
Federal Reserve Bank of Minneapolis
Research Department Staff Report 281

November 2000

Technology (and Policy) Shocks
in Models of Endogenous Growth*

Larry E. Jones

Federal Reserve Bank of Minneapolis
and University of Minnesota

Rodolfo E. Manuelli

University of Wisconsin

Ennio Stacchetti

University of Michigan

ABSTRACT

Our objective is to understand how fundamental uncertainty can affect the long-run growth rate and what
factors determine the nature of the relationship.  Qualitatively, we show that the relationship between volatility
in fundamentals and policies and mean growth can be either positive or negative.  We identify the curvature
of the utility function as a key parameter that determines the sign of the relationship.  Quantitatively, we find
that when we move from a world of perfect certainty to one with uncertainty that resembles the average
uncertainty in a large sample of countries, growth rates increase, but not enough to account for the large
differences in mean growth rates observed in the data. However, we find that differences in the curvature of
preferences have substantial effects on the estimated variability of stationary objects like the consump-
tion/output ratio and hours worked.
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1.  Introduction

In his celebrated 1987 book, Models of Business Cycles, Robert Lucas presents some simple calcula-

tions to argue that the trade-off between fluctuations and growth is such that a representative agent’s

willingness to pay, in terms of growth rates, for a more stable environment is almost zero.  Even

though Lucas’ conclusion has been challenged by analyses of models that relax some of the details

in his basic environment—ranging from the specification of preferences to the details of the market

structure1—none of these analyses question a fundamental implicit assumption:  the factors that

affect fluctuations do not affect long-run growth.2

Is there any evidence that the volatility of shocks, both policy and productivity shocks, has

an impact on long-run growth?  The results are mixed.  In an early study, Kormendi and Meguire

(1985) find that variability in output is positively related to mean growth in a cross section of coun-

tries.  More recently, Ramey and Ramey (1995) find that higher volatility decreases growth, also in

a cross section of countries.  Empirical work that relates policy variability, mostly inflation, and

growth also seems to point to a negative relationship (Judson and Orphanides 1996).  Simple regres-

sions of mean growth rates on measures of volatility of growth rates suggest a U-shaped relationship,

with an upward sloping segment only at very high levels of volatility.

                                                
1������������	��
��������������������������������������������
��	������������������������������������

(1994).
2 The current standard in the real business cycle literature is to view long-run growth as exogenous and, hence,

independent of the fundamental shocks.  For an explicit discussion, see Cooley and Prescott (1995).
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Our objective in this paper is to study a class of models in the neoclassical tradition in which

fundamental uncertainty can affect the long-run growth rate.3  Our main focus is to understand both

qualitatively and quantitatively how important fluctuations are for growth.  Our analysis includes

both theoretical results and numerical evaluations.

Qualitatively, we show that the relationship between volatility in fundamentals and policies

and mean growth can be either positive or negative.  For the case of independent and identically

distributed driving shocks—even allowing for endogenously determined rates of return—our results

are in line with those found in related models: if preferences have curvature at least as high as the

log, increased volatility increases growth, while for low curvature, the opposite is true.4  We then

show how the negative relationship between volatility and growth also holds—for the case in which

curvature is at least as high as the log—for economies with correlated shocks.  Overall, we expect

a positive relationship between uncertainty and growth.  Thus, for a class of simple specifications,

elimination of the type of fluctuations we study will decrease long-run growth.

We also find that the decomposition of the variance of the fundamental shocks into its auto-

correlation and innovation variance components matters: increases in the variability of the innova-

tions to the fundamental shocks are likely to have a larger impact than increases in the serial correla-

tion.  Finally, we show that these models can generate positively autocorrelated growth rates, but for

this to be the case, the driving shocks must be positively autocorrelated themselves.

                                                
3 Although we emphasize a technology-shock interpretation of the type used in the real business cycle literature

for the shocks in our model (see Cooley 1995 for an up-to-date survey of this literature), the shocks that we model can
also be interpreted as random fiscal policies (for an equivalence result, see Jones and Manuelli 1999).

4 Following the work of Eaton (1981), Obstfeld (1994) studies the case of two linear technologies which, in
fact, makes the rate of return exogenous.  More recently, de Hek (1999) analyzes a case in which an externality gives
rise to linear Ak technology in equilibrium, and he finds that log utility is the critical specification.
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Even though our work follows the recent analyses of stochastic endogenous growth models

in which the source of shocks is technology,5 policies,6 or a combination of the two,7 it has a differ-

ent emphasis.  Our main point is to highlight the critical roles played by the degree of risk aversion

and the nature of the stochastic process for the exogenous uncertainty on the distribution of growth

rates.

To explore the quantitative importance of uncertainty for growth, we simulate a general ver-

sion of our model.  The numerical exercise is revealing.  The main result is that when we move from

a world of perfect certainty to one with uncertainty that resembles the average uncertainty in a large

sample of countries, growth rates increase somewhere between 0.17 percent and 0.80 percent, with

0.20 percent being a reasonable estimate.  Even though these are nontrivial changes, they are not

large enough by themselves to account for the large differences in mean growth rates observed in the

data.

As expected, differences in the curvature of the utility function and the specification of the

fundamental uncertainty have impacts on the second-order properties of growth rates.  In general,

increases in the coefficient of risk aversion decrease the standard deviation of the growth rate, and

increases in the serial correlation of the exogenous shocks also increase the serial correlation of the

growth rate.  Unlike exogenous growth models, the class of models we study can generate positively

autocorrelated growth rates.

                                                
5 For example, see King, Plosser, and Rebelo (1988), King and Rebelo (1988), Obstfeld (1994), and de Hek

(1999).
6 See Eaton (1981), Bean (1990), Aizenman and Marion (1993), Gomme (1993), Hopenhayn and Muniagurria

(1996), and Dotsey and Sarte (1997).
7 See, for example, Kocherlakota and Yi (1997).
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Differences in the curvature of preferences have substantial effects on the estimated variabil-

ity of stationary objects like the consumption/output ratio and hours worked.  For this reason, we

expect that the models considered in this paper will provide the basis for sharp estimates of the

curvature parameter.  This is in contrast to the results in exogenous growth models in which curva-

ture has only a small effect and confirms the critical role that the shape of the utility function has in

determining the long-run growth rate in nonstochastic versions of models of endogenous growth.

Section 2 presents the basic analytic results.  Section 3 discusses a key property of endoge-

nous growth models that makes them computationally tractable.  Section 4 contains numerical results

for calibrated versions of the model, and Section 5 offers some concluding comments.

2.  Stochastic Growth Models: Analytic Results

In this section, we explore the theoretical implications of increases in uncertainty on the distribution

of growth and savings rates.  Not surprisingly, an analytic characterization of the solutions to sto-

chastic endogenous growth models is hard to come by.  For this reason, we will restrict attention to

two simple but revealing examples.  In the first, we explore the effects of i.i.d. shocks with an elastic

labor supply.  The second example is a version of the Ak model (alternatively, the labor supply is

exogenous), but allows for correlated shocks.  Our results are extensions of the literature on optimal

savings (for example, Phelps 1962, Levhari and Srinivasan 1969, and Rothschild and Stiglitz 1971)

expanded to incorporate general equilibrium effects, an elastic labor supply, and serially correlated

shocks.8

                                                
8 Eaton (1981) was the first to apply these ideas to growth models.  A two-technology version is in Obstfeld

(1994).
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The equilibrium of the class of models we study can be computed as the solution to the

following planner’s problem:

(P.1) )}1/()({max 1 σ−∑ σ−
tt t nvcE

subject to

ct + kt+1 + ht+1  �
α−α 1)( tttt hnAks  + (1− �kt + (1− �ht

h0 and k0 given.  The shock process {st} is assumed to be a linear Markov process given by

st+1 = 1 −� �!� st�!� t+1

"����� t+1����"����������#��$�����	����������������%��������� ������&���%'�����	������ 
�"�����

���������(�������������#�������)��*����'
� ′�+� �	�������� ′ is dominated in the sense of second-

���������*����*���	���*��%'� #��,���
��������� �*�����)���������������&�������'������������&����

to the technology shock.  For this specification, the standard deviation of the {st} process (using the

��&�����������%������������&���%'� s�-� /(1− 2)½
�"�����  is the standard deviation of the innova-

����#�����"�����������*��������� s, holding the mean constant at one, as increases in risk, it follows

��������������"��"'�������*���������.����*����� 
������*����� #����������������
���*���������

*�����)���������*�������������&��%����'������������&�����
� .  Even though we will take {st} to be

a productivity shock, we can reinterpret 1 − st as a tax shock, provided that income is used to buy

a good that does not affect preferences for consumption and leisure.9

We assume that v is such that the utility function is concave and that the marginal utility of

working is negative.

