as a stationary subgame perfect equilibrium. Since we find a unique
stationary subgame perfect equilibrium outcome, the restriction to stationary strategies is innocuous for our
purposes because the subgame perfect equilibrium outcome of the bargaining game we are considering is unique
if and only if the stationary subgame perfect equilibrium outcome is unique. See Merlo and Wilson (1995).
26We could write aki = aki (a) and φki = φki (a) to emphasize the fact that the offers may depend not only on

the investor’s preference type but also on his asset holdings. However, as we show below, the equilibrium offers
a1i , a

2
i , and φ2i are independent of a for all i. The fee proposed by the dealer, φ

1
i , will depend on the investor’s

asset holdings a, so when φ1i appears, we really mean φ1i (a).
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Under the conjecture that agreement is not delayed in equilibrium, when it is his turn to

propose, an investor of type i chooses the offer that maximizes his own payoff from the set of

offers that are acceptable to the dealer, i.e.,

(a2i , φ
2
i ) = arg max

(a0,φ)∈A1
Ui(a0, φ),

where the maximization is subject to a0 ≥ 0. It is easy to show that a2i = ai and φ2i satisfies

W(φ2i ) = 1−β∆
1+r∆

⎡⎣δ∆ IX
j=1

2X
k=1

πjηkW(φkj ) + (1− δ∆)
2X

k=1

ηkW(φki )
⎤⎦+ β∆

1+r∆W(0)

for i = 1, ..., I, which implies

φ2i =
(1−β∆)η1

1+r∆−(1−β∆)(1−δ∆)η2

⎡⎣(1− δ∆)φ1i +
(1+r∆)δ∆

1+r∆−(1−β∆)η2

IX
j=1

πjφ
1
j

⎤⎦− r∆
1+r∆−(1−β∆)η2W. (56)

Similarly, the optimal acceptable offer made by a dealer to an investor of type i who is holding

a solves

(a1i , φ
1
i ) = arg max

(a0,φ)∈A2i (a)
W(φ),

where the maximization is subject to a0 ≥ 0. For all i, the solution has a1i = ai and φ1i satisfies

Ui(ai, φ1i ) = 1−β∆
1+r∆

⎡⎣δ∆ IX
j=1

2X
k=1

πjηkUj(aj, φkj ) + (1− δ∆)
2X

k=1

ηkUi(ai, φki )
⎤⎦

+ β∆
1+r∆

⎡⎣δ∆ IX
j=1

πjUj(a, 0) + (1− δ∆)Ui(a, 0)
⎤⎦ ,

which implies

φ1i =
1−β∆
1+r∆

⎡⎣δ∆ 2X
k=1

IX
j=1

ηkπjφ
k
j + (1− δ∆)

2X
k=1

ηkφ
k
i

⎤⎦+Gi (a) , (57)

where

Gi (a) =
1+r∆−(1−β∆)(1−δ∆)

1+r∆ Γi (a)− (1−β∆)δ∆
1+r∆ Γ̄ (a) + (r+δ)∆

1+r∆ Vi (a)− δ∆
1+r∆ V̄ (a) ,

with Γ̄ (a) =
PI

j=1 πjΓj (a) and V̄ (a) =
PI

j=1 πjVj (a). Combine (56) and (57) to arrive at

φ1i =
(1+r∆)(1−β∆)η1δ∆

[1+r∆−(1−β∆)(1−δ∆)][1+r∆−(1−β∆)]

⎡⎣ IX
j=1

πjGj (a)− r∆(1−β∆)η2
(1+r∆)[1+r∆−(1−β∆)η2]W

⎤⎦
+ 1+r∆−(1−β∆)(1−δ∆)η2

1+r∆−(1−β∆)(1−δ∆)
h
Gi (a)− r∆(1−β∆)η2

(1+r∆)[1+r∆−(1−β∆)η2]W
i

(58)
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and

φ2i =
(1+r∆)(1−β∆)η1δ∆

[1+r∆−(1−β∆)(1−δ∆)][1+r∆−(1−β∆)]

⎡⎣ IX
j=1

πjGj (a)− r∆(1−β∆)η2
(1+r∆)[1+r∆−(1−β∆)η2]W

⎤⎦
+ (1−β∆)(1−δ∆)η1

1+r∆−(1−β∆)(1−δ∆)
h
Gi (a)− r∆(1−β∆)η2

(1+r∆)[1+r∆−(1−β∆)η2]W
i
− r∆
1+r∆−(1−β∆)η2W. (59)

Next, we follow Binmore (1987) and consider the case where the time between each offer and

counteroffer vanishes. This means that, no matter what the expected duration of the match

may be (i.e., for any β), the dealer and the investor may in principle engage in an infinite

number of bargaining rounds before the negotiation terminates. As we let ∆ → 0, from (58)

and (59) we find lim∆→0 φ1i = lim∆→0 φ2i = ϕi (a, β), where

ϕi (a, β) = η
n
Γi (a) +

r
r+βVi (a) +

βδ
(r+β)(r+β+δ)

£
Vi (a)− V̄ (a)

¤o
.

Our theory is intended as a model of a fast-moving market with fleeting contacts between

dealers and investors. To capture this idea, we consider the limit case where the average

duration of the meeting between the dealer and the investor vanishes. As β → ∞, we find
ϕi (a, β)→ ηΓi (a). Then, since (55) and (54) imply Γi (a) =

ūi(ai)−ūi(a)−rp(ai−a)
r+κ , we conclude

that limβ→∞ ϕi (a, β) = φi (a), where φi (a) is as in (20).

To conclude, we verify that the sufficient condition in Merlo and Wilson (1998) that en-

sures that agreement will not be delayed for any investor-dealer pair in the subgame perfect

equilibrium is satisfied as β →∞. The relevant condition is that the stochastic process for the
discounted gains from trade is a supermartingale, which in our application reduces to

Γi (a) ≥ 1− β∆

1 + r∆

⎡⎣δ∆ IX
j=1

πjΓj (a) + (1− δ∆)Γi (a)

⎤⎦+ o (∆) ,

where o (∆) is a function with the property that lim∆→0 o(∆)
∆ = 0. If we rearrange this condition

and let ∆ go to zero, it becomes

Γi (a) ≥ δ

r + β + δ
Γ̄ (a) .

Since Γi (a) ≥ 0 for all i and a, this condition is satisfied as β →∞.

C.3 Alternating offers in a discrete-time formulation of the model

Here we consider a discrete-time version of our model in which the terms of trade in a bilateral

match between a dealer and an investor correspond to the outcome of an alternating offers
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bargaining game with exogenous risk of breakdown. The environment is similar to the one laid

out in the body of the paper, except that time is discrete and indexed by t = 0, 1, .... The

sequence of events within a time period is as follows. First, each investor enjoys utility ui(a)

associated with his current preference type, i, and asset position, a. Second, investors receive

preference shocks, and new contacts between dealers and investors take place. An investor

receives a preference shock with probability δ and contacts a dealer with probability α. We

assume that these events are mutually exclusive and that α+ δ < 1. Third, the dealer-investor

pairs bargain over the terms of the trade. We assume that although the negotiation occurs

within the period, it can take place over an infinite number of bargaining rounds indexed by

τ ∈ N. Lastly, the interdealer market opens and dealers execute trades on behalf of investors.
The interdealer market closes when the period ends, and at that point all trades between dealers

and investors are settled (assets are delivered and fees are paid) and all dealer-investor matches

are dissolved.

