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ABSTRACT

Recent literature suggests that historical accidents can trap economies in ine¢cient equilibria. In a
prototype model in the literature, there are two locations, the productive South and the unproductive
North. By accident of history, the industry starts in the North. Because of agglomeration economies,
the industry may reside in the North forever—an ine¢cient outcome. This paper modi…es the
standard model by assuming there is a continuum of locations between the North and the South.
Productivity gradually increases as one moves South. There is a unique long-run equilibrium in this
economy where all agents locate at the most productive locations.
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1. Introduction

Recently, the possibility of multiple equilibria under increasing returns has received much

attention. Work by Farrell and Saloner (1985), Arthur (1989), and Krugman (1991a) has emphasized

that in such situations equilibrium outcomes may be determined by accidents of history. Moreover,

the equilibrium selected by the historical accident may turn out to be ine¢cient. In this paper,

I make a slight modi…cation in the existing prototype model and show that the economy always

migrates to the e¢cient location pattern.

The underlying ideas in this literature can be illustrated with a simple example. Suppose

there are two possible locations for production in an industry, the North and the South. Suppose

that the South is better suited for production in this industry than the North, so that in an e¢cient

allocation the entire industry is in the South. By accident of history, the industry starts in the North.

If agglomeration economies are important, the industry may be trapped in the North forever—an

ine¢cient outcome. This can happen if the value of the agglomeration bene…ts in the North to an

individual producer exceeds the bene…t of the natural advantage of the South.

This paper considers two modi…cations to this standard model. The …rst modi…cation is that

instead of there being two discrete locations, North and South, there is a continuum of locations

along a North-South axis. The natural suitability for production gradually gets better as one moves

South until some southernmost endpoint is reached. The second modi…cation is that space is a

scarce resource in the model. It is not feasible to concentrate all production at a single point.

Rather, production must be spread out over an interval of locations.

The main result of this paper is that there is a unique long-run equilibrium in this economy

in which all production occurs in the most e¢cient locations. If by historical accident the industry is

initially at the north end of the location spectrum, the industry will eventually migrate to the more

suitable territory at the south end of the location spectrum. In some cases the migration is abrupt,

with all new entrants in the initial period jumping immediately to the most e¢cient locations at the

south end of the location spectrum. In other cases the migration is gradual, with each new cohort

of entrants shifting the center of the industry south by a small step. I call this latter type of case a

step-by-step migration.

To obtain my result, it is not enough to simply assume a continuum of locations. It is also

necessary to make space a scarce resource. If I did not add this second modi…cation onto the model,

there might exist a continuum of equilibria in the economy with each point x in the location space

being a possible equilibrium production site. To see why, suppose a particular agent takes as given



that all the other agents in the economy will locate at a point x. If this particular agent were to

deviate from the location x, it would lead to a …rst-order loss in the particular agent’s welfare, if

transportation costs are big compared to the rate at which the natural advantage increases as one

moves south. Hence, there could be an equilibrium where all agents locate at any ine¢cient point

x.

This logic breaks down when space is a scarce resource. Suppose that the industry were

initially located towards the north end of the location spectrum. By assumption, the industry

cannot be concentrated at single point, so suppose the industry is spread out over an interval [x; x].

First consider the case where the natural suitability for production does not vary by location. In this

case, the most desirable location in the economy would be at the industry center c ´ x+x
2 because

this central location would minimize transportation costs. Because the center would be the best

location in this case, the cost of a small deviation from the center would only be a second-order

loss. Now suppose that suitability for production increases as one moves south. Here, there is a

…rst-order gain to deviating from the center and making a slight movement in the direction of the

South. This …rst-order gain outweighs any second-order cost from an increase in transportation

costs. Therefore, if the industry is initially located on some interval [x; x], the new agents entering

the economy will prefer to locate at a point that is south of the center of this existing industry. This

force tends to shift the center of the industry further south in each period. It prevents the industry

from getting stuck at an ine¢cient set of locations in the North.

While the industry always occupies the e¢cient locations in the long run, the equilibrium

transition path is not necessarily e¢cient. For certain parameters, a social planner might specify

that the industry immediately jump to the best locations at the south end of the location spectrum.

While there always exists an equilibrium that decentralizes the planner’s solution that the industry

jump, in some cases there also exists a second, ine¢cient, equilibrium transition path where the

industry migrates in a gradual, step-by-step, fashion. Thus, there may exist an equilibrium path

where the transition is slower than what a planner would do. The reverse is also true. There may

exist an equilibrium where the migration is too fast—the industry takes a jump along the equilibrium

path, but the planner would move the industry in a step-by-step fashion.

The theme of this paper is that market forces have a way of preventing economies from

getting trapped forever in ine¢cient allocations. A variety of recent papers have made similar

points. Liebowitz and Margolis (1995) present a number of arguments that discount the importance

of lock-in. Rauch (1993) argues that if an economy were initially in an ine¢cient location, agents
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(land developers) would emerge to coordinate the migration to the e¢cient location. This is a

Coasian argument for why we should expect e¢ciency. My paper is fundamentally di¤erent from

the Rauch paper because the e¢cient location is obtained in the long run without the help of any

analog of land developers to coordinate the migration. My paper is closely related to a previous

paper, Holmes (1996), which considers an environment with two discrete locations, North and South,

but a continuum of di¤erent product qualities. In this previous paper, low quality products migrate

to the South …rst, and they are followed by successively higher quality products. In the previous

paper, it is possible for part of the industry to remain stuck in the North if the natural advantage

of the South is small enough. The current paper is di¤erent in that the unique long-run equilibrium

is for all production to be in the South, for any positive natural advantage of the South, no matter

how small.

This paper is also related to the literature on vintage capital models. At the beginning of

each period there exists a capital stock from past investments that is tied down to a particular set

of locations. The question faced in this economy is where to build the new factories. There is a

bene…t to building the new plants as far south as possible because land becomes more productive as

one moves south. The bigger the step size south in each period, the larger rate of growth in welfare

measures from one period to the next. But this dynamic gain of a larger step size comes at a static

cost in any given period. The further south the new plants are, the further the new plants are away

from the existing plants. This is problematic because separating the new plants from the old plants

precludes the agglomeration bene…ts that would emerge if old and new were near each other. The

trade-o¤ in costs and bene…ts from increasing the step size is analogous to the trade-o¤ found in

vintage capital models such as those in Chari and Hopenhayn (1991), Parente (1994), and Jovanovic

and Nyarko (1996). In these models, the bene…ts of faster adoption of new technologies must be

weighed against the cost of increasing the rate of obsolescence of past investments. Jovanovic and

Nyarko (1996) ask the question of whether or not it would ever be optimal to stop adopting new

technologies in light of this trade-o¤. They …nd that it may be optimal to stop at a technology

level below that maximum level. In my related but di¤erent structure, it is never optimal, nor is it

ever an equilibrium for the economy to get stuck in an allocation where productivity is less than its

maximum possible level.
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2. The Static Model

This section describes and analyzes a static version of the model. I begin with the static

model because it is easier to explain that the dynamic model and much of the intuition for what

happens in the dynamic case follows from what happens in the static case. I extend the model to

the dynamic case in the next section.

Agglomeration bene…ts emerge in the model because producers value access to a large variety

of local specialist suppliers. To model this, I follow the recent literature, e.g., Abdel-Rahman (1988)

and Krugman (1991b), in applying the structure of the Spence (1976) and Dixit-Stiglitz (1977)

formulations to a geographic context.

A. Description of the Model

The set of locations in the economy is the interval [0; »].1 Locations are indexed by x 2 [0; »].

The higher is x, the further south is the location.

There are two kinds of agents in the economy, suppliers and assemblers. Suppliers employ an

outside good called dollars to manufacture intermediate inputs. Assemblers use these intermediate

inputs to manufacture the single …nal good. The price of the single …nal good is normalized to one

dollar.

There is a continuum of suppliers indexed by s on the interval [0; ¾], where ¾ < ». Each

supplier chooses a location x to set up a factory. Let `s(s) 2 [0; »] be the location choice of supplier

s. Each point x in the location space can hold at most a single supplier. Formally, in a feasible set

of location decisions, `s(s0) 6= `s(s00), if s0 6= s00. For example, one feasible allocation is for suppliers

to locate on the interval [0; ¾]; i.e., `s(s) = s. Note that my earlier assumption that ¾ < » implies

that there is more than enough room in the location space [0; »] to …t the entire set of suppliers.

The locations vary in the marginal cost to produce intermediate inputs. The marginal cost

at location x is e¡µx dollars. Thus at location x = 0 marginal cost is unity, and the marginal cost

decreases with x at the rate of µ per unit distance.

Suppliers di¤er in the variety of input that they supply, in addition to di¤ering in their

location. For example, in the automobile industry, suppliers di¤er in their product, e.g., windshield

wipers or seat belts, in addition to di¤ering in the address of their plants. There is a continuum

of input varieties indexed by y 2 [0; 1). Let y(s) denote the variety choice by supplier s. Each

1Krugman and Venables (1995) also consider an environment in which the location space is a continuum. The
issues they consider are very di¤erent from the issues considered here.
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supplier s also chooses a price p(s) denominated in dollars.

There is a continuum of assemblers in the economy indexed by a on the interval [0; ®].

Each assembler constructs units of a composite intermediate input from the output of the suppliers.

Suppose a particular assembler employs an amount h(y) of each specialized input y. The production

of the composite intermediate input m is

m =
·Z 1

0
h(y)

¸¡1
¸ dy

¸ ¸
¸¡1

,(1)

where ¸ is the constant elasticity of substitution. This production function is standard in the

literature (e.g., Abdel-Rahman (1988), Krugman (1991b)). As is standard in the literature, assume

that ¸ > 1. De…ne the markup parameter ¹ to be ¹ ´ ¸
¸¡1 . The bigger is ¹, the stronger is the

preference for variety.

Assemblers convert the m units of the composite intermediate input to q units of the …nal

good with the production function

q = m
Á¡1
Á .(2)

The parameter Á is the elasticity of supply with respect to changes in the price of the composite

intermediate input. Assume Á > 1.

Assemblers incur a transportation cost when acquiring intermediate inputs. Suppose an

assembler locates at xa and purchases an intermediate input produced at x. Of the amount shipped,

a fraction e¡¿ jxa¡xj survives the trip, and a fraction 1 ¡ e¡¿ jxa¡xj is dissipated as a transportation

cost. The bigger is the transportation cost parameter ¿ , the greater is the output lost in transit.

This is an iceberg transportation cost as in Krugman (1991b).

I consider two alternative cases regarding feasible distributions of assemblers.

Case 1. The distribution of assemblers can be any arbitrary distribution, including a mass point at

a single location. Formally, the location choice function `a(a) can be any function mapping from

the set of assemblers [0; ®] to the set of locations [0; »].

Case 2. There is room at each location x for at most a single assembler and a single supplier.

Formally, the location choice function `a(a) must be such that `a(a0) 6= `a(a00), if a0 6= a00.

In Case 1, space is not a scarce resource for assemblers. In this case, the analysis is very

tractable, enabling me to obtain general results. Case 2 is a more plausible case, since this case

makes space a scarce resource for assemblers just as it is for suppliers. But the analysis of this case

is fairly complex, and my results for this case are more limited than my results for Case 1.
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B. Equilibrium in the Static Model

An allocation in this economy is a set of functions f`s(¢); y(¢); p(¢); `a(¢); q(¢); h(¢; ¢)g where

`s(s), y(s), and p(s) specify for each supplier s the location choice, the variety choice, and the

price choice and `a(a), q(a), h(s; a) specify for each assembler a the location choice, the quantity of

…nal-good output, and the demand for specialized inputs from supplier s. A feasible allocation is

one where the location choices of the agents are feasible and the output levels are feasible given the

input levels.