                                                
9 For a more thorough discussion, see Jones and Manuelli (1999).  Dotsey and Sarte (1997) also mention the

connection between monetary shocks and tax shocks.
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2.1.  The i.i.d. Case

��������������(	)��
�"��*���������#�#�#����*���� -/������������)��*���������%�������*���� -��#��,�

guarantee that an equilibrium exists, the economy cannot be too productive (for a discussion, see

Jones and Manuelli 1990).  For this example, the relevant condition, which we assume holds, is

0 �A(1− �(1− � )(1− �]��  (�S��! �(1− � (d ����  < 1.

To ensure an interior (in terms of n) solution, we need stronger conditions, namely,

(C.1) 0 �A(1− �(1− � )(1− �]��  (�S��! �(1− � (d ����  < 1 −�0� −1)(1− �v(1)/v′(1)]

and

(C.2) ���/�1� �1��
���	n60 1 −�0� −1)(1− �v(n)/(nv′(n))] < 0.

These two conditions guarantee that the equilibrium labor supply is strictly between 0 and

1.  We assume that both conditions hold.  From now on, we will describe the conditions for the case

���"��*�� �≠ 1.10

We next argue that the equilibrium decision rules display three properties: saving is a con-

�������*����
� 
������*�	���������%�����))�'����*����������������(�)����������������������)�'��*�

and human capital are equal.  First, if rates of return to the two forms of capital are equal (for each

realization of s) then the stocks of human and physical capital must satisfy ht = [(1− �2 3�kt.  Given

����
������&�������
� 
����������&�������	)��'	���
�n, must solve

(2.1) �-���−�0� −1)(1− �v(n)/(nv′(n))]

(2.2) �-�D ŝ ��  n(1− ���− ��

                                                
10���� �-��
�����������'����*������������c) + v(n), with v′(n) < 0.  In this case, conditions (C.1) and (C.2) take

slightly different forms.  We present the derivation in the proof of Proposition 1.
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where A* is A(1− �(1− � , D�-�0 �A*)(1− �]�� , and ŝ  = �S���! �(1− � (d �#��4��*��'
��5�������6#��

guarantees that at the conjectured equilibrium, the marginal rate of substitution between consumption

and income is equal to the real wage, while (2.2) is the Euler equation that ensures equality between

the intertemporal marginal rate of substitution in consumption and the rate of return on capital.  Let

�����������������6#�������6#6��%���)���� 
�n�
�"��*����)������������)�	������� 
� ). An equilib-

rium is fully characterized by this pair.  The growth rate associated with this equilibrium is given by

(2.3) yt+1/yt � t+1 = st+1A
*n1− �-�st+1

where, since Est�-��
� ��������	������"������#

Proposition 1: Assume that conditions (C.1) and (C.2) hold.  Then an equilibrium of the conjectured

���	��(��������������5��#�������&��
���� ′�+� 
������5����%���	�������������������"����*���itions:

(a)  The effects of increases in risk:

(i) � 
�n,� ����*�����"���� ���� �+��#

(ii) � 
�n,� ����*�����"���� ����/�1� �1��#

(iii) � 
�n,� ���������)���������� ���� �-��#

(b)  Amplification:  The ratio of the standard deviation of the growth rate to the standard de-

&���������������*������'����*�
� 2 s, satisfies the following:

(i) 2 s�+�������������"����������)�����&��� �+���#

(ii) 2 s���*������"���� ���� �+��#

(iii) 2 s���*������"���� ����/�1� �1��#

(iv) 2 s��������)���������� ���� �-��#

Proof: See Appendix A.
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Thus, in very simple economies, it is clear that even the sign of the effect of increased un-

certainty on average growth rates varies with preference parameters.  The model can accommodate

�)�����&������������)
�*����������"��������������������7��	��������������������8�
���� �+��
����

�����&������������)
���������%'�9	�'����9	�'�����8�
����/�1� �1��#11  The i.i.d. (and full

depreciation) version of the model has a sharp implication about a second moment of the distribution

of growth rates:  the first-order serial correlation coefficient is zero.  This statistic has been at the

center of the arguments on the inability of the real business cycle model to display persistence (see

Cogley and Nason 1995 and Hall 1998).  The most-cited evidence for nonzero serial correlation is

described by Cogley and Nason (1995).  These authors find a small positive autocorrelation in annual

data for the United States.12  Fatas (2000) also finds that for a group of 15 developed countries, the

growth rates are autocorrelated.  The international evidence, using the full Summers-Heston (1991,

1993) data set at annual frequencies, is less conclusive.  In a sample of 148 countries, we find that

in more than two-thirds of the countries, the point estimate of the first-order autocorrelation coeffi-

cient is not significantly different from zero.13  In the majority, but not all, of the remaining coun-

tries, the point estimate is greater than zero and the average of the point estimates is close to 0.3.

Thus, the evidence suggests that there is a fair amount of heterogeneity in the distribution of the

serial correlation coefficients of the growth rate across countries.

                                                
11�,������������%����������*������"��*��*��������� ��&������	)*��������"�������#��,����*���*�����)����

to v(n) = n�� 2��! �
�"������! ��+�/���� �+��#������������)�*���*�����v′(n)n/v(n�����*�����������6#���)������"�� 
�"��*�

of course, is independent of the properties of {st}.

12 However, when the Summers-Heston data set for the United States is used, it is not possible to reject the hy-
pothesis that the annual first-order correlation coefficient is zero.

13 We used t-statistics in excess of 1.4 as indicating rejections of the null hypotheses of zero autocorrelation.
Had we used the more stringent threshold of 2.5, we would have rejected the null for only ten countries, which is within
the standard margin.
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2.2.  The Markov Case

Our next step is to show how properties of the stochastic process {st} and the rate of depreciation

affect the distribution of growth rates.  To this end, we study a version of problem (P.1) which

abstracts from labor supply—we set v(n) equal to one—but allows for both serially correlated shocks

� �≠�/���������������������)��*������� 1��#�������������������%�������	���������	)�����#

In order to guarantee that the solution to the planner’s problem, (P.1), is well defined, it is

necessary to bound how fast output can grow in this economy.  A natural generalization of the

condition discussed in Jones and Manuelli (1990) is

(2.4) sups� �(A(1− ! s)+1− ! �1− � (d ��≤� �1��#

In Proposition 2, we show that the optimal capital accumulation rule can be written as

(2.5) kt+1 -� �st;� 
� ��st A+1− �kt.

In this case, the growth rate is given by

(2.6) yt+1/yt � �st, st+1�� 
� ��-�st+1 �st;� 
� �0st A+1− 32st

and the conditional—on the current shock—expected growth rate, γ(st;� 
� �
���������

(2.7) Et{yt+1/yt} � γ(st;� 
� ��-� �st;� 
� ���− ! st)(st A+1− �2st.

�����
�"��"���������*��%����"�*����������������������������������&����
�������
� 
����*�����

���*����*�)��*�����������"�������#��,����������
�"�����������*��%����"� �st;� 
� �
�������*�������

broad income saved, depends on s���� #�����	��'
�"�����"����������"����)��)�������#

Proposition 2:  Assume that (2.4) holds.  Then the optimal capital accumulation rule is of the form

kt+1�-� �st,� ��st A+1− �kt#�������&��
��������*����� �s,� ����

(i) increasing and concave in s������*���������� 
����/�1� �1��


(ii) *�����������5������ ���� �-��
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(iii) decreasing and convex in s������*���������� 
���� �+��#

Proof:  See Appendix A.

Note that the conditional growth rate, γ(st;� 
� �
���)�������� ����'��������� �st;� 
� �#�

,���
����)��������6����"�������������*�������	��������&��������/1 1��
���*����������������*����

����*����������'��()�*�������"������#���������������'����*��������	����*��&������������������ +��


�������*�����:��	�������%'� :����������*�������������"���������*�����#��,���
�����*���������

growth rates, the role of curvature identified in the i.i.d. case remains unchanged.

What are the effects of changes in risk on expected or average growth rates? The expected

growth rate is given by

(2.8) γ� 
� ��-��S �s;� 
� ���− ! s)(sA+1− �2s (ds)

"�����  is the invariant measure of the process.14����������"�����	�����	��������� ′�+� ��	)��������

������	����������������*���;���������*����*���	���*���������%'� ′.