Let Vi (a, t) denote the maximum expected discounted utility attainable by an investor who

has preference type i and is holding a at the end of period t, after the interdealer market has

closed. It satisfies

(1 + r)Vi(a, t− 1) = ui(a) + α {Vi [ai(t), t]− p(t) [ai(t)− a]− φi(a,t)}

+ δ
IX

j=1

πjVj(a, t) + (1− α− δ)Vi(a, t), (60)

where (1 + r)−1 denotes the discount factor. Similarly, letW (t) denote the maximum expected

discounted utility attainable by a dealer at the end of period t, after the interdealer market has

closed. It satisfies

(1 + r)W (t− 1) = α

Z
φi(a,t)dHt(a, i) + (1− α)W (t) . (61)

We now turn to the determination of the terms of trade. We adopt the strategic model with

exogenous risk of breakdown proposed by Binmore, Rubinstein, and Wolinsky (1986). Consider

a meeting in period t between a dealer and an investor of type i who is holding a. The terms

of trade are determined through an alternating offers bargaining game. The game takes place

within the period, but it is composed of a large number of rounds. The dealer is the first

proposer: he makes an offer that is accepted or rejected by the respondent.27 An offer is a pair
27Below we will eliminate the dealer’s first-mover advantage by considering the limit of the game where the

probabilities of breakdown between two consecutive rounds approach zero.
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(a0, φ) that specifies the new asset position of the investor and the intermediation fee paid to

the dealer. If rejected, the game moves to the second round where the investor can make a

counteroffer. Between two consecutive rounds of negotiation the communication between the

investor and the dealer can break down. The probability of breakdown following an offer by

a dealer is η1∆, while the probability of breakdown following an offer made by an investor is

η2∆. (The risk of breakdown acts as discounting between bargaining rounds and implies that

agents strictly prefer not to delay the agreement.) The payoff to an investor with preference

type i if an agreement (a0, φ) is reached at time t is Ui(a0, φ, t) ≡ Vi(a
0, t) − p(t)(a0 − a) − φ,

and the payoff to the dealer is W(φ, t) ≡ φ +W (t). If no agreement is reached, the payoff of

the investor is Ui(a, 0, t), while the payoff of the dealer is W(0, t). There are gains from trade

between an investor with preference type i who holds a and a dealer as long as

Γi (a, t) ≡ max
a0≥0

£
Vi(a

0, t)− p (t)a0
¤− [Vi(a, t)− p (t)a] > 0, (62)

i.e., as long as a 6= ai (t) ≡ argmaxa0≥0 [Vi(a0, t)− p (t)a0]. In what follows we focus on the case

where a 6= ai (t) and assume that if a = ai (t), the dealer proposes the no-trade offer (a, 0),

which is accepted by the investor.

A bargaining strategy is a contingent plan that indicates which offer to make following every

history after which it is the player’s turn to make an offer, and which offers to accept or reject

after every history where it is the player’s turn to respond to an offer. The equilibrium concept

we adopt is subgame perfect equilibrium, and we restrict attention to stationary strategies.28

Whenever it is his turn to make an offer, the dealer proposes (a1, φ1) while the investor proposes

(a2, φ2). Assuming the offer (a2, φ2) is accepted by dealers, the acceptance set at time t of an

investor with preference type i and asset holdings a is

A2i (a, t) =
©
(a0, φ) : Ui(a0, φ, t) ≥ (1− η1∆)Ui(a2, φ2, t) + η1∆Ui(a, 0, t)

ª
. (63)

A buyer accepts all offers that generate a payoff greater than or equal to his expected payoff

if he rejects the offer and takes the chance to make a counteroffer. In the latter case, the

investor makes the counteroffer (a2, φ2) with probability 1−η1∆, and with probability η1∆ the
negotiation breaks down. Similarly, the acceptance set of a dealer is

A1 (t) = ©(a0, φ) :W(φ, t) ≥ (1− η2∆)W(φ1, t) + η2∆W(0, t)
ª
. (64)

28This restriction is innocuous, since the subgame perfect equilibrium of the bargaining game we are considering
is unique. See Proposition 3 in Binmore, Rubinstein, and Wolinsky (1986) or Proposition 122.1 in Osborne and
Rubinstein (1994).
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When it is his turn to make a proposal, the investor chooses the offer that maximizes his

payoff among the set of offers that lie in the dealer’s acceptance set, i.e., the investor’s offer is
a2i (t) , φ

2
i (a, t)

®
= arg max

(a0,φ)∈A1(t)
Ui(a0, φ, t),

where the maximization is subject to a0 ≥ 0. It is easy to show that a2i (t) = ai (t) and

φ2i (a, t) = (1− η2∆)φ
1
i (a, t) . (65)

Similarly, the dealer’s optimal offer when it is his turn to propose is
a1i (t) , φ

1
i (a, t)

®
= arg max

(a0,φ)∈A2i (a,t)
W(φ, t),

where the maximization is subject to a0 ≥ 0. Hence, a1i (t) = ai(t) and φ1i (a, t) satisfies

Ui
£
ai(t), φ

1
i (a, t) , t

¤
= (1− η1∆)Ui

£
ai(t), φ

2, t
¤
+ η1∆Ui(a, 0, t) or, equivalently,

Γi (a, t)− φ1i (a, t) = (1− η1∆)
£
Γi (a, t)− φ2i (a, t)

¤
.

Use (65) to substitute φ2i (a, t) into this last expression and rearrange to get

φ1i (a, t) =
η1∆

1− (1− η1∆)(1− η2∆)
Γi (a, t) . (66)

One can check that the offers

aki (t) , φ

k
i (a, t)

®
for k = 1, 2, satisfy both agents’ participation

constraints.29

From (65) and (66), we see that lim∆→0 φ2i (a, t) = lim∆→0 φ1i (a, t) = φi(a,t), where φi(a,t)

is as in (4), with η1
η1+η2

≡ η. It is possible to work out the rest of the model in discrete time. In

particular, one could let the length of a period be given by ∆0, assume that the probabilities α

and δ, the rate of time preference, r, and the utility, ui(a), are all proportional to ∆0, and then

let ∆0 approach zero to obtain the same expressions we have in the body of the paper.
29For the dealer, this only requires φki (a, t) ≥ 0 for k = 1, 2 and all i. From (66),

Γi (a, t)− φ1i (a, t) =
η2∆(1−η1∆)

1−(1−η1∆)(1−η2∆)Γi (a, t) ≥ 0,

where the inequality is strict provided a 6= ai (t). So ai (t) , φ
1
i (a, t) is preferred by the investor to no trade. It

can be easily checked that the same is true of ai (t) , φ
2
i (a, t) .
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C.4 A single bargaining round in a discrete-time formulation of the model

In the context of the model analyzed in Section C.3, we could, instead of considering a bargaining

game with a potentially infinite number of rounds, adopt a simpler two-stage bargaining game

that delivers the same outcome. In the first stage the dealer makes an offer that the investor

accepts or rejects. Following the investor’s decision to accept or reject, the bargaining ends

with probability γ∆. (As in Section C.3, the risk of breakdown acts as discounting between

bargaining rounds and implies that agents strictly prefer not to delay the agreement.) With

probability 1− γ∆ one of two players can make a counteroffer without delay. Nature chooses

either the investor (with probability 1 − η) or the dealer (with probability η) to make the

counteroffer. The recipient of the counteroffer chooses whether to accept or reject it, and

regardless of his action, the game ends and the two players part ways.