All agents in the economy make their decisions simultaneously. When supplier s chooses

its location `s(s) and its price p(s), it takes as given the location decisions of the other suppliers

`s(¢), the location decisions of the assemblers `a(¢), and the output levels of the other suppliers

h(¢; ¢). Analogously, when assemblers make their location decisions, they take as given the location

decisions of all the other agents in the economy and the prices of the various specialized-intermediate

inputs. An equilibrium in this economy is a feasible allocation in which each agent maximizes pro…ts

given the set of choices available to the agent.

To determine the equilibrium, note …rst that each supplier will obviously pick a di¤erent

variety y to produce, and given the symmetry of (1), it is irrelevant which one each selects. Following

standard arguments, it is pro…t-maximizing for each supplier to set price equal to a constant markup

¹ over cost. A supplier at location x has a marginal cost of e¡µx dollars. Hence, the price of a good

produced at location x, before transportation costs, is

p(x) = ¹e¡µx:(3)

Suppose an assembler is located at xa and purchases a specialized input from a supplier at location

x. A fraction e¡¿ jxa¡xj remains after the transportation costs, so in order to receive one delivered

unit, the assembler has to purchase e¿ jxa¡xj units. Hence, the delivered price of one unit of good

produced at x delivered to xa is

pd(x; xa) = ¹e¡µx+¿ jx
a¡xj.(4)

It is useful to introduce some additional notation. Take as given that the location choices of

suppliers are given by some function `s(¢), and take as given that suppliers price according to the

rule (3). Taking the locations and prices as given, let v(x) be the minimum cost of constructing one

unit of the composite intermediate input at location x. It is clear that the problem of picking the

location that maximizes the assembler’s pro…t is equivalent to the problem of picking the location
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with the lowest cost v(x) of the composite intermediate. Analysis of the problem of minimizing the

cost of constructing one unit of the composite yields the following lemma:

Lemma 1. Take as given that suppliers locate on the interval [cs ¡ ¾
2 ; c

s + ¾
2 ] with center cs and

that suppliers price according to (3). The cost of the composite intermediate v(x) is u-shaped as a

function of x; and the minimum is attained at a point ca¤ strictly further south than the supplier

network center cs; i.e., ca¤ > cs. Furthermore, v(cs+ y) < v(cs¡ y) for all y > 0; i.e., the composite

cost at a location y units south of the center is less than the composite cost at a location y units

north of the center.

The proof is in the appendix. To see the intuition, suppose an assembler were to locate at

the center of the supplier network cs. The price of intermediate inputs to the south of the center is

less than the price of intermediate inputs to the north of the center. This follows because price is a

constant markup over cost, and marginal cost falls as one moves south. Hence, an assembler located

at cs would tend to substitute away from inputs produced north of cs towards inputs produced

south of cs. Since more than half of the total inputs purchased are obtained from suppliers south

of cs, such an assembler can lower its transportation cost bill by shifting its location south of cs.

It is worth noting that a key assumption underlying this result is that suppliers are spread out on

the interval [cs ¡ ¾
2 ; c

s + ¾
2 ]. If instead, it were feasible for the mass of suppliers to concentrate at a

single point cs, the optimal assembly location would be at the center cs.

Lemma 1 implies the following about the optimal location decisions of assemblers given that

suppliers are located on the interval [cs ¡ ¾
2 ; c

s + ¾
2 ]. In Case 1, they all concentrate at the single

point ca¤ that minimizes v(x). In Case 2 where assemblers are forced to spread out, the lemma

implies that either they all concentrate on the interval [» ¡ ®; »] at the southernmost end of the

location space or they concentrate on an interval [ca¡ ®
2 ; ca+ ®

2 ] with a center that is strictly further

south than the center of the supplier network; i.e., ca > cs. In either Case 1 or Case 2, the result is

the same that the assembly center is strictly further south than the supplier center.2

Now consider the location choices of specialized-input suppliers. Each supplier takes as given

the location choices of the other suppliers `s(¢), the location choices of the assemblers `a(¢), and the

production levels h(¢; ¢) of the other suppliers. Let ¼s(x) be supplier pro…t at location x, taking as

given the choices of all the other agents.

2This statement assumes that ® < ¾. In Case 2, if ® > ¾ and assemblers and suppliers are both at the south end
of the location space, then the center of assembly will be further north than the center of the suppliers.
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At this point it is convenient to provide a separate treatment of the two alternative cases.

Case 1

Consider Case 1 where it is feasible to concentrate all assemblers at a single point ca. The

following lemma provides a formula for how supplier pro…t ¼s(x) depends upon the location of the

supplier.

Lemma 2. Suppose that Case 1 applies and that all assemblers are concentrated at the point ca.

The pro…t of a supplier located at x takes the form

¼s(x) = ke
1

¹¡1 [µx¡¿ jc
a¡xj],(5)

where k is a positive constant that is independent of x. This function is single-peaked and has the

property that ¼s(ca + y) > ¼s(ca ¡ y) for all y > 0.

According to Lemma 2, the pro…t at a location y units south of the assembly center ca is

strictly greater than the pro…t at a location y units north of the center. The intuition for this is

straightforward. The transportation cost to ca is the same from both points, but the marginal cost

of production is lower at the more southern point ca+y than the more northern point ca¡y. Given

the shape of the pro…t function speci…ed in Lemma 2, the optimal location choices of the suppliers

will be an interval [cs0 ¡ ¾
2 ; c

s0 + ¾
2 ] with some center cs0 south of the assembly center ca. This is

illustrated in Figure 1. There the thick black line segment is the set of points of measure ¾ with the

highest pro…t. The center of the set of pro…t-maximizing points is strictly further south than the

assembly center ca.

It is important for this result that it is not possible to concentrate all the suppliers at the

same point. If µ < ¿ , then the pro…t-maximizing supplier location is at the assembly center ca, as in

Figure 1. Hence, if it were feasible for all suppliers to concentrate at a single point and if µ < ¿ , any

location point could be an equilibrium location point. Given that the mass of assembly activity is at

an arbitrary point ca, all suppliers would locate there, and this would make it optimal for assemblers

to locate at ca. In contrast, if suppliers are forced to spread out as assumed here, even though the

maximum supplier pro…t for µ < ¿ is at ca, because the pro…t function ¼s(¢) is asymmetric around

ca, the center of the set of pro…t-maximizing supplier locations is strictly greater than ca.

I can now state the main result for this section.

Proposition 1. Assume that Case 1 applies. There exists a unique equilibrium. In the equilibrium
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allocation, suppliers locate on the interval [» ¡ ¾; »] with center cs¤ ´ » ¡ ¾
2 at the southernmost

end of the location space. Assemblers locate at a point ca¤ satisfying ca¤ > » ¡ ¾
2 ´ cs¤.

This proposition says that in the unique equilibrium of this economy, suppliers occupy the

e¢cient locations at the south end. To get an idea of how the proof goes, suppose to the contrary

that suppliers locate on an interval [x ¡¾; x] that is not at the southernmost end, i.e., where x < ».

Lemma 1 implies assemblers will occupy a point ca that is south of the center cs = x ¡ ¾
2 of the

supplier interval. Lemma 2 then implies that the pro…t ¼(x) at the south end of the supplier network

is bigger than the pro…t ¼(x ¡ ¾) at the north end of the network. This implies that there exist

unoccupied locations just south of the supplier network that yield greater pro…t than some locations

within the supplier network. This is inconsistent with equilibrium.

The above argument eliminates from being possible equilibrium allocations where suppliers

occupy an interval [x ¡ ¾; x] with x < ». The proof of Proposition 1 in the appendix shows that

a location pattern where suppliers are not distributed along an interval cannot be an equilibrium.

The only possibility left is the case where suppliers occupy the interval [» ¡ ¾; »] at the south end

of the location spectrum. It is immediate from Lemmas 1 and 2 that this location pattern is an

equilibrium location pattern.

Case 2

Now consider Case 2 where assemblers are forced to spread out. Suppose that assemblers

occupy an interval [ca ¡ ®
2 ; c

a + ®
2 ]. The pro…t of a supplier at x, taking as given the choices of all

the other agents, equals

¼s(x) =
Z ca+®

2

ca¡®
2

~¼(x; xa)dxa,(6)

where ~¼(x; xa) is the pro…t a supplier at x earns on sales to an assembler at xa.

The fact that there is an interval of assembler locations makes the analysis here more com-

plicated than the analysis for Case 1. Here there are trade-o¤s in the comparison of supplier pro…t

between a location at the assembler center ca and an alternative site x0 north of ca. A disadvantage

of the x0 location is that pro…ts from sales to assemblers south of ca are lower for a supplier at the x0

location than for a supplier at the ca location; i.e., ~¼(x0; xa) < ~¼(ca; xa), for xa ¸ ca. But if µ < ¿ ,

location x0 yields higher pro…ts on assemblers located north of x0; i.e., ~¼(x0; xa) > ~¼(ca; xa), xa ¸ x0.

These trade-o¤s make it di¢cult to compare supplier pro…t at alternate locations. Nevertheless, it

is possible to prove some analytical results, including
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Lemma 3. Assume that Case 2 applies and that ® · ¾. Assume that suppliers and assemblers

are distributed on the intervals [cs ¡ ¾
2 ; c

s + ¾
2 ] and [ca ¡ ®

2 ; c
a + ®

2 ] and that cs ¸ ca. Under these

assumptions, ¼s(cs + ¾
2 ) > ¼s(cs ¡ ¾

2 ).

This result is analogous to the result of Lemma 2 for Case 1. The result says that if the

assembler center is at least as far south as the supplier center, then pro…t at the southern end of

the supplier interval is strictly greater than the pro…t at the northern end of the supplier interval.

Intuition suggests that this result should follow from the fact that costs fall as one moves south.

But I should note the assumption that assembler demand for the composite is elastic, Á > 1, also

plays a role in the result. An elastic demand ensures that total spending on intermediate inputs is

greater for assemblers located near the south end of the supplier network (where locally produced

inputs are relatively cheap) than for assemblers located near the north end of the supplier network

(where locally produced inputs are relatively expensive).3

Lemma 3 along with Lemma 1 implies

Proposition 2. Assume that Case 2 applies and that ® · ¾. An allocation in which suppliers

locate on an interval [x ¡ ¾; x] for x < » cannot be an equilibrium allocation.

The proof of Proposition 2 follows the same arguments given in the discussion of Case 1.

Suppose suppliers occupied an interval [x¡¾; x] not at the south end; i.e., x < » . Assemblers would

locate at an interval with a center further south than the supplier center. (Note the assumption that

® · ¾ guarantees that this is feasible). Lemma 3 implies that the pro…t at unoccupied locations

just south of the supplier interval is greater than the pro…t at the north end of the supplier interval.

This is inconsistent with equilibrium.

From Proposition 2, we know that if an interval of supplier locations [x ¡ ¾; x] is not at the

south end, it cannot be an equilibrium. The next issue is whether or not an interval of supplier

locations at the south end can be an equilibrium. My results on this issue are arrived at in two

3Supplier pro…ts are a constant fraction ¹¡1
¹ of revenues. Consider an alternative version of the model where

assemblers have an inelastic demand for one unit of the composite intermediate. An assembler located at the north
end of the supplier interval will pay a higher price for this one composite unit than an assembler located at the south
end. Since supplier pro…ts are a constant portion ¹¡1

¹ of revenues, aggregate supplier pro…t derived from assemblers
at the north end will be greater than aggregate supplier pro…t derived from assemblers at the south end. If the
transportation cost parameter ¿ is large enough, most of the aggregate supplier pro…t from assemblers at the north
end will go to suppliers at the north end. This makes the north end of the supplier interval attractive to suppliers
when ¿ is large.
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di¤erent ways, analytical methods and numerical computations. For the case in which the elasticity

of assembler composite demand Á is relatively big, I have obtained the following analytical result:

Proposition 3. Assume that Case 2 applies, that ® · ¾, and that Á ¸ ¸. There exists an

equilibrium where suppliers occupy the interval [» ¡¾; »] at the south end of the location spectrum.

