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1. Introduction

The effect of aggregate shocks on economic performance is a topic that has been studied inten-

sively in the real business cycle literature. Even though the real business cycle program has been

quite successful in accounting for the cyclical properties of postwar aggregate data (see Cooley

(1995) and Cooley and Prescott (1995) for an excellent review), that program has some short-

comings. Those that we find particularly important are (1) the trend in output and its compo-

nents—and, hence, the methods used to remove the trend—are taken as exogenous and inde-

pendent of the sources of fluctuations; (2) the models predict substantially lower variability of

labor supply than that observed in the data unless utility is linear in leisure (or, equivalently,

there is an indivisibility in labor supply and lotteries are introduced); (3) the models must resort

to unobservable, or at least difficult to measure, costs of adjustment, margins of variation, or

asymmetries to mimic the persistence of growth rates (see Cogley and Nason (1995) for a dis-

cussion); and (4) the properties of the time series implied by the models are not particularly sen-

sitive to the specification of the degree of intertemporal substitution, though this is a critical

piece of information in understanding the economy’s response to exogenous shocks.

Our purpose in this paper is to present a class of convex endogenous growth models and

to analyze their performance in terms of both growth and business cycle criteria. The models we

study have close analogs in the real business cycle literature and, hence, are a natural first step

when moving beyond the standard real business cycle model. In fact, we interpret the exogenous

growth rate of productivity as an endogenous growth rate of human capital. This perspective al-

lows us to compare the strengths of the two classes of models using a relatively large number of

moments of the joint distribution of macroeconomic time series. Moreover, we deviate from the

standard calibration exercise in that we report simulation results for a wide range of the parame-



2

ters of interest—specifically, the intertemporal elasticity of substitution—and their effects on the

cyclical properties of endogenous variables.

In order to highlight the mechanism that gives endogenous growth models the ability to

improve upon their exogenous growth relatives, we study models that are symmetric in terms of

human and physical capital formation—our two engines of growth. More precisely, we analyze

models in which the technology used to produce human capital is identical to the technologies

used to produce consumption and investment goods. This is a natural first environment to ana-

lyze because of the difficulty of finding evidence that gives reliable information about the capital

(both physical and human)-to-labor ratios across sectors or the differential impact of productivity

shocks.

Since all the models that we consider imply both that a number of variables of interest are

nonstationary and that some appropriate transformations are, we can compare exogenous and en-

dogenous growth models along a variety of statistics, all of which are stationary conditional on

the model. Thus, our approach shifts attention from filtered data (typically, but not exclusively,

filtered with the Hodrick-Prescott filter) to either growth rates or ratios of specific concepts (e.g.,

consumption) to output. A major advantage of our approach is that there is no longer any need to

separate the growth component from the cyclical component because one model explains both.

Indeed, from a formal point of view, it would be incorrect to treat the components separately.

Our major findings are that

• The introduction of shocks does not have a large impact on the mean values of simu-

lated data—including the growth rate of output—derived from the endogenous growth

models we study. Thus, our findings agree with those of Jones, Manuelli, and Stac-
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chetti (1999), who study the impact of volatility in fundamentals on the distribution of

growth rates.

• The endogenous growth model shows far more labor supply variability than the stan-

dard exogenous growth, real business cycle model. This finding highlights a key dif-

ference between the two classes of models. In the endogenous growth models that we

study, human capital services and hours are jointly supplied to the market. Thus, cycli-

cal fluctuations in labor supply are amplified by cyclical changes in the demand for

human capital services. In addition, the model has a fair amount of success in ex-

plaining the standard deviation of the growth rate of output, the growth rate of labor

productivity, and the consumption/output ratio relative to the exogenous growth ana-

log.

• The endogenous growth model outperforms the real business cycle version in terms of

its predictions for the serial correlation properties of annual growth rates of output and

labor productivity. Hence, the models that we study contain important internal propa-

gation mechanisms. The exogenous growth model predicts a value for the autocorrela-

tion of growth rates of capital that is closer to the U.S. value.

• The degree of intertemporal substitution is a major determinant of the second-moment

properties of time series implied by the endogenous growth models. Small differences

in the intertemporal elasticity of substitution induce large changes in the predicted

variability of the consumption/output ratio and the coefficient of variation of hours

worked. For our specifications, we find that the best fit is obtained for elasticities of

substitution lower than one (the logarithmic case). In contrast, the degree of intertem-

poral substitution has a small effect in the exogenous growth model.
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Throughout the paper, we consider only the simplest versions of both exogenous and en-

dogenous growth models, and it is clear that more study is warranted. This is true for both types

of models. In order to generate labor volatility values close to those of the U.S. economy, the real

business cycle model has been generalized to include indivisible labor (Hansen (1985)), home

production (Benhabib, Rogerson, and Wright (1991) and Greenwood and Hercowitz (1991)), cy-

clical factor utilization (Burnside and Eichenbaum (1996) and King and Rebelo (1999)), and a

separate, unshocked sector producing human capital (Einarsson and Marquis (1998)). Variations

of the basic setup designed to produce positive autocorrelation in output growth include labor

market search (Merz (1995) and Andolfatto (1996)), cyclical capital utilization (Burnside and

Eichenbaum (1996)), costs of adjustment (Cogley and Nason (1995)), extreme time-to-build re-

strictions (Christiano and Todd (1996)), and differences in the technologies used to produce

physical goods and human capital, as well the incidence of shocks across sectors (Perli and

Sakellaris (1998)).

Our paper is not the first to study business cycle effects in an endogenous growth setting.1

Einarsson and Marquis (1997) study the effects of including human capital accumulation in a

model with home production. If the home production technology and the market production

technology are sufficiently different, and if shocks do not affect home production, Einarsson and

Marquis obtain a positive correlation between home and market investment and the share of

(inelastically supplied) labor allocated to consumption and market investment activities. Einars-

son and Marquis (1999) study an endogenous growth model with two stocks of human capital,

the production of which is not affected by shocks. In this setting these researchers are able to

                                                                                             
1For analyses that emphasize cross-country differences, see Mendoza (1997), de Hek (1999), Jones,

Manuelli, and Stacchetti (1999), and Fatás (2000).
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generate a relatively volatile labor supply and a small correlation between output and labor pro-

ductivity. Finally, Collard (1999) studies an endogenous growth model with home production,

costs of adjustment in physical capital accumulation, human capital which is accumulated

through learning-by-doing, and an externality in aggregate labor productivity. The model suc-

ceeds at matching the autocorrelation of output growth at the cost of implying, counterfactually,

that the consumption/output ratio and the investment/output ratio are constant.

All of the models that have attempted to improve the predictions of the standard real

business cycle model for both the volatility of hours worked and the serial correlation of output

growth have resorted to various asymmetries. These include different production functions in the

home, human capital, and physical goods production sectors; in particular, the models make

strong assumptions about the capital/labor ratio and differential elasticities of substitution across

sectors that are not backed by evidence. In addition, for the models to produce the desired re-

sults, it is necessary to assume a particular pattern of incidence for the technology shocks: in

most models, the human capital (or the home production) sector is not subject to any shocks,

since this facilitates substitution in and out of market work, increasing the volatility of measured

hours. Finally, several of the models resort to (difficult to measure) adjustment costs.

Our model contributes to this literature by showing that realistic values of labor supply

volatility, autocorrelation in output growth, and a number of other second moments can be at-

tained without resorting to asymmetries—in either production technologies or the incidence of

productivity shocks—and costs of adjustment. Unlike the papers described above, this study puts

emphasis on the role of the intertemporal elasticity of substitution and on matching model and

historical data that are rendered stationary in a manner consistent with the theory.
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In section 2, we begin by laying out a general formulation of the class of models that we

are interested in studying and provide a simple methodological tool for handling the fact that the

natural state space is unbounded. In section 3, we take an initial look at the quantitative proper-

ties of a simple class of these models with equal depreciation rates for physical and human capi-

tal. In section 4, we consider alternative versions of the model with different depreciation rates

for the two capital goods and allow for the possibility that investment in human capital is partly

omitted from the national income and product accounts. Finally, section 5 provides some con-

cluding comments.