If the investor is the proposer in the second stage, he offers

a2i (t) , φ

2
i (a, t)

®
= hai(t), 0i,

where ai(t) ≡ argmaxa0≥0 [Vi(a0, t)− p (t) a0]. If the dealer is the proposer in the second stage,

he offers hai(t),Γi (a, t)i where Γi (a, t) is as in (62). Thus, in the first stage the dealer offers
a1i (t) , φ

1
i (a, t)

®
= arg max

(a0,φ)
φ

s.t. Vi(a
0, t)− p(t)(a0 − a)− φ− Vi (a, t) ≥ (1− γ∆)(1− η)Γi (a, t)

and a0 ≥ 0. It is easy to see that a1i (t) = ai(t) and φ1i (a, t) = [1− (1− γ∆)(1− η)]Γi (a, t).

Therefore, also in this game we find lim∆→0 φ1i (a, t) = φi(a,t), where φi(a,t) is as in (4).
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D Principle of optimality

Consider an investor who effectively contacts the market with Poisson intensity κ, and who

is subject to preference shocks with Poisson intensity δ. Let {Tn}∞n=1 denote the sequence
of contact times, and Nt the number of contacts over the time interval [0, t). Similarly, let

{T 0n}∞n=1 denote the sequence of times at which he receives preference shocks. We adopt the
convention that T0 = T 00 = 0. Define the function k : R+ → X, and interpret k(t) as the
investor’s preference type at time t. The process for preference shocks implies k (t) = k (T 0n)

for t ∈ [T 0n, T 0n+1), for any integer n ≥ 0. The realization ω = (Nt, k (t))t∈[0,∞) summarizes

an investor’s individual history of shocks. Let Ω be the set of all such histories. Similarly, let

ωt = (Ns, k (s))s∈[0,t] denote a history of shocks up to time t, and Ω
t be the collection of all such

histories. We work with the probability space (Ω,H,P), where H is an appropriate σ-field of

subsets of Ω (e.g., the σ-field generated by Ωt for all finite t), and P is the probability measure
on H induced by the independent Poisson processes for preference shocks and effective contacts

with the market. Let Ht ⊆ H be a partition of Ω such that Ht ∈ Ht is a set of histories that

coincide over [0, t], i.e., Ht =
©
ω ∈ Ω : ωt = for some ∈ Ωtª. The σ-field generated by

Ht, denoted F t, captures the information available to the investor at time t, and the filtration©F t, t ∈ R+
ª
represents how information is revealed over time.

An asset plan, a =(at)t∈[0,∞), for the investor is a set of functions at : Ω → [0, ā] for all

t ≥ 0, such that at is F t−measurable.30 An asset plan (at)t∈[0,∞) is feasible if for every ω, a0 (ω)
equals the given initial asset holding of the investor, and at(ω) = aTn (ω) for all t ∈ [Tn, Tn+1).
Let A denote the set of all feasible asset plans. Let UM

k(t)(·, t) be the utility functional over the
time interval [t, TM ] of an investor with preference type k (t) at time t. His utility over the

period [t, TM ] from following asset plan a =(as)s∈[0,∞) is

UM
k(t)(a, t) = Et

∙Z TNt+1

t
e−r(s−t)uk(s)(at(ω))ds+

M−1X
n=1

Z TNt+n+1

TNt+n

e−r(s−t)uk(s)(aTNt+n(ω))ds

− e−r(TNt+1−t)p(TNt+1)
h
aTNt+1(ω)− at(ω)

i
−

M−1X
n=1

e−r(TNt+n+1−t)p(TNt+n+1)
h
aTNt+n+1(ω)− aTNt+n(ω)

i¸
, (67)

30The upper bound ā is imposed for technical reasons (to ensure that the investor’s utility is bounded above),
and is chosen to be sufficiently large so that it does not affect the investor’s decision.
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where Et is shorthand for the conditional expectation E
£·|F t

¤
.31 The firstM terms on the right

side of (67) represent the expected discounted sum of utility flows from holding the asset position

prescribed by the asset plan a over the time interval [t, TNt+M). The first term, for instance,

is the expected utility from holding the asset position at(ω) from the initial time t until the

next time the investor gains effective access to the market, TNt+1. Similarly, each term in the

summation represents the utility from holding the asset over the period [TNt+n, TNt+n+1), i.e.,

between the effective contact number Nt+n and the next one. The second M terms represent

the expected net utility cost to the investor from readjusting his asset holdings at the times

he contacts the market. The term on the second line of (67), for instance, is the (expected,

discounted to time t) disutility the investor incurs to buy aTNt+1(ω) on his (Nt + 1)
th effective

contact with the market, net of the utility he gets from selling the assets he is holding at this

time, at (ω). In what follows, we will leave the dependence of the function at on ω implicit to

simplify the notation. By the Law of Iterated Expectations, the utility functional in (67) can

be rewritten as

UM
k(t)(a, t) =

ūk(t) (at)

r + κ
+

∙
p(t)− q (t)

r + κ

¸
at − Et

h
e−r(TNt+M−t)p(TNt+M)aTNt+M

i
+

1

r + κ
Et

(
M−1X
n=1

e−r(TNt+n−t)
h
ūk(TNt+n)(aTNt+n)− q (TNt+n)aTNt+n

i)
, (68)

where

ūk(TNt+n)
(aTNt+n) ≡ (r + κ)ETNt+n

Z TNt+n+1

TNt+n

e−r(s−TNt+n)uk(s)(aTNt+n)ds

q (TNt+n) ≡ (r + κ)
h
p(TNt+n)− ETNt+ne−r(TNt+n+1−TNt+n)p(TNt+n+1)

i
. (69)

Notice that the function ūi (a) is as in (7), and since

ETNt+ne
−r(TNt+n+1−TNt+n)p(TNt+n+1) = κ

Z ∞

0
e−(r+κ)sp(TNt+n + s)ds,

the function q (t) is the one defined in (8). For any finite M , and any t, the utility functional

UM
k(t)(a, t) is well-defined for any feasible asset plan a.

32

31Notice that the stochastic process {Tn}∞n=1 can be thought of as being a function of the process ω (since
(Nt)t∈[0,∞) is a right-continuous step function with jumps at {Tn}∞n=1), so for any F t−measurable function
f : Ω→ R∪ {±∞}, the expectation E f (ω) |Ft is also integrating over {Tn}∞n=1.
32From (7), it is clear that the first term on the right side of (68) is a well-behaved function of at, which is

itself a bounded and F t−measurable function. Since throughout the paper we have specialized the analysis to
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Next, for any given nonnegative measurable price function p (t), we define the infinite-

horizon utility for the investor from following a feasible asset plan a, by

Uk(t)(a, t) = lim sup
M→∞

UM
k(t)(a, t).