The proposition assumes that the elasticity of composite demand is bigger than the elasticity

of demand for individual specialized inputs. The remaining case where Á 2 (1; ¸) is di¢cult to

analyze because the pro…t function ¼(x) is not always single-peaked.4 (This makes things di¢cult

because I have to show that the pro…t at ¼(»¡¾) is less than the pro…t in the interior of the interval

(» ¡¾; »):) Hence, for this case I have been forced to look at numerical examples. In the examples I

considered, an equilibrium with suppliers bunched at the south end always existed, even for extreme

values of the parameters. On the basis of this numerical analysis, I conjecture that the statement

in Proposition 3 also applies for the case of Á 2 (1; ¸).

The assumption that ® · ¾ is important for Proposition 3. Suppose ® is much bigger than

¾ and that suppliers occupy the locations [» ¡¾; »] at the south end of the location spectrum. Since

® is much bigger than ¾, the supplier network would be far from the center » ¡ ®
2 of the assembler

locations [»¡®; »]. If the transportation cost parameter ¿ is big enough, it is clear that this allocation

would be neither an e¢cient allocation nor an equilibrium allocation. Rather, it would be e¢cient

to shift suppliers closer to the center of the assembler locations and to spread the suppliers out as

well, and these forces will be re‡ected in any equilibrium allocation.

3. The Dynamic Model

Now consider an overlapping generations version of the model. In each period t, a measure

¾ of suppliers enters the economy. Suppliers live for two periods. When young, a supplier s makes

a location decision that is …xed over the two periods of the supplier’s life. Let `st (s) denote the

location decision of supplier s born in period t. Assume that each location x can be occupied by at

most a single old supplier and a single young supplier. Under this assumption the two generations

can overlap in space as well as time.5

4Suppose that ® = ¾ and that Á is close to one. If ¿ is big enough, there may be humps in ¼(x) close to both of
the endpoints in the supplier interval.

5An alternative approach is to assume that each location can be occupied by at most one supplier, young or old.
This alternative assumption is perhaps more realistic. However, the results under this alternative assumption are
qualitatively the same as my results. In addition, this alternative assumption comes at the cost of making the analysis
somewhat awkward.
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There is a measure ® of assemblers in each period. To keep the analysis simple, assume

that Case 1 applies so that assemblers can concentrate at a single point. Also, to keep the analysis

simple, assume that assemblers can alter their location every period.

In the beginning of period t, the state variable in the economy is the set of location decisions

`st¡1(¢) made by the suppliers that entered in the previous period. Let t = 1 be the initial period.

Let the locations `s0(¢) of the old suppliers alive at the beginning of period t = 1 be the initial state.

Assume agents in the economy act to maximized discounted pro…ts and use a discount factor

of ± 2 [0; 1). It is straightforward to extend the de…nition of equilibrium in the static case to

equilibrium in this dynamic case.

A stationary equilibrium in this economy is an initial state `s0(¢) and a set of choices by each

agent in each period such that each agent is maximizing pro…t given the choices of the other agents

and such that all new entering cohorts of suppliers select the same locations as the old suppliers in

the initial state. The arguments used in the proof of Proposition 1 apply to

Proposition 4. There exists a unique stationary equilibrium in which each generation of suppliers

is located on the interval [»¡¾; »] with center cs¤ ´ »¡ ¾
2 . Assemblers locate at a point ca¤ satisfying

ca¤ > » ¡ ¾
2 ´ cs¤.

Suppose that the initial state is such that the old suppliers are located on the interval [0; ¾] at

the north end of the location spectrum. Think of this as being due to some historical accident. Will

the economy converge to the steady state? Will it do so in …nite time? How does an equilibrium

transition path compare with the path of a social planner? This rest of this section addresses these

questions. But before I tackle these questions, I need to digress and make a distinction between

fragmented and unfragmented allocations.

A. A Focus on Unfragmented Allocations

An unfragmented allocation is an allocation where, in each period, the entire measure ® of

assemblers is concentrated at a single point cat and the entire entering cohort of suppliers locates on

an interval [cst ¡ ¾
2 ; c

s
t + ¾

2 ]. A fragmented allocation is where at least one of these two conditions is

not satis…ed in some period.

In the family of models considered in this paper, a fragmented equilibrium often exists, and

such an equilibrium is often ine¢cient (though it should be noted that these equilibria are usually

unstable). For example, in a model with two discrete locations, North and South, there might be an
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equilibrium where half the assemblers locate in the North and half locate in the South. This might

be an equilibrium since, given that the agglomeration bene…ts are the same at the two locations,

assemblers might be indi¤erent between the two locations. Such an equilibrium might be ine¢cient

because all might be better o¤ if the entire industry were concentrated in one location allowing for

a greater level of agglomeration bene…ts.

For this model, I know from Proposition 1 that, for the static case, there does not exist a

fragmented equilibrium. I know from Proposition 4 that, for the dynamic model, the allocation in

the unique stationary equilibrium is unfragmented. Outside of the stationary case, I do not know

whether or not there exists an equilibrium in the dynamic model in which there is any fragmentation

along the equilibrium path. I do know that I can make small changes in the model which allow

the possibility of a fragmented equilibrium.6 The existence of old suppliers in …xed locations that

do not necessarily maximize current pro…t is crucial for this construction. (In the static model all

locations have to maximize current pro…t, and a fragmented equilibrium is impossible.)

In this section, I avoid the di¢culties inherent in analyzing fragmented equilibria by restrict-

ing attention to unfragmented equilibria. This allows me to focus on the main question posed in

the introduction: namely, suppose an industry is initially concentrated in an ine¢cient northern

location; does the industry eventually migrate to the more e¢cient southern location? By ignoring

fragmented equilibria I am unable to address a di¤erent question: namely, suppose that assembly

operations are fragmented in an ine¢cient way across space; what market forces operate to ensure

the industry is eventually concentrated in an e¢cient way? At this point I can only say that in the

static version of the model an ine¢cient fragmented equilibrium is impossible. The dynamic case

allowing the possibility of fragmentation along the equilibrium path is left for future research.

B. Does the Industry Migrate South?

This subsection asks whether or not the industry eventually migrates to the southern end of

the location spectrum, given that the initial old suppliers are located at the northern end of the

location spectrum. To state my result, I will de…ne a critical time period t̂ by

t̂ ´
2¿(» ¡ ¾)

µ¾
.

6For example, suppose that in the initial period the old suppliers occupy the unit interval [0; 1]. I can construct
an example where the new suppliers have a measure ¾ = 0:9 in which there exists an equilibrium with fragmented
assemblers in the initial period. In this example equilibrium, the new suppliers locate on the interval [1:7; 2:6] in the
initial period. A small fraction of the assemblers locate at a point close to the center of the old-supplier network, and
the remaining assemblers locate at a point near the center of the new-supplier network.
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For technical reasons it is convenient to assume there is a …nite horizon T in the economy, where T

is large and T > t̂. My result is

Proposition 5. Suppose that in the initial state old suppliers occupy the interval [0; ¾]. In any

unfragmented equilibrium, there exists a critical time period t0; where t0 · t̂, such that in any period

t ¸ t0, all new suppliers locate on the interval [»¡¾; »] at the south end of the location space. Before

period t0, new suppliers locate on the interval [cst ¡ ¾
2 ; c

s
t + ¾

2 ] with center cst , and this center shifts

south by at least µ¾
2¿ in each period; i.e., cst > cst¡1 + µ¾

2¿ , for t · t0.

The result says that in any unfragmented equilibrium, the industry migrates south in a

monotone fashion. In each period the set of new suppliers shifts south at least by an amount µ¾
2¿ .

With a migration of this rate, the industry necessarily bangs up against the southern endpoint of

the location spectrum by period t̂.

Proposition 4 does not say anything about whether or not an unfragmented equilibrium

exists. It is straightforward to show that an unfragmented equilibrium exists for the case of ± = 0.

I present an existence result for the case of ± > 0 in Proposition 9.

C. The Social Planner’s Solution

The previous subsection answers the question of whether or not the industry migrates south.

(It does). The next question is whether or not the transition path is e¢cient. As a …rst step

in answering this question, this subsection considers the problem of a social planner maximizing

discounted expected pro…t.

To make the analysis as simple as possible, I assume that each assembler has an inelastic

demand for one unit of the composite and uses this to produce one unit of the …nal good. All the

claims in Propositions 1, 4, and 5 apply for this alternative assumption, and it simpli…es the analysis

considerably here. Under this assumption, the only e¢ciency issue that needs to be considered is

the location decisions of the agents. Given a set of location decisions of the agents, the intermediate

goods are constructed in an e¢cient way in the equilibrium allocation. Even though there is a wedge

of ¹¡1 between the price and the marginal cost of each input, the wedge is the same for each good,

resulting in an e¢cient mix of each input.

Continuing to make things as simple as possible, assume that the discount factor ± = 0. Take

as given that in the initial state the old suppliers are on the interval [0; ¾]. The assumption that

± = 0 implies that the problem of maximizing total surplus here reduces to solving for the assembler
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locations and new-supplier locations that minimize the average total cost in the period of delivering

one composite intermediate to each assembler. It is straightforward to show that in any solution to

this problem, all assemblers are concentrated in the same location ca. If µ < ¿ , it is straightforward

to show that when assemblers locate at ca, the locations for the new suppliers that minimize average

total cost are the locations on the interval [x; x]; where

x = ca ¡
¾
2

+
µ¾
2¿

and x = ca +
¾
2

+
µ¾
2¿

(7)

in the interior case de…ned by

Interior Case: ca +
¾
2

+
µ¾
2¿

< »;

and

x = » ¡ ¾ and x = x + ¾(8)

in the corner case de…ned by

Corner Case: ca +
¾
2

+
µ¾
2¿

¸ »:

In the interior case (7), this solution sets the marginal cost of supplying location ca at the north

end x of the interval equal to the marginal cost at the south end x, where marginal cost includes

transportation cost as well as production cost.

Figure 2 plots average total cost (ATC) as a function of the assembler location ca, taking

as given that the new suppliers are located on the interval given by (7), i.e., that the new-supplier

locations minimize average total cost given the assembler location ca. In this numerical example,

¾ = 1. The ATC function has a number of properties. At ca = 0:5, the center of the old suppliers,

this function is strictly decreasing. The function continues to decrease until it reaches a local

minimum at 0:7 which is within the network of old suppliers. Beyond 0:7, the function …rst increases

and then eventually decreases by so much that for large enough ca, the average total cost is less

than at the local minimum at 0:7.

The shape of the ATC function here has the following explanation. It is necessarily decreasing

at 0:5, the center point of the old-supplier network. This follows because even if the new suppliers

did not exist, it would minimize transportation costs on purchases from old suppliers alone to

shift the assembly location south of the old-supplier network center (recall Lemma 1). As ca is

increased beyond the old-supplier center 0:5, eventually for high enough ca there is a trade-o¤ from

increasing ca. Raising ca puts assemblers at a further distance from the old suppliers, which raises
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transportation costs. However, raising ca shifts the new suppliers further south, lowering their cost.

The local minimum at 0:7 is a point where these two o¤setting e¤ects balance. For a range of ca

beyond this point, the …rst e¤ect of an increase in ca on increasing transportation costs from old

suppliers dominates the second e¤ect of lowering the costs of the new suppliers. Eventually, however,

this reverses. For large enough ca, assemblers are buying so little from old suppliers that the e¤ect

is negligible, and the second e¤ect dominates. In the limit, as ca goes to in…nity, average total cost

goes to zero as the costs of the new suppliers goes to zero. Hence, for large enough ca, average total

cost is lower than at the local minimum for small ca.