2. A General Model

The class of models that we are interested in studying features investment in both human and

physical capital and a time-stationary technology that is subject to random shocks. The models

are stochastic versions of the convex models described in Jones and Manuelli (1990). A general

specification that captures these features is given by

(2.1) max E{∑tβ
tu(ct,�t)}

subject to

ct + xzt + xht + xkt ≤ F(kt ,zt ,st)

zt ≤ M(nzt ,ht ,xzt)

kt+1 ≤ (1−δk)kt + xkt

ht+1 ≤ (1−δh)ht + G(nht ,ht ,xht)

�t + nht + nzt ≤ 1

h0 and k0 given.
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Here {st} is a stochastic process which we assume is Markov with a time-stationary transition

probability function, ct is consumption, xkt is investment in physical capital, kt is the stock of

physical capital, xht is investment in human capital, ht is the stock of human capital, zt is effective

labor, nzt is hours spent in the market working, nht is hours spent in augmenting human capital,

and �t is leisure. The depreciation rates on physical and human capital are given by δk and δh,  re-

spectively. If F, M, and G are concave and bounded below by a homogeneous of degree one

function, it is possible to show that the competitive equilibrium allocation coincides with the so-

lution to the planner’s problem and, for some parameter values, displays income (and consump-

tion) growth.

Thus, this is a fairly standard endogenous growth model in which effective labor is made

up of a combination of hours and human capital which is supplied to the market. For specific

choices of functional forms, many models in this literature are special cases of this formulation.

For example, if M = nzh and G = G0hnh,  the model corresponds to that of Lucas (1988) in the ab-

sence of externalities. If M = nzh and G = xh,  this corresponds to the two capital goods version

discussed in Jones, Manuelli, and Rossi (1993).

The actual solution of models in this class does cause some problems, however. The natu-

ral choice of the state is the vector (ht,kt ,st). The problem that this poses is that both ht and kt are

diverging to infinity (at least for versions of the model that exhibit growth on average). To solve

this problem, the key property that we exploit is that for models of this type to have a balanced

growth path, both preferences and technology must be restricted in a specific way (King, Plosser,

and Rebelo (1988) and Alvarez and Stokey (1998)). For our numerical strategy, it suffices that

the model satisfies
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ASSUMPTION: Preferences and Technology

a. The instantaneous utility function u satisfies
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b. F is concave and homogeneous of degree one in (k,z).

c. M is concave and homogeneous of degree one in (h,xz).

d. G is concave and homogeneous of degree one in (h,xh).

These restrictions, in turn, imply that knowledge of the current shock and the current hu-

man capital-to-physical capital ratio (the two relevant pseudo state variables) is sufficient to de-

termine the optimal choices of employment and next period’s human-to-physical capital ratio.

Given the state, the current stocks, the productivity shock, and the current level of employment,

it is possible to determine consumption and future capital stocks using static first-order condi-

tions.

Indeed, the property that there is a transformation of the problem in which all the (rele-

vant) variables are stationary is a special case of a much more general (and fairly standard) ar-

gument. Our assumptions about the technological side of the model imply that if the vector of la-

bor supplies is held fixed, a time path of the endogenous variables, zt (interpreted as the entire

state/date contingent plan), is feasible from the initial state (h0,k0,s0) if and only if λzt is feasible

from the initial state (λh0,λk0,s0)(λ > 0). That is, the feasible set is linearly homogeneous when

the vector of labor supplies is held fixed. Moreover, utility also has a homogeneity property—

again with labor supplies held fixed, the utility (i.e., the entire expected discounted sum) realized
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from λzt is λ1−σ times the utility of zt (at the same labor supplies). Formally, consider this maxi-

mization problem:

(2.2) max U(z,n)

subject to

(z,n) ∈ Γ(h0,k0,s0),

where, as noted, (z,n) is interpreted as the entire state/date contingent path of the endogenous

variables and vector of labor supplies and U is the resulting expected discounted sum of utilities.

Let V(h0,k0,s0) denote the maximized value in this problem (if it exists), and let (z*(h0,k0,s0),

n*(h0,k0,s0)) denote the optimal plan.

Proposition: Assume that the utility function in (2.2) is homogeneous of degree 1 − σ in z (with

n held fixed) and that the feasible set, Γ, is linearly homogeneous in (h,k) (with n and s held

fixed) and that a solution exists for all (h,k,s). Then the value function, V, for the problem (2.2)

satisfies V(λh,λk,s) = λ(1−σ)V(h,k,s), for all λ > 0. Moreover, the optimal choice of z is homoge-

neous of degree one and the optimal choice of n is homogeneous of degree zero—(z*(λh,λk,s),

n*(λh,λk,s)) = (λz*(h,k,s), n*(h,k,s)).

Proof: See Appendix A.

3. A Simple Example with Endogenous Growth and Equal Depreciation

In this section, we study the properties of a calibrated version of the model. Our objective is two-

fold: First, we want to understand how intertemporal substitution affects the implications of the

model; second, our intent is to compare this class of endogenous growth models with a more

standard real business cycle model (with constant, exogenous growth). To this end, we not only
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parameterize a version of the model of section 2, but we also analyze a related exogenous growth

model similar to the models studied in the real business cycle literature.

3.1  Calibrating the Model

To specialize the model of section 2, we adopt the restrictions on preferences outlined above and

assume that the production function is given by F(k,nh,s) = sAkα(nh)1−α. The laws of motion for

physical and human capital are k ′  = (1−δk)k + xk and h� = (1−δh h′ h + xh. We also assume that

both capital stocks depreciate at the same rate; that is, δk = δh. From a formal point of view, our

choice of a linear law of motion for capital amounts to an aggregation assumption: the technol-

ogy used to produce investment in human capital goods (education, training, and health, among

others) is identical to the technology used to produce general output.2

Using the two stochastic Euler equations of the model, we get that

Et[uc(t+1)(αF(t+1)/kt+1 − (1−α)F(t+1)/ht+1)] = 0.

Hence, in any interior equilibrium, ht /kt = (1−α)/α for all t. This is an important property of the

specification of a Cobb-Douglas production function with equal depreciation rates: the human-

to-physical capital ratio is independent of the level of employment and the productivity shock.

Given this and the definition that A* ≡ A(1−α)1−ααα, it follows that

(3.1) ct = kt[st A
* α−1

tn ((1−nt)/nt)((1−α)/αψ)] ≡ kt g1(st ,nt).

Using this, we obtain

                                                                                             
2This is obviously an extreme assumption. However, we were unable to obtain estimates of the physical

capital/labor or physical capital/human capital ratios in specific activities like education and health.
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Finally, after substitution, the relevant Euler equation becomes

(3.3) [g1(st ,nt)(1−nt)
ψ]−σ(1−nt)

ψ = β ∫S{[g2(st ,nt)g1(st+1,nt+1)(1−nt+1)
ψ]−σ

× (1−nt+1)
ψ[1−δ+st+1A

*(nt+1)
1−α]P(st ,dst+1)}.

A solution to this equation is a function n*: S → [0,1] with nt = n*(st). Note that given n*,

the solution to the planner’s problem (and the competitive equilibrium for this economy) can be

completely described with (3.1), (3.2), and ht+1 = kt+1(1−α)/α.

Our model puts restrictions on concepts that—although clearly identifiable from a theo-

retical point of view—are difficult to measure. Prime examples are consumption and investment

in human capital. In the data, private expenditures on schooling and health (arguably, invest-

ments in human capital) are assumed to be part of consumption, and some forms of investment

(e.g., training) are likely to remain unmeasured. In the model, those expenditures are more prop-

erly viewed as being investments in human capital. The resolution of this problem is not easy. As

a first approximation—we change this in section 4—we assume in our calibration that measured

consumption (in the national income and product accounts) corresponds to the sum of consump-

tion and investment in human capital in the model, c + xh. Thus, measured consumption is the

variable that enters the utility function, along with the level of investment (or spending) in hu-

man capital that coincides with measured consumption.

We set capital’s share, α, equal to 0.36 and hold β fixed at 0.95. We set δk = δh = 0.075.

This is a compromise between the relatively high values for physical investment used in the lit-

erature and the low values typically estimated for depreciation of human capital. We relax this

assumption in section 4. Finally, we choose the remainder of the parameters of the model so as to
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match the average growth rate of U.S. output over the 1955–1992 period of 1.38% per year and

average labor supply equal to 0.17 (Jones, Manuelli, and Rossi (1993)). These two facts (γ =

1.38% and n = 0.17) pin down two of the three remaining parameters of the model, σ, ψ, and A.

This leaves one degree of freedom in the choice of these parameters. Since one of our interests is

to determine how the degree of intertemporal substitution affects the business cycle properties of

the model, we vary σ from 0.9 to 3.0 while simultaneously changing A and ψ so that along the

model’s nonstochastic balanced growth path, γ = 1.38% and n = 0.17.