For any feasible asset plan, the sequence(
M−1X
n=1

e−r(TNt+n−t)ūk(TNt+n)(aTNt+n)

)∞
M=1

has a limit. This limit may be a finite number, or −∞.33 The sequence(
M−1X
n=1

e−r(TNt+n−t)q (TNt+n)aTNt+n

)∞
M=1

is nondecreasing, so it has a limit, which may be +∞. Let

fM (ω) ≡
M−1X
n=1

e−r(TNt+n−t)
h
ūk(TNt+n)(aTNt+n)− q (TNt+n)aTNt+n

i
, (70)

then we have shown that limM→∞ fM exists (it may be finite or −∞). If we rescale ui for

each i so that ui (ā) ≤ 0 for all i, we see that the sequence {−fM}∞M=1 is a monotone in-

creasing sequence of measurable functions that converge pointwise to − limM→∞ fM , so by

the Monotone Convergence Theorem (e.g., Theorem 7.8 in Stokey and Lucas, 1989), we have

limM→∞ Et [fM ] = Et [limM→∞ fM ]. All this implies that, given a price path p (t), an investor’s

expected lifetime utility from following a feasible asset plan a =(as)s∈[0,∞) is

Uk(t)(a, t) =
ūk(t) (at)

r + κ
+

∙
p(t)− q (t)

r + κ

¸
at − lim sup

M→∞
Et
h
e−r(TNt+M−t)p(TNt+M)aTNt+M

i
+

1

r + κ
Et

( ∞X
n=1

e−r(TNt+n−t)
h
ūk(TNt+n)(aTNt+n)− q (TNt+n)aTNt+n

i)
,

price paths with the property that p(t) is measurable, q (t) is well-defined for any t, and the second term on
the right side of (68) is well-defined. Since e−rtp(t)at is a nonnegative measurable function, the integral in the
third term is well-defined (although it need not be finite). As for the last term, notice that ūk(TNt+n)

(a) =
I
i=1 ūi (a) I{k(TNt+M )=i}, where ūi (a) is a continuous function for each i, so the integral of e−rtūk(t)(at) is

well-defined. Finally, the integral of q (t)at is well-defined since p (t) and at are nonnegative and measurable.
33This limit is finite if ui is bounded below for all i, since in that case we can rescale each utility function so

that ui (0) ≥ 0 for all i, and the sequence of partial sums is nondecreasing and bounded above (because at ≤ ā
for all t, and ui is continuous for each i). Conversely, if some ui is unbounded below, we can rescale ui and every
other uj so that uk (ā) ≤ 0 for all k. Then since the sequence of partial sums is nonincreasing, it has a limit,
which could be −∞.
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which is well-defined for any feasible path.34 The investor’s problem at t is

max
a∈A

Uk(t)(a, t), s.t. at = a ≥ 0, and k (t) ∈ X, given. (71)

The investor’s maximum attainable utility is then

V ∗k(t) (a, t) = max
a∈A

Uk(t)(a, t).

Proposition 12 A feasible plan a∗ = (a∗s(ω))s∈[t,∞),ω∈Ω is optimal from a given initial date

t ≥ 0 if and only if it satisfies

a∗Tn(ω) = arg max
a∈[0,ā]

£
ūk(Tn) (a)− q(Tn)a

¤
, ∀ω ∈ Ω, ∀ {Tn}∞n=TNt+1 (72)

and

lim
n→∞Ei

n
e−r(TNt+n−t)p(TNt+n)a

∗
TNt+n

o
= 0. (73)

Moreover, if there exists a number B > maxj ū
0
j (∞) such that q (s) ≥ B for all s, then an

optimal plan exists and is unique.

Proof. The proof proceeds in three steps. Step (i): We first show that (72) and (73) are

sufficient for an optimum. Let a∗ be the asset plan that satisfies (72) and (73), and a be any

other feasible plan. For any t, let ∆ ≡ Uk(t)(a∗, t)− Uk(t)(a, t), then

∆ ≥ 1

r + κ
Et

( ∞X
n=1

e−r(TNt+n−t)
h
ūk(TNt+n)(a

∗
TNt+n

)− q (TNt+n)a
∗
TNt+n

i)

− 1

r + κ
Et

( ∞X
n=1

e−r(TNt+n−t)
h
ūk(TNt+n)(aTNt+n)− q (TNt+n)aTNt+n

i)
− lim sup

M→∞
Et
h
e−r(TNt+M−t)p(TNt+M)a

∗
TNt+M

i
.

From (72) and (73), it follows that ∆ ≥ 0. Step (ii): Next, we show that an optimal plan must
satisfy (72) and (73). The first step is to notice that the objective function on the right side of

34We have chosen to define the lifetime utility as lim sup
M→∞

UM(a, t) rather than lim
M→∞

UM (a, t), be-

cause lim
M→∞

Et[e−r(TNt+M−t)p(TNt+M)aTNt+M ] need not exist for every feasible asset plan. The defini-

tion we have adopted guarantees that the payoff from every feasible asset plan can be evaluated using
the investor’s utility function. As we show below, the optimal asset plan, a∗, has the property that
lim

M→∞
Et[e−r(TNt+M−t)p(TNt+M)a∗TNt+M ] = 0, which means that, equivalently, we could define the utility

function as lim
M→∞

UM (a, t), and simply restrict the investor’s choices to the set of feasible paths for which
lim

M→∞
Et[e−r(TNt+M−t)p(TNt+M)aTNt+M ] exists.
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(72) is strictly concave and differentiable, so u0i [a∗s (ω)]−q (s) ≤ 0 (“=” if a∗i (s) > 0) is necessary
and sufficient for an optimum. Since q (s) > ū0i (∞) for all i, we can choose ā large enough so
that q (s) > ū0i (ā) for all i, and therefore (72) is the unique solution to the investor’s problem at

time s, for history ω, when his preference type is k (s). Suppose that the asset plan ã is optimal,

with ãs(ω) 6= a∗s(ω) for some history ω at some date s > t. Since both ã and a∗ are feasible,

ãTNs (ω) 6= a∗TNs (ω). Then the investor could maintain his asset plan ã unchanged except at

date TNs for history ω, where he could choose a∗TNs (ω). By (72), this deviation is feasible.

Since the maximization in (72) has a unique solution, the proposed deviation strictly increases

the investor’s expected utility, so ã could not have been optimal–a contradiction. Next, we

show that any optimal policy must satisfy (73). Let a∗ be an optimal plan, and consider the

feasible plan (1− ε)a∗, for some small ε > 0. Let ∆ε ≡ Uk(t)(a∗, t)− Uk(t) [(1− ε)a∗, t]; then,

∆ε = Et

( ∞X
n=1

e−r(TNt+n−t)

r + κ

h
ūk(TNt+n)(a

∗
TNt+n

)− ūk(TNt+n)[(1− ε)a∗TNt+n]− εq (TNt+n)a
∗
TNt+n

i)
− εlim sup

M→∞
Et
h
e−r(TNt+M−t)p(TNt+M)a

∗
TNt+M

i
.

Divide the previous expression by ε, and take the limit as ε→ 0 (applying L’Hôpital’s Rule) to

arrive at

lim
ε→0
∆ε

ε
=

1

r + κ
Et

( ∞X
n=1

e−r(TNt+n−t)
h
ū0k(TNt+n)(a

∗
TNt+n

)− q (TNt+n)
i
a∗TNt+n

)
− lim sup

M→∞
Et
h
e−r(TNt+M−t)p(TNt+M)a

∗
TNt+M

i
.

