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1 Introduction

In recent contributions, Caballero and Engel [1993], hereafter CE, and Caballero, Engel

and Haltiwanger [1997], hereafter CEH, investigate labor dynamics using a methodology

which postulates that employment changes depend on a (unobserved) gap between the

actual and target levels of employment.1 Both studies find evidence of nonlinearities in

aggregate time-series data: employment growth depends on the cross-sectional distribution

of employment gaps. This finding is taken as evidence that nonlinear adjustment at the

microeconomic level “matters" for aggregate time series. This is important for business

cycle and policy analysis as it implies macroeconomics must take plant-level distributions

into account. This paper questions the methodology and thus the conclusions of these

studies.2 We argue that these reported aggregate nonlinearities may be the consequence of

mismeasurement of the gap rather than nonlinearities in plant-level adjustment.3

Both CE and CEH rely upon a hypothesis that employment changes (∆e) respond to a

gap (z) between the desired and actual number of workers at a plant. The advantage to the

gap approach is that the choice of employment, an inherently difficult dynamic optimization

problem, is characterized through a nonlinear relationship between (∆e) and (z). That is,

the adjustment rate, ∆e/z, is a nonlinear function of z. However, there is no “free lunch":

the desired number of workers, and hence the employment gap, is unobservable. Thus, in

order to confront data, this approach needs an auxiliary theory to infer z from observed

variables. Both CE and CEH use observed hours variations to infer the employment gap:

this inference is one element of our critique of the gap methodology.

To assess this methodology, we construct a dynamic model of labor adjustment assum-
ing quadratic adjustment costs and follow the approaches of CE and CEH to analyze their
implications. The quadratic adjustment cost model is a useful benchmark for two reasons.

1Hamermesh [1989] uses a gap methodology as well but does not adopt the approach of estimating a
nonlinear hazard function (explained below) to infer the nature of adjustment costs. Hence we focus on
CE and CEH in this discussion of methodology.

2We do not contest the general view of nonlinear employment adjustment at the plant-level. This finding
is consistent with other evidence that points to inactivity as well as bursts of employment adjustment at
the plant-level. For example, Hamermesh [1989] provides a revealing discussion of lumpy labor adjustment
at a set of manufacturing plants. Davis and Haltiwanger [1992] document large employment changes at
the plant level. CEH also report evidence of inactivity in plant-level employment adjustment. There seems
little doubt that an explanation of plant level employment dynamics requires a model of adjustment that is
richer than the quadratic adjustment cost structure and includes some forms of non-differentiability and/or
nonconvexity.

3To the extent that the gap approach is used in numerous other applications, our concerns may be
relevant for those exercises as well.
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First, it has served as the primary model for the study of aggregate employment dynamics.

To quote CE (pg. 365),

“Since the latter [representative-agent framework with quadratic adjustment

costs] is a specification often used by macroeconomists to characterize aggregate

dynamics, it constitutes a convenient benchmark for discussion of the more

realistic increasing-hazard [adjustment rate] models.”

Second, the quadratic adjustment cost model is nested in the employment gap approach.

As a matter of theory, if adjustment costs are quadratic, shocks follow a random walk

and the gap is correctly measured, then the adjustment rate is constant, implying that

aggregate employment is independent of the cross-sectional distribution of employment

gaps.4 From our simulations, this result holds when the gap is properly measured, even

if shocks do not follow a random walk.5 Thus, if the CE and CEH procedures uncover

aggregate nonlinearities from a data set created from a model with quadratic adjustment

costs and stationary shocks, then this is a consequence of mismeasurement of the gap rather

than economic fundamentals.

In our quadratic adjustment cost model we find the following:

• If the gap is correctly measured, the adjustment rate is essentially constant and the
cross-sectional distribution of employment gaps is irrelevant for aggregate employ-

ment dynamics.

• If the employment gap is mismeasured, then

1. A quadratic cost of adjustment model can generate a nonlinear adjustment rate

(∆e/z depends nonlinearily on z ).

2. Aggregate employment dynamics can depend on the cross-sectional distribution

of the employment gap.

• The gap is mismeasured using either the CE or the CEH approaches.
4If the adjustment rate is independent of the gap, then the cross-sectional distribution of the gap is

irrelevant for aggregate behavior. The fact that the partial adjustment model implies constant adjustment
is essentially by construction. The link between the quadratic cost of adjustment structure and the partial
adjustment model is more subtle and is discussed further below.

5The issue of the correlation of the shocks is important and one that we return to below. We are grateful
to the referee for stressing this point.
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Problems measuring the gap may be severe enough to create nonlinearities that other-

wise would not be present. This is true for the simulated data and may well lie behind the

results reported by CE and CEH for actual data.

We thus conclude that the time-series evidence of nonlinear hazards reported by CE and

CEH does not necessarily imply that nonlinear adjustment at the plant-level has aggregate

effects. A methodology which is unbiased under the null hypothesis of quadratic adjustment

costs is needed to assess the aggregate implications of that model relative to a competing

model with non-convex adjustment costs.

2 The Gap Approach: An Overview

As background for our analysis, we begin with a summary of the methodology employed

by CE and CEH as well as a more precise statement of their findings.

2.1 Gap Methodology

We follow the notation and presentation in CEH. The gap between the desired employment

and the actual employment (in logs) in period t for plant i is defined as

z̃i,t ≡ e∗i,t − ei,t−1. (1)

Here e∗i,t is the desired level of employment given the realization of all period t random

variables and ei,t−1 is the level of employment prior to any period t adjustments. Thus z̃i,t
represents a gap between the state of the plant at the beginning of the period and the level

of employment it would choose if it could “costlessly” alter employment.

CEH hypothesize a relationship between employment growth ∆ei,t and z̃i,t given by

∆ei,t = φ(z̃i,t). (2)

A key issue is characterizing the policy function, φ(zi,t), and inferring properties of adjust-

ment costs from it. In some cases, it is convenient to refer to an adjustment rate or hazard

function:6

6From the discussion in CE and CEH, there are two interpretations of this function. Either Φ(z)
represents the magnitude of adjustment (e.g. the fraction of a gap that is closed) or a probability of full
adjustment to the target. The interpretation, of course, depends on the nature of adjustment costs. For
the quadratic adjustment cost case, this function represents the rate at which the gap is closed. For a
model with stochastic adjustment costs taking the values zero and infinity, this is the probability of full
adjustment. We use the terminology of a hazard function throughout, as do CE and CEH.
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Φ(z̃i,t) ≡ φ(z̃i,t)/z̃i,t.

Specifying that employment adjustment depends only on the gap is an assumption: the

validity of this approximation to the optimal policy function of the plant can be evaluated

using our structural model.

Because the gap is central to this analysis, it is important to be very precise about

how it is defined and measured. The key is the meaning of “costlessly adjusting employ-

ment.” In fact, there are two ways to characterize the target, and as we demonstrate in

our quantitative analysis, the results depend on the definition.

First, one could define the target as the level of employment that would arise if there

were never any costs of adjustment.7 This version of the target is quite easy to characterize
since it solves a static optimization problem. This is termed the static target in the
discussion that follows.

Second, one could construct a target measure in which the adjustment costs are removed

for a single period. The target would correspond to the level of employment to which an

optimizing agent would eventually adjust, ceterus paribus. This is termed the frictionless
target. For the quadratic adjustment cost model, this target would represent the level of
employment where the state-dependent policy choice for current employment, expressed as

a function of previous employment, crosses the 45-degree line.