We assume that the process, st , is given by st = )]1(2/exp[ 22 ρ−σ− εtz  with zt = ρzt +

εt+1, where the ε’s are i.i.d. and normal with mean zero and variance 2
εσ . It follows that E(st) = 1.

To choose ρ and 2
εσ , we use the fact that, with δk = δh , the ratio ht /kt is identically (1−α)/α, and

hence, output is given by yt = Ast((1−α)/α)1−αkt(nt)
1−α. Thus, given data on output, the capital

stock, and hours, the time series of st can be directly identified up to the constant A((1−α)/α)1−α.

We use the data set from Burnside and Eichenbaum (1996) (renormalized to reflect annual fre-

quencies) to construct the implied time series of st given α. Using this series—which is not obvi-

ously the realization of a stationary process—we estimate ρ and 2
εσ  to be 0.95 and 0.0146, re-

spectively.3 Table A.1 in Appendix A shows all the combinations of parameters.

The model that we study has a related exogenous growth version. More precisely, if ht—

our human capital variable—is assumed to grow exogenously at the rate γ̂ , the technology be-

                                                                                             
3Since our nonstochastic model has the balanced growth property, our procedure forces the shock to ex-

plain the productivity slowdown that started in the mid-1970s. This implies that, in our sample, the estimated shocks
are decreasing from a peak of 1.07 (7% above average) in 1966. Even though feasible, modeling the productivity
slowdown is beyond the scope of this paper. For alternative explanations, see Greenwood and Yorukoglu (1997),
Caselli (1999), and Manuelli (2000).
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comes F(k,nh,s) = sAt k
α(n)1−α, with At = A(ht)

1−α = tAγ̂ˆ . Given this specification, st is calculated

using the same procedure as before. In this case, the estimated parameters are ρ = 0.95 and 2
εσ  =

0.0126.4

To solve the model, we use the method of parameterized value function iteration dis-

cussed in Siu (1998). The method finds a linear combination of Chebyshev polynomials to ap-

proximate the value function in the recursive representation of the model. This is done by iterat-

ing upon the contraction mapping over a discretization of the state space until the fixed point is

found. See Appendix B for details. We used simulations of time series of the endogenous vari-

ables of the models with T = 5000 periods in order to calculate estimates of key population mo-

ments. To facilitate comparisons, throughout the paper, the same realization of {st} was used for

all cases with the same parameters for the stochastic process.

3.2  Some Results

As indicated above, our purpose is to assess the performance of the model in terms of its ability

to replicate the distribution of observed variables and to study the differences in propagation

mechanisms between the endogenous and the exogenous growth models. We concentrate on four

dimensions of the distribution: mean, standard deviation, autocorrelation, and cross-correlations.

In previous work, Jones, Manuelli, and Stacchetti (1999) have found that the introduction

of technology shocks in a class of endogenous growth models does not have a large effect on the

mean values of the endogenous variables, relative to their (nonstochastic) balanced growth val-

ues, unless the shock variance is fairly large. We find the same pattern for the specifications in

                                                                                             
4The difference in the estimated standard deviation here relative to the endogenous growth specification is

due to the fact that the former allows the growth rate to covary with the shock, while the latter fixes it at 1.38%.
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this paper: the introduction of uncertainty results in slightly higher simulated mean growth rates,

but quantitatively the effect is small. Moreover, the results are only slightly affected by the mag-

nitude of the intertemporal elasticity of substitution. The average value of growth rates in the ex-

ogenous growth model are virtually identical to their balanced growth values, irrespective of the

value of σ. However, the average value of labor supply does differ from its calibrated value, par-

ticularly when intertemporal substitution is low. In the endogenous growth version, the share of

physical capital investment in output, when we allocate all of the investment in human capital to

consumption, is slightly lower than in the data, and the share of true consumption in output is

low.5 The results are displayed in Table A.2 in Appendix A.

Table 3.1 presents the standard deviations of the growth rates of output, γ; labor produc-

tivity, γy/n; the investment/output ratio, xk/y;6 and the coefficient of variation in hours worked, n.

This is done for both the endogenous growth model and its exogenous growth counterpart. In the

context of the models that we study, all of these variables are stationary. The final row of the ta-

ble gives the corresponding values for the United States from the Burnside and Eichenbaum

(1996) data.

The first important observation is that, unlike the impact on the first moments of the dis-

tribution, the impact of changes in the intertemporal elasticity of substitution (1/σ) on the second

moments of most variables of the endogenous growth model is large. In stark contrast, such

                                                                                             
5This is a product of our simplifying assumptions. Given our calibrated value for the depreciation rate, the

share of output needed to maintain human capital along the balanced growth path is large, and the share needed to
maintain physical capital is small (and incompatible with investment’s share in the data). See section 4 for versions
of the model in which both of these assumptions are relaxed

6We report only the standard deviation of the investment/output ratio since, in the model, y = c + xh + xk,

and it follows that σ(xk/y) = σ((c+xh)/y). Hence, by construction, the variabilities of the consumption/output ratio and
the investment/output ratio coincide.



15

changes have a relatively small impact in the exogenous growth model.7 For example, increasing

σ from 0.90 to 3.00 decreases the variability in hours worked by a factor of 35 in the endogenous

growth model; in the exogenous growth model, this experiment decreases the same variability by

a factor of 1.75.

The endogenous growth model does quite well at moderate values of σ. For example,

when σ = 1.25, the standard deviation of output growth from the model is virtually identical to

that in the data, the standard deviation of the investment/output ratio is 43% of the U.S. value,

the coefficient of variation of hours worked is 88% of the U.S. value, and the standard deviation

of the growth rate of labor productivity exceeds the U.S. value by only about 5%. Except for the

standard deviation of the investment/output ratio (or, equivalently, the consumption/output ratio),

the endogenous growth model studied here performs better than its exogenous growth counter-

part. This is particularly evident in the volatility of the growth rates and hours worked.8 In the

next section, we show how natural extensions of the endogenous growth model improve its abil-

ity to match the volatility in the measured consumption/ and investment/output ratios.

Table 3.2 reports the autocorrelation properties of the endogenous variables from the

simulation, for both the endogenous growth model and its exogenous growth counterpart.

There are several interesting results. First, the endogenous growth model generates per-

sistence in output growth for all values of σ considered; the degree of first-order autocorrelation

increases with the intertemporal elasticity of substitution. Quantitatively, the endogenous growth

                                                                                             
7This may explain why this literature has typically not explored the effects of alternative values of the elas-

ticity of substitution. For a good survey, see Cooley (1995).
8This is true irrespective of the calibrated nonstochastic balanced growth value of labor supply and, hence,

the calibrated value of ψ. In experiments, we have calibrated the model using n = 0.3, a value close to the values
used in the real business cycle literature. None of the substantive results presented in this paper are sensitive to this
choice.
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model with equal depreciation rates can account for about half of the degree of persistence in

growth rates for values of σ near one. In the exogenous growth model, in all cases, the autocor-

relation of output growth is negative. This, of course, is just another instance of the well-known

failure of real business cycle models to display realistic propagation mechanisms (Cogley and

Nason (1995)).

Second, both models explain a relatively small amount of the observed autocorrelation of

the growth rate of consumption. If anything, the exogenous growth model performs better for

high values of the intertemporal elasticity of substitution.

Third, in the endogenous growth model, the autocorrelation of hours worked coincides

with that of the shock and, for our specification, overstates the measured autocorrelation by 15%.

The exogenous growth model does better in this dimension and, for some specifications, almost

perfectly matches the data.

Fourth, the endogenous growth model is able to match the autocorrelation in the growth

rate of labor productivity for a value of σ between 1.25 and 1.50, while the real business cycle

model understates it for all cases considered.

Finally, for both specifications—endogenous and exogenous growth—the autocorrelation

of growth rates of the endogenous variables depends on the intertemporal elasticity of substitu-

tion. When the autocorrelation is the target dimension, the endogenous growth model still prefers

a risk aversion coefficient of σ = 1.25, while the exogenous growth version prefers σ = 0.90. The

latter, however, does a poor job of matching the autocorrelation of the growth rate of output at all

values of σ.

The last statistics we present are the cross-correlations—at several leads and lags—of the

growth rates of output and labor productivity and the levels of hours worked and the invest-
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ment/output ratio with the growth rate of output. Since it is cumbersome to report all the results

for the different values of intertemporal substitution, we choose to display here the values of σ

that best match the data for both models. Again, this criterion selects σ = 1.25 for the endoge-

nous growth version and σ = 0.90 for the exogenous growth version. Table 3.3 contains the esti-

mates of the cross-correlations generated by both models, as well as the corresponding statistics

from the U.S. data.