Since the asset plan a∗ is optimal, the first-order condition for the investor’s problem (72), i.e.,

[ū0k(Tn)(a
∗
Tn
)− q (Tn)]a

∗
Tn
= 0 for all {Tn}∞n=TNt+1, implies

lim
ε→0
∆ε

ε
= −lim sup

M→∞
Et
h
e−r(TNt+M−t)p(TNt+M)a

∗
TNt+M

i
,

and the optimality of a∗ requires

0 ≤ −lim sup
M→∞

Et
h
e−r(TNt+M−t)p(TNt+M)a

∗
TNt+M

i
.

Then, since e−rTp(T )a∗T ≥ 0 for all T , we have

0 ≤ lim inf
M→∞

Et
h
e−r(TNt+M−t)p(TNt+M)a

∗
TNt+M

i
≤ lim sup

M→∞
Et
h
e−r(TNt+M−t)p(TNt+M)a

∗
TNt+M

i
≤ 0,
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so the optimality of a∗ requires

lim
M→∞

Et
h
e−r(TNt+M−t)p(TNt+M)a

∗
TNt+M

i
= 0.

Step (iii): Finally, since the necessary conditions (72) and (73) determine a unique a∗ =

(a∗t (ω))t∈[0,∞),ω∈Ω, the optimal plan exists and is unique.

The formulation we have laid out in this appendix is quite general, in that it allows the

investor to choose among feasible asset plans a = (at(ω))t∈[0,∞),ω∈Ω, where at can be any

F t−measurable function of the whole history of shocks, ω, as well as time, t. From (72),

however, notice that the optimal asset plan a∗ = (a∗t (ω))t∈[0,∞),ω∈Ω is not history-dependent:

when the investor gains effective access to the market at time Tn, his optimal decision depends

only on Tn and his preference type at that time, k (Tn). For this reason, we can simplify the

notation as we did in the body of the paper, by letting ak(Tn) (Tn) ≡ a∗Tn(ω). With this notation,
we can denote the optimal plan a∗ simply by a sequence of functions {(ai (t) , t ∈ [0,∞))}Ii=1,
with ai (t) = ai (Tn) for all t ∈ [Tn, Tn+1) and every i. Also as in the body of the paper, we can
use Ek(t) to denote Et, which stresses the fact that k (t) summarizes all the relevant information
available to the investor at time t in order to form the conditional expectation over ω. With

this notation, consider an investor at time t, with asset holdings at = a ≥ 0, and preference
type k (t) = i ∈ X, both given. His maximum attainable utility is V ∗i (a, t) = Ui(a∗, t), i.e.,

V ∗i (a, t) =
ūi (a)

r + κ
+

∙
p(t)− q (t)

r + κ

¸
a+Ki (t) , (74)

where

Ki (t) = Ei

( ∞X
n=1

e−r(TNt+n−t)
"
ūk(TNt+n)[ak(TNt+n) (TNt+n)]

r + κ
− q (TNt+n)

r + κ
ak(TNt+n) (TNt+n)

#)
.

From Proposition 12 we know that if there exists a number B > maxj ū0j (∞) such that q (s) ≥ B

for all s, then an optimal plan {(ai (t) , t ∈ [0,∞))}Ii=1 exists and is unique, so Ki (t) is well-

defined. If, in addition, there exists a real number B̄ such that q (t) ≤ B̄ for all t, thenKi (t) ∈ R
for all t and every i.

Instead of considering (71), in the body of the paper we described the investor’s problem

using a recursive functional equation, i.e., (1) with asset holdings and fees given by (2), which we

showed to be equivalent to (27). Lemma 8 formalizes the relationship between both formulations

of the investor’s problem, (27) and (71). Before we prove this result, it is convenient to establish

a preliminary result.
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Lemma 7 For any t ≥ 0,

Kk(t) (t) =
1

r + κ
Ek(t)

n
e−r(TNt+1−t)[ūk(TNt+1)[ak(TNt+1) (TNt+1)]− q (TNt+1)ak(TNt+1) (TNt+1)]

o
+ Ek(t)

h
e−r(TNt+1−t)Kk(TNt+1)

(TNt+1)
i
.

Proof. First, notice that for all integers n ≥ 0, we have Ns = Nt + n if s = TNt+n, so the

definition of Kk(t) (t) implies

Kk(TNt+1)
(TNt+1) =

1

r + κ
Ek(TNt+1)

( ∞X
n=2

e−r(TNt+n−TNt+1)ūk(TNt+n)[ak(TNt+n) (TNt+n)]

)

− 1

r + κ
Ek(TNt+1)

( ∞X
n=2

e−r(TNt+n−TNt+1)q (TNt+n) ak(TNt+n) (TNt+n)

)
. (75)

Also from the definition of Kk(t) (t),

Kk(t) (t) =
1

r + κ
Ek(t)

n
e−r(TNt+1−t)

h
ūk(TNt+1)[ak(TNt+1) (TNt+1)]− q (TNt+1)ak(TNt+1) (TNt+1)

io
+

1

r + κ
Ek(t)

( ∞X
n=2

e−r(TNt+n−t)
h
ūk(TNt+n)[ak(TNt+n) (TNt+n)]− q (TNt+n)ak(TNt+n) (TNt+n)

i)
=

1

r + κ
Ek(t)

n
e−r(TNt+1−t)

h
ūk(TNt+1)[ak(TNt+1) (TNt+1)]− q (TNt+1) ak(TNt+1) (TNt+1)

io
+ Ek(t)e−r(TNt+1−t)

"
1

r + κ
Ek(TNt+1)

( ∞X
n=2

e−r(TNt+n−TNt+1)ūk(TNt+n)[ak(TNt+n) (TNt+n)]

)#

− Ek(t)e−r(TNt+1−t)
"

1

r + κ
Ek(TNt+1)

( ∞X
n=2

e−r(TNt+n−TNt+1)q (TNt+n)ak(TNt+n) (TNt+n)

)#
=

1

r + κ
Ek(t)

n
e−r(TNt+1−t)

h
ūk(TNt+1)[ak(TNt+1) (TNt+1)]− q (TNt+1) ak(TNt+1) (TNt+1)

io
+ Ek(t)

h
e−r(TNt+1−t)Kk(TNt+1)

(TNt+1)
i
.

The last equality follows from (75).

Lemma 8 Consider an investor who, at some initial time t ≥ 0, starts with asset position a

and preference type k (t) ∈ X, and suppose that there exists a number B > maxj ū0j (∞) such
that q (s) ≥ B for all s ≥ t.

(i) The maximum value of (71), i.e., V ∗k(t) (a, t), satisfies the functional equation (27).

(ii) The asset plan that solves (71), i.e., (ak(TNs) (s) , s ∈ [t,∞)), satisfies

V ∗k(t)[ak(TNt) (TNt) , t] =
ūk(t)[ak(TNt )

(TNt)]
r+κ + Ek(t)

h
e−r(TNt+1−t)p(TNt+1)ak(TNt) (TNt)

i
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+Ek(t)
h
e−r(TNt+1−t)

n
V ∗k(TNt+1)[ak(TNt+1) (TNt+1) , TNt+1]− p(TNt+1)ak(TNt+1) (TNt+1)

oi
.

(iii) Let (ak(TNs) (s) , s ∈ [t,∞)) be the asset plan induced by (27), i.e., the asset plan in (6),
and with

lim
n→∞Ei

h
e−r(TNt+n−t)p(TNt+n)ak(TNt+n) (TNt+n)

i
= 0 (76)

for each i ∈ X. Then this asset plan achieves the maximum in (71).