If the cost decline parameter µ is large enough, the shape of the ATC function is di¤erent

from that in Figure 2, for it will be strictly decreasing over its entire range. To make the point I

want to make here, it is su¢cient to limit attention to the case where the ATC function takes the

shape in Figure 2. Formally, assume that µ is small enough so that

min
ca2[¾2 ;¾]

ATC(ca) < ATC(¾)(9)

holds.7

The discussion of average total cost so far has ignored the fact there is an endpoint » of

the location space. This leads to minor modi…cations. Suppose, for example, that » = 2. The

parameters for this particular example imply that the cost-minimizing way to distribute the new

suppliers is for the center of the new suppliers csnew to be equal to ca+0:1. So given that » = 2, the

endpoint constraint is not binding if ca < 1:4. So for ca < 1:4, the ATC when we take account of

the constraint is the same as without the constraint. For ca ¸ 1:4, the constraint is binding, so all

new suppliers are located at [1; 2], for all ca in this range. The imposition of this endpoint constraint

shifts up the ATC for ca in the range [1:4; 2]; as illustrated with the dotted lines in Figure 2. The

…gure also illustrates the analogous case of » = 3.

It is clear from inspection of Figure 2 that there are two possible forms for the solution to the

social planner’s problem. The …rst form is optimal if » is small. In this case the optimum is to set

the assembly center at the local optimum in the interior of the old-supplier network, i.e., at 0:7 in the

example. The new suppliers are located nearby according to the rule (7). Call this …rst possibility

the step-by-step strategy. In the example in the …gure, the step-by-step strategy is optimal, for

7Note that in the limiting case of µ = 0, the condition necessarily holds because the minimum of ATC(ca) is attained
at ca = ¾

2 . Since there is no cost advantage as one moves south, the optimum is obtained by placing assemblers in the
center of the interval of old suppliers and by exactly overlapping the interval of new suppliers with the interval of old
suppliers.
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instance, if » = 2. The second form the solution might take arises if » is large (e.g., » = 3 in the

example). In this case the optimal strategy is to immediately jump towards the southernmost end of

the interval by placing new suppliers on the interval [» ¡ ¾; »]. Call this second possibility the jump

strategy. Note that if in the initial period, the step-by-step strategy is optimal, then the step-by-step

strategy is optimal in all further periods since the relative return from the jump strategy falls. (The

distance between the center of the old suppliers and the south end of the location space falls each

period.) This discussion suggests the intuition for the following proposition, which is proved in the

appendix.

Proposition 6. Assume that µ is small enough that (9) holds. Assume that ± = 0. There exists a

critical level »̂ of » where »̂ > ¾ with the following properties. If » < »̂, the unique solution to the

social planner’s problem speci…es that the supplier center shift by a constant step z¤ < ¾ in each

period, cst = cst¡1+ z¤, until the endpoint is reached where all suppliers are located at the south end

[» ¡ ¾; »]. If » > »̂, the unique solution speci…es that in the initial period the new suppliers jump

to the south end [» ¡ ¾; »] of the location spectrum and that all future generations of suppliers also

locate there.

Note that in the proposition if » < »̂ so that the step-by-step strategy is optimal, the step size

z¤ is less than ¾. Hence the old and new generations overlap geographically. There is a continuous

movement south; no locations are missed. If » > »̂; there is a discontinuous jump to the South.

D. Is the Equilibrium Path E¢cient?

Now that I have characterized the social planner’s solution, I can relate it to the equilibrium

outcome.

Proposition 7. Assume that ± = 0. Then the social planner’s solution can be decentralized as an

equilibrium allocation.

Proposition 7 presents the good news that any socially e¢cient allocation can be decentralized

as an equilibrium allocation. It is a straightforward result. Taking ca as given, the social planner

picks the locations for the new suppliers that minimize average total cost, but these are the same

locations that maximize pro…t for the suppliers.

De…ne a step-by-step equilibrium to be the analog of the step-by-step form of the planner’s

solution. Speci…cally, in a step-by-step equilibrium, the center of the new-supplier interval shifts
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over by a constant amount z¤ < ¾ in each period, i.e., cst = cst¡1+ z¤; and the location of assemblers

shifts over by a constant amount z¤ in each period, i.e., cat = cat¡1+ z¤. These shifts take place until

the interval of new suppliers runs into the boundary at the southern endpoint, at which point the

shifts stop. The next proposition presents the bad news.

Proposition 8. Assume that ± = 0 and that µ is small enough so that (9) holds. Then for any »,

there exists a step-by-step equilibrium with a step size z¤ < ¾. Furthermore, there exists a »0 < »̂,

such that if » 2 (»0; »], there also exists a jump equilibrium where all new suppliers locate at the

southern end [» ¡ ¾; »] beginning in the initial period.

Under the assumptions of Proposition 8, there exists a step-by-step equilibrium for any level

of ». It is straightforward to see why. The step-by-step approach is a local optimum for the social

planner. Given that all other new suppliers locate in the step-by-step formation, it is globally

optimal for an individual supplier to join the formation. However, for large », it is not globally

optimal for the social planner to take the step-by-step approach. This illustrates that the migration

south in the market allocation can be too slow; it is e¢cient to jump, but the market takes baby

steps. The second part of the result shows that the reverse is also true. For a range of » just below

»̂, the globally optimal solution for the social planner is the step-by-step approach. However, for »

in this range there exists a jump equilibrium. Hence, it is possible for the market to move too fast.

E. An Unbounded Location Space

This subsection considers an alternative version of the model where the location space is

unbounded; i.e., the location space is [0;1) instead of [0; »]. Eliminating the endpoint eliminates

the horizon e¤ect in the analysis. New suppliers can shift over by a constant amount z in each

period without the economy ever running into a bound. Considering this alternative version of the

model facilitates the analysis of the case where the discount factor ± is positive. By considering this

case, I am able to derive a number of comparative statics results.

For this subsection, I return to the case where assemblers have the production function given

by (2) and the elasticity of assembly supply is Á: (The results also apply in the alternative case

where supply is inelastic.)

Consider a planner’s problem of selecting an assembly point ca1 = ca in period 1 and a constant

step size z, so that the assembly center point is cat = ca + (t ¡ 1)z in period t and new suppliers

shift over by z in each period. Suppose the objective of the planner is to maximize the discounted

sum of total assembler and total supplier pro…t. It is straightforward to show that if the minimum
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cost to construct a delivered unit of the composite input in period t is vt, then the sum of assembler

pro…t and supplier pro…t in period t is

wt = kv¡(Á¡1)t ;(10)

for some constant k > 0. Along the step-by-step path, the composite cost falls at the rate

vt+1 = e¡µzvt.(11)

Using (10) and (11), we know that discounted social welfare is

W (z; ca) =
1

1 ¡ ±e(Á¡1)µz
kv1(z; ca)¡(Á¡1),

where v1(z; ca) is the minimum composite cost in period 1 as a function of z and ca. It is clear

that there does not exist a solution to the social planner’s problem. By making the step size z

arbitrarily large, the planner can make the average composite cost vt arbitrarily close to zero and

make discounted pro…ts arbitrarily large.

Consider next a constrained planner’s problem

max
z·¾, ca

W (z; ca):(12)

In this problem, the planner is constrained to keep the step size no bigger than ¾. This requires that

the generations of suppliers overlap. This might be a reasonable constraint to impose if we think

about the points x on the location space as technologies. In this interpretation, the assumption

amounts to a constraint that no technologies be skipped. There is a quality ladder, and society has

to go through each of the rungs on the ladder as in Grossman and Helpman (1991).

The next proposition states the result of this section.

Proposition 9. Take as given the model parameters ¹, ¿ , ¾, ±, and Á. There exists a µ̂ > 0, such

that if µ < µ̂, there exists a unique step-by-step equilibrium with a constant step z¤ < ¾. There

also exists a unique optimum to the constrained social planner’s problem (12), and the planner’s

constrained optimum coincides with the equilibrium. For µ in the range (0; µ̂) the equilibrium step

size z¤ has the following comparative statics properties. It decreases with ¹ and ¿ . It increases with

µ, ±, and Á.

According to the proposition, if the rate µ at which cost falls is not too big, there exists

a unique step-by-step equilibrium. The equilibrium step size coincides with the planner’s optimal

step, given that the planner is constrained from making a jump and must pursue a step-by-step
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strategy instead. The model has intuitive comparative statics properties. The more important the

agglomeration economies, through either the preference-for-variety parameter ¹ or transportation

costs ¿ , the slower the migration. The more cost falls as one moves south, the more important the

future; and the greater the responsiveness of assembly supply to the delivered composite price, the

faster the migration.

4. Concluding Remarks

A large recent literature emphasizes that historical accidents can trap economies in ine¢cient

agglomerations. In this paper, I modify a standard model in the literature by …rst assuming that

space is a continuum and second assuming that it is infeasible for the entire economy to agglomerate

at a single point. Under these two reasonable assumptions, I show that the economy can always

…nd its way out of the trap.

I think more research with this kind of model is warranted because studying the forces

highlighted in this model may help us understand trends in important industries like the automobile

industry and the computer industry.

Consider, for example, the U.S. automobile industry. Access to local suppliers in this industry

has become increasingly important due to the adoption of just-in-time production methods (see

Rubenstein (1992)). For a number of years most of this industry was concentrated in Michigan.

But the new assembly plants built since the 1980s have gradually shifted the center of this industry

in the direction of the South. The …rst Japanese transplant assembly plant was the Honda plant in

southern Ohio. By picking an Ohio location, Honda obtained access to the network of suppliers that

existed in Michigan and northern Ohio and spurred the entry of new suppliers in southern Ohio.

Subsequent Japanese plants were built in Tennessee and Kentucky. The most recent new automobile

plant to be announced is the Mercedes plant in Alabama. Alabama would have been an unlikely

choice for an automobile plant 15 years ago. The choice is not so unthinkable now given the supplier

network that has emerged in Tennessee. The automobile industry appears to be experiencing a

step-by-step migration that parallels, to some extent, the migration in the model economy.

Next consider the computer industry. There certainly has been much discussion about net-

work externalities in the adoption of standards for operating systems for computers. It is possible to

reinterpret the location space in my model as a space of computer standards. Think of a specialized

supplier in the model as a specialized piece of software. A piece of software is near a standard if is

designed to work under the standard. Most existing software has been written in 16-bit code for use
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with DOS and Microsoft Windows 3.1. Microsoft NT is a superior operating system because it is

completely 32-bit. However, the old 16-bit software does not always work well on NT. Rather than

have us jump from DOS to NT, the social planner (a.k.a. Bill Gates) has engineered a step-by-step

migration between these two standards with the introduction of Windows 95. Windows 95 was

explicitly written to run the old 16-bit software well and also serve as a platform for 32-bit software.

But it is something less than a full 32-bit operating system. As more 32-bit software is written, we

will become less dependent upon the 16-bit software, and eventually we can all take the next step

to a fully 32-bit operating system like NT.

One of the most controversial issues in the computer industry is the dominance of Microsoft.8

Some people think that Apple’s Macintosh standard is inherently superior to the Microsoft stan-

dard. In their view, Microsoft’s dominance of the market is a bad equilibrium arising from network

externalities in the widespread adoption of a standard. The model that I have presented here in its

current form is not suitable for analysis of this issue. There is no analog in the model of two large

players battling it out. But I think some of the ideas of this paper may be relevant here. Those

who worry that we will be stuck forever with an ine¢cient Microsoft technology make a mistake in

characterizing the market as having two discrete alternative standards, Macintosh versus Microsoft.

In reality, there is a continuum of standards made up of convex combinations of these two cases.

Microsoft has gradually changed its standards in a step-by-step fashion, from DOS to Windows 3.1

to Windows 95, to emulate the good things about the Macintosh.