Overall, neither model is a complete success at matching the cross-correlation structure

of the data. As indicated above, the endogenous growth model generates more persistence, and

this appears in the form of higher autocorrelation values for the growth rate of output. This

model also captures the pattern of cross-correlations between productivity and output growth.

The exogenous growth model does a better job of matching the cross-correlations between hours

and growth rates.

For the sake of comparison with the real business cycle literature, we followed the stan-

dard practice of taking logs and Hodrick-Prescott filtering the data. We then calculated the stan-

dard deviation of all relevant variables—the analog of Table 3.1—for all cases, as well as the

cross-correlation of detrended output, hours, labor productivity, and investment with output at

different leads and lags for the best cases—the analog of Table 3.3; the results are in Tables A.3

and A.4 in Appendix A. Overall, the general flavor of the simulated results is similar to that

found using the stationary ratios: The endogenous growth model predicts that small differences

in the degree of intertemporal substitution result in substantial differences in the standard devia-

tion of most variables. In addition, this model outperforms the real business cycle model in terms

of predicting standard deviations for all variables that are closer to observed U.S. values. In

terms of cross-correlations, both models are fairly successful at matching the autocorrelation of
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detrended output. With filtered data, as with unfiltered data, both models feature high contempo-

raneous correlations among the variables, and these estimates are too high relative to the U.S.

data. For both models, hours lead the cycle much more than in the data while labor productivity

lags the cycle more than in the data. Overall, the endogenous growth and the exogenous growth

models are fairly comparable when they use Hodrick-Prescott filtered data according to these

measures.

To summarize, we find that the simple endogenous growth model that we study in this

section does quite well at matching some statistics of the U.S. time series. In most cases, it out-

performs a related exogenous growth model. In particular, the exercise shows that the class of

endogenous growth models has the potential to deliver the kind of internal propagation mecha-

nisms that the real business cycle literature has been trying to find. The endogenous growth

model displays greater variability in hours worked, despite the absence of an unshocked sector

which competes with the market sector for labor resources (e.g., home production as in Ben-

habib, Rogerson, and Wright (1991) and human capital production through formal training as in

Einarsson and Marquis (1998)) and utility which is linear in leisure (Hansen (1985)). However,

there are two dimensions in which the endogenous growth model performs relatively poorly:

(1) its variability of the consumption/output (or investment/output) ratio is too low relative to the

data, and (2) although doing better than the exogenous growth model, it fails to account for the

first-order autocorrelation patterns in the data; in particular, it exhibits low autocorrelation of the

growth rates of consumption.

4. Alternative Approaches to Human Capital Formation

The simple model that we analyzed in the previous section shows that endogenous growth mod-

els have the potential to generate increased labor supply volatility and display the kind of internal
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propagation mechanisms that are necessary to match U.S. observations. Specifications with the

intertemporal elasticity of substitution somewhere between 1/2 and 1 (σ = 2 and σ = 1, respec-

tively) are closest to matching the data. At the same time, we uncovered two weaknesses of the

simple model: the predicted volatility of the consumption/output ratio is too low relative to the

data, and the predicted autocorrelations do not match the data. In this section, we extend the en-

dogenous growth model in two dimensions: first, we allow for a fraction of human capital in-

vestment to be unmeasured; second, we do not impose equality of the depreciation rates on

physical and human capital.

4.1  Calibration and Results

We have to deal with two difficult data issues with regard to human capital.

First, since the notion of human capital is empirically difficult to measure, it is not sur-

prising that there is a paucity of estimates of its depreciation rate, δh. Haley (1976) estimates δh

to be somewhere between 1% and 4%. Heckman (1976) obtains point estimates that are similar

to Haley’s, but are not significantly different from zero. Earlier work by Ben-Porath (1967) esti-

mates δh to be close to 9%. The results in Jorgenson and Fraumeni (1989) are consistent with de-

preciation rates that range between 1% and 3%. In order to cover this range of estimates, we ex-

perimented with three values of δh: a low value of 0.01, an intermediate value of 0.04, and a high

value of 0.07.

The second issue that we have to deal with here is the question, what part of investment

in human capital is included in measured GDP? There are several categories of investment in

human capital that are likely to be omitted from standard GDP accounting. The single largest
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category includes on-the-job training and on-the-job learning. It is possible that a fraction of

these costs is not counted in standard measures of output.9 In addition, acquisition of human

capital at home (e.g., time of both children and parents) and student inputs at school are not

measured. And whatever part of human capital is measured is scattered between government

spending and private consumption. Here, as in section 3, we solve this problem by allocating the

measured component of investment in human capital to measured consumption. It is difficult to

estimate what fraction of true investment in human capital is included in GDP. With regard to

only training (which is likely to be excluded), its contribution has been estimated somewhere

between 50% of total investment (Mincer (1965)) to just over 20% (Heckman, Lochner, and

Taber (1998)). Our approach is to assume that only a certain fraction, η, of investment in human

capital is included in GDP. We vary the possible values of η from a low of 0.25 to a high of

1.00.

Since there is (potentially) an unmeasured component of output, measured GDP will dif-

fer from true output. In particular, measured GDP is c + xk + ηxh. Since we continue to assume

that all of the model’s labor input is accounted for in the data, we interpret the unmeasured part

of xh as on-the-job training that workers receive while employed. This interpretation requires re-

calibrating the model. To see this, note that if we continue to denote labor’s share of GDP by

(1−α), then it must be the case that (1−α) × GDP = w(nh) + (1−η)xh , where w is the wage. This

implies lower values of α than are commonly used in the literature. From now on, we will use

                                                                                             
9From the income side, training that is paid for by firms, i.e., not deducted from wages, appears as de-

creased profits in the period in which those investments are made. A very good discussion that illustrates the key is-
sues appears in Howitt (1997).
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the term GDP to refer to measured output and use simply output to denote the total amount of

goods and services produced.

Here, as in the previous section, we set β = 0.95 and choose the remainder of the pa-

rameters to match long-run U.S. observations. These include the average growth rate of output of

1.38% and average labor supply equal to 0.17. In addition, we require payments to capital to be

36% of measured output and physical capital investment’s share of measured output to be 24.4%.

This leaves three degrees of freedom in the choice of parameters. We experiment with different

values of σ, δh , and η to see how the model differs from the models in section 3. Note that with

these adjustments, the calibrated values of α, A, δk , and ψ respond to maintain our identifying

assumptions. For our numerical exercise, we considered the following configurations:

 σ ∈ {1.00, 1.25, 1.50, 2.00}, η ∈ {0.25, 0.50, 1.00}, and δh ∈ {0.01, 0.04, 0.07}.

In all, we computed 36 cases. A complete description of the parameters is in Table A.5.10

For the stochastic shock process, we used the same parameters as in the previous section.

(Indeed, we used the same realization for the simulations.) This allows us to do direct compari-

sons of the results with those of the previous section.11 Finally, since there is no obvious exoge-

nous growth analog of the model in this section, we continue using the results from section 3 for

the purposes of comparison.

                                                                                             
10The table includes a 37th case that will be discussed later.
11Formally, the identification assumption that allowed us to estimate the shock, δh = δk , does not hold any

longer. However, the estimation in the exogenous growth version yielded a very similar process for st. Moreover, we
experimented using an actual series for ht from the work of Kendrick (1976), Eisner (1989), and Jorgenson and

Fraumeni (1989), and in each case, we obtained ranges for ρ and σε that include those used in section 3. Given the
large amount of uncertainty associated with these estimates, we did not see any compelling reason to change the es-
timates used in section 3.
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Here, as in section 3, the model’s implications for the means of the variables of interest

result in small deviations from their calibrated values, and we do not report the results here. The

implications of the model for the standard deviations of the growth rates of GDP, γ; labor pro-

ductivity, γy/n; the ratios of measured consumption and investment to GDP, (c+ηxh)/GDP and

xk/GDP; and the coefficient of variation of hours worked, nn /)(σ , are in Table A.6. There are

several results of interest:

• The volatility levels for the growth rate of GDP, the share of measured consumption in

GDP, hours, and labor productivity can be matched simultaneously with reasonable

values of σ, δh , and η. One set of parameters that works fairly well is σ = 1.25, η =

1.00, and δh = 0.04 (case 11). We discuss a case similar to this one in detail below.