(iv) Let (ak(TNs) (s) , s ∈ [t,∞)) be the asset plan induced by (27), and assume it satisfies
(76). If Vi (a, t) solves (27) and satisfies

lim
n→∞Ei

h
e−r(TNt+n−t)Vk(TNt+n)[ak(TNt+n) (TNt+n) , TNt+n]

i
= 0 (77)

for each i ∈ X, then Vi (a, t) = V ∗i (a, t).

Proof. (i) If we let V ∗ (a, t) ≡ {V ∗i (a, t)}Ii=1, and regard the right side of (27) as a map F ,
we need to show FV ∗ = V ∗. Substitute V ∗ (a, t) as given by (74), into (27):

(FV ∗) (a, t, i) =
ūi (a)

r + κ
+ Ei

∙
e−r(TNt+1−t){p(TNt+1)a+max

a0≥0
[V ∗k(TNt+1)(a

0, TNt+1)− p(TNt+1)a
0]}
¸

=
ūi (a)

r + κ
+

∙
p(t)− q (t)

r + κ

¸
a+ Ei

h
e−r(TNt+1−t)Kk(TNt+1)

(TNt+1)
i

+
1

r + κ
Ei
n
e−r(TNt+1−t)[ūk(TNt+1)[ak(TNt+1) (TNt+1)]− q (TNt+1) ak(TNt+1) (TNt+1)]

o
=

ūi (a)

r + κ
+

∙
p(t)− q (t)

r + κ

¸
a+Ki (t)

= V ∗i (a, t) ,

where the third equality follows from Lemma 7.

(ii) From (74),

V ∗k(t)[ak(TNt) (TNt) , t] =
ūk(t)[ak(TNt) (TNt)]

r + κ
+

∙
p(t)− q (t)

r + κ

¸
ak(TNt) (TNt) +Kk(t) (t)
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=
ūk(t)[ak(TNt) (TNt)]

r + κ
+ Ek(t)

h
e−r(TNt+1−t)p(TNt+1)ak(TNt) (TNt)

i
+Kk(t) (t)

=
ūk(t)[ak(TNt) (TNt)]

r + κ
+ Ek(t)

h
e−r(TNt+1−t)p(TNt+1)ak(TNt) (TNt)

i
+

1

r + κ
Ek(t)

n
e−r(TNt+1−t)[ūk(TNt+1)[ak(TNt+1) (TNt+1)]− q (TNt+1) ak(TNt+1) (TNt+1)]

o
+ Ek(t)

h
e−r(TNt+1−t)Kk(TNt+1)

(TNt+1)
i

=
ūk(t)[ak(TNt) (TNt)]

r + κ
+ Ek(t)

h
e−r(TNt+1−t)p(TNt+1)ak(TNt) (TNt)

i
+ Ek(t)

h
e−r(TNt+1−t)

n
V ∗k(TNt+1)[ak(TNt+1) (TNt+1) , TNt+1]− p(TNt+1)ak(TNt+1) (TNt+1)

oi
.

The second equality follows from the definition of q (t), the third equality from Lemma 7, and

the fourth equality from the fact that

V ∗k(TNt+1)[ak(TNt+1) (TNt+1) , TNt+1] =
ūk(TNt+1)[ak(TNt+1) (TNt+1)]

r + κ

+

∙
p(TNt+1)−

q (TNt+1)

r + κ

¸
ak(TNt+1) (TNt+1) +Kk(TNt+1)

(TNt+1) .

(iii) Immediate from Proposition 12.

(iv) By (3) and (6), we can write (27) as

Vk(t)(a, t) =
ūk(t) (a)

r + κ
+ Ek(t)

n
e−r(TNt+1−t)p(TNt+1)

h
a− ak(TNt+1) (TNt+1)

io
+ Ek(t)

n
e−r(TNt+1−t)Vk(TNt+1)[ak(TNt+1) (TNt+1) , TNt+1]

o
.

Iterate this expression forward M − 1 times (using the Law of Iterated Expectations and (69))
to arrive at

VM
k(t)(a, t) =

ūk(t) (a)

r + κ
+

∙
p(t)− q (t)

r + κ

¸
a− Ek(t)

h
e−r(TNt+M−t)p(TNt+M)ak(TNt+M ) (TNt+M)

i
+

1

r + κ
Ek(t)

(
M−1X
n=1

e−r(TNt+n−t)
h
ūk(TNt+n)[ak(TNt+n) (TNt+n)]− q (TNt+n) ak(TNt+n) (TNt+n)

i)
+ Ek(t)

h
e−r(TNt+M−t)Vk(TNt+M )[ak(TNt+M ) (TNt+M) , TNt+M ]

i
. (78)

A function Vk(t)(a, t) that solves (27) must satisfy (78) for all M , so the solution is Vk(t)(a, t) =

limM→∞ VM
k(t)(a, t), provided this limit exists. From (78),

lim
M→∞

VM
k(t)(a, t) =

ūk(t)(a)

r+κ +
h
p(t)− q(t)

r+κ

i
a− lim

M→∞
Ek(t)

h
e−r(TNt+M−t)p(TNt+M)ak(TNt+M ) (TNt+M)

i
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+ lim
M→∞

Ek(t)

(
M−1X
n=1

e−r(TNt+n−t)
∙
ūk(TNt+n)

[ak(TNt+n)
(TNt+n)]

r+κ − q(TNt+n)
r+κ ak(TNt+n) (TNt+n)

¸)
+ lim

M→∞
Ek(t)

h
e−r(TNt+M−t)Vk(TNt+M )[ak(TNt+M ) (TNt+M) , TNt+M ]

i
=

ūk(t) (a)

r + κ
+

∙
p(t)− q (t)

r + κ

¸
a

+ lim
M→∞

Ek(t)

(
M−1X
n=1

e−r(TNt+n−t)
∙
ūk(TNt+n)

[ak(TNt+n)
(TNt+n)]

r+κ − q(TNt+n)
r+κ ak(TNt+n) (TNt+n)

¸)
.

The second equality follows from (76) and (77). Since {ak(TNt+n) (TNt+n)}∞n=1 is bounded and ūi
is continuous for every i, {ūk(TNt+n)[ak(TNt+n) (TNt+n)]}∞n=1 is bounded above. Hence, without
loss of generality, we can rescale ui for each i so that {−ūk(TNt+n)[ak(TNt+n) (TNt+n)]}∞n=1 is a
nonnegative sequence. Then the sequence

©
f̄M
ª∞
M=1

, where

f̄M (ω) ≡
M−1X
n=1

e−r(TNt+n−t)
h
ūk(TNt+n)[ak(TNt+n) (TNt+n)]− q (TNt+n) ak(TNt+n) (TNt+n)

i
,

is a nonincreasing sequence, and hence it has a limit, limM→∞ f̄M , which could be −∞. Since©−f̄Mª∞M=1
is a monotone increasing sequence of measurable functions that converge point-

wise to − limM→∞ f̄M , by the Monotone Convergence Theorem (e.g., Theorem 7.8 in Stokey

and Lucas, 1989), we have limM→∞ Ek(t)
£
f̄M
¤
= Ek(t)

£
limM→∞ f̄M

¤
= (r + κ)Kk(t) (t), and

therefore for every k (t) ∈ X,

lim
M→∞

VM
k(t)(a, t) =

ūk(t) (a)

r + κ
+

∙
p(t)− q (t)

r + κ

¸
a+Kk(t) (t) = V ∗k(t) (a, t) .