8See, for example, Taylor (1993) and Gleick (1995) for articles with the the titles “The Microsoft monopoly: How
do you restrain an 800-pound gorilla?” and “What to do with the Microsoft monster.”
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Appendix

Lemma 1. Take as given that suppliers locate on the interval [cs ¡ ¾
2 ; c

s + ¾
2 ] with center cs and

that suppliers price according to (3). The cost of the composite intermediate v(x) is u-shaped as a

function of x; and the minimum is attained at a point ca¤ strictly greater than the supplier network

center cs. Furthermore, v(cs + y) < v(cs ¡ y) for all y > 0; i.e., the composite cost at a location y

units south of the center is less than the composite cost at a location y units north of the center.

Proof. It is obvious that v(x) is strictly decreasing for x < cs ¡ ¾
2 and strictly increasing for x >

cs + ¾
2 . So consider a location point xa in the interior of the supply network (cs ¡ ¾

2 ; c
s + ¾

2 ). Let

h(x; xa) denote the optimal purchases from a supplier located at x for an assembler at xa. The

assembler sets the MRS between an input produced at its location xa and an input produced at

some other point x equal to the ratio of prices,

MRS =
h (xa; xa)

1¡¹
¹

h(x; xa)
1¡¹
¹

=
¹e¡µxa

¹e¡µx+¿ jxa¡xj
= e¡µ(x

a¡x)¡¿ jxa¡xj.

This implies that

h (x; xa) = h (xa; xa) e
¹

¹¡1 (¡µ(x
a¡x)¡¿ jxa¡xj).(13)

Let x= cs¡ ¾
2 and x = cs+ ¾

2 be the endpoints of the interval containing the supplier network. The

average total cost of the composite to an assembler at xa is

v(xa) =

R x
x pd(x; xa)h (x; xa) dx
hR x
x h (x; xa)

1
¹ dx

i¹(14)

=

R x
x ¹e¡µx+¿ jxa¡xjh (xa; xa) e

¹
¹¡1 (¡µ(x

a¡x)¡¿ jxa¡xj)dx
hR x
x h (xa; xa)

1
¹ e

¹
¹¡1 (¡µ(x

a¡x)¡¿ jxa¡xj) 1¹ dx
i¹

= ¹

R x
x e

1
¹¡1 (µx¡¿ jx

a¡xj)dx
hR x
x e

1
¹¡1 (µx¡¿ jx

a¡xj)dx
i¹

= ¹
·Z x

x
e

1
¹¡1 (µx¡¿ jx

a¡xj)dx
¸¡(¹¡1)

= ¹ [u(x(a)]¡(¹¡1) ;(15)

where the function u(xa) is de…ned by

u(xa) ´
Z x

x
e

1
¹¡1 (µx¡¿ jx

a¡xj)dx:(16)
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Assemblers will select their locations to minimize v(xa), which, since ¹ > 1, is equivalent to maxi-

mizing u(xa). We can write u(xa) as

u(xa) ´
Z xa

x
e

1
¹¡1 (µx¡¿(x

a¡x))dx +
Z x

xa
e

1
¹¡1 (µx¡¿(x¡x

a))dx:(17)

The slope of u(xa) is

du
dxa

=
¿

¹ ¡ 1

·
¡

Z xa

x
e

1
¹¡1 (µx¡¿(x

a¡x))dx +
Z x

xa
e

1
¹¡1 (µx¡¿(x¡x

a))dx
¸

(18)

=
¿

¹ ¡ 1

2

4
¡¹¡1
¿+µ

h
e

1
¹¡1µx

a
¡ e

1
¹¡1 (µx¡¿(x

a¡x))
i

¡¹¡1
¿¡µ

h
e(µx¡¿(x¡xa)) ¡ e

1
¹¡1µx

a
i

3

5

= ¿e
1

¹¡1µx
a
F (xa; x; x);

where

F (xa; x; x) ´ ¡
1

¿ + µ

h
1 ¡ e¡

1
¹¡1 (¿+µ)(x

a¡x)
i

+
1

¿ ¡ µ

h
1 ¡ e¡

1
¹¡1 (¿¡µ)(x¡x

a)
i
:(19)

Straightforward di¤erentiation shows that F is strictly decreasing in xa. It is also straightforward

to show that F (x + ¾
2 ; x; x) > 0, for µ > 0. These two facts and the fact that du

dxa = ¿e
1

¹¡1µx
a
F

imply that there is a unique xa¤ maximizing u(xa) that satis…es xa¤ > x + ¾
2 = cs. This proves that

u(xa) is single-peaked and that the maximum is south of the center cs, which in turn implies that

v(xa) is u-shaped with a minimum south of the center cs. The result that v(cs + y) < v(cs ¡ y) for

y > 0 follows from straightforward but tedious calculations using the formula (17).¥

Lemma 2. Suppose that Case 1 applies and that all assemblers are concentrated at the point ca.

The pro…t of a supplier located at x takes the form

¼s(x) = ke
1

¹¡1 [µx¡¿ jc
a¡xj],(20)

where k is a positive constant that is independent of x. This function is single-peaked and has the

property that ¼s(ca + y) > ¼s(ca ¡ y) for all y > 0.

Proof. Let ~¼(x; xa) be the pro…t a supplier located at x obtains from sales to an assembler located

at xa. I …rst show that this pro…t takes the following form:

~¼(x; xa) = e
1

¹¡1 [µx¡¿ jx
a¡xj](¹ ¡ 1)e¡

¹
¹¡1µx

a
h(xa; xa);(21)
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where h(xa; xa) is what an assembler located at xa would purchase from a supplier at xa if such a

supplier existed. To see that (21) must hold, note that for every one unit that is delivered, e¿ jxa¡xj

needs to be shipped because of the transportation cost. Recall that the marginal cost at x is e¡µx

and that the price is a markup ¹ over this. Since an assembler at xa purchases h(x; xa) units from

a supplier at x, the supplier’s pro…t from these sales is

~¼(x; xa) = (¹ ¡ 1)e¡µxe¿ jx
a¡xjh(x; xa);

which reduces to (21) when the formula (13) for h (x; xa) is substituted in. Suppose, then, as

stipulated in the lemma, that the entire measure ® of assemblers is concentrated at a point ca. The

pro…t at x is

¼s(x) = ®¼(x; ca)

= ke
1

¹¡1 [µx¡¿ jc
a¡xj];

for k de…ned by

k ´ ®(¹ ¡ 1)e¡
¹

¹¡1µx
a
h(xa; xa):¥

Proposition 1. Assume that Case 1 applies. There exists a unique equilibrium. In the equilibrium

allocation, suppliers locate on the interval [» ¡ ¾; »] with center cs¤ ´ » ¡ ¾
2 at the southernmost

end of the location space. Assemblers locate at a point ca¤ satisfying ca¤ > » ¡ ¾
2 ´ cs¤.

Proof : Following the arguments given in the text, the only thing I need to show here is that there

cannot exist an equilibrium with suppliers located on some subset L of the location space which

is di¤erent from [» ¡ ¾; »]. Suppose this is not true and there exists an equilibrium with supplier

locations L 6= [» ¡ ¾; »]. De…ne xs to be the in…mum over the set of equilibrium locations L. Since

L 6= [» ¡ ¾; »], xs < » ¡ ¾.

Analogous to the proof of Lemma 1, here assemblers will choose locations that maximize

u(xa) de…ned by

u(xa) ´
Z

L
e

1
¹¡1 (µx¡¿ jx

a¡xj)dx:(22)

Let u¤ be the maximum of u(xa) over the unit interval. Let xa be the minimum xa such that

u(xa) = u¤: (By the continuity of u(xa); such a minimum must exist.)
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The …rst step is to prove that xs < xa. Suppose not, that xa · xs. This says that all

suppliers are south of xa. It is straightforward to show that u(xa) is strictly increasing in xa at xa.

This contradicts the de…nition of xa of being in the set of maximizers of u(xa). Hence, xs < xa.

I next claim that (xs;xa] µ L; i.e., there must be suppliers in the interval of points between

xs and xa. Let ¼(x) be the pro…t to a supplier at location x. Since all assemblers are at xa or south

of xa, it is immediate that ¼(x) is strictly increasing in x on the interval (xs;xa]. Since the pro…t at

all points (xs;xa] is strictly greater than at xs and since xs is the in…mum of where suppliers locate,

from the de…nition of equilibrium all points (xs;xa] must be occupied by suppliers.

I next claim there must exist a nonempty set of locations south of xa that are not in L. This

follows since xs < » ¡ ¾, since (xs;xa] µ L, and since the measure of L is ¾. Let x0 be the in…mum

of the set of points x > xa that are not in L.

I next claim that

xa > xs +
1
2

¡
x0 ¡ xs

¢
(23)

must hold. To see this, note that by the de…nition of xs and x0 the interval (xs; x0) is completely

occupied by suppliers (i.e., (xs; x0) µ L), and furthermore, there are no suppliers below xs. Consider

…rst what assembler location preferences would be if I were to truncate the supplier distribution

and throw out all suppliers located above x0. Let ~L = (xs; x0) be this truncated distribution. Let

u(xa; ~L) be the assembler utility of location xa given this set of supplier locations ~L. Follow the same

proof as in Lemma 1: there is a unique maximum ~xa of u(~xa; ~L) satisfying ~xa > xs + 1
2 (x0 ¡ xs).

Consider two points x1 and x2 such that x1 < x2 · x0. Using the formula (22) for the location

utility function gives

u(x2; ~L) ¡ u(x1; ~L) =
Z

~L

h
e

1
¹¡1 (µx¡¿ jx2¡xj) ¡ e

1
¹¡1 (µx¡¿ jx1¡xj)

i
dx

·
Z

L

h
e

1
¹¡1 (µx¡¿ jx2¡xj) ¡ e

1
¹¡1 (µx¡¿ jx1¡xj)

i
dx

= u(x2; ~L) ¡ u(x1; ~L):

The inequality holds because for any x in L that is not in ~L, the term in brackets is positive (for any

such x, x ¸ x2 > x1). This says that if an assembler prefers x2 to an x1 when x1 < x2 · x0 holds

given truncated supplier distribution ~L, then the consumer prefers x2 to x1 at the actual supplier

distribution L. Since the maximum ~xa of u(xa; ~L) satis…es ~xa > xa + 1
2 (x0 ¡ xa), it cannot be true

that a maximum of u(xa; L) satis…es xa · xa+ 1
2 (x0 ¡ xa). This implies that (23) holds as claimed.
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I next show that ¼s(x0) > ¼s(xs). Inequality (23) implies that at any location xa where there

is an assembler, the location is closer to x0 than to xs. Since x0 > xa also holds, Lemma 2 then

implies that the pro…t ¼(x0; xa) to a supplier at x0 from sales to xa is greater than the pro…t ¼(xa; xa)

to a supplier at xs from sales to xa. Since this comparison is true for all xa where consumers locate,

¼s(x0) > ¼s(xs) must hold.

Recall that x0 is the in…mum of locations above xa that are not in L while xs is the in…mum

of locations in L. The fact that ¼s(x0) > ¼s(xs) and the continuity of ¼s imply that there exists

a point in L with strictly less pro…t than a point outside of L. This contradicts the de…nition of

equilibrium and completes the proof of the proposition.¥

Lemma 3. Assume that Case 2 applies and that ® · ¾. Assume that suppliers and assemblers

are distributed on the intervals [cs ¡ ¾
2 ; c

s + ¾
2 ] and [ca ¡ ®

2 ; c
a + ®

2 ] and that cs ¸ ca. Under these

assumptions, ¼s(cs + ¾
2 ) > ¼s(cs ¡ ¾

2 ).

Proof. The proof has two parts. Part 1 treats the case of Á ¸ ¸. Part 2 treats the case of Á 2 (1; ¸).

Part 1: The Case of Á ¸ ¸

For this case I prove a slightly more general result that I later use in the proof of Proposition

3. The more general result is that for Á ¸ ¸ and ® · ¾ and any y > 0, ¼s(cs+ y) > ¼s(cs¡ y). The

proof for this claim has six steps.