,���
��������������������*��&�(
�����*�������� �"������*����� γ� 
� �
�"��������������*��*&�


the converse is true.  We can now give a partial answer to the question of the effects of increased risk

���&��������"�������#���������*����������������&�������� +��
��������*����� �s;� 
� �������*������

and convex, while the function (1− ! s)(sA+1− �2s is always convex.  A sufficient condition for

�s;� 
� ���− ! s)(sA+1− �2s to be convex is that (1− ! s)(sA+1− �2s be decreasing for all values

of s#��,��������5��&���������������*��������������<����� #����������'����*��*���������*��s has support

                                                
14 In this case, the invariant distribution is the distribution of the random variable ∞

=∑ 0j
j

t−j, which inherits

����*�����������������	�����&��%���� t.
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in [0, 2], a sufficient condition for the expected growth rate to be a convex function of s is that

 ≤ (1− �26�A+1− �#��,���
�����	�������������*���������
���*������������������
���	�������%'


���*����������()�*�������"������#��=��*�����
������*���������������'������*����
�������������	��i-

cal results we find that increases in the riskiness of the innovation process increase average growth

��������� �+���
��&������������&������������������*����������*�����*����
� #

$��������������'����*���������������	�*
� �s;� 
� �����*�����������������"���������������*��'

convex function of s���� �1����������������*�������� �-��#��,�������"�����������)�'���%'�������)�e-

ciation rate.  If it is small, which is the more realistic case, increases in the riskiness of the innova-

tions increase average growth rates.  Since this result is independent of the magnitude of the correla-

�����*�����*����
� 
����))�������������#�#�#�*�����"���#��,���
���������)�����*������������"������

from the riskiness of the innovations that we found in Proposition 1 cannot, in general, survive—

even in an approximate sense—whenever depreciation rates are small.15

We summarize this discussion in the following proposition:

Proposition 3:  Assume that the conditions of Proposition 2 hold.  Then the expected—using the

invariant measure—growth rate, γ� 
� �
��������*��'���*���������� ���

(i) �-��
����/�1� �1��

(ii) �+��
���� �≤ (1− �26�A+1− �#

,���*�������	��������&������
�/�1� �1��
����	����*�	)��*����%�*�����������*����� �s;� 


���− ! s)(sA+1− �2s is the product of a concave and a convex function.  Theory does not provide

                                                
15���*��������'����	�������"��������� �1��
�����&��������"���������*������"������*������'
��&���"����

is less than (but close to) one.
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a prediction.  Although we explored only small deviations from the log specification, we found that

������������	���*���(��*����
���*��������� ���*������()�*�������"���������&�����������*��#

$����(���()�������������*������*�������������������*����������*�����*����
� #������������������

in our highly nonlinear model, it is not possible to give general results.  To make some progress, we

look at approximations (see Appendix B for derivations).  Our basic finding is that if the fraction of

broad income saved is not very sensitive to small shocks, the expected growth rate, γ� 
� �
���������

&�'�����	�*��"���� #

���)�������*�������������	�*
��������������&����������������"������
� , can be approxi-

mated by

(2.9) �-�06 2��! ��!���− �2/(1− 2)]1/2

"����� � ���− �2�A+1− ��������	%���*��������/#�����������%����)�*���*�����#����������"�����

��*��������� 
��������� s�*������
���*����� ������*��������� 
��������� s�*������
���*����� .

To study the autocorrelation of growth rates, we approximate (2.6) around st = st+1 = 1 to get

 �� �!�� − �20��!�� − �2�!� � − �3

"����� � � s���� 
� �2 �s;� 
� ��s=1 is the elasticity of the (broad) savings rate with respect to the

���*����� ������%�����#

�����
�������()�����������"����������������*������)�����&��'�������'�*��������
�  is nega-

��&�#��,����������
�����������	����� ���������<��������%���&�����
��������*��
� �st;� 
� ��������e-

pendent of st���
����*�
� �-�/#��,���
���������#�#�#�*��


 >�− 2��! 2) >�−0.5

��&������� ����*�����������#16

                                                
16 Note that this result does not coincide with our findings in the previous model with i.i.d. shocks due to the

��������*�������)��*�����#���������	����
� �-��
�"��*���	)����
��������*��
����� �-�/����  = 0, as shown above.
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�����������������������"��������	����)����������������������	��������*���� �+ �
������

��*����'��%������������*����������� − ��+�/#��������������%������*��
���&���	����	�������)����)��i-

��&��'�����������*���������
� s���� 
� ��+�/#�����	����)��������6
���������"�����������*���))������'

���/�1� �1��#��������������"�������������)��*�����������������*�����)����������"� �����)�����	����

����)��������*�#�������		�'
������������*�)�	�����&����
� �>�/
������  >�−�26#������ �+� 
������

��*����'����� s�+�/
�����������5���������� �1��#����� �+��
������ �1� #��?��������)��*����������

��*����� .

It is difficult to compare our results on the characterization of the effects of fundamental un-

certainty on the distribution of growth rates with those in the real business cycle literature.  The

major problem is that in the real business cycle world, the curvature of the utility function plays a

minor role, while in models of endogenous growth, it turns out to be a major determinant of the

distribution of growth rates.  The intuition for this is simple: differences in curvature play no role

in the determination of the steady state of a standard Cass-Koopmans model, while the endogenous

growth analog—a balanced growth path—depends crucially on the degree of intertemporal substitu-

tion.  This different role played by the curvature parameter in the nonstochastic version remains in

stochastic analyses, with the added impact that it balances income and substitution effects in deter-

mining the impact of additional risk on consumption and savings.  In recent work, Fatas (2000)

documents—for a sample of 15 countries—a positive relationship between average growth and the

serial correlation of growth rates.  In his model, he assumes that differences in mean growth are due

to differences in technology.  Our results in this section complement Fatas’ in that they describe how

differences in the stochastic processes for fundamental uncertainty affect both mean growth rates and

their second moments.
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Our findings in this section indicate that the relationship between fundamental shocks and

the distribution of growth rates is highly nonlinear.  We find that for curvature levels greater than

or equal to the log—low intertemporal elasticity of substitution—increases in risk increase both

investment over (properly defined) output ratios and average growth rates.  Our results for curvature

less than the log indicate that investment as a fraction of (properly defined) output decreases with

risk.  However, the implications for expected growth rates are less clear since only in the extreme

case of i.i.d. shocks and full depreciation does the model give a robust prediction.  Here, decreases

in average growth follow from increases in risk.

The other two theoretical predictions of interest are, first, the differential impact of serial cor-

relation and variability of innovations on the second moments of the growth rates and, second, the

possibility of serially correlated growth rates if fundamental shocks are also serially correlated.

3.  Computing Equilibria of Linear Endogenous Growth Models

The actual solutions to general versions of the models described in the preceding sections does cause

some problems.  The natural choice of the state is the vector (kt, ht, st).  The difficulty is that both kt

and ht are converging to infinity (at least for versions of the model that exhibit growth on average).

This renders numerical methods useless:  they simply do not apply to this case.  Despite this, the

forms of the value and policy functions have relatively simple characterizations under some addi-

tional assumptions about the forms of the utility and production functions.  The key property we will

exploit is that for general versions of the models of the type described in (P.1) to have a balanced

growth path, both preferences and technology must be restricted in a specific way (see King, Plosser,

and Rebelo 1988 and Alvarez and Stokey 1998).  Specifically, utility functions must be of the form



-16-







+
>σ≠σσ−=

σ−

).()log(

0but  ,1with )1/()(
),(

1

�

�
�

vc

cv
cu

In our discussion, we will concentrate on the nonseparable case.  The same arguments apply

to the separable case.

On the technology side, we consider technology sets given by

ct + xzt + xht + xkt ≤ F(kt, zt, st)

zt ≤ M(nzt, ht, xzt)

kt+1 ≤ (1− k)kt + xkt

ht+1 ≤ (1− h)ht + G(nht, ht, xht)

�t + nht + nzt ≤ 1

h0 and k0 given.  Here {st} is a stochastic process which we assume is Markov with a transition

probability function of P(s, A) and in which ct is consumption, xkt is investment in physical capital,

kt is the stock of physical capital, xht is investment in human capital, ht is the stock of human capital,

zt is effective labor, nzt is hours spent working in the market, nht is hours spent augmenting human

capital, and �t���� �������#� �,������	�� k���� h are the depreciation rates on physical and human

capital, respectively.

Thus, this is a fairly standard endogenous growth model in which effective labor is made up

of a combination of hours and human capital which is supplied to the market.  For specific choices

of functional forms, many models in the literature are special cases of this formulation.  For example,

if M = nzh and G = G0hnh, the model corresponds to Lucas (1988) in the absence of externalities. If

M = nzh and G = xh, this corresponds to the two-capital-goods version discussed in Jones, Manuelli,

and Rossi (1993).  Finally, note that the standard one-sector growth model with exogenous techno-

logical change is also a special case (but the st itself is not Markov in that case:  G �/
�M(•) = nz).