• In almost all cases, logarithmic utility generates volatility levels for all of the variables

that are higher than in the data, while they are typically too low when σ = 2.0. Again,

this is in contrast to the exogenous growth model, which has these volatilities uni-

formly too low.

• For the most part, all standard deviations decrease in δh. The magnitude of this de-

crease is quite sensitive to the size of the depreciation rate of human capital.

• The effects of η—the share of true investment in human capital that is measured in

GDP—are small for all variables except for the growth rate of labor productivity, γy/n.

For this variable, the model predicts too much variability unless all of xh is measured

(η=1).

Thus, one lesson learned from these experiments is that the model’s predictions for the

standard deviations of the endogenous variables are quite sensitive to the choice of parameters.
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We experimented with our choices of (σ,η,δh), seeking to match the values of σ(γ),

σ[(c+ηxh)/GDP], and nn /)(σ  found in the U.S. data. The results, along with those of the best

exogenous growth model from section 3, are in Table 4.1.

For our preferred case—case 37—the match between model and data is almost perfect.

The estimates are, at most, within 2% of the observed values. However, the exogenous growth

version of the model falls moderately short in the standard deviations of the growth rates of GDP

and labor productivity (at about 80% of the U.S. values) and only reproduces approximately 1/3

of the U.S. coefficient of variation for hours worked.

Why is it that relaxing the assumption of equal depreciation rates generates such a big

difference in the volatility of measured consumption? The reason is simple: If δh is smaller than

δk , the balanced growth value of h/k increases. This has two effects: on the one hand, a higher

value of the stock of human capital requires more investment in it. On the other hand, the lower

depreciation rate implies that less investment is required. In the examples we have looked at, the

second effect dominates. This is important because our definition of measured consumption is

c + ηxh , and it was the divergent behavior of the two components that resulted in the low esti-

mates of its variability in section 3.12

In section 3, we pointed out that the endogenous growth model failed to account for the

autocorrelation of consumption growth. The extended endogenous model is a substantial im-

provement. Table A.7 in Appendix A contains the results for all 37 cases. There are a few inter-

esting regularities:

                                                                                             
12We also varied the share of human capital investment included in measured GDP, η. Our preferred speci-

fication has η equal to one. Moreover, the volatility of the measured consumption/output ratio is fairly insensitive to
η; hence, we do not discuss the effects of changing this parameter.
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• If human capital depreciation is small and the share of measured human capital in-

vestment is close to one, it is relatively easy for the model to produce persistence in

output growth resembling values found in the U.S. data (around 0.2). The first-order

autocorrelation of output growth is decreasing in δh when η = 1, whereas it is increas-

ing in δh when η = 0.50 and 0.25. Hence, the autocorrelation of output growth seems

to be more sensitive to η than to δh.

• But the autocorrelation of measured consumption growth is extremely sensitive to the

value of δh. In fact, when δh equals 0.01, the model often produces negative autocor-

relation.

Here, as before, we find it encouraging that small variations in the parameters result in

relatively large changes in the predicted values. It is of interest to evaluate how well our pre-

ferred specification—chosen to match three measures of volatility in the data—does in terms of

accounting for the autocorrelation of endogenous variables. The results, along with those for the

exogenous growth model, are reported in Table 4.2.

Even though the fit is not perfect, our endogenous growth model displays distinct propa-

gation mechanisms. It accounts for 70% of the first-order serial correlation in the annual growth

rate of output, and it overestimates the first-order serial correlation of productivity growth by ap-

proximately 15%. The autocorrelations of consumption growth and hours worked are within

10% of the U.S. values. The one significant deviation is the autocorrelation in the growth rate of

physical capital: the endogenous growth model’s prediction is close to half the U.S. value, while

the exogenous growth model implies a much closer fit. With the first-order autocorrelation as a

metric, the endogenous growth model outperforms its exogenous growth counterpart if the

growth rate of physical capital is ignored. Again, the important difference lies in the two models’
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abilities to account for the first-order serial correlation properties of the growth rate of output.

The exogenous growth model predicts a negative value, while the endogenous growth version

predicts a significantly positive autocorrelation.

Finally, we computed the cross-correlations with GDP growth for our preferred specifi-

cation. The results are reported in Table A.8 and show no substantial improvement over our

findings in section 3. The endogenous growth model still generates an excessively high contem-

poraneous correlation between GDP growth and labor productivity. Moreover, the contempora-

neous correlation between output growth and the physical capital investment/output ratio repre-

sents a distinct deterioration over the equal depreciation rate version analyzed in section 3. The

number of hours worked now lags the cycle, as it does in the data, though this correlation pattern

is marginal at best.13

4.2  The Dynamics of a Response to Shock

To understand how the extended model improves the serial correlation properties of measured

consumption, it is necessary to explore how a shock affects investment in both physical and hu-

man capital. For the class of models in which δh < δk , a positive technology shock results not

only in an increase in investment in physical capital, xk , but also in an increase in xk relative to

xh.

To understand the effects involved, assume that initially the economy is operating along

its balanced growth path with st = 1. From the Euler equation, it follows that

F(t)/ht(αht /kt − (1−α)) = δk − δh > 0.

                                                                                             
13The intuition behind these cross-correlation results becomes apparent when we consider the impulse re-

sponse behavior of the model. This is done in the next subsection.
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Next, the no-arbitrage condition is just

Et[uc(t+1)(δh − δk + st+1F(t+1)/ht+1)(αht+1/kt+1 − (1−α))] = 0,

where, following a positive shock to st , st+1 is likely to be greater than one. If the solution kept

ht+1/kt+1 = ht /kt , then it follows that (δh − δk + st+1F(t+1)/ht+1)(αht+1/kt+1 − (1−α)) would be posi-

tive, violating the no-arbitrage condition. Thus, the optimal policy is such that ht+1/kt+1 < ht /kt ,

and this, in turn, results in relatively low investment in human capital in the period of a positive

shock.14

One interpretation for this is that in good times, there is a (relative) increase in physical

capital investment and a (relative) decrease in human capital investment, while individuals in-

crease their participation in the labor market. It is important to note that these opposing changes

are not driven by competing uses of time. In our extended model, physical and human capital are

produced using the same technology and, hence, are subject to the same stochastic shock. The

true reason for the opposing changes lies in the durability of the two forms of capital: since hu-

man capital depreciates slowly, it is optimal to postpone investing in it until the technology

shock is lower. In terms of our aggregate model, one interpretation of this result is not only that

individuals invest less in human capital, but also that firms postpone training in good times, even

though they go ahead with other investment plans. This is consistent with anecdotal evidence.

In our extended model, measured consumption is c + ηxh. Thus, the response of measured

consumption to a shock is the sum of two individual effects, pure c and pure xh , that, to some

extent, reinforce each other, instead of moving in opposite directions, as in the case where δk =

                                                                                             
14Of course, the explanation is only approximate since the theory only restricts the integral, not each term,

to be zero. However, the explanation does capture the right effects. In addition, the reader can check that our argu-
ments go through for any homogeneous of degree one function, and not just the Cobb-Douglas case.
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δh. It follows that both permanent income and equality of rate of return types of arguments work

in the same direction and result in long-lasting impacts on measured consumption as a result of a

technology shock.

In Figure 1, we show the responses of the two forms of investment to a positive one-

standard-deviation shock to productivity in our extended endogenous growth model. The values

are computed from our preferred specification (case 37 above) and are such that the shock hits

the economy in period 3. The data displayed in Figure 1 correspond to percentage deviations

from the balanced growth path in the absence of shocks. Figure 1 illustrates the arguments

sketched above. During the period of the shock there is a large response, more than 6% above

trend, of investment in physical capital. Since there are no adjustment frictions, this increase in

investment is short-lived, and this investment is only 0.5% above trend in the period after the

shock. From then on, it decreases slowly, but even after 20 periods, it remains slightly above

trend. The response of investment in human capital, xh , is quite different. During the period of

the shock, it increases only 0.2% over its trend value. However, after one period, it rises more

than 3.5% above trend and, subsequently, decreases to close to its unshocked value.15

Figure 2 displays the impulse response functions for all the measured variables: output,

consumption (defined as c + xh), hours, and investment in physical capital. The two most inter-

esting features of this figure are the delayed response of measured consumption to a shock and

the relatively long-lasting increase in hours. As indicated above, in this endogenous growth

model, the behavior of consumption is driven not only by intertemporal substitution effects, as in

the standard exogenous growth model, but also by the delayed response of investment in human

                                                                                             
15It is possible with small values of δh for the model to generate decreases in human capital investment at

the time of the shock and larger increases afterward.
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capital (included in our measure of consumption) to a technology shock. Similarly, the response

of hours worked is not highest during the period of the shock: For this specification, hours are

slightly higher in the period after the shock. Moreover, the effects of the positive impact are

relatively long-lasting: after 10 periods, hours are more than 0.7% above normal, and after 20 pe-

riods, they are still 0.4% above normal.