Step 1

This step shows that the following is true:

h(xa; xa) = k1e
¹

¹¡1µx
a
[u(xa)]Á(¹¡1)¡¹ .(24)

To prove this, note …rst that

h(xa; xa) = m(xa)g(xa; xa),(25)

where m(xa) is the demand for delivered units of the composite for an assembler located at xa and

g(x; xa) is the amount of the specialized input produced at x in the cost-minimizing bundle of inputs

at location xa used to construct one unit of the composite. Recall that the assembler production

function is q = m
Á¡1
Á . I …rst show that

m(xa) =
·

Á
Á ¡ 1

¸¡Á
v(xa)¡Á(26)

=
·

Á
Á ¡ 1

¸¡Á h
¹u(xa)¡(¹¡1)

i¡Á
:
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The …rst equality follows from the FONC for the pro…t-maximizing choice of m. The second in-

equality follows from the de…nition (16) of u(xa).

I next obtain a formula for g(xa; xa). Analogous to (13), cost minimization implies that

g (x; xa) = g (xa; xa) e
¹

¹¡1 (¡µ(x
a¡x)¡¿ jxa¡xj):(27)

By de…nition, the combination of the input levels g(x; xa) at xa must construct one unit of the

composite. From the production function (1),

1 =
·Z x

x
g(x; xa)

1
¹

¸¹
(28)

= g(xa; xa)e¡
¹

¹¡1µx
a
·Z x

x
e

1
¹¡1 (µx¡¿ jx

a¡xj)
¸¹

= g(xa; xa)e¡
¹

¹¡1µx
a
u(ca)¹;

where the third equality follows from the de…nition (16) of u(xa). Solving (28) for g(xa; xa) and

substituting this and (26) into (25) proves that (24) holds for k1 de…ned by

k1 ´
·

Á
Á ¡ 1

¸¡Á
¹¡Á:

Step 2

This step shows that

~¼(x; xa) = k2e
1

¹¡1 [µx¡¿ jx
a¡xj] [u(xa)]Á(¹¡1)¡¹ .(29)

This follows from substituting (24) into (21).

Step 3

De…ne new parameters ! ´ Á(¹ ¡ 1) ¡ ¹ and ¯ = 1
¹¡1 . The assumption that Á ¸ ¸ is

equivalent to the assumption that ! ¸ 0. Assume that y 2 (0; ®2 ] and that ca = cs. This step shows

that
Z ca+®

2

ca¡®
2

e¡¯jx
a¡ca¡yju(xa)!dxa ¡

Z ca+®
2

ca¡®
2

e¡¯jx
a¡ca+yju(xa)!dxa ¸ 0.(30)

To show this, I …rst rewrite the …rst term on the LHS of (30):

R ca+®
2

ca¡®
2

e¡¯jxa¡ca¡yju(xa)!dxa

=
R ca
ca¡®

2
e¡¯jxa¡ca¡yju(xa)!dx +

R ca+®
2

ca e¡¯jxa¡ca¡yju(xa)!dxa

=
R ca
ca¡®

2
e¡¯jxa¡ca¡yju(xa)!dx +

R ca
ca¡®

2
e¡¯j~xa¡ca+yju(2ca ¡ ~xa)!d~xa:

(31)
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The second term of the second equality follows from making the substitution ~xa = 2ca ¡ xa

for the variable of integration. Analogously, the second term on the LHS of (30) can be written as
R ca+®

2
ca¡®

2
e¡¯jxa¡ca+yju(xa)!dxa

=
R ca
ca¡®

2
e¡¯jxa¡ca+yju(xa)!dx +

R ca
ca¡®

2
e¡¯j~xa¡ca¡yju(2ca ¡ ~xa)!d~xa:

(32)

Using (31) and (32) we can rewrite the di¤erence (30) as
R ca+®

2
ca¡®

2
e¡¯jxa¡ca¡yju(xa)!dxa ¡

R ca+®
2

ca¡®
2

e¡¯jxa¡ca+yju(xa)!dxa

=
R ca
ca¡®

2

£
e¡¯jxa¡ca¡yj ¡ e¡¯jxa¡ca+yj

¤
u(xa)!dx

+
R ca
ca¡®

2

£
e¡¯j~xa¡ca+yj ¡ e¡¯j~xa¡ca¡yj

¤
u(2ca ¡ ~xa)!d~xa

=
R ca
ca¡®

2

£
e¡¯jxa¡ca+yj ¡ e¡¯jxa¡ca¡yj

¤
[u(2ca ¡ xa)! ¡ u(xa)!] dxa:

The …rst bracketed term in the integral is positive since y 2 (0; ®2 ]. The second bracketed term is

also positive. This follows since Lemma 1 and ca = cs imply that u(2ca¡xa)¡u(xa) > 0. The fact

that ! ¸ 0 then implies that u(2ca ¡ xa)! ¡ u(xa)! ¸ 0. This proves that (30) holds.

Step 4

This step shows that for y 2 (0; ®2 ] and cs = ca; ¼(cs + y) > ¼(cs ¡ y) as claimed in the

lemma. This follows because

¼(cs + y) ¡ ¼(cs ¡ y)

= k2e
1

¹¡1µ(c
a+y) R ca+®

2
ca¡®

2
e¡

1
¹¡1 jx

a¡ca¡yju(xa)!dxa

¡k2e
1

¹¡1µ(c
a¡y) R ca+®

2
ca¡®

2
e¡¯jxa¡ca+yju(xa)!dxa

> 0:

The equality follows from using the formula for each ~¼(x; xa) from (29). The inequality follows from

(30) and the fact that k2e
1

¹¡1µ(c
a+y) > k2e

1
¹¡1µ(c

a¡y).

Step 5

This step considers the case of y > ®
2 , continuing the assumption that ca = cs. For such y,

the formula for ~¼(x; xa) from (29) implies that

¼(ca + y) = e
1

¹¡1 (µ¡¿)(y¡
®
2 )¼(ca +

®
2
)

and

¼(ca ¡ y) = e
1

¹¡1 (¡µ¡¿)(y¡
®
2 )¼(ca ¡

®
2

):

These relations and the fact that ¼(ca+ ®
2 ) > ¼(ca¡ ®

2 ) holds from Step 4 then imply that ¼(ca+y) >

¼(ca ¡ y). Hence, the steps up to this point have shown that ¼(cs + y) > ¼(cs ¡ y), for cs = ca for

any y > 0.
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Step 6

This step shows that the result holds for ca > cs. Note …rst that if ¿ · µ, then the pro…t

¼(cs + y) is obviously greater than ¼(cs ¡ y) because a producer at cs + y has lower delivered cost

than a producer at cs ¡ y for all locations in the economy. So assume that ¿ > µ.

Let ¼̂(x; xa; xa) be pro…t at location x when the assemblers locate on the interval [xa; xa]. I

need to show that for ca > cs,

¼̂(cs + y; ca ¡
®
2

; ca +
®
2

) ¡ ¼̂(cs ¡ y; ca ¡
®
2

; ca +
®
2

) > 0:(33)

Suppose …rst that ca ¡ ®
2 ¸ cs ¡ µ

¿ y or ca ¸ cs + ®
2 ¡ µ

¿ y. It is straightforward to calculate

that the cost (including production and transportation cost) to a supplier at cs¡y to deliver a unit

of input to the northernmost assembler at ca ¡ ®
2 is at least as great as the cost to a supplier at

cs + y. It follows immediately that total pro…ts must be higher at cs + y than at cs ¡ y.

Now consider the case where ca 2 (cs; cs + ®
2 ¡ µ

¿ y). I need to show that (33) holds. From

Step 5, I know that (33) holds for ca = cs. So it is su¢cient to show that the LHS of (33) increases

in ca for ca in the speci…ed range. The slope of the LHS of (33) is

d¼̂(cs + y)
dca

¡
d¼̂(cs ¡ y)

dca
=

@¼̂(cs + y)
@xa

+
@¼̂(cs + y)

@xa
¡

@¼̂(cs ¡ y)
@xa

¡
@¼̂(cs ¡ y)

@xa
(34)

= [~¼(cs + y; xa) ¡ ~¼(cs ¡ y; xa)]

+ [~¼(cs ¡ y; xa) ¡ ~¼(cs + y; xa)] :

For ca in the speci…ed range, cs¡y < cs+y < xa and xa < cs¡ µ
¿ y. These imply that both bracketed

terms in (34) are strictly positive, so that the LHS of (33) is strictly increasing. Put in another way,

a supplier at cs + y makes more pro…t on the southernmost assembler xa than the cs ¡ y supplier

does and less pro…t on the northernmost assembler xa. So if the distribution of assemblers is shifted

south, then the net increase in pro…t for the cs + y supplier is bigger than the net increase in pro…t

for the cs ¡ y supplier.

This concludes the proof for part 1 of the lemma.

Part 2: The Case of Á 2 (1; ¸)

If I can show that the result holds for ca = cs, then the case of ca > cs follows from the

argument in Step 6 above. So assume that ca = cs. I need to show that ¼(ca + ®
2 ) > ¼(ca ¡ ®

2 ). I

can write ¼(ca + ®
2 ) as

¼(ca +
®
2

) =
Z ®

2

0

h
~¼(ca +

®
2

; ca + z) + ~¼(ca +
®
2
; ca ¡ z)

i
dz;
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and I can write ¼(ca ¡ ®
2 ) in an analogous way. Hence, to show that ¼(ca + ®

2 ) > ¼(ca ¡ ®
2 ), it is

su¢cient to show that

~¼(ca +
®
2

; ca + z) > ~¼(ca ¡
®
2

; ca ¡ z)(35)

for all z 2 [¡®
2 ;
®
2 ].

Using (29), to show (35) I must show that

k2e
1

¹¡1 [µ(ca+®
2 )¡¿(

®
2¡z)] [u(ca + z)]Á(¹¡1)¡¹

> k2e
1

¹¡1 [µ(ca¡®
2 )¡¿(

®
2¡z)] [u(ca ¡ z)]Á(¹¡1)¡¹ ;

which holds if and only if

e
1

¹¡1µ® >
·
u(ca ¡ z)
u(ca + z)

¸Á(¹¡1)¡¹
:(36)

Note that since Á < ¸, Á(¹ ¡ 1) ¡ ¹ < 0 (recall that ¸ ´ ¹
¹¡1). If z · 0, then from Lemma 1,

u(ca ¡ z) > u(ca + z). The fact that Á(¹ ¡ 1) ¡ ¹ < 0 then implies that the RHS of (36) is less

than one. The RHS is strictly greater than one, so the inequality holds if z · 0. It remains to

consider the case where z > 0. In this case, the term in brackets on the RHS is less than one. Since

Á(¹ ¡ 1) ¡ ¹ < 0, the inequality (36) holds if and only if

e
1

¹¡Á(¹¡1)
1

¹¡1µ® >
u(ca + z)
u(ca ¡ z)

:(37)

Since Á > 1, since the LHS is increasing in Á; and since the RHS is independent of Á, it is su¢cient

to show that the inequality holds for Á = 1 or that

e
1

¹¡1µ® >
u(ca + z)
u(ca ¡ z)

:(38)

The next step is to obtain a formula for u(xa). For xa 2 (x; x) (the set of points containing

the suppliers),

u(xa) ´
Z xa

x
e

1
¹¡1 (µx¡¿(x

a¡x))dx +
Z x

xa
e

1
¹¡1 (µx¡¿(x¡x

a))dx(39)

=
¹ ¡ 1
¿ + µ

³
e

1
¹¡1µx

a
¡ e

1
¹¡1 (µx¡¿(x

a¡x))
´

¡
¹ ¡ 1
¿ ¡ µ

³
e

1
¹¡1 (µx¡¿(x¡x

a)) ¡ e
1

¹¡1µx
a
´

(40)

= e
1

¹¡1µx
a
(¹ ¡ 1)G(xa; x; x);(41)

where G(xa; x; x) is de…ned by

G(xa; x; x) ´
µ

1
¿ + µ

³
1 ¡ e¡

1
¹¡1 (¿+µ)(x

a¡x)
´

+
1

¿ ¡ µ

³
1 ¡ e¡

1
¹¡1 (¿¡µ)(x¡x

a)
´¶

.
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Using (39), we know that the inequality holds if and only if

e
1

¹¡1µ® > e
1

¹¡1µ2z
G(ca + z; ca ¡ ¾

2 ; c
a + ¾

2 )
G(ca ¡ z; ca ¡ ¾

2 ; c
a + ¾

2 )
:(42)

Since z · ®
2 , to prove (42) it is su¢cient to show that

0 < G(ca ¡ z; ca ¡
¾
2
; ca +

¾
2
) ¡ G(ca + z; ca ¡

¾
2
; ca +

¾
2
):(43)

=
1

¿ + µ

³
¡e¡

1
¹¡1 (¿+µ)(

¾
2¡z) + e¡

1
¹¡1 (¿+µ)(

¾
2+z)

´

+
1

¿ ¡ µ

³
¡e¡

1
¹¡1 (¿¡µ)(

¾
2+z) + e¡

1
¹¡1 (¿¡µ)(

¾
2¡z)

´
;

where the equality uses the de…nition of G. It is straightforward to show that (43) holds by showing

…rst that at z = 0 the RHS of (43) is zero and that it is strictly increasing in z for z · ¾
2 .¥

Proposition 3. Assume that Case 2 applies, that ® · ¾, and that Á ¸ ¸. There exists an

equilibrium where suppliers occupy the interval [» ¡¾; »] at the south end of the location spectrum.