This hypothesized relationship between employment changes and the gap cannot be

analyzed directly since z̃i,t is a theoretical construct that is not observed: there exists no

data set which includes z̃i,t. In the literature, various approaches have been pursued.

2.2 CEH Measurement of the Gap and Findings

CEH hypothesize a second relationship between another (closely related) measure of the

gap, (z̃1i,t), and plant-specific deviations in hours:

z̃1i,t = θ(hi,t − h̄). (3)

7This approach to approximating the dynamic optimization problem is applied extensively but, from
our perspective, places too much emphasis on static optimization. Nickell [1978] says,

“... the majority of existing models of factor demand simply analyze the optimal ad-
justment of the firm towards a static equilibrium and it is very difficult to deduce from this
anything whatever about optimal behavior when there is no ‘equilibrium’ to aim at.”
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Here z̃1i,t is the gap in period t after adjustments in the level of e have been made: z̃1i,t =
z̃i,t −∆ei,t.8

Intuitively, θ should be positive. As profitability rises, hours and the desired number of

workers will both increase. The gap decreases as workers (e) are added and hours fall closer

to h̄. Thus the supposed relationship between this measure of the gap and hours deviations

seems reasonable, both in terms of the response of these variables to a shock and in terms

of transition dynamics. Note, though, that the correlation between hours and employees is

somewhat complicated: the shock leads to positive comovement between e and h but, in

the adjustment process, the comovement is negative.

Rewriting this relationship in terms of the pre-adjustment gap leads to:

z̃i,t = θ(hi,t − h̄) +∆ei,t. (4)

Hence, given an estimate of θ, one can infer z̃i,t from hours and employment observations.

The issue is estimating θ. Using (1) in (4) and taking differences yields:

∆ei,t = −θ∆hi,t +∆e∗i,t (5)

Adding a constant (δ) and noting that ∆e∗i,t is not observable, CEH estimate θ from:

∆ei,t = δ − θ∆hi,t + εi,t. (6)

As CEH note, estimation of this equation may yield biased estimates of θ since the error

term (principally ∆e∗i,t) is likely to be correlated with changes in hours. That is, a positive
shock to profitability may induce the plant to increase hours (at least in the short run) and

will generally cause the desired level of employment to increase as well. CEH argue that

this problem is (partially) remedied by looking at periods of large adjustment since then

the changes in hours and employment will overwhelm the error.9 As we proceed, evaluating

the implications of this bias will be important.

CEH use their plant-level measures of the gap in two ways. First, they analyze the rela-

tionship between employment adjustment and employment gaps at the plant level. Second,

8Implicitly this assumes that there is no lag between the decision to adjust employment and the actual
adjustment. That is, unlike the time to build aspect of investment, employment adjustments take place
immediately. We use this timing assumption in our structural model.
Further, we have removed the heterogeneity in h̄ and in θ that is important for the empirical imple-

mentation in CEH. Finally, note that by assumption h̄ is independent of any shocks to the profitability of
employment. We will argue below that this is an important restriction.

9They also note the presence of measurement error, which they address through the use of a reverse
regression exercise. We have not included measurement error in our simulated environment.
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they investigate aggregate implications by estimating a reduced form hazard function from

time series. Letting ft(z) be the period t probability density function of employment gaps

across plants, the aggregate rate of employment growth is given by:

∆Et =

Z
z

zΦ(z)ft(z). (7)

As Φ(z) is the adjustment rate or hazard function indicating the fraction of the gap that

is closed by employment adjustment, zΦ(z) is the size of the employment adjustment for

plants with a gap of z. As in CEH [Section IV], simplification of (7) given the specification

of a hazard function produces an aggregate relationship between employment changes and

non-centered moments of the distribution of z.

The findings by CEH are summarized as follows:

• Using (6), CEH report a mean (across 2-digit industries) estimate of θ = 1.26. Their
estimate comes from using observations in which percent changes in both employment

and hours exceed one standard deviation of the respective series.

• Using their estimates of θ to construct a gap measure (z̃i,t), CEH (Figure 1a, p. 122)
find a nonlinear relationship between the average adjustment rate, Φ(z̃i,t), and z̃i,t.

• CEH specify
Φ(z) =

(
λ0 + λ−1 z for z < 0
λ0 + λ+1 z for z > 0

(8)

and estimate λ−1 = 1.30 and λ+1 = 1.32. Hence, employment growth, expressed by

(7), depends on the second moment of the distribution of employment gaps.

2.3 CE Measurement of the Gap and Findings

In contrast to CEH, CE do not estimate θ but instead calibrate it from a structural model of

static optimization by a plant with market power.10 Appendix A characterizes the mapping

from the structural parameters of the quadratic adjustment cost model (presented in the

next section) to θ.

An important element in their approach is the use of a static target. CE argue that the

static targets are relevant benchmarks for measuring employment gaps if shocks follow a

random walk because they will only differ from the frictionless targets by a constant. But, if

10Though CE do not have any microeconomic data, CEH work with plant-level data and so we refer to
these microeconomic units as plants.
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the shocks are stationary, this simple relationship between frictionless and static targets will

no longer hold. Instead of adhering to a fixed deviation from the static solution, plants will

solve a dynamic optimization problem, explored below, taking into account conditional

expectations of future shocks. Plants balance the gains from adjusting to productivity

shocks against the costs imposed on employment adjustment in the future. We analyze the

bias in the measurement of the gap stemming from the use of a static target in the presence

of stationary shocks.11

As CE do not have plant-level data, their estimation uses aggregate observations on net

and gross flows for US manufacturing employment to estimate a hazard function. They

create the following measure of the growth of the aggregate target using the calibrated

value for θ:

∆E∗t = ∆Et + θ∆Ht (9)

This growth of the target, which is an aggregate version of (5), is then used in a specification

of employment growth:

∆Et+1 =

Z ∞

−∞
(∆E∗t+1 − z)Λ(z −∆E∗t+1)ft(z)dz (10)

which is similar to (7).12

CE consider both a constant and a quadratic specification for Λ(·). To obtain para-
meter estimates, they calculate the growth rate of the employment target from (9) using

observations on employment and hours growth. This measure is then used in (10).

CE estimate a quadratic hazard:

Λ(z) = λ̃0 + λ̃2(z − z0)
2 (11)

where z0 is a constant. Given a specification of the hazard function, they generate a pre-

dicted growth rate for employment and a predicted sequence of cross-sectional distributions

of the gap. They choose parameter values for the hazard that minimize the sum of squared

differences between the actual and predicted employment growth. CE (Table 2, BLS) re-

port the following estimates: λ̃0 = 0.02; λ̃2 = 0.53; z0 = −0.82. CE conclude that a
quadratic hazard specification fits the data better than the flat hazard.

11Determining whether shocks are best classified as stationary or a random walk is an unresolved em-
pirical question. We will present evidence in later sections to support our assumption that shocks follow a
stationary process.
12However, the notation and definitions in CEH differ from those used by CE. In particular, CE define

the gap as z̃i,t ≡ ei,t−e∗i,t. Accordingly, this expression for aggregate employment growth differs from that
in CEH.
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3 A Dynamic Optimization Framework

Our analysis builds from the specification of a dynamic optimization problem at the plant

level. Our structure is purposely close to that outlined in CE.13 We use the model as a

data-generating mechanism to evaluate the CE and CEH methodologies.