5. Conclusion

In this paper, we have taken a preliminary look at a class of stochastic endogenous growth mod-

els. We find our results encouraging. Our artificial economies show an improvement—over the

exogenous growth, real business cycle models—in accounting for the first-order serial correla-

tion of the growth rate of output and the measured variability of hours per worker. This is true

despite the fact that the models that we study do not rely on asymmetries in either the technolo-

gies of production across sectors or the incidence of shocks.

One important finding is that, in contrast to exogenous growth models, the economies

that we study imply that the intertemporal elasticity of substitution plays a major role in deter-

mining the second-moment properties of macroeconomic time series. On the basis of our specifi-

cation, we find that an intertemporal elasticity of substitution of approximately 0.8 does best at

replicating the moments in the data. Moreover, from the perspective of the model, there is a sub-

stantial difference between 0.8 and 1.0 (with logarithmic preferences), which is the most com-

mon specification used in the real business cycle literature.

There are several dimensions in which the endogenous growth model is found lacking. In

particular, its contemporaneous correlation between the growth rate of output and both labor

supply and the growth rate of labor productivity are higher than the U.S. values; however, this is

also true of the exogenous growth, real business cycle model. In addition, the endogenous
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growth model’s first-order autocorrelation of the growth rate of capital is lower than in the data

and represents a deterioration relative to the exogenous growth version.

It seems to us that the next step is to carefully explore the effects of generalizing the en-

dogenous growth model. This includes generalizing both the details of the market production

technologies and the human capital production technologies. We have already done some of this

work, and we plan to use more evidence to recover the differences in factor intensities across

sectors.



30

Appendix A

Proposition Proof and Data Tables

1. Proof of the Proposition

Fix an arbitrary initial state, (h,k,s), and let (z*(h,k,s), n*(h,k,s)) denote the solution to (2.2) from

this state. Now consider (2.2) when the initial state is (λh,λk,s). It follows immediately from the

linear homogeneity of Γ that (λz*(h,k,s), n*(h,k,s)) is feasible for the problem with initial state

(λh,λk,s). Contrary to the conclusion of the proposition, assume that (λz*(h,k,s), n*(h,k,s)) is not

optimal. Then take some alternative plan, (z,n), that is feasible and generates higher utility:

(A.1) U(z,n) > U(λz*(h,k,s), n*(h,k,s)).

Since (z,n) is feasible given initial state (λh,λk,s), it follows from the linear homogeneity of Γ

that (z/λ,n) is feasible when the initial state is (λh/λ,λk/λ,s) = (h,k,s). Moreover, the utility of

(z/λ,n) is given by U(z/λ,n) = U(z,n)/λ1−σ. Using this and (A.1), we have that

U(z/λ,n) = U(z,n)/λ1−σ > U(λz*,n*)/λ1−σ = λ1−σ U(z*,n*)/λ1−σ = U(z*,n*).

That is, (z/λ,n) is feasible when the initial state is (h,k,s), and it gives higher utility than (z*,n*), a

contradiction.

That the value function is homogeneous of degree 1 − σ in z (holding n fixed) follows

immediately from the fact that the policy rules have the property that they do.

2. Additional Tables
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Table A.1 Basic Model:  Parameters

Case σ ρ 2
εσ ψ A δ

1 .90 .95 .0146 8.47 .841 .075

2 1.00 .95 .0146 8.32 .849 .075

3 1.25 .95 .0146 7.99 .871 .075

4 1.50 .95 .0146 7.70 .893 .075

5 1.75 .95 .0146 7.43 .915 .075

6 2.00 .95 .0146 7.20 .937 .075

7 2.50 .95 .0146 6.80 .982 .075

8 3.00 .95 .0146 6.47 1.026 .075

Table A.2 Basic Model:  Average Values

Case σ E(γ) E(c/y) E[(c+xh)/y] E[xk/y] E(n)

1 .90 1.49 .372 .774 .226 .170

2 1.00 1.42 .377 .776 .224 .170

3 1.25 1.40 .392 .781 .219 .170

4 1.50 1.40 .407 .786 .214 .170

5 1.75 1.40 .421 .791 .209 .170

6 2.00 1.40 .434 .796 .204 .170

7 2.50 1.41 .459 .805 .195 .170

8 3.00 1.41 .482 .814 .186 .170

U.S. 1.38 * .756 .244   *

* = No obvious data analog.
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Table A.3 Basic Model:  Volatility
Endogenous Growth and Exogenous Growth Models

(Hodrick-Prescott Filtered Data)

Case σ σ(y) σ(y) − R σ(xk) σ(xk) − R σ(n) σ(n) − R σ(y/n ) σ(y/n) − R σ(c+xh) σ(c) − R

1 .90 3.911 1.958 6.390 5.506 3.539 .895 1.473 1.236 3.239 1.120

2 1.00 3.029 1.886 4.584 5.042 2.189 .784 1.243 1.231 2.600 1.118

3 1.25 2.295 1.776 3.092 4.365 1.060 .619 1.331 1.232 2.077 1.130

4 1.50 2.035 1.713 2.560 3.995 .658 .527 1.419 1.236 1.894 1.143

5 1.75 1.901 1.671 2.283 3.762 .451 .466 1.474 1.241 1.802 1.154

6 2.00 1.821 1.640 2.112 3.603 .326 .423 1.510 1.245 1.747 1.164

7 2.50 1.728 1.599 1.907 3.401 .182 .365 1.554 1.252 1.684 1.179

8 3.00 1.676 1.571 1.786 3.280 .102 .327 1.579 1.256 1.651 1.191

U.S. 2.592 2.592 6.046 6.046 2.006 2.006 1.235 1.235 2.095 2.095

Note: The column labeled σ(z) gives the standard deviation of z, where z corresponds to output, y; investment in physical capital, x
k
; hours worked, n; labor productivity,

y/n; and measured consumption, c + x
h
 in the endogenous growth model and c in the exogenous growth model. An R indicates that the column corresponds to the values of

a real business cycle version with exogenous growth as described in the text.
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Table A.4 Cross-Correlations with Output
Endogenous Growth Model (bold)
and Exogenous Growth Model
and U.S. Data (italic)

(Logged and Hodrick-Prescott Filtered Data)
Endogenous σ = 1.25; Exogenous σ = 0.9

Lag (j)

Variable −2 −1 0 1 2

yt+j .373
.316
.292

.653

.615

.693

1.000
1.000
1.000

.653

.615

.693

.373

.316

.292

nt+j .465
.425
.051

.687

.635

.474

.949

.886

.886

.494

.302

.682

.159
−.065

.184

(y/n)t+j .274
.192
.538

.579

.515

.705

.968

.942

.659

.733

.756

.339

.517

.547

.322

xkt+j .401
.398
.308

.669

.644

.665

.996

.950

.871

.618

.422

.373

.320

.069
−.116
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Table A.5 Extended Model:  Parameters

Case σ η δh A α δk ψ
1 1.00 1.00 .01 .607 .360 .098 5.60
2 1.00 1.00 .04 .749 .360 .098 7.20
3 1.00 1.00 .07 .878 .360 .098 8.58
4 1.00 .50 .01 .615 .322 .098 5.78
5 1.00 .50 .04 .779 .296 .098 7.70
6 1.00 .50 .07 .936 .281 .098 9.48
7 1.00 .25 .01 .618 .302 .098 5.88
8 1.00 .25 .04 .790 .260 .098 7.99
9 1.00 .25 .07 .960 .234 .098 10.02

10 1.25 1.00 .01 .640 .360 .106 5.51
11 1.25 1.00 .04 .784 .360 .106 7.02
12 1.25 1.00 .07 .913 .360 .106 8.33
13 1.25 .50 .01 .648 .324 .106 5.68
14 1.25 .50 .04 .813 .299 .106 7.49
15 1.25 .50 .07 .971 .283 .106 9.17
16 1.25 .25 .01 .651 .305 .106 5.77
17 1.25 .25 .04 .823 .264 .106 7.75
18 1.25 .25 .07 .993 .238 .106 9.66