-17-

Given the convexity of technologies and preferences, if markets are complete—as we assume—the

equilibrium allocation can be found by solving a planner’s problem of this form.

It can be shown that the essential property is that the technology set is linearly homogeneous

in reproducible factors.  This corresponds to the following restrictions:

(i) F is concave and homogeneous of degree one in (k, z).

(ii) M is concave and homogeneous of degree one in (h, xz).

(iii) G is concave and homogeneous of degree one in (h, xh).

These restrictions effectively imply that the choice set in this more general version of (P.1)

is linearly homogeneous in the initial stocks and that preferences are homothetic, holding fixed the

nonreproducible choice variables, n in our application.  This implies that knowledge of the current

shock and the current human capital/physical capital ratio (the two relevant pseudo state variables)

is sufficient to determine the optimal choices of employment and the next period’s human capi-

tal/physical capital ratio.

Let {et} be the entire state/date contingent plan for the reproducible factors.  The plan {et,

nt} is feasible from initial state e0 = (h0, k0), for a given s0
����������'����@ et, nt} is feasible from the

������������ e0�-�� h0
� k0�� �+�/�#�������&��
�����������'��������
�������������()�*�������*���������	�

����<������	�@ et, ntA����
1−  times the utility of {et, nt}.  Formally, consider the maximization

problem,

(P.2) max U(e, n)

subject to

(e, n) ∈ � �h0, k0, s0)

where, as noted, (e, n) is interpreted as the entire state/date contingent path of the endogenous

variables and vector of labor supplies and U is the resulting expected discounted sum of utilities. Let
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V(h0, k0, s0) denote the maximized value in this problem (assuming that it exists), and let (e*(h0, k0,

s0), n*(h0, k0, s0)) denote the optimal plan.  Then we have the following proposition.

Proposition 4:  Assume that the utility function in (P.2) is homogeneous of degree 1 −� ����e (hold-

ing n���(���
�������������%������
� 
����������'���	�������������h, k) (holding n and s fixed), and

that a solution exists for all (h, k, s).  Then the value function, V, for the problem (P.2) satisfies V� k,

h, s��-� (1− � V(k, h, s�
�������� �+�/#�������&��
������)��	��)���������	����������������������

in z and degree zero in n:  (e*� k,� h, s), n*� k,� h, s���-�� e*(h, k, s), n*(h, k, s)).

Proof:  See Appendix A.

From the point of view of a numerical approximation of problems like (P.2), this result im-

plies that it is possible to estimate the optimal decision rules for c/k, xj/k, j = h, k, z as functions of

the bounded—within a reasonably large set—variable h/k and then calculate

k′ = (1− k)k + k(xk/k)

h′ = (1− h)h + hG(xh/k, h/k, nh)

to determine h′/k′.  Thus, in this case, the Euler equations corresponding to (P.2) are solved by

functions that depend only on the stationary variables h/k and s.

Proposition 4 applies to any planning problem that has the required linearity and homogene-

ity properties.  These include models with multiple sectors, preferences that depend on the state (for

example, human capital determines effective leisure), and so on.  A separate but related problem is

under what conditions equilibrium allocations can be represented as solutions to planners’ problems

of the type described in (P.1).  This class includes convex endogenous growth models with no
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external effects and the same class of models with proportional income taxes (see Jones and

Manuelli 1999, among others).

Proposition 4 does not apply to planners’ problems in which the technology displays in-

creasing (for example, in Romer 1986) or decreasing (for example, in Brock and Mirman 1972 and

the real business cycle application) returns to scale in reproducible factors or to problems that have

distortions with no planning representations (for example, different tax rates on capital and labor

income).

4.  Quantitative Effects of Uncertainty

In this section, we rely on numerical methods to analyze the quantitative effects of variability in

fundamentals on the distribution of growth rates.

4.1.  Model Specification and Calibration

We study a special case of the model in Section 3.  Specifically, we assume that u(c, 1−n) =

[c(1−n) ]1− /(1− �
�F(k, z, s) = sAk z1− , G(nht, ht, xht) = xht, M(n, h) = nh, st+1 = 1 −� �!� st + t+1, with

t i.i.d., and t ~ U[− 
� 3#

The specification is standard.  Our assumption that only xht enters into the production of new

human capital (which is, of course, produced using labor and both physical and human capital

through the technology F) amounts to an aggregation assumption, namely, that the technology used

to produce human capital as a function of capital and effective labor is identical to that in the final

��������*���#� ������'
�"���)�*��'� ���� k�-� h.  This assumption greatly simplifies the solution

because it implies a constant human capital/physical capital ratio (for details, see Appendix B).

,��*��%��������	����
�"�����	������ 
�*)���B������
������&���%'�/#CD
����"�������

fixed at 0.95.  We assume that the common depreciation rate of human and physical capital is given
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%'� �-�/#/E8
��������*��*��
�"��*��%��������	�����������������%�����))�'��������������*����*

steady state is given by n = 0.17 (see Jones, Manuelli, and Rossi 1993).17  These restrictions still

leave one degree of freedom in the selection of the parameters of preferences and technology.  One

"'�������&��������������	��*'�������*������ ������*�����*�������������&���������������*��%����

���"������
� #����������������������*����������'
�"��	������	���������'��F����A (the average tech-

�����'�)�	��������� ���*��&�����)�	������������������'����*������������)�n at 0.17.  We choose

������%���*���&�������� �-��#8���� �-��#/6
����6�)��*�������"���)���'��#

,�������	�����������*����*�)��*����������������	�������*������'
�"��	�����)�*��'� ���

#����������%���*��
�"��*������ �-�/#������ �-�/#/�#��G����������'
�������������*������)������st

in the data.  However, different {st} processes imply different stochastic processes for the growth

rate.  We use the average (across countries) standard deviation of the growth rate and its first-order

serial correlation as the moments to match.  In the Summers and Heston (1991, 1993) data set, the

average (across countries) standard deviation of the per capita growth rate is 0.0601 and its serial

*�������������/#�68D#����������%���*��
��������*����*�)��*������&���%'� �-�/#����� �-�/#/��*�	��

close to replicating these values for the endogenously determined process for the growth rates.18

Even though our base case parameters are motivated by the desire to match observations, the

principal aim of the paper is to understand how variability in fundamentals affects the distribution

of growth rates more generally.  Thus, we study alternative parameter values to better understand the

effects of volatility on growth.  First, our theoretical results indicate that some parameters—for

                                                
17 In earlier versions of the paper, we also tried calibrations so that the nonstochastic steady-state labor supply

was n = 0.3.  This had only minor effects; hence, the results are not included here.
18 For our cross country data, we use the Penn World Tables 5.6.  See Summers and Heston (1991, 1993).
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�(	)��
� 
� 
�����������������&�����������������&����� —are important determinants of the

transmission mechanism of exogenous shocks.  Second, the available evidence on growth rates from

the Summers and Heston data set shows a large variation in average values across countries:  even

though the average across all countries is 1.98 percent, the first quartile is given by an average

growth rate of 0.91 percent, while the third quartile is given by a rate of 3.23 percent.  Since we want

to explore the possibility that the heterogeneity in average growth is due to differences in the coun-

try-specific {stA�)��*�����
�"������*��������*��������� ���� .

We study the following variations to our base case:

(a) $��&����� ����	�/#�����C#/#

(b) We varied the calibrated growth rate from 0 percent to 4 percent per year.

(c) $��&����� ����	�/#E����/#��8#

(d) We varied the standard deviation of the innovation from 0.035 to 0.081.19

Except in those exercises corresponding to the change in the nonstochastic mean (that is,

point (b) above), every time a parameter is changed, the model is recalibrated to match the same

moments as in the base case.

To solve the model, we compute the optimal decision rules after we discretize the state

space.  We then draw a realization of {st} of size 5000 and compute the moments using this realiza-

tion.  In those cases in which the stochastic process {st} is not changed, we have used the same

realization to facilitate comparisons.