Proof. Take as given that suppliers occupy the interval [» ¡¾; »]. Lemma 1 and the fact that ® · ¾

imply that assemblers will occupy an interval [ca ¡ ®
2 ; c

a + ®
2 ] with a center south of the supplier

center, ca ¸ » ¡ ¾
2 .

Suppose it is optimal for suppliers to locate at [» ¡ ¾; »], if assemblers are in an interval

[ca ¡ ®
2 ; ca + ®

2 ] with a center at the supplier center, ca = cs = » ¡ ¾
2 . Then by arguments similar

to those used in Step 6 of the proof of Lemma 3, it continues to be optimal for suppliers to locate

there for any assembly center south of the supplier center, ca ¸ cs. Hence, it is su¢cient to show

that [» ¡ ¾; »] is optimal for suppliers, when ca = cs. This is what I will show.

It is clear that ¼s(x) is increasing for x < » ¡ ¾. So to prove that [» ¡ ¾; »] are the pro…t-

maximizing locations, it is su¢cient to show that

¼s(x) > ¼s(» ¡ ¾)(44)

for all x > » ¡ ¾. I will show that ¼s(x) is strictly increasing for x 2 (» ¡ ¾; cs). This, along with

the result from Part 1 of the proof of Lemma 3 that ¼s(cs+y) > ¼s(cs¡y) when cs = ca and y > 0;

will imply that (44) holds.

Using the formula (29) for ~¼(x; xa) and integrating over the interval of assembler locations

yields the following formula for pro…t ¼s(x):

¼s(x) = k2e
1

¹¡1µx
Z ca+®

2

ca¡®
2

e¡
1

¹¡1 ¿ jx
a¡xj [u(xa)]Á(¹¡1)¡¹ dxa:
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Letting ¯ ´ 1
¹¡1 and ! ´ Á(¹ ¡ 1) ¡ ¹, we can rewrite this as

¼s(x) = k2e
1

¹¡1µxH(x);(45)

for H(x) de…ned by

H(x) ´
Z ca+®

2

ca¡®
2

e¡¯jy¡xju(y)!dy:

From inspection of (45), to show that ¼s(x) is increasing over the range x 2 (»¡¾; ca), it is su¢cient

to show that H(x) is weakly increasing over this range. For x 2 (» ¡ ¾; ca ¡ ®
2 ], H(x) is obviously

increasing. So consider x 2 (ca ¡ ®
2 ; c

a). For x in this range,

H(x) =
Z x

ca¡®
2

e¡¯(x¡y)u(y)!dy +
Z ca+®

2

x
e¡¯(y¡x)u(y)!dy:

The slope for x 2 (ca ¡ ®
2 ; c

a) is

H 0(x) = ¡¯
Z x

ca¡®
2

e¡¯(x¡x
a)u(xa)!dxa + ¯

Z ca+®
2

x
e¡¯(x

a¡x)u(xa)!dxa

= ¡¯
Z x

ca¡®
2

e¡¯(x¡x
a)u(xa)!dxa + ¯

Z 2x¡ca+®
2

x
e¡¯(x

a¡x)u(xa)!dxa

+¯
Z ca+®

2

2x¡ca+®
2

e¡¯(x
a¡x)u(xa)!dxa

> ¡¯
Z x

ca¡®
2

e¡¯(x¡x
a)u(xa)!dxa + ¯

Z 2x¡ca+®
2

x
e¡¯(x

a¡x)u(xa)!dxa

= ¡¯
Z x

ca¡®
2

e¡¯(x¡x
a)u(xa)!dxa + ¯

Z x

ca¡®
2

e¡¯(2x¡x
a¡x)u(2x ¡ xa)!dxa

= ¡¯
Z x

ca¡®
2

e¡¯(x¡x
a)u(xa)!dxa + ¯

Z x

ca¡®
2

e¡¯(x¡x
a)u(2x ¡ xa)!dxa

> ¯

"Z x

ca¡®
2

e¡¯(x¡x
a) (u(2x ¡ xa)! ¡ u(xa)!)dxa

#

:

By Lemma 1, u(2x¡xa) > u(xa), for x 2 (ca¡ ®
2 ; c

a) and xa 2 (ca¡ ®
2 ; x). Since ! ¸ 0, this implies

that u(2x ¡ xa)! ¡ u(xa)! ¸ 0. Hence, H 0(x) > 0 for x in this range as claimed. This completes

the proof of Part 2.¥

Proposition 5. Suppose that in the initial state, old suppliers occupy the interval [0; ¾]. In any

unfragmented equilibrium, there exists a critical time period t0 where t0 · t̂, such that in any period

t ¸ t0, all new suppliers locate on the interval [»¡¾; »] at the south end of the location space. Before

period t0, new suppliers locate on the interval [cst ¡ ¾
2 ; c

s
t + ¾

2 ] with center cst , and this center shifts

south by at least µ¾
2¿ in each period, i.e., cst > cst¡1 + µ¾

2¿ , for t · t0.
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Proof. I will show that the following is true. Take as given that at period t, the old suppliers are

located on [cst¡1 ¡ ¾
2 ; c

s
t¡1 + ¾

2 ]. In any equilibrium, the interval of new entrants must be located at

least µ¾
2¿ units further south than the old suppliers if this is feasible, and otherwise the new entrants

are located at [» ¡¾; »]. Furthermore, the pro…t in period t of an old supplier at cst¡1 + ¾
2 is strictly

greater than the pro…t of an old supplier at cst¡1 ¡ ¾
2 .

Note that the claim is obvious if ¿ · µ, so assume that ¿ > µ.

I …rst show that this claim is true for t = T . Suppose that assemblers locate at caT in period

T . It is straightforward to show that Lemma 2 applies in this case, so the pro…t function for period

T pro…ts has the form

¼sT (x) = ke
1

¹¡1 [µx¡¿jcaT¡xj]:(46)

This implies that new entrants in period T will locate at [caT ¡ ¾
2 + ¾µ

2¿ ; caT + ¾
2 + ¾µ

2¿ ] if this interval

is contained within the location space, and otherwise they will locate at [» ¡ ¾; »]. Hence, if new

suppliers do not locate at [»¡¾; »], assemblers locate at a point caT that is ¾µ2¿ units north of the center

of the new-supplier interval. It must be the case that caT > csT¡1. If caT · csT¡1, assemblers would be

locating north of the old-supplier center csT¡1 as well as the new-supplier center. A straightforward

extension of Lemma 1 would show that this contracts optimal assembler location behavior. The

claim that the pro…t of an old supplier at cst¡1+
¾
2 is strictly greater than the pro…t of an old supplier

at cst¡1 ¡ ¾
2 follows from the fact that caT > csT¡1.

Now suppose that the claim is true for some t + 1. I will show the result is true for t. By

induction the result will be true for all t. Since the claim is true for t + 1, I know that for suppliers

that enter in period t, the pro…t in t+1 is higher for the supplier that located at cst +
¾
2 than for the

supplier at cst ¡
¾
2 . I will use this fact shortly. Now note that if the new suppliers locate at [» ¡¾; »];

the result is true, so suppose that new suppliers locate at some interval with center cst < » ¡ ¾
2 . Let

cat denote the location of assemblers in period t. I show that cat + ¾µ
2¿ · cst must hold. Suppose it did

not. The formula for pro…t in period t is proportional to (46). Hence, if cat + ¾µ
2¿ > cst , a new supplier

at cst + ¾
2 would make strictly greater pro…t in period t than a supplier at cst ¡ ¾

2 . As mentioned

above, the pro…t in period t + 1 is also higher, so total discounted pro…ts would be higher at cst + ¾
2

than at cst ¡ ¾
2 . This is inconsistent with equilibrium if cst + ¾

2 < ». Hence, cat + ¾µ
2¿ · cst must hold.

By the same argument used in the t = T case, cat ¸ cst¡1 must hold. This proves the claim.

Proposition 6. Assume that µ is small enough that (9) holds. Assume that ± = 0. There exists a

critical level »̂ of » where »̂ > ¾ with the following properties. If » < »̂, the unique solution to the
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social planner’s problem speci…es that the supplier center shift by a constant step z¤ < ¾ in each

period, cst = cst¡1+ z¤, until the endpoint is reached where all suppliers are located at the south end

[» ¡ ¾; »]. If » > »̂, the unique solution speci…es that in the initial period the new suppliers jump

to the south end [» ¡ ¾; »] of the location spectrum and that all future generations of suppliers also

locate there.

Proof. The social planner’s problem is reduced to picking a cat in each period and new-supplier

locations according to (7) and (8) to maximize assembler pro…t in a period. (Note that supplier

pro…t is proportional to assembler pro…t.)

Consider the initial period where the old suppliers are at [0; ¾]. Following earlier arguments,

we know that the location ca1 that maximizes assembler pro…t in period 1 is the location that

maximizes

U1(ca) = u(ca; 0; ¾) + u(ca; xs(ca); xs(ca));(47)

where xs(ca) and xs(ca) are de…ned by (7) and (8) and u(ca; x; x) is de…ned by (16). It is straight-

forward to show that for ca ¸ ¾

u(ca; 0; ¾) = e¡
¿

¹¡1 (c
a¡¾)u(¾; 0; ¾),(48)

while for ca 2 [¾; » ¡ ¾
2 + µ¾

2¿ ]

u(ca; xs(ca); xs(ca)) = e
µ

¹¡1 (c
a¡¾)u(¾; xs(¾); xs(¾)):(49)

Inspection of (48) and (49) reveals that U1(ca) is strictly convex for ca 2 [¾; » ¡ ¾
2 + µ¾

2¿ ]. Hence, in

the social planner’s solution the optimum must be either ca < ¾, or ca > » ¡ ¾
2 + µ¾

2¿ . The latter

case corresponds to putting the assemblers in [» ¡ ¾; »].

It is obvious that if » is large enough, the planner will put the new suppliers at [» ¡ ¾; »]. It

is also clear that if this is optimal for some »0, it is optimal for all » > »0. Hence, there must exist

a »̂ > ¾ such that if » > »̂, then the optimal choice in the initial period is to put the suppliers at

[» ¡ ¾; »], and if » < »̂ it is optimal to set ca < ¾. This proves that the result holds for the initial

period. The case for later periods follows from the argument given in the body of this paper.