19 1.50 1.00 .01 .674 .360 .114 5.43
20 1.50 1.00 .04 .819 .360 .114 6.87
21 1.50 1.00 .07 .951 .360 .114 8.13
22 1.50 .50 .01 .681 .326 .114 5.59
23 1.50 .50 .04 .846 .301 .114 7.30
24 1.50 .50 .07 1.005 .285 .114 8.90
25 1.50 .25 .01 .684 .307 .114 5.67
26 1.50 .25 .04 .856 .267 .114 7.54
27 1.50 .25 .07 1.027 .241 .114 9.34

28 2.00 1.00 .01 .741 .360 .129 5.29
29 2.00 1.00 .04 .888 .360 .129 6.60
30 2.00 1.00 .07 1.022 .360 .129 7.76
31 2.00 .50 .01 .748 .329 .129 5.43
32 2.00 .50 .04 .914 .305 .129 6.98
33 2.00 .50 .07 1.074 .289 .129 8.42
34 2.00 .25 .01 .750 .312 .129 5.50
35 2.00 .25 .04 .923 .273 .129 7.18
36 2.00 .25 .07 1.094 .248 .129 8.80

37 1.273 1.0 .0445 .807 .360 .107 7.21



35

Table A.6 Extended Model:  Volatilities

Case σ, η, δh σ(γ) σ[(c+ηxh)/GDP] nn /)(σ σ(γy/n)

1 1.0, 1.0, .01 .0302 .0344 .0830 .0108
2 1.0, 1.0, .04 .0290 .0187 .0694 .0121
3 1.0, 1.0, .07 .0287 .0106 .0626 .0134
4 1.0, .50, .01 .0421 .0352 .0877 .0253
5 1.0, .50, .04 .0352 .0221 .0764 .0169
6 1.0, .50, .07 .0310 .0149 .0702 .0143
7 1.0, .25, .01 .0512 .0370 .0904 .0363
8 1.0, .25, .04 .0390 .0258 .0810 .0213
9 1.0, .25, .07 .0313 .0193 .0756 .0151

10 1.25, 1.0, .01 .0241 .0249 .0501 .0115
11 1.25, 1.0, .04 .0224 .0132 .0370 .0124
12 1.25, 1.0, .07 .0214 .0066 .0295 .0133
13 1.25, .50, .01 .0332 .0241 .0516 .0221
14 1.25, .50, .04 .0271 .0139 .0388 .0168
15 1.25, .50, .07 .0231 .0077 .0308 .0145
16 1.25, .25, .01 .0395 .0243 .0524 .0294
17 1.25, .25, .04 .0299 .0148 .0399 .0198
18 1.25, .25, .07 .0237 .0090 .0317 .0149

19 1.5, 1.0, .01 .0215 .0207 .0366 .0122
20 1.5, 1.0, .04 .0198 .0115 .0248 .0131
21 1.5, 1.0, .07 .0186 .0056 .0177 .0139
22 1.5, .50, .01 .0296 .0199 .0376 .0214
23 1.5, .50, .04 .0242 .0111 .0256 .0173
24 1.5, .50, .07 .0207 .0058 .0182 .0155
25 1.5, .25, .01 .0347 .0193 .0379 .0271
26 1.5, .25, .04 .0268 .0114 .0262 .0200
27 1.5, .25, .07 .0216 .0064 .0186 .0163

28 2.0, 1.0, .01 .0192 .0167 .0246 .0132
29 2.0, 1.0, .04 .0177 .0097 .0142 .0140
30 2.0, 1.0, .07 .0167 .0052 .0077 .0146
31 2.0, .50, .01 .0258 .0153 .0251 .0204
32 2.0, .50, .04 .0216 .0089 .0147 .0179
33 2.0, .50, .07 .0189 .0050 .0082 .0166
34 2.0, .25, .01 .0300 .0147 .0253 .0250
35 2.0, .25, .04 .0241 .0088 .0151 .0203
36 2.0, .25, .07 .0202 .0049 .0084 .0178

37 1.273, 1.0, .044 .0219 .0118 .0341 .0126

      U.S. .0214 .0119 .0342 .0124
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Table A.7 Extended Model:  Autocorrelations

Case σ, η, δh ρ1(γy) ρ1(γk) ρ1(γc+ηxh) ρ1(n) ρ1(γy/n)

1 1.0, 1.0, .01 .264 .192 −.264 .964 .725

2 1.0, 1.0, .04 .180 .512 .221 .956 .748
3 1.0, 1.0, .07 .167 .819 .591 .950 .774
4 1.0, .50, .01 −.270 .180 −.087 .964 −.373
5 1.0, .50, .04 −.133 .481 .528 .955 .047

6 1.0, .50, .07 .051 .800 .600 .950 .680
7 1.0, .25, .01 −.403 .175 .213 .963 −.425
8 1.0, .25, .04 −.267 .464 .728 .955 −.132
9 1.0, .25, .07 −.010 .789 .676 .950 .682

10 1.25, 1.0, .01 .227 .156 −.216 .964 .389

11 1.25, 1.0, .04 .154 .439 .267 .957 .360
12 1.25, 1.0, .07 .141 .759 .569 .951 .363
13 1.25, .50, .01 −.258 .146 .060 .963 −.403
14 1.25, .50, .04 −.150 .407 .565 .956 −.177
15 1.25, .50, .07 −.006 .736 .489 .951 .128

16 1.25, .25, .01 −.382 .142 .444 .963 −.472
17 1.25, .25, .04 −.268 .393 .608 .955 −.325
18 1.25, .25, .07 −.083 .721 .436 .951 .018

19 1.5, 1.0, .01 .213 .137 −.170 .965 .276

20 1.5, 1.0, .04 .147 .381 .275 .958 .239
21 1.5, 1.0, .07 .132 .702 .564 .953 .232
22 1.5, .50, .01 −.247 .123 .157 .964 −.382
23 1.5, .50, .04 −.151 .360 .564 .957 −.197
24 1.5, .50, .07 −.032 .678 .434 .952 −.010
25 1.5, .25, .01 −.365 .099 .511 .964 −.471
26 1.5, .25, .04 −.264 .334 .504 .956 −.340
27 1.5, .25, .07 −.113 .659 .336 .952 −.115

28 2.0, 1.0, .01 .207 .089 −.129 .967 .179

29 2.0, 1.0, .04 .146 .305 .294 .963 .141
30 2.0, 1.0, .07 .129 .601 .547 .958 .130
31 2.0, .50, .01 −.218 .080 .288 .967 −.347
32 2.0, .50, .04 −.144 .284 .531 .961 −.208
33 2.0, .50, .07 −.055 .572 .407 .956 −.079
34 2.0, .25, .01 −.336 .078 .525 .966 −.439
35 2.0, .25, .04 −.251 .268 .408 .960 −.319
36 2.0, .25, .07 −.137 .554 .273 .955 −.169

37 1.273, 1.0, .0445 .141 .484 .358 .956 .342

U.S. .213 .774 .400 .852 .295
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Table A.8 Cross-Correlations with Output Growth
Endogenous Growth Model (bold)
and U.S. Data (italic)

σ = 1.273, η = 1.0, δh = 0.00445

Lag (j)

Variable −2 −1 0 1 2

γy,t+j .080
−.081

.148

.214
1.000
1.000

.148

.214
.080

−.081

nt+j .156
−.328

.186
−.327

.467

.118
.468
.308

.445

.280

γy/n,t+j .114
.272

.178

.384
.962
.482

.252
−.166

.203

.144

(xk/y)t+j .056
−.315

.125
−.139

.978

.509
.022
.454

.014

.159
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Appendix B

Numerical Methods Used for Solving the Models

This appendix outlines the numerical method used to solve the endogenous growth models stud-

ied in this paper. The method is an extension of the general class of projection methods devel-

oped in Judd (1992). For further details, as well as the description of the method’s use in solving

the standard real business cycle model, see Siu (1998).

Let κ = h/k, ĉ  = c/k, and η = kk /′ . The method begins by specifying the approximation

to the value function to be of this form:

∑∑
−

=

−

=
φκφ=κ

1

0

1

0

)),(())((),(ˆ
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i

N

j
jiij zTTazv

where, Ti is the i-th order Chebyshev polynomial and φ: �1 → [−1,1] is a linear transformation

mapping the bounded, ergodic capture regions of κ  and z into the Chebyshev polynomial’s do-

main of definition.