                                                
19���������'����*��*������ �-�� 2C�1/2.  Thus, in terms of , we tried values from 0.06 to 0.14.
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4.2.  Uncertainty, Risk Aversion, and Growth Rates

����������*����
�"������'���"�*�������������*��&������������������'����*����
� 
����*������������%�����

of growth rates.  The basic results, for several specifications, are presented in Table 1.  We report

the values of E� �
�����&��������"����������������	�������� , the standard deviation of the growth

�������������	����������� , the first-order autocorrelation coefficient of the growth rate in the

simulation.  For reference, we also present, in the last three rows, comparable statistics from the

Summers and Heston (denoted SH) data set.  Thus, the SH mean of 1.98 percent means that the

average across countries is 1.98 percent, while the middle 50 percent of countries had average

growth rates between 0.91 percent and 3.23 percent.  Similarly, the average across countries of the

standard deviation of the growth rate is 0.06, while the middle 50 percent of countries had standard

��&�������%��"����/#/H�����/#/EE#�����������%��
�"������� ���� ���(�����������%���*���&�������

/#�����/#/�
����)�*��&��'
�����F���� ����	�/#�����C#/#20

Since the nonstochastic version of all these specifications is calibrated to grow at 2 percent,

any difference between the E� ��*���	�����6�)��*��������������������*���������������������&�����

of the shock from 0 to 10 percent (as a percentage of the mean).  The major findings are as follows:

(a) Our base case, corresponding to case 4 in Table 1, matches the standard deviation and

first-order autocorrelation of the per capita growth rates fairly well.  For this base case, the

impact of increased uncertainty on mean growth is small and is approximately equal to one-

fifth of one percent per year.  The largest impact of uncertainty occurs for preferences that

are less concave than the log.

                                                
20�I����������� �1��
�*��*&��'��������������'����*�����)������	��������*���������"��� �*��%�#�������*�� 
�"�

adjusted A���� �������)��������"���������������������*����*�&��������������	�������(�����6�)��*������������%��
supply equal to 0.17.  Thus, we could equally well index the cases by either A���� #
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(b) As suggested by Proposition 3, the average growth rate in the simulations exceeds the

*��%�����&�������6�)��*���������*��&������� #

�*������()�*���
���*�������������*��&������������������'����*����
� 
�������������*������������

standard deviation of growth rates.  Thus, for coefficients of relative risk aversion exceeding

one, we find that increases in risk aversion increase mean growth and decrease its variability.

(d) For all these specifications, the model’s prediction of the autocorrelation coefficient of

growth rates is small, and often negative.  It is clear that the growth rate of output—unlike

the growth rate of capital—does not inherit the serial correlation properties of the driving

shock.

(e) As expected from the theoretical results, the smaller the curvature of the utility function,

the higher the autocorrelation coefficient.  More curvature makes investment respond nega-

tively to the current shock, and this, in turn, implies that the growth rate is more negatively

serially correlated.  At the other end, if the source of differences across economies is the cur-

vature parameter, our model predicts a positive relationship between mean growth and the

���*����������������"����������� ����������������#��,�������*����������"�������B��6///�

finding.

(f) The effect of a given amount of uncertainty on the expected growth rate varies with the

*��&�����)�	����� 
���������������	�����������*��������*��&����#��������������"�����

the largest impact of uncertainty occurs for values just below log utility.  Moreover, for

 > 1, increases in risk aversion increase E� �#��=&����
���������������)�%��"���� ����E� �

has a U-shape.
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,%����#��,���J���*����� ����E� �
�����&��������"������

Case s E� �

1 0.9 0.9 0.07 0.093 2.49% 0.099 0.031

2 1.0 0.9 0.08 0.106 2.34% 0.090 0.012

3 1.5 0.9 0.08 0.106 2.17% 0.064 −0.002

4 2.0 0.9 0.08 0.106 2.19% 0.059 −0.005

5 2.5 0.9 0.08 0.106 2.23% 0.056 −0.007

6 3.0 0.9 0.08 0.106 2.28% 0.055 −0.008

SH mean — — — 1.98% 0.060 0.123

SH Q1 — — — 0.91% 0.041 −0.039

SH Q3 — — — 3.23% 0.077 0.307

Overall, we find qualitatively that uncertainty affects growth in the expected direction. 

Quantitatively, the results are more difficult to interpret.  The changes in average growth due to

uncertainty range from one-fifth to one-half of one percent per year.  Although the observed differ-

ences in average growth rates across countries in the Summers-Heston data set are substantially

larger, it is not clear what fraction of these differences could potentially be due to differences in

volatility.

4.3. The Nature of Uncertainty and Its Effects on the Distribution of Growth Rates

For the linear stochastic Markov process {stA
� �������������&������ ��� s�-� /(1− 2)1/2.  This

	�	������)������������	������������������������&�����������������&����
� , and the autocor-
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��������*�����*����
� #������������*����
�"������'���������*������&�'�����������"��*�	)������
�  and


��������������%������������"�������#

=�����������������()���	�������������*��������� ���&����&������� #21  In the context of the

�����'���&���)��������*�����6
�����*�������� �*�����)������������*������������
� #������������6


"��)����������� �-��#8�*��������"��&�������� 
�/#�����/#�#����������������
�"��)������������*����

*��������� s��������*���������  on the expected growth rate.22  Our major findings are as follows:

�������()�*���
���*���������  increase the expected per capita growth rate.  The impact is

not linear, with larger effects for high levels of uncertainty.  At the high end, when the stan-

dard deviation of the shock is 13.5 percent, the average growth rate is 2.8 percent, an increase

of 0.8 percent over the deterministic benchmark.23

�%��,�������*��������&���*�������� s can have substantially different impacts on mean

���"����������)��������������������*��������������������*�#�������(	)��
���������  = 0.9

�*���	'���������������������������6�
�����*�������� s from 10 percent to 12 percent has

�&��'��	����	)*�����	������"�������
�"����������	����*�������������  = 0.8 economy

results in a substantial change in mean growth rates close to one-half of one percent.  Based

on these examples, it seems that the higher the level of serial correlation, the smaller the im-

pact of variability on average growth.24

                                                
21���*��������� �*�����)���������*��������� .
22 See Appendix C, Table C.1, for the basic data.
23 This is a substantial impact, but it comes at a high cost: In this case, the model predicts the standard deviation

of the per capita growth rate to be 0.12, twice the average value from the Summers and Heston data set, although still
in the support of the distribution of standard deviations.

24 This exercise also shows why we were forced to stay away from the standard linear-quadratic approximations
used in the real business cycle literature. In the case of a linear approximation to the Euler equations, the theoretically
)����*�����	)*�����*���������  on the decision rules is zero. It is because of our interest in this higher-order effect that
we used a different numerical strategy.
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�*��K��������� s���&���%'�*���������  have almost linear effects on the standard deviation

of the growth rate and very small effects on the autocorrelation of growth rates (Table C.1

in Appendix C).

����������(����������()���	����
�"������� �*����������*����� s through changes in the correla-

�����*�����*���������������&�������*��
� #��,���	F�����������������%��*����������,%����K#����

C.2 in Appendix C) are as follows:

�����*��������� ����������  constant) have small but negative effects on the average growth

rate (Table C.2 in Appendix C contains the data).

�%����*��������� ��&����	���%��������&�
����()�*���
��	)*������������������&�����

of growth rates.

�*����*��������� ���*���������������*��������������������"������������,%���K#6�����))����(

C).

Is it possible that uncertainty has a different effect for high growth and low growth coun-

tries?25  To explore this issue, we tried adjusting the nonstochastic steady-state growth rate to which

we calibrate the model.  For our base case, we tried several values from 0 percent to 4 percent.  Our

numerical results (see Table C.3 in Appendix C) show that the nonstochastic steady state has no

impact on measured moments of the distribution of growth rates.

4.4.  Volatility and Cyclical Behavior

Even though our primary interest in this paper is to begin the exploration of the effects of uncertainty

on growth, our model delivers implications for cyclical variables.  However, unlike developers of

more standard real business cycle models, we are not free to detrend the data.  Our theoretical model

                                                
25 In the context of this paper, the differences in growth rates could be due to distortionary taxes or differences

in technology or both.
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implies that the appropriate detrending procedure is to consider the ratio of each variable, except

hours worked (our variable n), to output.  Our model implies that hours worked is a stationary

variable.

Before we confront our model’s predictions with the data, we must match the notion of in-

vestment in human capital with observable quantities.  In the model, the variable xh corresponds to

investment and is conceptually different from consumption.  What is the counterpart in the data?

This question is difficult because it is not clear what human capital is.  Most economists would

probably agree that human capital includes education and training, but it is also likely to encompass

other activities like health care and investments in mobility.  Even for those items for which there

is consensus (for example, education and training), there are no good measures.  To say the least,

training is poorly measured and, depending on its nature, may not even be part of measured output.