3.1 Quadratic Adjustment Cost Model

Letting A represent the profitability of a production unit (e.g., a plant), we consider the

following dynamic programming problem:

V (A,E−1) = max
H,E

R(A,E,H)− ω(E,H)− ν

2

µ
E −E−1
E−1

¶2
E−1 + βξA0|AV (A

0, E) (12)

for all (A,E−1). HereH represents the input of hours by a worker, E−1 is the inherited stock
of workers, E is the stock of current workers, and ξ is the expectations operator.14 Note

the timing assumption of the model: workers hired in a given period become productive

immediately.

For our analysis we use a Cobb-Douglas production function in which the labor input

is simply the product of employment and hours, EH. Allowing for market power of the

plant, the revenue function is specified as

R(A,E,H) = A(EH)α (13)

where the parameter α is determined by the shares of capital and labor in the production

function and by the elasticity of demand.

The costs of adjustment are assumed to be a quadratic function of the percent change

in the stock of employed workers multiplied by the initial stock of employees.15 That is,

the adjustment cost arises for net, not gross, hires. In (12), ν parameterizes the level of

the adjustment cost function.

13For example, we have not added stochastic adjustment costs since these would drive an immediate
wedge between employment changes and any gap measure.
14Other inputs into the production function, such as capital and energy, are assumed, for simplicity, to

be flexible. Maximization over these factors is thus subsumed by R(A,E,H), and variations in inputs costs
are part of A.
15The literature uses both a quadratic specification in which the cost is in terms of percent differences (Bils

[1987]) and specifications in which adjustment costs are in terms of employment changes alone (Hamermesh
[1989]).
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The function ω(E,H) represents total compensation to workers as a function of the

number of workers and the average number of hours per worker. This compensation func-

tion is critical for generating movements in both hours and the number of workers.16 For

our analysis, we follow Bils [1987] and Shapiro [1986] and assume

ω(E,H) = w ∗ E ∗ £w0 +H + w1 (H − 40) + w2 (H − 40)2
¤

(14)

where w is the straight-time wage.17

Using the reduced-form profit function and assuming quadratic costs of adjustment,

we solve the dynamic programming problem using value function iteration. Let E =

ψE(A,E−1) be the policy function for employment. Employment is determined by a sto-
chastic difference equation from the policy function.18 Let H = ψH (A,E−1) be the policy
function for hours.

The frictionless target, E∗(A), is the solution to the optimization problem when ν = 0

for one period. For this model, the frictionless target is equivalent to the solution to

E = ψE(A,E). The adjustment process, defined by iterations of E = ψE(A,E−1) given
A, converges to the frictionless target, E∗(A). The frictionless hours target is denoted by
H∗(A) = ψH(E

∗(A), A) and will generally depend on A.

The static target, used by CE, is defined as the solution to (12) when ν = 0 in all
periods. Thus employment and hours satisfy static first order conditions.

The top two panels of Figure 1 illustrate the policy functions and employment targets for

two realizations of A. Both the frictionless and the static employment targets are indicated

in the figure. Since plants take future adjustment costs into account in determining the

frictionless target, this target is not as responsive as the static target to changes in the

productivity shock. In general, the frictionless target is less than the static target for

above average productivity shocks and vice versa for below average shocks.

As a result, the frictionless hours target for a given shock, H∗ (A), deviates from the sta-
tic hours target, as shown in the bottom panel of Figure 1.19 If the frictionless employment

16A simpler model with a production function, a fixed wage rate and an employment adjustment cost
is not sufficient as there is no “penalty” for overworking employees. Thus, as long as there is no cost
to adjusting hours, firms will only modify hours in reaction to shocks. There will be no need to adjust
employees.
17In contrast to Sargent [1978] there is no exogenous component to wage variation. In his study, variations

in productivity were much larger than variations in wages. Further we follow CE and consider a wage
function rather than a model with overtime hours as in Sargent.
18See Sargent [1978] for a further discussion of this problem and the solution methodology for finding

the path of employment adjustment.
19See Appendix A for a discussion of the static hours target. It is determined from the first-order
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target is below the static employment target for a given shock, then the frictionless hours

target is above the static hours target to compensate for the lower level of employment.

3.2 Partial Adjustment Model

Within this model, one can be much more explicit about the partial adjustment struc-

ture and the resulting flat hazard specification. The partial adjustment model is a policy

function defined by:

e = λe∗ + (1− λ)e−1 (15)

for λ ∈ [0, 1], where e represents the log of the stock of current workers. The dependence
of e on A comes from the specification of the log of the target, e∗.20 If the optimal policy
has this form, then the flat hazard implication is immediate:

Φ(z) =
e− e−1
e∗ − e−1

= λ.

But what is (15) a solution to? When does it solve (12)?

The standard partial adjustment structure is often “rationalized” by solving for the

optimal transition path towards the target in the presence of quadratic adjustment costs

and a quadratic loss function.21 Consider a dynamic programming problem given by:

$(e∗, e−1) = min
e

(e− e∗)2

2
+

κ

2
(e− e−1)2 + βEe∗0|e∗$(e∗0, e). (16)

where the loss depends on the gap between the log-level of workers (e) and the log-level of

the target (e∗). Here there is no model of the target; it is taken as an exogenous process.
Assume that e∗ follows an AR(1) process with serial correlation of ρ. Working with this
quadratic specification, it is straightforward to show that the optimal policy is linear in the

state variables:

e = λ1e
∗ + λ2e−1.

condition for hours if employment is set at its static target. As discussed in Appendix A, the static hours
target is not state dependent.
20Clearly e∗ ought to be the frictionless rather than the static target since adjustment will stop for a

dynamically optimizing plant once that target is reached.
21Alternatively, consider a dynamic optimization framework, such as (12), and assume that the within-

period return function is a quadratic function and that shocks follow a random walk. Then, the optimal
employment level is a linear function of the static optimum and the lagged level of employment. This
can be seen directly, for example, from the first-order conditions provided in Sargent [1978] in the linear
quadratic framework.
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If shocks follow a random walk (ρ = 1), then partial adjustment is optimal (λ1+λ2 = 1).
22

The optimal policy may not take the partial adjustment form for two reasons. First,

(16) is an approximation of (12). Second, shocks may not follow a random walk. If ρ is

less than one, the value of λ1 is lower, implying that λ1 + λ2 will be less than 1.

4 Empirical Approach

Our goal is to consider the empirical implications of the quadratic adjustment cost model.

To do so, we use our model to directly measure the employment gap at the plant level.

We call this the observed gap. Corresponding to the frictionless and static targets are
two measures of the observed gap: the frictionless gap and the static gap. We measure
these directly using our model as a data-generating mechanism.

Of course, neither CE nor CEH directly observe these gaps. Thus, we follow CEH and

infer the employment gap from observed hours variations, using (4) where θ is estimated

from (6). We term this theCEH gap. Following CEH, we provide two measures of this gap
based upon two estimates of θ. The first uses the full simulated panel and the second uses

a subsample comprised of observations entailing large changes in employment and hours,

where large changes are defined as those greater than one standard deviation. Similarly, we

use the CE procedure of estimating a hazard function from (9) and (10) with time-series

data produced by our model.

To solve the dynamic programming problem given in (12), we need to specify functional

forms and calibrate the parameters. We assume the following:

• The production function is Cobb-Douglas, where hours and workers are perfectly
substitutable. Labor’s share is 0.65 and the markup is set at 25%.