This concludes the proof.

Lemma 8 establishes a Principle of Optimality for the economy we analyze: Part (i) shows that

V ∗k(t) (a, t), the maximum value of the investor’s problem given in (71), satisfies the functional

equation (1) with asset holdings and fees given by (2) (which is equivalent to the functional

equation (27)). Part (ii) establishes that the asset plan that solves (71) is an optimal plan

implied by the functional equation (1) when this functional equation is evaluated at V ∗k(t) (a, t).

Part (iii) is a partial converse of part (ii): it proves that the asset plan that is optimal according

to the functional equation (27), and that satisfies the boundedness condition (76), is the same

asset plan that achieves the maximum of (71). Part (iv) is a partial converse of Part (i):

it shows that V ∗k(t) (a, t) is the only solution of the functional equation (27) that satisfies the

boundedness condition (77).
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E Related literature

In this appendix we draw connections to some related literature.

E.1 Search models of over-the-counter markets

Traders who operate in markets with OTC-style frictions will seek to mitigate these trading

frictions by adjusting their asset positions so as to reduce their trading needs. Our analysis has

shown that this is a critical aspect of investor behavior in illiquid markets. To illustrate this

point, in this section we derive the main predictions of a version DGP’s model and contrast

them with those of a special case of our formulation. This comparison will underscore the fact

that the type of “liquidity hedging” that we have identified–and that only becomes possible

with unrestricted asset holdings–generates new insights on how trading frictions shape the

various dimensions of market liquidity, alters the empirical predictions of the theory, and leads

to a different assessment of their normative implications.

We will contrast the empirical predictions of DGP’s model with those of a special case of

our model with X = {1, 2} and ui (a) = εi
a1−σ
1−σ for i ∈ X and σ > 0. We focus on the version of

DGP’s model with no inter-investor meetings (e.g., the version that DGP use in their Theorem

4 and part (i) of Theorem 6). DGP restrict a ∈ {0, 1} and let uij denote the flow utility

of an investor with asset position i ∈ {0, 1} and preference type j ∈ {0, 1}.35 DGP assume

u00 = u01 = 0, so for comparison purposes, we do the same hereafter. To simplify the notation,

in both models we let π denote the steady-state fraction of investors with high valuation.36

Price. Since asset holdings are indivisible in DGP, equilibrium in the interdealer market

requires investors who are on the long side of the market to be indifferent between trading and

not trading. It is easy to show that in steady state, investors who want to sell are on the short

side if and only if A < π. The equilibrium price in the interdealer market is

p =

(
1
r
(r+κ)u11+δū

r+κ+δ if A < π
1
r
(r+κ)u10+δū

r+κ+δ if π < A,
(79)

where ū ≡ π1u11 + π0u10.37

35DGP state their restriction on asset holdings as a ∈ [0, 1] but only study equilibria in which agents hold
either 0 or 1 unit of the asset, which is effectively equivalent to imposing the restriction a ∈ {0, 1}.
36“High valuation” corresponds to the index “2” in our formulation and “1” in DGP.
37 If A = π, p ∈ (r+κ)u10+δū

r(r+κ+δ) , (r+κ)u11+δūr(r+κ+δ) and the equilibrium price in the interdealer market is indeterminate.
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The asset holding restrictions in DGP are also the reason why the asset price in their theory

is independent of the stock of assets, A, for any A < π and for any A > π, with a discontinuity at

A = π. In contrast, the asset price in our model is smooth and decreasing in A. For example, in

the special case of our model that we are considering in this section, p =
³P

i πiε̄
1/σ
i

´σ
/rAσ.38

The behavior of the asset price in response to changes in the trading frictions in DGP depends

critically on the level of A. From (79), p is increasing in α (decreasing in η) if A < π but

decreasing in α (increasing in η) if A > π. In contrast, with unrestricted asset holdings these

extensive-margin considerations are irrelevant to assess the impact of trading frictions on the

asset price (recall Proposition 4).

Trade volume. Trade volume is V = α δπ(1−π)
α+δ

(ε̄2)1/σ−(ε̄1)1/σ
π(ε̄2)1/σ+(1−π)(ε̄1)1/σA in our model and VDGP =

αδπ(1−π)
α+δ min{Aπ , 1−A1−π } in DGP. The latter is independent of the dealers’ bargaining power, η,

and of all preference parameters and holding payoffs (e.g., r, k). In contrast, these parameters

are critical determinants of trade volume in our theory, as they influence the investors’ choices

of asset holdings (the second factor in V). Our model predicts that markets in which dealers
have less market power will tend to exhibit larger trade volume.39

Transaction costs. DGP’s transaction costs can be expressed in terms of the intermediation

fees φ01 and φ10 that dealers charge investors who want to buy and sell, respectively. The equi-

librium spread is s = η(u11−u10)
r+κ+δ .40 Conditional on having contacted an investor, the expected

intermediation fee that accrues to a dealer in DGP is ΦDGP =
δπ(1−π)
α+δ min{Aπ , 1−A1−π }s. This key

determinant of dealers’ incentives to make markets is decreasing in the investors’ contact rate

with dealers, α, and increasing in the dealers’ bargaining power, η. In contrast, as we have

shown analytically in Proposition 1, in our model with no restrictions on asset holdings it is

natural for the average fee to be nonmonotonic in α and η. Our theory suggests that these

nonmonotonicities can be important. From an applied standpoint, they help explain how OTC
38Notice that we obtain DGP’s formulation with A < π as a special case of ours when σ → 0.
39Apart from these qualitative differences, the theory with unrestricted portfolios also has different quantitative

implications for the relationship between trade volume and trading frictions. For example, DGP’s model has a
sharp empirical implication: the elasticity of trade volume with respect to trading frictions equals δ

α+δ ∈ (0, 1).
In contrast, in the model with unrestricted asset holdings the corresponding elasticity is larger by an amount that
equals the elasticity of (a2 − a1) with respect to α–which is positive, capturing the notion that each investor
wishes to conduct a larger trade when frictions are reduced.
40Since asset holdings in DGP are restricted to lie in {0, 1}, every trade is of size 1 and hence φ01+φ10 = s. In

addition, the indivisibility assumption implies that dealers either charge a fee on asset sales or on asset purchases,
but not both. Specifically, if A < π then φ01 = 0 and investors only pay a fee φ10 = s when they sell. Conversely,
if π < A, φ10 = 0 and investors only pay a fee φ01 = s when they buy.
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markets have reacted to recent changes in their market structure (see Lagos and Rocheteau,

2006). From a theoretical standpoint, they can generate self-fulfilling liquidity shortages in

markets with free entry of dealers (Section 6).41

Another key difference with DGP is the fact that since the equilibrium in the model

with unrestricted portfolios implies a nondegenerate distribution of trade sizes, our theory

has predictions for the relationship between transaction costs and transaction sizes. As we

showed in Lemma 4, transaction costs are increasing in the size of the transaction. Thus, if

ai − aj > ai − ak > 0, then the effective price at which the investor buys is p̂ji > p̂ki, i.e.,

he effectively pays higher prices when he conducts larger purchases. Conversely, p̂ji < p̂ki if

ai − aj < ai − ak < 0, i.e., he effectively receives lower prices when he conducts larger sales. In

other words, the theory with unrestricted asset holdings naturally generates instances of price

concession, which are commonplace in OTC markets.42

Execution delays. DGP endogenized trading delays by allowing a single monopolist dealer

to choose search intensity once-and-for-all at the beginning of time. Free entry of competing

dealers or market-makers is a feature of most OTC markets; however, the implications of this

microstructure have not yet been explored in the literature. We find that allowing for free entry

of dealers is a natural way to endogenize execution delays and the amount of liquidity supplied by

dealers, and that it provides an important channel through which changes in market conditions

affect transaction costs and trade volume. In addition, the interaction between free entry and

unrestricted asset holdings leads to a natural kind of strategic complementarity that can help

rationalize self-fulfilling liquidity shortages in markets with OTC-style frictions (Section 6).