In the case of education, and some forms of training, gross investments appear in consumption.26

Thus, in this paper, we assume that all of xh is part of measured output, and we experiment with two

notions of consumption:  the narrow view that consumption in the data corresponds to consumption

in the model and the broad view that consumption in the data is the sum of consumption and invest-

ment in human capital, c + xh.
27

In Table 2, we report the results for our base case and for various levels of curvature.  There

are four interesting features:

(a) Uncertainty has a small effect on the mean of the consumption/output ratio, both in its

narrow version, c/y, and its broad version, (c+xh)/y.  However, the choice of narrow versus

                                                
26 Of course, it is possible to net out educational expenditures, both private and public; however, other compo-

nents like health care are much more difficult to allocate since not all expenditures probably qualify as investments in
productive human capital.

27 For an extended discussion of alternative strategies in terms of allocating xh in different ways, see Jones,
Manuelli, Siu, and Stacchetti (1998).
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broad consumption has a substantial effect on the mean value of c/y, adding roughly 30 per-

centage points.

(b) The model has the very sharp implication that higher values of relative risk aversion re-

sult in decreases in the standard deviation of the consumption/output ratio using either meas-

ure.  This decrease is dramatic.  The standard deviation increases sixfold when moving from

 =�C#/����  = 0.9.  For reference, the standard deviation of measured c/y in the United States

is 0.019.28  If we want the model to match the standard deviation of the consumption/output

����
�����%��������	������ �����������'�%�&�����#

(c) The model implies that the amount of curvature in the utility function has sharp implica-

tions for the coefficient of variation of the number of hours worked.  The basic data are in

the last column of Table 2.  As the coefficient of relative risk aversion moves from 3.0 to 0.9,

the predicted coefficient of variation of the number of hours worked increases by a factor of

eight.  For comparative purposes, the analogous value of the coefficient of variation of hours

worked in the United States is 0.034.29��,���
���������*��
�����%����&������� ������	������

close to 2.

(d) In the cases presented to this point, n(s) is strictly increasing as a function of s.  However,

it is possible to modify the model and get a nonlinear n(s) function.  Our results (not pre-

                                                
28�L��� ��c+xh)/y) be the standard deviation of a broad measure of consumption that includes investment in hu-

man capital, xh,���)������*����	)����
�������� �c/y) be the analog for a narrow notion of consumption. It follows that
��c+xh)/y��-� �c/y). Thus, broad consumption is less variable than narrow consumption because the former includes

xh, which is an investment good, and, as such, its ratio to output increases in good times and decreases in bad times. The
curvature in the utility function implies that the c/y ratio decreases in good times and increases in bad times. Thus,
roughly, c/y and xh/y are negatively correlated. Hence, their sum exhibits lower variability than either of the components.

29 For the U.S. data, we use the Burnside and Eichenbaum (1994) data. To calculate the coefficient of variation
of hours worked, we did not detrend the per capita number of hours.
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sented here) suggest that cases in which the mean growth rate is small (say, less than 1.4 per-

cent) and the serial correlation of the shock is large (exceeding 0.95) are consistent with an

increasing response of hours worked to productivity shocks when the shock is small and a

decreasing response when the shock is large.  Whether that asymmetric response can account

for puzzles like the productivity slowdown and the behavior of hours worked over the cycle

we do not know at this point.

Table 2.  Properties of Consumption and Labor Supply

Case E(c/y) E((c+xh)/y) �c/y) ��c+xh)/y) �n)/E(n)

1 0.9 0.9 0.07 0.37 0.77 0.089 0.032 0.186

2 1.0 0.9 0.08 0.37 0.77 0.068 0.024 0.137

3 1.5 0.9 0.08 0.41 0.79 0.027 0.010 0.054

4 2.0 0.9 0.08 0.44 0.80 0.019 0.007 0.035

5 2.5 0.9 0.08 0.47 0.81 0.016 0.006 0.027

6 3.0 0.9 0.08 0.50 0.82 0.014 0.005 0.022

5.  Conclusion

For the class of neoclassical models that we study, changes in the variability of fundamentals also

result in changes in average growth rates.  For levels of risk aversion at least as high as the log,

eliminating cycles completely would result in lower growth rates.  The size of this effect ranges from

0.2 percent per year to 0.5 percent per year, depending on the parameters of preferences.  Of course,

this only reinforces Lucas’ conclusions that the payoff from eliminating cycles is not too large.

Theoretically, we show that increased uncertainty can decrease average growth.  However,

this requires parameter values that lie outside the usual range:  high intertemporal substitution, no
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correlation of major shocks, and very short-lived capital.

We also identify, for reasonable parameter values, changes in the variability of the innova-

tions to fundamental shocks as having a larger impact on average growth rates than changes in the

serial correlation of the shocks.

From a quantitative point of view, there are two major findings.  First, for reasonable values

of exogenous uncertainty, variability in fundamentals is not large enough to be the only reason

average growth rates differ so much across countries.  In addition, differences in stochastic processes

for the fundamental shocks do not give rise to a positive relationship between mean growth rates and

their autocorrelation coefficients.  Second, uncertainty in fundamentals has a large impact on the

predicted standard deviation of cyclical variables (for example, the consumption/output ratio), and

the size of the impact is sensitive to the degree of curvature of preferences.

Our finding that increased uncertainty increases average growth seems at odds with the em-

pirical work of Ramey and Ramey (1995).  However, since the shocks in our model can be inter-

preted as shocks to tax rates, our results imply that—holding average tax rates fixed—increases in

the variance of tax rates increase average growth.  Of course, if growth-inhibiting policies (on

average) are associated with volatile policies, the model could deliver a negative correlation between

volatility and average growth.  However, in this case, it is not the high volatility that is causing

growth to be low, but the high average tax rates.30

Our preliminary conclusion is that, even though there is a trade-off between fluctuations and

growth, bringing stochastic elements to the class of endogenous growth models that we studied does

                                                
30 Ramey and Ramey (1995) find that policy variability is associated with residual uncertainty. Our findings

do not depend on the shock affecting all sectors. The model in Obstfeld (1994) can be used to show that for risk aversion
levels greater than the log, there is an approximate positive relationship between variability and growth. This relationship
is approximate because in the model, the relationship between variability of output and mean output is not a function,
but a correspondence.
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not radically improve those models’ ability to explain growth facts.  However, the model delivers

sharp implications about the effect of curvature in preferences on the variability of cyclical variables

and, hence, can use data to pin down preference parameters.  The version of the model that we

studied is too simple to proceed with this program.  One manifestation of this is the difficulty in

matching growth and cyclical observations simultaneously.  In ongoing work (see Jones, Manuelli,

Siu, and Stacchetti 1998), we study versions of these models that allow for variable human capi-

tal/physical capital ratios and different specifications of the human capital augmentation technology.
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Appendix A:  Proofs

Proof of Proposition 1:��$��������*������������*������"��*�� �� 1.  Consider the first model of

Section 2.  The first-order conditions are

(A.1.1) ctv′(nt��-�� −1)(1− �ytv(nt)/nt

(A.1.2) )()]1()][([)( 11
1

1
1

1
1

111 +θ+
α−

+
α−

+
−α

++
σ−

+
σ− εµε+α∫β= tttttttStt dnhkAnvcnvc

(A.1.3) )()]1()1()][([)( 11
1

11111 +θ+
α−

+
α−

+
α
++

σ−
+

σ− εµε+α−∫β= tttttttStt dnhkAnvcnvc

and the feasibility constraints at equality.  In order to find the solution to the planner’s problem, we

first hypothesize that (A.1.2) and (A.1.3) are satisfied by having the terms in square brackets inside

the integral operator equal in each state.  Second, we conjecture that consumption is a constant

fraction of income.  Finally, we guess that the fraction of the time allocated to working is constant

as well.  These conjectures imply that the solution must satisfy

(A.1.4) ht = [(1− �2 3kt

(A.1.5) (1− �v′(n��-�� −1)(1− �v(n)/nt

(A.1.6) )()1()( 1
1

1
)1)(1(1*

+θ
σ−

+
σ−α−σ−σ εµε+∫β=ϕ ttS dnA

"����� � ��� ������*����������*�	�
�y, which is saved (of course, 1 −� � ���*����	���
����A* is

A(1 −� �(1− � .  The solution to equations (A.1.5) and (A.1.6) can be used to construct an equilibrium

by letting investment in physical capital, xk,�%����&��� y, while xh is (1− � y.  To simplify notation,

let D�-�0 �A*)(1− �]�� , and let ŝ  = �S���! �(1− � (d �#��,������#�#8�������#�#D���	)�'����������5����b-

���	�&�������� ����n solve

�-�H(n) ≡ 1 −�0� −1)(1− �v(n)/(nv′(n))]

�-�G(n) ≡ D ŝ ��  n(1− ���− ��

which correspond to equations (2.1) and (2.2) in the text.
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Note that the function G(n������)"������)�������/�1� �1��������"�"������)������� �+��#

Moreover, increases in ŝ  increase G(n).  The properties of H(n) depend on v.  However, concavity

�������������'����*������	)�������	��������*�����#��,������������������������*��������)�������� #����

is straightforward to verify that positive marginal utility of leisure and concavity imply that

v′(n)/(1− �� ��� v′′ (n)/(1− �� 	���� %���� %�� �����&�#� � ��� �������
� *��*&��'� ��5������ ���

� 2� −1))v′′ (n)v(n) − (v′(n))2�+�/#��,�������������������*����������������������&�������� 
�"��"���

assume that v′′ (n)v(n) − (v′(n))2 > 0.  These restrictions imply that H(n) is an increasing function of

n.  Finally, note that (C.1) simply states that H(1) > G(1).