• The compensation function uses the estimates of Bils [1987] and Shapiro [1986]:
{w0, w1, w2} = {1.5, 0.19, 0.03} and the straight time wage, w, is normalized to 0.05.
The elasticity of the marginal wage with respect to hours is close to 2 on average.

22Essentially guess that the policy function is linear in the state variables and use that to solve the
first-order condition from the dynamic programming problem. The solution has

λ1 =
1+ βκλ1ρ

1 + κ− βκ(λ2 − 1)
and

λ2 =
κ

(1 + κ− βκ (λ2 − 1)) .
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• We consider two values of the adjustment cost parameter, ν = 1 and ν = 10, so that

the half-life of a gap is between 1 quarter and 1 year.23

• We assume that the profitability shock consists of two multiplicative exogenous com-
ponents, an aggregate shock (Aagg) and an idiosyncratic shock (Aidio), such that the

profitability shock to plant j in period t is given by Aj,t = Aagg,t ∗ Aidio,j,t. We also

assume that both exogenous components follow log-normal AR(1) processes of the

following form:

logAagg,t = ρagg logAagg,t−1 + �agg,t

logAidio,j,t = ρidio logAidio,j,t−1 + �idio,j,t

• In our benchmark case, we assume that the idiosyncratic and aggregate processes
have the same serial correlation and innovation properties, ρagg = ρidio = 0.95 and

σ�agg = σ�idio = 0.007.

Of the components of the basic parameterization, the last assumption is most the contro-

versial for the evaluation of the CE and CEH results.24 As noted above, the quadratic-loss

partial adjustment model requires random-walk shocks. Further, both CE (explicitly) and

CEH (implicitly) assume that shocks follow a random walk.

In a complete empirical exercise, the stochastic process for the shocks would be jointly

estimated with the adjustment cost process.25 However, the methodologies of CE and CEH

do not include estimation of the driving processes. Therefore, outside evidence must be

used to calibrate the parameters (ρagg, ρidio, σ�agg , σ�idio).

Several studies of aggregate shocks suggest that this process is stationary. Sargent

[1978] estimates the driving process for aggregate shocks in a quadratic labor adjustment

cost model. He does not find a unit root. Hansen [1997] compares moments from a stochas-

tic growth model to U.S. data under alternative assumptions for the serial correlation of

the technology shock. He concludes that a model with random-walk shocks does a poorer

job of matching observed business cycle features than a model with stationary shocks. His

results indicate that a model with a technology shock autocorrelation between 0.9 and

23We are grateful to Dan Hamermesh for suggestions on this parameterization.
24We are grateful to the referee for highlighting this important point.
25See Sargent [1978] on this and the identification problems in distinguishing adjustment costs from the

serial correlation of shocks.
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0.99 would best fit the data. Additionally, the chosen parameterization closely approxi-

mates the serial correlation and the standard deviation of observed employment.26 Clearly

though, exploring the robustness of our results to alternative representations of the shocks

is important.27

There are only a few studies on the serial correlation of plant-level shocks and none of

them quite fits our framework. Using a stationary model of technology shocks, Olley and

Pakes [1996] estimate production functions in their study of productivity in the telecommu-

nications industry. However, this is a single industry, and they do not report the estimated

parameters of the stochastic process. In an earlier version of this paper, we used the results

of Cooper and Haltiwanger [2000], in which the profitability shocks are represented by a

first-order Markov process and are decomposed into aggregate and idiosyncratic compo-

nents as a baseline. Neither shock followed a random walk. However, Cooper-Haltiwanger

obtain these estimates from a model in which there were, by assumption, no adjustment

costs to labor. Thus, that representation of the shocks is not appropriate for this study.

Finally, there is indirect evidence on the sources of fluctuations from variations in job

creation and job destruction. Davis et al. [1996, p. 18] say, “...most of the job creation and

destruction captured by the quarterly figures reflects plant-level employment adjustments

that are reversed within a year.”28 Within the context of the CEH study, note that the

job creation and job destruction data are not seasonally adjusted. Further, fluctuations

are largely driven by oil price shocks. These fluctuations in employment are usually not

thought of as being the consequence of random walk disturbances.

Given this parameterization of the basic functions, the optimization problem given in

(12) is solved using value function iteration to obtain policy functions. The state space

of employment is discretized into a fine grid with 250 points in the relevant portion of

the state space. For the given values of the serial correlation and standard deviation for

both the aggregate and idiosyncratic shocks, we use the procedure outlined in Tauchen

[1986] to create a discrete state space representation for the shocks.29 Using these policy

26The employment data represents BLS data on manufacturing production workers from 1972 to 1986,
which corresponds to one of the samples used by CE. For the (log) employment series, the estimated serial
correlation is 0.96 and the standard deviation is 0.06.
27See section 7.3.
28Also see their Table 2.3.
29The aggregate and idiosyncratic profitability shocks are each represented by an 11-point state space

equally divided between two standard deviations of their respective means. Given the mean, standard
deviation, and serial correlation parameters, an 11x11 transition matrix is created for each process. In a
simulated sample of 1000 plants over 1000 periods, the serial correlation and variance properties of these
generated series are very close to the parameters used to designate the state space and transition matrix.
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functions, we create a simulated panel data set where the number of plants equals 1000

and the number of time periods is 1000.30

5 Aggregate Implications

Given that both CE and CEH present quantitative results on the estimation of hazard

functions from time series data, we begin by analyzing the aggregate implications of the

quadratic adjustment model. We create a time series by aggregating across the plants in our

simulated panel data set. Following CE and CEH, we investigate aggregate implications by

looking at the relationship between aggregate employment changes and the cross-sectional

distribution of the employment gap given by (7).

Table 1 presents estimates of (7) for three specifications of a hazard function (Φ(z)):

constant, piecewise linear and quadratic.31 More precisely, we specify

Φ(z) =

(
λ0 + λ−1 z + λ2z

2 for z < 0

λ0 + λ+1 z + λ2z
2 for z > 0

(17)

which nests the different specifications of the aggregate hazard function used in CE and

CEH. As described in those papers, (17) is substituted into the aggregate growth equation

(7) yielding the following equation in which aggregate employment growth depends on the

parameters of (17) and the moments of the cross-sectional distribution of the gaps:

∆Et = const+ λ0m1,t − λ−1 Ft(0)m2−,t + λ+1 (1− Ft(0))m2+,t + λ2m3,t + εt (18)

where mi,t is the ith uncentered moment of the cross-sectional distribution of the gap in

period t, an index of + (−) indicates that the moment only includes observations with a
positive (negative) gap, and Ft(0) represents the fraction of plants with a negative gap at

time t.

Adding additional points to the state space does not meaningfully change the results.
30CEH have a panel with 36 quarters and 10,000 plants. Our results are robust to adding more plants.