Welfare. The equilibrium allocation is always constrained efficient in the baseline model

of DGP–regardless of the value of η–which stands in contrast to the finding we report in

Proposition 2. The reason is that in our model investors choose asset holdings, while this

intensive margin is absent in DGP. For the same reason, the inefficiency result we find in the

context of the model with free entry also has no counterpart in DGP.
41The spread, s, is decreasing in α and increasing in η in this version of DGP with no inter-investor meetings.

One can also verify that the average effective spread weighted by the sizes of each trade and expressed as
a proportion of the price is also decreasing in α and increasing in η. The behavior of this measure of the
marketwide spread, i.e., (38) in Lagos and Rocheteau (2006), is much more complicated in our model, where the
investors’ expected holding payoffs, their individual asset demands, the asset price, and the whole distribution
of asset holdings change in response to a change in α. Our numerical work, some of which we have reported in
Lagos and Rocheteau (2006), is in accordance with the predictions of DGP.
42See Section 4.3 in Harris (2003).
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A paper that is closely related to ours is an independent contribution by Gârleanu (2006),

which studies the asset pricing and volume implications of infrequent (Poisson) trading oppor-

tunities. Some of our findings are similar: he also finds that under certain conditions (e.g.,

a mean-reversion property of preference shocks), investors take more extreme positions when

trading delays are short. Also, Gârleanu stresses that the asset price is not affected by the trad-

ing frictions–which is true in our model for a particular specification of the utility function

(Proposition 4). In terms of differences, trades in Gârleanu (2006) are not intermediated by

dealers, so he could not consider the implications of execution delays for transaction costs and

dealers’ incentives to provide liquidity, which are at the center of our analysis. Also, Gârleanu

(2006) formalizes the investors’ motive for holding the asset by developing the “hedging needs”

motive we mentioned in footnote 4. Despite the differences in the formulations, some of our

results on the effects of α on trade volume are remarkably similar.43

E.2 Search models of money

Here we discuss the relationship between our theory and the search-theoretic literature on

monetary exchange. In contrast to the monetary literature, our model does not have fiat

money as an asset, and it does not aim to explain the use or emergence of a medium of

exchange. However, it shares a common objective with modern monetary theory, which is to

endogenize some relevant dimensions of “liquidity.” We organize the comparison around four

types of results.

Endogenous distribution of asset holdings. Because of idiosyncratic (trading) shocks,

under incomplete markets, our model generates a nondegenerate distribution of wealth as Green

and Zhou (2002) and Molico (2006), but also Aiyagari (1994). The trading mechanism in our

model is closer to the one in Molico: the asset is traded in bilateral matches, and the transaction

price is determined through bargaining. In terms of the methodology, both Aiyagari (1994) and

Molico (2006) solve their models numerically. Green and Zhou (2002) is closer to our analysis in

that they can characterize the equilibrium and its distribution of money holdings analytically.

Moreover, like us, they do not restrict their analysis to stationary equilibria. The pricing

mechanism is different (Green and Zhou consider a double auction).

Bargaining and the distribution of prices. A key insight of our model is that the interme-
43See the discussion around Proposition 9 in Appendix B for details.
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diation fee depends on the (endogenous) asset position of the investor. Similarly, in monetary

search models with bargaining, the transaction price depends on the traders’ money balances.

This dependence occurs through (at least) two channels. First, the buyer can be constrained by

his money balances. This mechanism is present even in models with a degenerate distribution

of money balances, such as Shi (1997) and Lagos and Wright (2005). Second, the money hold-

ings of an agent affect his marginal utility of wealth, and hence the terms of trade. These two

effects are absent from our model, since our investors never face binding borrowing constraints,

and the marginal utility of wealth is normalized to one due to the quasi-linear preferences. An

investor’s asset holdings influence the outcome of the bargaining in our model because this asset

position determines the size of the gains from trade that will be generated for readjusting the

investor’s asset holdings.

Uniqueness of the equilibrium. The equilibrium (not just the steady state) is unique

in our model. In contrast, the model of fiat money of Green and Zhou can display multiple

equilibria. This indeterminacy is a general feature of models of fiat money. Even in models with

a degenerate distribution of money balances, e.g., Lagos and Wright (2005), the equilibrium is

typically not unique, unless one restricts attention to steady-state monetary equilibria. Models

of monetary exchange consider environments where the asset being traded is fiat money, whose

value emerges endogenously when it is valued as a medium of exchange that mitigates a double-

coincidence of wants problem. In contrast, in our model and the rest of the literature that deals

with the trading process in OTC markets, the asset being traded is not used to facilitate trades;

it is valued for its intrinsic characteristics (e.g., dividend flow).

Endogenous trading delays and multiple equilibria. In our model, the multiplicity of

steady-state equilibria with dealer entry arises from complementarities between investors’ asset

demands and dealers’ entry decision. If more dealers participate in the market, it is easier for

investors to readjust their asset holdings, which induces them to take more extreme positions,

and this in turn makes it profitable for dealers to enter. Rocheteau and Wright (2005) consider

a monetary search model with free entry of sellers and find that the strategic complementarities

between the sellers’ entry decision and the buyers’ demand for real balances generate multiple

steady-state equilibria. If buyers accumulate more real balances, the buyer and the seller are

able to exploit larger gains from trade, which gives more incentives for sellers to participate in

the market. In both models, the multiplicity does not require increasing returns to scale in the
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matching function as in Diamond (1982) or as in most recent search models of financial markets,

e.g., Vayanos and Weill (2008). A key difference between our model and Rocheteau and Wright

(2005) is the opportunity cost from holding real balances in the latter, which has no counterpart

in our formulation. If the opportunity cost from holding cash balances to make a purchase is

zero (e.g., if the nominal interest rate is zero), then the multiplicity of (active) steady-state

equilibria in that model disappears. In contrast, the multiplicity in our model obtains even

though investors do not bear any opportunity cost (e.g., forgone interest) while searching for

an asset to purchase (since they have access to a technology to produce the numéraire good).

Also, notice that the gains from trade in Rocheteau and Wright (2005) depend on the mean

of the distribution of real balances (since the distribution of real balances is degenerate as in

Lagos and Wright, 2005), which is independent of trading frictions when the nominal interest

rate is zero. In our model it is the second moment, which is endogenous and depends on the

trading frictions, what gives rise to multiple steady-state equilibria.
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