$�����������*�����(�����*��������5����������������"��)����%������������ #��K������������*��

���"��*�� �+��#����������"�����

limn60 G(n) = �, G(1) = D ŝ �� , and G′(n) < 0

and

limn60 H(n) < �, H(1) > G(1), and H′(n) > 0.

It follows that there is a unique intersection.  An example is shown in Figure A.1.

K����������(������*������"��*��/�1� �1��#����������*��
�"���&�����

limn60 G(n) = 0, G(1) = D ŝ �� , and G′(n) > 0

and

limn60 H(n) < 0, H(1) > G(1), and H′(n) > 0

where the first inequality corresponds to (C.2).  The problem here is that both H(n) and G(n) are

upward sloping, and establishing uniqueness requires a separate argument.  It is possible to show

(details available from the authors) that if n* satisfies G(n*) = H(n*), then H′(n*) > G′(n*).  Thus, the
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function H can intersect the function G only from below.  This, of course, suffices for uniqueness.

 Possible H(n) and G(n) functions are displayed in Figure A.2.

In Figures A.1 and A.2, we use G′ to denote the function G corresponding to a higher value

of ŝ �� .  Thus, it follows that increases in ŝ ��  increase both the number of hours allocated to work-

ing (the utilization rate of human capital), n,����������*����������*�	���&��
� #�����������������r-

ward to calculate the growth rate of output.  It is given by

yt+1/yt ≡� t+1 = st+1 A
* n1− � �-�st+1 #

,���
�����&��������"������
� 
������	)�'��* n1− � #����������"���������"������������n-

creasing in ŝ .  Let ŝ � ��%����&���%'� ŝ � ��-��S� ��! �(1− � (d �#� ����*�� �������*�������! �(1− � is

*��*&������/�1� �1������*��&�(����� �+��
���������"������/�1� �1��
� ŝ � �������*������
������� �+

1, ŝ � �������*������#��,���
��������
��	)���������0 
�n, 3������*���������� �"����&���/�1� �1�����

increasing otherwise.

���	� t+1 = st+1 
���������"������ �-� s,�"����� s is the standard deviation of the shock, st.

,���
� 2 s�-� 
��������*��	�������"����	�����)��)���������� #

I�"�*������������*������"��*�� �-��#��,��������;������*����������������������"���� �-� ���

n as the unique solution to nv′(n��-�� −1)/(1− �#��������*�������
���������*��
�������'����	�����������

equilib���	��������)���������� #�� �

Proof of Proposition 2:��?����"��)�����������)�������������*������"��*�� �+��#��,����	���')����

���	������"������������������%�'���&�������))�'��������/�1� �1���*��#��,�������&��������;�����

condition for the planner’s problem is

),(]1[ 111 +θ+
σ−

+
σ− δ−+∫β= ttttt dssPAscc .

Under the guess kt+1�-� �st, ��st A+1− �kt, this first-order condition can be written as
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[1− �s,� �3− �-� �[1− �z,� �3− �0 �s,� �3− [Ax+1− 31− �P (s, dx)

or

(A.2.1) f(s,� ��-���!�� �[f(1− ! s! 
� ��A(1− ! s)+1− !A �1− � ] � (d ����

where f(s,� ��-�0�− �s,� �3−1.

Let the right-hand side of (A.2.1) define the mapping T .  We want to show that T  is a con-

traction mapping.  To this end, we will show that T  maps a set, �, of continuous, bounded, and

convex functions into itself and that T  satisfies Blackwell’s conditions for a contraction.

Let � ≡ {f:S	
, such that 1 ≤ f(s) ≤ ,f  f(s)decreasing, continuous, and convex}.  Let f  be

given by

f = sups 1/[1−� �(A(1− ! s)+1− !A �1− (d ���� ]

which is finite given our assumptions.  It follows that if f(s) ≤ ,f  then T f(s) ≤ .f   It follows that if

f(s) is decreasing and continuous, so is T f(s).  We next show that T  maps convex functions into

convex functions.  Let s �-� s1 + (1− �s2�������	��/�1� �1��#��L���f be convex and decreasing.  Define

m� ��≡� �f(1− ! s1! ��A(1− ! s1)+1− !A �1− �

g� ��≡ (1− ��f(1− ! s2! ��A(1− ! s2)+1− !A �1− � .

�����'� 
� �������*����� f(1− ! s! ��A(1− ! s)+1− !A �1− �  is a convex function of s. 

Thus,

[f(1− ! s ! ��A(1− ! s )+1− !A �1− � ]  ≤ [m� �!g� �3

and

(A.2.2) � �[f(1− ! s ! ��A(1− ! s )+1− !A �1− � ] � (d ����  ≤�� �[m� �!g� �3 (d ���� .

From Minkowski’s inequality (see Rudin 1974, Theorem 3.5, p. 65), it follows that

(A.2.3) � �[m� �!g� �3 (d ����  ≤�� �m� � (d ���� �!�� �g� � (d ���� .
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Using (A.2.2) and (A.2.3) and adding one to both sides, we get

�!� �[f(1− ! s ! ��A(1− ! s )+1− !A �1− � ] � (d ����  ≤� 0�!� �[f(1− ! s1! ��

(A(1− ! s1)+1− !A �1− � ] � (d ���� ] + (1− �0�!� �[f(1− ! s2! ���A(1− ! s2)

+1− !A ��− 2 3 � �d ���2 3

or

(A.2.4) T �f(s ) �� T �f(s
1) + (1− �T �f(s

2).

Thus, T  preserves convexity.  To show that T  is a contraction mapping, it suffices to show

that it satisfies the conditions of Blackwell’s theorem (see Stokey and Lucas 1989).  These condi-

tions are

(A.i) (monotonicity) f ≥ g 	T �f ≥ T g

(A.ii) (discounting) �������(������ ������'����/�1� �1��
���*�������������a � 
+,

T (f+a) ≤ T �f�!� a.

It is immediate that (A.i) is satisfied.  To prove (A.ii), use Minkowski’s inequality to show

that

��!�� �[f(1− ! s! ��A(1− ! s)+1− !A �1− �  + a(A(1− ! s)+1− !A �1− � ] � (d ����

≤��!�� �[f(1− ! s! ��A(1− ! s)+1− !A �1− � ] � (d ����

!�� �[a(A(1− ! s2)+1− !A �1− � ] � (d ����

or, equivalently,

T (f+a)  �T �f + a� �[(A(1− ! s2)+1− !A �1− � ] � (d ����   �T �f + a ��

"����� ����������������6#H�����"�����	������%��������������#

It then follows that T  is a contraction mapping and that it has a unique fixed point f(s,� �#

Moreover, this fixed point is decreasing and convex in s.
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$����"����"�������� ′�+� 
������f(s,� ′) > f(s,� �#��,����������
���������

T ′f(s,� �� �T �f(s,� ��-�f(s,� �

and

2
θ′T f(s,� ��M�T ′T �f(s,� ��M� 2

θT f(s,� ��-�f(s,� �

where the first inequality follows from (A.i) and the second follows because T �f�N
� ������*��&�(

function.  Similar arguments show that

f(s,� ′) = limn64
nTθ′ f�N
� ��M�f(s,� �#

It is easy to check that Minkowski’s inequality cannot hold as an equality (see Rudin 1974)

and, hence, that the above inequality is strict.

���*�� �s,� ��-���− f(s,� �−1
���������"������ �s,� ���������������)��)����������f(s,� ����	��'


it is decreasing and convex. �

Proof of Proposition 4:  Fix an arbitrary initial state (h, k, s), and let (z* (h, k, s), n* (h, k, s)) denote

������������������#6�����	����������#��I�"�*�������������	��)��%��	�"������������������������ k,

h, s�#����������"���		������'����	�������������	�������'���� ������ z*(h, k, s), n*(h, k, s)) is

����%�����������)��%��	�"����������������� k,� h, s).  Contrary to the conclusion of the proposition,

���	������� z*(h, k, s), n*(h, k, s)) is not optimal.  Then take some alternative plan, (z, n), that is

feasible and gives higher utility:

(A.4.1) U(z, n) > U� z*(h, k, s), n*(h, k, s)).