We analyze only 1000 plants to reduce computation time. The number of time periods is set at 1000 to
minimize simulation error.
31Note that this hazard function is imposed on the aggregate data which itself comes from a panel created

by the optimal decisions at the plant level. These optimal decisions will not necessarily obey any of these
simple hazard specifications.
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5.1 Frictionless Target

The results for the estimation of (18) with the frictionless target computed using the ob-

served gap are reported in Table 1a. When the appropriate target is used, the results are

consistent with intuition: the estimated hazard is flat with an adjustment rate that is nearly

0.48 when ν = 1 and 0.17 when the adjustment cost is larger, ν = 10. There is essentially

no evidence of any economically significant nonlinearity.32 The R2 for this specification is

virtually 1: the model with a constant hazard fits quite well.33 So, even though our driving

process is not a random walk, the flat hazard prediction of the quadratic adjustment cost

model seems to work well using the observed frictionless gap.
There are three deviations from this benchmark associated with three potential “errors”

in measuring the gap. First, as in CE, the static target, which is easy to compute in our

simulated environment, may be used instead of the frictionless target. Second, the estima-

tion procedure used by CE relies on an artificial measure of the static target. The third is

the CEH measure of the gap. For each of these measures, we consider the specifications of

(18).

5.2 Static Target

The lower half of Table 1a shows the results obtained when (18) is estimated using the

observed static gap. Using this measure, one would strongly reject the hypothesis that
the hazard function is flat in favor of either the piecewise linear or the quadratic case. For

example, in the quadratic specification, we find that when ν = 1, λ2 is estimated at 0.62

with a standard error of 0.26. Further, the coefficients in the piecewise linear specification

(λ+1 = 0.1, λ
−
1 = 0.12) are also statistically and economically significant. Note though that

here the R2 for the constant hazard model is essentially 1 so that adding these higher

moments of the cross-sectional distribution, though they are significant, does not lead to

increases in R2. The nonlinearity is not statistically significant when ν = 10 for either the
piecewise linear or the quadratic case.34

The table also includes the quadratic specification given in (18), where λ+1 = λ−1 has
been imposed. The mapping between these estimates {λ1, λ1, λ2} and those reported in

32Though the regression coefficients on some of the nonlinear pieces are statistically significant, they are
not economically significant in the observed distribution of the gaps, z ∈ [−0.5, 0.5].
33This high value of R2 partly reflects the limited nature of the model: there are no other factors of

production with adjustment costs, no shocks to the adjustment costs directly, no measurement error, etc.
34As we shall see in section 7.3, the nonlinearity can be present for ν = 10 for alternative parameteriza-

tions of the shocks.
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CE {λ̃0, λ̃2} is given by λ0 = λ̃0 + λ̃2z
2
0 , λ1 = −2z0λ̃2 and λ2 = λ̃2.

In the ν = 1 case, the estimate of λ2 equals 0.61 and is significantly different from zero.

In fact, this estimate of the nonlinearity in the hazard is not far from the estimate of λ̃2,

0.53, reported by CE. The constant terms (λ0) in the hazard functions are quite close as

well: the CE specification yields a constant term of 0.38 while we report a constant of 0.47.

However, CE find z0 equal to -0.82 while our estimate of z0 is approximately 0.

The difference in results between using the frictionless and static targets to determine

the employment gap can be viewed as the introduction of measurement error into the

regression. If the static target is equal to the frictionless target, we should not see any

change in results. Figure 1, however, illustrates the difference between the two targets.

Switching to the static target is likely to lead to a bias in the estimate, as there is not a

constant difference between these targets.

Using the hazard given in (17) with the restrictions to produce the CE quadratic hazard,

one can rewrite the aggregate employment growth equation, (18), as follows:

∆Et = λ0m
s
1,t+λ1m

s
2,t+λ2m

s
3,t+

error termz }| {
εt + λ0

³
mf
1,t −ms

1,t

´
+ λ1

³
mf
2,t −ms

2,t

´
+ λ2

³
mf
3,t −ms

3,t

´
(19)

The error term contains three mismeasurement terms in addition to εt. If any of these

measurement errors is correlated with the moments of the static employment gap, then a

bias in the estimates will be present.

To study this bias, we regress the measurement error in the first uncentered moment,

mf
1,t −ms

1,t, on the three moments of the static gap {m
s
1,t,m

s
2,t,m

s
3,t} using data from the

ν = 1 case.35 We estimate {-0.02, 0.03, 1.26} as the coefficients on the three moments

with standard errors of {0.003, 0.03, 0.5}. These results indicate that the error in (18) is

related to the static gap in a nonlinear way, thus leading to the nonlinear estimates of the

adjustment function.36

5.3 CE Measures of the Static Gap

The results presented in the above subsection assume that the static target is observed.

Of course, CE do not observe this and must instead infer the growth of the employment

target using (9). We could use our simulated data to create this measure and then estimate

35Thanks to Peter Klenow for discussions on this characterization of the effects of the measurement error.
36Regressions of the higher-order measurement error terms on the three moments of the static gap yield

qualitatively similar results.
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the hazard function in (10). The question would be whether the CE procedure introduces

nonlinearities in addition to those reported in Table 1a.

In fact, we can address this point without replicating the entire CE methodology. From

the simulated data, we directly create an aggregate measure of growth in the static em-

ployment target. Using aggregate employment growth and hours growth from the same

simulated data set, we also use the CE methodology, as in (9), to create their measure of

the employment target using CE’s assumed value of θ = 5. In the simulated data, the

correlation of these two measures of the growth in the employment targets was 0.9996.

Therefore, the CE procedure of looking at the time series does not, it appears, produce

additional nonlinearities since the only input into (10) is the growth rate of the employ-

ment target. The key to the nonlinearity seems to be the substitution of the static for the

frictional gap as indicated in Table 1a.

5.4 CEH Measure of the Gap

Alternatively, the frictionless target could be inferred from variations in observed hours at

the plant-level, as in CEH, opening the possibility of additional measurement error. The

results for this case are in Table 1b. The different sections refer to alternative treatments of

the data. “Full sample” means that we use the complete sample while “big change” refers

to a sample constructed by including only observations in which the employment and hours

changes exceed one standard deviation, as in the sample splits of CEH.

For both specifications (ν ∈ {1, 10}), the flat hazard specification yields rather nonsensi-
cal results: the adjustment rate is in excess of 100% for both samples. The constant hazard

hypothesis is not rejected for both full samples but would be rejected for the big change

samples. Evidently, the sample selection of CEH creates nonlinearity in the quadratic ad-

justment cost case. The source of the misspecification in this case is discussed in the next

section.

As with the static target, we can study the correlation between the measurement error

and the moments of the cross-sectional distribution of the employment gaps when the CEH

procedure is used to measure those gaps. This is an alternative version of (19) where ms
i is

the ith moment of the gap distribution derived using the CEH procedure. We again regress

the measurement error in the first uncentered moment on the three moments of the CEH

gap using data from the ν = 1 case. We estimate {0.001, 0.01, 4.19} as the coefficients

on the three moments with standard errors of {0.0001, 0.007, 1.52}.37 These results again

37These are the actual coefficients divided by 1000. We discuss below why the coefficients from the CEH
approach are so large.
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indicate that the error in (18) is related to the CEH gap in a nonlinear way, thus leading

to the nonlinear estimates of the adjustment function.38

5.5 Summary

Thus, from the aggregate estimation results, we find that the hazard function is essentially

flat iff the gap is properly measured. When the static target is used to construct the

gap, we find that the flat hazard model may be rejected. Using either the CE or the CEH

procedure for measuring the gap, one would reject the flat hazard specification and conclude

that adjustment costs were not quadratic. Here we have seen that this conclusion is not

valid: the measurement of the gap, not economic behavior, introduces nonlinearities.39

6 Determination of θ

A key element in the CE and CEH procedures is the calibration/estimation of θ. This is

the main link between the observable variable (hours) and the unobservable variable (the

gap). Once this parameter is determined, CE calculate the aggregate targets from (9) and

CEH use (4) to construct the plant-level gaps. The logic in both cases is to infer movements

in the gap from variations in hours. Accordingly, the final step in our evaluation of the gap

methodology is to explore the estimates of θ using these two procedures.