Proposition 9

This subsection contains the proof of Proposition 9.

In period 1, the initial period, the current generation of old suppliers is located at [0; ¾]. The

new suppliers take a step z and locate at [z; z+¾]. Assemblers locate at a point ca. In a step-by-step
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equilibrium, the generation of new suppliers that arrives in period 2 takes the same size step as the

new suppliers in period 1; i.e., they locate in the interval [2z; 2z + ¾]. Furthermore, assemblers in

period 2 take the same size step and locate at ca + z. Analogously, in period 3, suppliers locate at

[3z; 3z + ¾], and so forth.

If a step z is consistent with optimal behavior for the agents in period 1, then the step z

is consistent with optimal behavior for the agents in later periods, since the objective functions

for the later agents are the same as the objective functions for the agents in period 1, except for

a multiplicative constant that depends upon µ and z. Therefore, to determine the conditions for

a step-by-step equilibrium, it is su¢cient to look at the behavior of the agents in period 1. In

particular, it must be pro…t-maximizing for the new suppliers in period 1 to locate at [z; z +¾], and

it must be pro…t-maximizing for assemblers to locate at ca in period 1.

The new suppliers in period 1 care about their pro…ts in periods 1 and 2. In order to write

an expression for pro…t, let me …rst de…ne hat as the demand of an assembler in period t for units

of specialized inputs from the supplier sharing the same location cat as the assembler in period t.

Using the formula for the single-period pro…t (20), we know that the discounted pro…t of a supplier

locating at x in period 1 when assemblers are located at ca in period 1 and ca + z in period 2 is

¼(x) = e
1

¹¡1 [µx¡¿ jc
a¡xj](¹ ¡ 1)e¡

¹
¹¡1µc

a
ha1(50)

+±e
1

¹¡1 [µx¡¿ jc
a+z¡xj](¹ ¡ 1)e¡

¹
¹¡1µ(c

a+z)ha2:

I can simplify this by noting that demand in period 2 bears the following relation to the demand in

period 1:

ha2 = eÁµzha1.(51)

To see this, note that since the entire economy shifts south by the amount z between period 1 and

period 2, the minimum delivered cost at the assembly center to construct one unit of the composite

intermediate falls to a fraction e¡µz of its previous level; i.e.,

v2(ca2) = e¡µzv1(ca2):(52)

The relation (51) then follows because the assembler’s elasticity of demand for units of the composite

intermediate is Á. Using (51) and dividing through by common factors gives that pro…t at x is

proportional to

¼(x) _ e
1

¹¡1 [µx¡¿ jc
a¡xj] + ±e[Á¡

¹
¹¡1 ]µze

1
¹¡1 [µx¡¿ jc

a+z¡xj]:(53)
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Since new suppliers in period 1 locate on the interval [z; z + ¾], a necessary condition for

equilibrium is that pro…t be equal at the endpoint z and z + ¾ of the interval; i.e.,

¼(z) ¡ ¼(z + ¾) = 0.(54)

Before I rewrite this expression, let me assume that

z <
¾
2

· ca · ¾:(55)

I will show later that for small µ this is a necessary condition for equilibrium. This assumption

implies that a supplier at the endpoint z of the new-supplier interval [z; z + ¾] is further north

than the assembly centers in both periods and that the supplier at the other endpoint z + ¾ is

further south than the assembly centers in both periods. Knowing this enables me to order the

di¤erences within the absolute value expressions in (53) so that I can take out the absolute value

symbols. Substituting (53) into (54) and dividing by common factors yields the following condition

for equilibrium in the choices of the supplier locations as a function of the step z and the center ca:

S(z; ca) = 0,

where the function S(z; ca) is de…ned by

S(z; ca) ´ e¡
1

¹¡1 ¿(c
a¡z) + ±e[Á¡

¹
¹¡1 ]µze¡

1
¹¡1¿c

a
(56)

¡e
1

¹¡1 [µ¾¡¿(z+¾¡c
a)] ¡ ±e[Á¡

¹
¹¡1 ]µze

1
¹¡1 [µ¾¡¿(¾¡c

a)]:

I now turn to the condition for optimal assembler behavior. Recall the earlier analysis of

average total cost (14) in the static model with a single interval of suppliers. It is straightforward to

generalize this formula to the case where there is a set of suppliers [0; ¾] and a second set at [g; g+¾].

Following the earlier analysis, the location that minimizes ATC is the location that maximizes

U(xa) = u(xa; 0; ¾) + u(xa; z; z + ¾);(57)

where u(xa;x,x) is de…ned by (16). The pro…t-maximizing location ca solves the …rst-order condition

U 0(ca) =
du(ca; 0; ¾)

dxa
+

du(ca; z; z + ¾)
dxa

(58)

= ¿e
1

¹¡1µc
a
[F (ca; 0; ¾) + F (ca; z; z + ¾)] = 0;

which uses the formula (18) for the slope. Taking (58) and substituting in the formula (19) for

F (xa;x; x) and dividing by common factors yields the following condition for equilibrium in the

36



assembly sector:

A(z; ca) = 0;

where the function A(z; ca) is de…ned by

A(z; ca) = 2
µ

¿ + µ
¿ ¡ µ

¡ 1
¶

+ e¡
1

¹¡1 (¿+µ)(c
a¡z) + e¡

1
¹¡1 (¿+µ)c

a
(59)

¡
¿ + µ
¿ ¡ µ

e¡
1

¹¡1 (¿¡µ)(z+¾¡c
a) ¡

¿ + µ
¿ ¡ µ

e¡
1

¹¡1 (¿¡µ)(¾¡c
a):

Consider the polar case of µ± = 0. Let z± = 0 and ca± = ¾
2 . It is straightforward to calculate

that

A(z±; ca±; µ±) = 0

S(z±; ca±; µ±) = 0:

Hence, the necessary conditions for an equilibrium are satis…ed. It is straightforward to show that

the su¢cient conditions for an equilibrium are also satis…ed, e.g., that ca± = ¾
2 is the unique globally

optimal choice of assemblers given that the step size is z± = 0. Now consider what happens for

small positive µ. Straightforward di¤erentiation of S and A shows that the following are true when

evaluated at the point (z±; ca±; µ±) = (0; ¾2 ; 0):

@A
@z

=
@S
@z

> 0

@A
@c

<
@S
@c

< 0(60)

@A
@µ

> 0 and
@S
@µ

< 0:

A standard application of the implicit function theorem shows that for small µ there exist unique

functions z¤(µ) and ca¤(µ) satisfying the necessary conditions

A(z¤(µ); ca¤(µ); µ) = 0

S(z¤(µ); ca¤(µ); µ) = 0

for an equilibrium and satisfying

dz¤(µ)
dµ

> 0 and
dca¤(µ)

dµ
> 0.
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It is straightforward to show that for small µ, z¤(µ) and ca¤(µ) satisfy the su¢cient condition for an

equilibrium. I claim that for small µ this is the unique equilibrium. Suppose not. Then for each

n, there exists a µn < 1
n , with at least one step-by-step equilibrium (zn; can) besides (z¤(µ); ca¤(µ)).

By the implicit function theorem this other equilibrium must be outside a ball around the limit

point (z±; ca±) = (0; ¾2 ). By the de…nition of a step-by-step equilibrium, zn 2 [0; ¾]; and this implies

that can 2 [0; 2¾]. Since the sequence fzn; cang is bounded, there exists a convergent subsequence.

Let (z1; ca1) be the limit of this convergent sequence. Since every element of the subsequence is

bounded away from (z±; ca±) = (0; ¾2 ), the limit is bounded away from (z±; ca±) = (0; ¾2 ); i.e., z1 > 0

and ca1 > ¾
2 . Since µn converges to zero, (z1; ca1) must be an equilibrium in the case where µ = 0.

But straightforward analysis shows that for ± < 1, there can be no such alternative equilibrium in

the µ = 0 case. This shows that the equilibrium (z¤(µ); ca¤(µ)) is the unique equilibrium for small µ.

The comparative statics claims follow from the following. It is straightforward to show that

for µ > 0 and any (z; ca) satisfying 0 < z < ¾
2 · ca · ¾, the following hold:

@A(z;ca;µ;±)
@± = 0

@A(z;ca;µ;Á)
@Á = 0

@S(z;ca;µ;±)
@± < 0

@S(z;ca;µ;Á)
@Á < 0:

These relations, along with (60), imply that z¤ strictly increases in ± and Á for small µ.

With the help of MAPLE (a computer program for symbolic manipulation), it can be shown

that the following functions have the following signs when evaluated at the limit point (z±; ca±; µ±) =

(0; ¾2 ; 0):

¡
@2A
@µ@¿

@S
@c

+
@2S
@µ@¿

@A
@c

< 0

¡
@2A
@µ@¹

@S
@c

+
@2S
@µ@¹

@A
@c

< 0:

Straightforward arguments using L’Hospital’s rule show that these imply that z¤ strictly decreases in

¿ and ¹ for small µ. This completes the proof of the comparative statics results stated in Proposition

9.

It remains to show that for small enough µ, there is a unique solution to the constrained

social planner’s problem and that this solution coincides with the equilibrium allocation. Let wt be
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the sum of assembler and supplier pro…t in period t. It is straightforward to show (see the lemma

below) that

wt = kv¡(Á¡1)t(61)

for some k > 0. Consider the problem of a social planner picking a step size z and an assembly

center ca in period 1 (implying an assembly center ca + (t ¡ 1)z in period t) to maximize

W (z; ca) = w1 + ±w2 + ±2w3 + ::::

Let ~W (z) be de…ned as follows:

~W (z; µ) ´ max
c

W (z; ca; µ).

Consider the following constrained social planner’s problem:

max
z·¾

~W (z; µ).(62)

It is straightforward to show that in the limiting case of µ = 0, the unique solution to this problem

is at z = 0. Furthermore, it can be shown that

@ ~W (0; 0)
@z

= 0

and

@2 ~W (0; 0)
@z2

< 0:

By the implicit function theorem, by continuity, and by the fact that z = 0 is the unique solution

for µ = 0, for small µ there exists a unique z¤planner(µ) solving (62).

The …nal thing to prove in the proposition is that z¤planner(µ) = z¤equilibrium(µ). Note that for

a given z, the social planner’s choice of c must be the cost-minimizing level, i.e., the choice of c

must satisfy A(z; c) = 0. So I need to show that S(z; c) = 0. To show this is the case, take as given

that the planner is setting the assembly centers at the levels cat = c¤ + (t ¡ c)z¤ in each period and

that beginning in period t = 2, the planner will locate the new suppliers entering in period t on the

interval [tz¤; ¾ + tz¤]; i.e., zt = z¤, for t ¸ 2. If z¤ and c¤ are a solution to the constrained social

planner’s problem, it must be optimal to set z1 = z¤ in period 1, if we take this other stu¤ as given.

Discounted pro…t as a function of the z1 in period 1 is

W (z1) = k¡(¹¡1) [u(c¤; 0; ¾) + u(c¤; z1; z1 + ¾)](¹¡1)(Á¡1)(63)

+ ±k¡(¹¡1) [u(c¤ + z¤; z1; z1 + ¾) + u(c¤ + z¤; 2z¤; 2z¤ + ¾)](¹¡1)(Á¡1)

+ discounted pro…t in period 3 and later.
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Note that a deviation in z1 in period 1 away from z¤ a¤ects discounted pro…t in period 1 and 2 but

does not a¤ect discounted pro…t in periods 3 or later. The formula (63) follows from (57), (14), and

(61).

In order that z1 = z¤ solve the planner’s problem, it must solve the …rst-order necessary

condition

W 0(z¤) = 0.

Straightforward calculations show that this condition is equivalent to S(z¤; c¤) = 0. This completes

the proof.¥
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Figure 1
Supplier Profit as a Function of Supplier Location x
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Figure 2
Average Total Cost for Social Planner
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