Since (z, n���������%�����&���������������� k,� h, s�
���������"�����	�������������	�������'���� ����

(z2 
�n���������%���"������������������������ k2 
� h2 
�s) = (h, k, s).  Moreover, the utility of (z2 
�n)

is given by U(z2 
�n) = U(z, n�2 1− .  Using this and (A.4.1), we have that
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U(z2 
�n) = U(z, n�2 1−  > U� z*, n*)/ 1− �-� 1− U(z*, n 1−  = U(z*, n*).

That is, (z2 
�n) is feasible when the initial state is (h, k, s), and it gives higher utility than (z*, n*), a

contradiction.

That the value function is homogeneous of degree 1 −� ����z (holding n fixed) follows imme-

diately from the fact that the policy rules have the property that they do. �
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Appendix B:  Derivations

Approximations for the Second Moments of Growth Rates

�����
�"������'���������*������*������� ��������	������"������#�����	�����)�����������)��������6


��������"������ �s;� 
� �����&��

[1− �s;� 
� �3− �-�0�!� �[1− ��− ! s! �� 
� �3− [A(1− ! s! �!�− 31− (d ���� ] .

O��������������"�������)�*����� �����&���������s = 1, and if we get

���� 
� �2��− ���� 
� ���-�0�!� �[1− ��! �� 
� �3− [A��! �!�− 31− (d ��−�� ]−1

{� ��! �� 
� �2��− ��! �� 
� �� �d �A

"����� �d �����F����0�− ��! �� 
� �3− [A��! �!�− 31− (d �2�[1− ��! �� 
� �3− �[A��! �!�− 31−

(d ��
���������"���������������*������&�����������)����&��'��������'������	������*�
� ��! �� 


�2��− ��! �� 
� �����))��(�	���'�*���������
����*�
� ���� 
� �2��− ���� 
� ���>�/#

To study the serial correlation properties of growth rates, we linearize the function that de-

fines the growth rate.  We can then approximate (2.6) around st = st+1 = 1 by

�st,st+1�� 
� ��>�
0� 
� ��!� 1� 
� ��st−���!� 2� 
� ��st+1−1)

"����� 0� 
� ��-� 2� 
� ��-� ���� 
� �0A+1− 3������))��(�	������������	������"������
� γ� 
� �


��� 1� 
� ��-� s���� 
� ��A+1− ��−� ���� 
� ���− �
�"����� s���� 
� ��-�� �s;� 
� �2�s�s=1.  It is more

instructive to express these coefficients as

0� 
� ��-� 2� 
� ��-� ���� 
� �0A+1− 3�-� γ� 
� �

1� 
� ��-� γ� 
� �� − �

"����� ��� s���� 
� �2 �s;� 
� ��s=1 is the elasticity of the (broad) savings rate with respect to the

���*����� ������%�����#

It is straightforward to compute the first-order autocorrelation coefficient for the growth rate,
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.  It follows that

 >� �!� 1� 
� � 2� 
� �20� 1� 
� ��2�!�� 2� 
� ��2�! 1� 
� � 2� 
� �3

 >� �!�� − �20��!�� − �2�!� � − �3#

Derivation of the First-Order Conditions for the Model of Section 4

The Euler equations for an interior solution are given by

(B.1) uc(t) = Et{uc(t+1)[1 −� �!�Fk(t+1)]}

(B.2) uc(t) = Et{uc(t+1)[1 −� �!�nt+1Fz(t+1)]}

where uc is the partial derivative of u with respect to c, and Fk and Fz are the partial derivatives of

F with respect to capital and effective labor.

For the Cobb-Douglas form, (B.1) and (B.2) can be combined to yield

(B.3) Et{uc(t!��0 F(t+1)/kt+1 − (1− �F(t+1)/ht+1]} = 0.

It follows that in any interior equilibrium, we must have that ht/kt = (1− �2 ��������t.  This

is an important property of the specification of a Cobb-Douglas production function with equal

depreciation rates: the physical capital/human capital ratio is independent of the level of employment

and the productivity shock.

Given this and setting A* = A(1− �1− , it follows that

(B.4) ct = kt [st A
* α−1

tn ((1−nt)/nt)((1− �2 �3� �ktg1(st, nt).

Using this, we obtain

(B.5) .),(1
11

1 2
1*

1 ttt
t

t
tttt nsgk

n

n
nAskk ≡












δ−+




 −
ψ

α−−= α−
+

Finally, after substitution, the relevant Euler equation becomes
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(B.6) [g1(st, nt)(1−nt) ]− (1−nt) �-� �S[g2(st, nt)g1(st+1, nt+1)(1−nt+1) ]−

�(1−nt+1) [1− !st+1A
*(nt+1)

1− ]P(st, dst+1)}.

A solution to this equation is a function n*:S �0/
��3�"����nt = n*(st).  Note that given n*, the

optimal solution to the planner’s problem is given by

(B.7) nt = n*(st)

kt+1 = kt g2(st, n*(st))

ht+1 = ((1− �2 ��kt g2(st, n*(st))

ct = kt g1(st, n*(st))

which correspond to the equations calculated in Section 4.
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Appendix C:  Basic Data From Simulations

,%���K#�#��,���J���*����� ����E� �
�����*����P��������

Case s E� �

1 1.0 0.9 0.095 0.126 2.48% 0.108 0.013

2 1.0 0.9 0.08 0.106 2.34% 0.091 0.012

3 1.0 0.9 0.06 0.080 2.38% 0.066 0.045

4 1.5 0.9 0.095 0.126 2.24% 0.077 −0.001

5 1.5 0.9 0.08 0.106 2.17% 0.064 −0.002

6 1.5 0.9 0.06 0.080 2.22% 0.047 0.029

7 1.5 0.8 0.14 0.135 2.80% 0.120 −0.096

8 1.5 0.8 0.12 0.115 2.64% 0.101 −0.056

9 1.5 0.8 0.095 0.091 2.30% 0.080 −0.082

10 1.5 0.8 0.08 0.077 2.26% 0.067 −0.079

11 1.5 0.8 0.06 0.058 2.09% 0.051 −0.071

12 2.0 0.9 0.095 0.126 2.27% 0.070 −0.004

13 2.0 0.9 0.08 0.106 2.19% 0.059 −0.005

14 2.0 0.9 0.06 0.080 2.22% 0.043 0.024

15 2.5 0.9 0.095 0.126 2.32% 0.067 −0.006

16 2.5 0.9 0.08 0.106 2.23% 0.056 −0.007

17 2.5 0.9 0.06 0.080 2.23% 0.041 0.022

SH mean — — — 2.04% 0.062 0.123

SH Q1 — — — 0.91% 0.041 −0.039

SH Q3 — — — 3.25% 0.076 0.307
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,%���K#6#��,���J���*����� 
� �-��#8

Case E� � s

1 1.5 0.7 0.08 2.28% 0.070 −0.131 0.065

2 1.5 0.8 0.08 2.26% 0.067 −0.079 0.077

3 1.5 0.9 0.08 2.17% 0.064 −0.002 0.106

4 1.5 0.915 0.08 1.94% 0.065 0.004 0.115

SH mean — — — 2.04% 0.062 0.123

SH Q1 — — — 0.91% 0.041 −0.039

SH Q3 — — — 3.25% 0.076 0.307

,%���K#C#��,���J���*����� SS��������J���*������G�*������'
� �-��#8

Case SS E� � s

1 0.0% 0.9 0.095 0.26% 0.078 −0.023 0.126

2 0.0% 0.9 0.08 0.18% 0.0649 −0.023 0.106

3 0.0% 0.9 0.06 0.21% 0.048 0.008 0.080

4 2.0% 0.9 0.095 2.27% 0.077 −0.001 0.126

5 2.0% 0.9 0.08 2.19% 0.064 −0.002 0.106

6 2.0% 0.9 0.06 2.22% 0.047 0.029 0.080

7 4.0% 0.9 0.095 4.22% 0.077 0.024 0.126

8 4.0% 0.9 0.08 4.16% 0.064 0.021 0.106

9 4.0% 0.9 0.06 4.24% 0.047 0.051 0.080

SH mean — — — 2.04% 0.062 0.123

SH Q1 — — — 0.91% 0.041 −0.039

SH Q3 — — — 3.25% 0.076 0.307
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Figure 1:  Curvature and Mean Growth Rates
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Figure 2:  Standard Deviation of Innovations and Mean Growth

Solid – correlation = .8, Dashed – correlation = .9
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