Table 2 summarizes the estimates of this parameter for a number of different specifica-

tions. The first two rows correspond to the value of θ estimated from (3) using the actual

gap that we construct in our simulated environment. Of these rows, the first measure uses

the frictionless target to create the gap, and the second measure uses the static target. The

other rows use the CEH approach to estimate θ. Note that the CEH results do not depend

on the definition of the target since it is not observed to them. As in Table 1, results are

reported for the two different parameterizations of the quadratic adjustment cost model,

ν = 1 and ν = 10.

38As with our discussion of the static target, regressions of the higher order measurement error terms on
the three moments of the static gap yield qualitatively similar results.
39An earlier version of this paper included evidence on the plant-level hazards. We found the presence

of nonlinearities when the gap was not measured properly there as well.
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6.1 CE approach

To evaluate the CE observed gap approach, consider the top part of Table 2. The estimate

of θ obtained by using the frictionless and static gap measures differ. In fact, using the

static target, as in CE, produces an estimate of θ that is exactly equal to the one obtained

analytically from the firm’s optimal choice of hours worked per employee.40 However, the

gap measure produced by using this estimate of θ does not correspond with the relevant
measure for a dynamically optimizing firm — the frictionless gap. The difference is due to

the dependence of the frictionless hours target on the productivity shock. As previously

shown in Figure 1, the static hours target is independent of the shock.

This distinction between the two hours targets has important implications for the mea-

surement of the gaps. From a log-linearization of the first-order conditions from (12), the

relationship between the employment gap and hours deviations can be written as

z̃i,t = θ (hi,t − h∗ (Ai,t)) . (20)

Using the correct target for hours and the frictionless employment gap, we do obtain the

analytically calculated value of θ.

The problem for the CE methodology is that there are two unobservables in (20).

The hours target cannot be approximated by a constant mean, as was assumed in the

construction of (3). Even if an estimate for θ is available, the employment gap cannot be

accurately constructed without observing the hours target. The errors caused by having the

correct θ and using the mean level of hours to approximate the hours target are illustrated

precisely by the observed static target results above for the aggregate hazards.

6.2 CEH approach

To evaluate the CEH approach, recall their regression equation, (6):

∆ei,t = δ − θ∆hi,t + εi,t.

>From Table 2, the sign of the estimated value of θ from (6) is opposite that obtained

when the observed gap is used in the regression, as in (3). Since their methodology relies

on θ to construct a measure of the gap, this difference is important to understand.

The error term in (6) contains the change in the employment target level. If changes in

hours are uncorrelated with changes in employment targets, the sign on θ will be determined

by the unconditional correlation between changes in hours and changes in employment. In

40Using (26) from Appendix A and the given parameterization, CE would find θ is equal to 8.8.

19



the simulated data for ν = 1, this latter correlation is 0.51. The driving force behind this

positive correlation is the partial adjustment to changes in employment targets. When

plants experience productivity shocks, they respond to changes in employment targets by

changing both hours and employment in the same direction. This positive correlation

between hours and employment implies the negative sign on θ in (6), as reported in Table

2.

But there is no rationale for the assumption that changes in hours are uncorrelated with

changes in employment targets. Because CEH acknowledge that hours and employment

target changes could be correlated, they only use observations in which there are large

changes in both hours and employment to estimate θ. They argue that in these periods,

the changes in employment targets are swamped by the effects of large changes in hours and

employment. But in a model of convex adjustment costs, the only periods in which there

are large changes in hours and employment are periods in which there are large changes in

employment target levels.

This is evident in the simulated data: the correlation between changes in hours and

changes in employment target levels is 0.88 in the full sample and 0.96 in the CEH-criterion

subsample. Therefore, the CEH methodology produces a biased estimate of θ. To obtain

an unbiased estimate of θ in a model of quadratic costs of adjustment, it is essential to

control for changes in employment target levels.

The implications of the sign reversal are displayed in Figure 2, which shows a sample

of employment changes, deviations in hours, and various measures of the employment gap

from a simulation of the model. The upper panel displays the two measures of the actual

gap, and the lower panel displays two measures of the gap constructed from CEH estimates

of θ. The differences between the gap measures are readily apparent once the scales of the

two panels are taken into account. The series for employment changes and hours deviation

are identical in both panels. In the upper panel, the gap measures have a higher degree of

variability than employment changes, indicative of the expected plant behavior of partial

adjustment when faced with convex costs of adjustment. In the lower panel, employment

changes greatly exceed the CEH gap measures. Hence the large parameter estimates in

Table 1b. Since hours and employment are positively correlated, the negative sign on

θ causes the constructed employment gap to be a dampened version of the change in

employment. The actual measures of the gap and the CEH gap measures are positively

correlated (approximately 0.77 for the big change subsample at ν = 1), but the conclusions

to be drawn from analysis of these series are very different.
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7 Robustness

The conclusions we have reached concerning the inferences from the gap methodology are,

admittedly, based upon the selection of parameters for the plant-level optimization problem

and for the driving processes. It is natural to explore the robustness of these findings.

7.1 Specification of Optimization Problem

With regards to the specification of the plant level optimization problem, we consider two

variations. First, our production function assumes that the labor input is the product of

hours and the number of employees. Yet, CE, citing Bils [1987], analyze a model in which

R(A, e, h) = A (eαehαh) (21)

with αe = 0.72, αh = 0.77.41 In this case, our conclusions on the methods of CE and CEH

do not change: nonlinearities remain in the aggregate regressions.

Second, as noted earlier, the literature is somewhat mixed on the specification of the

quadratic adjustment cost model. In our model, we assume that the cost depends on the

rate of change in employment, not the change alone. Instead we could consider:

ν

2
(e− e−1)

2 . (22)

Using this specification of the adjustment cost function does not have a significant effect

on our conclusions: nonlinearities remain in the aggregate regressions.

7.2 Variability of Hours

The relative variability of hours and employees is largely determined by the elasticity of

compensation with respect to hours and the employment adjustment costs. In our baseline

parameterization the standard deviation of (log of) hours is about 0.0018 while the standard

deviation of (log of) employment is 0.07. In contrast, from the BLS data set that we used

to measure the serial correlation and standard deviation of employment, the standard

deviation of (log) hours is 0.013 while the standard deviation of (log) employment is 0.06.

Clearly our model exhibits too little variability in hours. This is potentially important for

the results as both the CE and CEH procedure infer movements in targets from movements

in hours. So, from (9), low variability in hours is comparable to a value of θ near 0, in

41The values for αe and αh are produced by assuming constant returns to scale in capital and employment,
a markup of 25%, and using the production relationship between hours and employment reported in CE.
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that the growth in the target is just the observed value of employment growth so that the

estimation of (8) is less interesting.42

We explore the robustness of our results to a parameterization in which the elasticity

of the marginal wage is much lower. Specifically, we replace the compensation schedule in

(14) with

ω(E,H) = E(w0 + w1H
ζ) (23)

so that the elasticity of the marginal wage schedule is (ζ−1).43 With ζ = 1.1 we are able to
reproduce the BLS standard deviations of hours and employment.44 At this elasticity, our

results remain: the estimated hazard function using the static gap measure is nonlinear.

7.3 Shocks

To explore the sensitivity of the results to the idiosyncratic and aggregate shock processes,

we compute results for the aggregate regressions over a range of plausible alternative para-

meter settings. We focus on the estimation of (18) with the restriction that λ+1 = λ−1 = 0,
which allows us to focus on the quadratic hazard specification. Tables 3-5 provide es-

timates of λ2 from (18) for various parameterizations of the aggregate and idiosyncratic

shock processes. For these results, the gap is constructed using the observed static tar-
get.
Table 3 displays estimates of λ2 from (18) assuming there is no difference between

the parameters of the idiosyncratic and aggregate shocks: ρagg = ρidio and σ�agg = σ�idio
throughout. There are numerous parameter values, including both values of ν, where there

is significant nonlinearity (λ2 significantly different from zero) in the regressions using the

static target. Interestingly, when the process is closest to a random walk (ρ = 0.99), there

is significant nonlinearity for both target measures.

To distinguish the source of the nonlinearities, Tables 4 and 5 provide results from

42As CE note, this is why one cannot estimate θ in their model.
43There seems to be some confusion between Bils and CE over the value of the marginal wage elasticity.

Bils (p. 848) finds that an increase in weekly hours from 40 to 41 is associated with a 4.6 percent increase
in the marginal wage. This translates into a marginal wage elasticity of 1.84. CE (p. 372) specify a
wage function “where (µ -1) is the elasticity of the marginal wage schedule with respect to average hours
worked.” They then set µ, the wage elasticity, equal to Bils’ estimate of the marginal wage elasticity.
Hence, the marginal wage elasticity used by CE (0.9) is lower than the estimate by Bils (1.84). Using Bils’
estimate, the calibrated value of θ would be aproximately 10 instead of the value of 5 used by CE.
44Our marginal wage elasticity differs from Bils’ estimate in part due to the fact that we are using the

null quadratic model that admittedly is not the true model for the data. A marginal wage elasticity lower
than Bils’ estimate is necessary to generate sufficient volatility in hours.

22



additional simulations, in which we relax the restriction that the aggregate and idiosyncratic

shocks are from the same stochastic process. In Table 4, results are presented for values of

ρagg between 0.6 and 0.99 and for values of σεagg set so that σagg ranges between 0.02 and

0.3.45 For both values of ν, there is evidence of nonlinearity, particularly for low levels of

σagg. There is significant nonlinearity even when the aggregate process is closest to being

a random walk (ρagg = 0.99). For all of these specifications, the aggregate time series of

employment exhibits serial correlation and volatility in the neighborhood of the observed

employment process.

Table 5 explores the relationship between aggregate nonlinearity and the parameteriza-

tion of the idiosyncratic shock. As indicated in Table 5a, there is again a range of values of

ρidio and σidio where the aggregate nonlinearity is present when ν = 1. There are no such

values when ν = 10. Table 5b indicates that this finding is not general: there are certainly

values of ρidio and σidio for which λ2 is signficiant even with ν = 10.

In sum, this section displays the sensitivity of results to the parameterization of the

shocks. The results support the view that the parameters of the process governing the

shocks ought to be estimated along with the adjustment parameters. Assuming that shocks

follow a randomwalk, as in CE and CEH, is not only inconsistent with (the meager) existing

evidence on plant-level shocks but also may weaken the validity of inferences about the

nature of adjustment costs and their significance for aggregate time series.

8 Conclusions

The point of this paper was to assess the findings of CE and CEH that aggregate employ-

ment dynamics depend upon the cross-sectional distribution of employment gaps. We argue

that due to measurement problems, a researcher might indeed find that the cross-sectional

distribution matters for aggregate time series even if adjustment costs are quadratic. Thus,

the conclusion of CE and CEH that nonlinear adjustment at the plant-level is present in

aggregate time series is not based on convincing evidence. So, despite the overwhelm-

ing evidence that plants adjustment is nonlinear, the question of whether this matters for

aggregate employment dynamics remains an open issue.

Can we do better? Within the gap methodology, it is apparent that the CEH method-

45For the robustness exercise, we specify the standard deviation of the shock process, σagg, in order to
hold the volatility of the process constant as the serial correlation in adjusted. The standard deviation of
the innovation to the shock process can then be computed as σεagg = (1 − ρ2agg)

0.5σagg. We follow the
same steps in specifying the idiosyncratic shock process.
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ology is inferior to that employed by CE.46 However, even the CE approach falls short, due

primarily to state-contingent differences between the frictionless and static employment

targets. We have seen that adding a state-dependent hours target to the model yields the

appropriate frictionless target, though implementing this procedure with actual data is less

clear.

There are competing approaches to estimating a parameterized version of an adjustment

cost function nesting both convex and nonconvex costs that do not rely on gap measures.

Examples of this, which now exist in the literature on investment, durables and price

setting, involve using indirect inference techniques to match the moments produced by

simulations of a structural model with those observed.47 Clearly, labor is next.
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Appendix A: CE Gap and Target

CE use this basic framework to generate some analytic results on θ, the parameter that con-

nects variations in hours with variations in the number workers and the target employment

level. Their approach is completely static. They maximize

R(A,E,H)− ω(E,H)

for the optimal choice of hours given (A,E), where A represents the profitability of a

production unit, E is the level of employment, and H is the input of hours by a worker.

This maximization yields a first order condition of:

RH(A,E,H) = ωH(E,H). (24)

The level of hours satisfying this first order condition is also appropriate in a dynamic

setting since the hours choice entails no costs of adjustment. Similarly, they optimize over

the number of workers setting hours at H̄ implying:

RE(A,E, H̄) = ωE(E, H̄). (25)

This first-order condition is intended to characterize a target level of employment as hours

are set at their optimal level. We let E∗∗(A) denote the solution to (25). This is the static
target and it is, by construction, independent of the specification of the adjustment cost
function. Given E∗∗(A) and the specifications above for the compensation and produc-
tion functions, plants will always choose the same steady-state level of hours per worker,

H∗∗ (A) = H̄, ∀A.
Log-linearizing (25), given the functional forms assumed earlier, yields

Ât + (α− 1) Êt + αĤt =
w0
¡
H̄
¢
H̄

w
¡
H̄
¢ Ĥt
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where “X̂t” is the percent deviation from steady state in period t. Since the static target for

hours is independent of deviations in the productivity shock, we can express the relationship

between the static employment target and the productivity shock from (25) as

Ât = (1− α) Ê∗∗t .

Substitution of this relationship into the log-linearized version of (24) yields:

(1− α) Ê∗∗t + (α− 1) Ĥt + αÊt = Êt + ξwĤt

where ξw is the marginal wage elasticity with respect to hours.
48 This can be rewritten as

Ê∗∗t − Êt =
1− α+ ξw
1− α

Ĥt. (26)

Using the mean level of observed hours as an approximation for H̄, equation (3) denotes

the same relation as (26) with θ equal to 1−α+ξw
1−α .49

Relative to the parameterization of our model, CE would set θ = 8.8 using the following

analysis. The marginal wage elasticity is evaluated at the static steady state level of 37.3

hours. From this, ξw = 2.19.

The value of α is given by optimization of capital (K) in the fully specified production

function, assuming no adjustment costs of investment

R̃ (A,E,H,K) =
³
Ã (EH)αL KαK

´η−1
η − rK

where αL and αK are the respective labor and capital shares, η is the price elasticity of

demand, and r is the rental rate on capital. Maximization with respect to capital leads to

the reduced form in (13) where

α =

η−1
η
αL

1− η−1
η
αK

.

With η set equal to 5, corresponding to a markup of 25%, and assuming constant returns

to scale in capital and labor with αL = .65, α is equal to 0.72. Using these calculations, θ

can be determined from θ = 1−α+ξw
1−α .

48The marginal wage elasticity can be expressed as ξw =
2w2H̄

(1+w1+2w2(H̄−40)) .
49We are grateful to Robert King for pushing us to make this connection.
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Table 1a: Aggregate Implications, ν = 1

Observed Gap λ0 λ+1 λ−1 λ2 R2

Frictionless 0.48 1.00

(0.000)

0.48 -0.02 0.03 1.00

(0.000) (0.004) (0.004)

0.48 0.04 1.00

(0.000) (0.026)

Static 0.47 1.00

(0.001)

0.46 0.10 0.12 1.00

(0.00) (0.04) (0.04)

0.48 0.62 1.00

(0.002) (0.26)

0.47 -0.01 -0.01 0.61 1.00

(0.002) (0.014) (0.014) (0.23)

Notes: Results from estimation of (18). Standard errors in paren-
thesis.
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Table 1a: Aggregate Implications, ν = 10

Observed Gap λ0 λ+1 λ−1 λ2 R2

Frictionless 0.17 1.00

(0.000)

0.17 0.02 -0.01 1.00

(0.000) (0.002) (0.003)

0.17 0.043 1.00

(0.000) (0.013)

Static 0.15 0.97

(0.001)

0.15 0.03 -0.04 0.97

(0.004) (0.04) (0.04)

0.15 -0.01 0.97

(0.002) (0.19)

0.15 0.04 0.04 0.01 0.97

(0.002) (0.013) (0.013) (0.19)

Notes: Results from estimation of (18). Standard errors in paren-
thesis.
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Table 1b: Aggregate Implications, ν = 1

CEH Gap λ0 λ+1 λ−1 λ2 R2

Full sample 2.01 0.99

(0.01)

2.04 -1.29 -2.19 0.99

(0.02) (1.46) (1.34)

2.02 -50.47 0.99

(0.01) (31.93)

Big change 5.88 0.76

(0.001)

4.45 310.93 225.04 0.76

(0.56) (118) (94.17)

5.28 16562 0.76

(0.26) (6703)

Notes: Results from estimation of (18). Standard errors in paren-
thesis.

Table 1b: Aggregate Implications, ν = 10

CEH Gap λ0 λ+1 λ−1 λ2 R2

Full sample 2.06 0.95

(0.02)

2.12 -12.78 -1.94 0.95

(0.08) (10.79) (12.70)

2.11 -788.15 0.95

(0.04) (662.9)

Big change 0.87 0.03

(0.16)

10.34 -2642.79 -3018.89 0.09

(1.17) (357.98) (358.32)

5.695 -368956 0.09

(0.614) (45481)

Notes: Results from estimation of (18). Standard errors in paren-
thesis.
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Table 2: Estimate of θ

ν = 1 ν = 10

θ R2 θ R2

Observed Gap

Frictionless target 8.59 0.99 7.42 0.96

(0.001) (0.002)

Static target 8.87 1.00 8.87 1.00

(0.000) (0.000)

CEH Gap

Full sample -4.01 0.26 -0.85 0.12

(0.007) (0.002)

Big change -6.90 0.72 -1.51 0.44

(0.001) (0.005)

Notes: Results from estimation of (18). Standard errors in parenthesis.
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Table 3: Robustness

Parameters Estimate of λ2
ρidio σidio ρagg σagg ν = 1 ν = 10

0.7 0.02 0.7 0.02 1.22 0.12

(0.38) (0.05)

0.8 0.02 0.8 0.02 0.54 0.21

(0.28) (0.07)

0.9 0.02 0.9 0.02 0.88 0.13

(0.41) (0.13)

0.95 0.02 0.95 0.02 0.62 -0.01

(0.23) (0.19)

0.99 0.02 0.99 0.02 8.13 0.87

(2.74) (0.28)

Note: ρagg = ρidio and σagg = σidio throughout this table.

31



Table 4: Robustness: Aggregate Shock parameters
Parameters Estimate of λ2

ρagg σagg ν = 1 ν = 10

0.6 0.02 0.67 0.24

(0.27) (0.07)

0.6 0.1 0.05 0.01

(0.02) (0.004)

0.6 0.3 0.007 -0.0000

(0.002) (0.0005)

0.75 0.02 0.81 0.24

(0.34) (0.09)

0.75 0.1 0.06 0.015

(0.02) (0.01)

0.75 0.3 0.01 0.0002

(0.002) (0.001)

0.9 0.02 0.88 0.14

(0.39) (0.13)

0.9 0.1 0.09 0.01

(0.03) (0.01)

0.9 0.3 0.02 -0.0003

(0.004) (0.001)

0.95 0.02 0.62 -0.01

(0.23) (0.19)

0.95 0.1 0.09 -0.003

(0.03) (0.01)

0.95 0.3 0.03 -0.004

(0.005) (0.002)

0.99 0.02 5.41 0.13

(2.20) (0.21)

0.99 0.1 0.22 0.03

(0.09) (0.02)

0.99 0.3 0.08 0.0001

(0.02) (0.003)

Notes: ρidio = 0.95 and σidio = 0.02. Standard errors in parenthesis.
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Table 5a: Robustness: Idiosyncratic Shock parameters
Parameters Estimate of λ2

ρidio σidio ν = 1 ν = 10

0.6 0.02 1.03 0.001

(0.44) (0.15)

0.6 0.1 0.13 0.09

(0.06) (0.03)

0.6 0.3 0.01 0.01

(0.003) (0.002)

0.75 0.02 0.84 -0.003

(0.36) (0.146)

0.75 0.1 0.12 0.07

(0.09) (0.03)

0.75 0.3 0.01 0.01

(0.004) (0.002)

0.9 0.02 0.64 -0.06

(0.26) (0.14)

0.9 0.1 0.09 -0.08

(0.15) (0.06)

0.9 0.3 0.01 -0.01

(0.01) (0.003)

0.95 0.02 0.62 -0.01

(0.23) (0.19)

0.95 0.1 0.36 0.01

(0.22) (0.02)

0.95 0.3 0.03 -0.02

(0.01) (0.01)

0.99 0.02 0.46 0.01

(0.21) (0.22)

0.99 0.1 1.27 0.06

(0.49) (0.25)

0.99 0.3 0.22 0.08

(0.08) (0.02)

Notes: ρagg = 0.95 and σagg = 0.02. Standard errors in parenthesis.
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Table 5b: Robustness: Idiosyncratic Shock, ν = 10

Parameters Estimate of λ2
ρidio σidio ρagg σagg ν = 10

0.6 0.02 0.6 0.02 0.14

(0.05)

0.6 0.02 0.99 0.02 0.71

(0.23)

0.6 0.1 0.99 0.02 0.15

(0.02)

0.75 0.02 0.6 0.02 0.19

(0.06)

0.75 0.02 0.95 0.02 0.49

(0.23)

0.95 0.02 0.6 0.02 0.24

(0.07)

0.95 0.02 0.75 0.02 0.24

(0.09)

0.99 0.02 0.75 0.02 0.28

(0.11)

0.99 0.1 0.75 0.02 0.32

(0.13)
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