The N2 × 1 coefficient vector, a = {aij}, characterizing the approximation v̂ , is chosen to

solve the following system of N2 equations:
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We select the N2 functions {wij} to be
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To compute the double integral above, we use M 2 -point Gauss-Chebyshev quadrature

integration (with M ≥ N). Note that in the special case where δh = δk , κ = (1−α)/α in every pe-

riod, so that the dimension of the state space is halved and the dimension of the unknown coeffi-

cient vector a is reduced by a factor of N.

Due to the orthogonality conditions possessed by Chebyshev polynomials, we are able to

rewrite the system of equations as the following matrix expression:

X ′ (Xa − Ya) = 0,

where X is an appropriately defined matrix of Chebyshev polynomials and Ya is a vector con-

sisting of nonlinear functions of the unknown coefficients a.

To solve this matrix problem easily, we implement the following iterative procedure.

Given an initial guess for the coefficient vector, a0, the vector Ya0 is computed. A new guess, a1,

is computed as

a1 = .)( 0
1 XaXXX ′′ −

This procedure is repeated until we converge upon the limit point, a*.



40

References

Alvarez, Fernando and Nancy L. Stokey, 1998, “Dynamic Programming with Homogeneous

Functions,” Journal of Economic Theory, 82(1), pp: 167–189.

Andolfatto, David, 1996, “Business Cycles and Labor-Market Search,” American Economic Re-

view, 86(1), pp: 112–132.

Benhabib, Jess, Richard Rogerson and Randall Wright, 1991, “Homework in Macroeconomics:

Household Production and Aggregate Fluctuations,” Journal of Political Economy, 99(6),

pp: 1166–1187.

Ben-Porath, Yoram, 1967, “The Production of Human Capital and the Life Cycle of Earnings,”

Journal of Political Economy, 75(4), pt. 1, pp: 352–365.

Burnside, Craig and Martin Eichenbaum, 1996, “Factor-Hoarding and the Propagation of Busi-

ness-Cycle Shocks,” American Economic Review, 86(5), pp: 1154–1174.

Caselli, Francesco, 1999, “Technological Revolutions,” American Economic Review, 89(1), pp:

78–102.

Christiano, Lawrence J. and Richard M. Todd, 1996, “Time to Plan and Aggregate Fluctuations,”

Federal Reserve Bank of Minneapolis Quarterly Review, 20(1), Winter, pp: 14–27.

Cogley, Timothy and James M. Nason, 1995, “Output Dynamics in Real-Business-Cycle Mod-

els,” American Economic Review, 85(3), pp: 492–511.

Collard, Fabrice, 1999, “Spectral and Persistence Properties of Cyclical Growth,” Journal of

Economic Dynamics and Control, 23(3), pp: 463–488.

Cooley, Thomas F., ed., 1995, Frontiers of Business Cycle Research, Princeton: Princeton Uni-

versity Press.



41

Cooley, Thomas F. and Edward C. Prescott, 1995, “Economic Growth and Business Cycles,” in

Frontiers of Business Cycle Research, pp: 1–38, ed. Thomas F. Cooley, Princeton:

Princeton University Press.

de Hek, Paul A., 1999, “On Endogenous Growth Under Uncertainty,” International Economic

Review, 40(3), pp: 727–744.

Einarsson, Tor and Milton H. Marquis, 1997, “Home Production with Endogenous Growth,”

Journal of Monetary Economics, 39(3), pp: 551–569.

Einarsson, Tor and Milton H. Marquis, 1998, “An RBC Model with Growth: The Role of Human

Capital,” Journal of Economics and Business, 50 (Sept.-Oct.), pp: 431–444.

Einarsson, Tor and Milton H. Marquis, 1999, “Formal Training, On-the-Job Training and the

Allocation of Time,” Journal of Macroeconomics, 21(3), pp: 423–442.

Eisner, Robert, 1989, The Total Incomes System of Accounts, Chicago: University of Chicago

Press.

Fatás, Antonio, 2000, “Endogenous Growth and Stochastic Trends,” Journal of Monetary Eco-

nomics, 45(1), pp: 107–128.

Greenwood, Jeremy and Zvi Hercowitz, 1991, “The Allocation of Capital and Time over the

Business Cycle,” Journal of Political Economy, 99(6), pp: 1188–1214.

Greenwood, Jeremy and Mehmet Yorukoglu, 1997, “1974,” Carnegie-Rochester Conference Se-

ries on Public Policy, 46 (June), pp: 49–95.

Haley, William J., 1976, “Estimation of the Earnings Profile from Optimal Human Capital Ac-

cumulation,” Econometrica, 44(6), pp: 1223–1238.

Hansen, Gary D., 1985, “Indivisible Labor and the Business Cycle,” Journal of Monetary Eco-

nomics, 16(3), pp: 309–327.



42

Heckman, James J., 1976, “A Life-Cycle Model of Earnings, Learning, and Consumption,”

Journal of Political Economy, 84(4), pt. 2, pp: S11–S44.

Heckman, James J., Lance Lochner and Christopher Taber, 1998, “Explaining Rising Wage Ine-

quality: Explorations with a Dynamic General Equilibrium Model of Labor Earnings with

Heterogeneous Agents,” Review of Economic Dynamics 1(1), pp. 1–58.

Howitt, Peter D., 1997, “Measurement, Obsolescence, and General Purpose Technologies,” Ohio

State University, manuscript (August). Also in 1998, General Purpose Technologies and

Economic Growth, ed. Elhanan Helpman, Chap. 9, Cambridge, Mass.: MIT Press.

Jones, Larry E. and Rodolfo E. Manuelli, 1990, “A Convex Model of Equilibrium Growth: The-

ory and Policy Implications,” Journal of Political Economy, 98(5), pt. 1, pp: 1008–1038.

Jones, Larry E., Rodolfo E. Manuelli and Peter E. Rossi, 1993, “Optimal Taxation in Models of

Endogenous Growth,” Journal of Political Economy, 101(3), pp: 485–517.

Jones, Larry E., Rodolfo E. Manuelli and Ennio Stacchetti, 1999, “Technology (and Policy)

Shocks in Models of Endogenous Growth,” NBER Working Paper W7063 (April).

Jorgenson, Dale W. and Barbara M. Fraumeni, 1989, “The Accumulation of Human and Non-

human Capital, 1948–84,” in The Measurement of Saving, Investment, and Wealth, ed. R.

E. Lipsey and H. S. Tice, pp. 227–282, NBER Studies in Income and Wealth, Vol. 52,

Chicago: University of Chicago Press.

Judd, Kenneth L., 1992, “Projection Methods for Solving Aggregate Growth Models,” Journal

of Economic Theory, 58(2), pp: 410–452.

Kendrick, John W., 1976, The Formation and Stocks of Total Capital, New York: Columbia

University Press for NBER.



43

King, Robert G., Charles I. Plosser and Sergio T. Rebelo, 1988, “Production, Growth and Busi-

ness Cycles: I. The Basic Neoclassical Model,” Journal of Monetary Economics, 21(2/3),

pp: 195–232.

King, Robert G. and Sergio T. Rebelo, 1999, “Resuscitating Real Business Cycles,” Handbook

of Macroeconomics, ed. John B. Taylor and Michael Woodford, Vol. 1B, Chap. 14, Am-

sterdam: Elsevier Science.

Lucas, Robert E., Jr., 1988, “On the Mechanics of Economic Development,” Journal of Mone-

tary Economics, 22(1), pp: 3–42.

Manuelli, Rodolfo E., 2000, “Technological Revolutions and the Labor Market,” University of

Wisconsin, manuscript (February).

Mendoza, Enrique G., 1997, “Terms-of-Trade Uncertainty and Economic Growth,” Journal of

Development Economics, 54(2), pp: 323–356.

Merz, Monika, 1995, “Search in the Labor Market and the Real Business Cycle,” Journal of

Monetary Economics, 36(2), pp: 269–300.

Mincer, Jacob, 1965, “On-the-Job Training: Costs, Returns, and Some Implications,” Journal of

Political Economy, Vol. 70(5), pt. 2, pp: 50–79.

Perli, Roberto and Plutarchos Sakellaris, 1998, “Human Capital Formation and Business Cycle

Persistence,” Journal of Monetary Economics, 42(1), pp: 67–92.

Siu, Henry E., 1998, “Parameterized Value Function Iteration,” Northwestern University, manu-

script (October).



Table 3.1

A Volatility Comparison:
Endogenous Growth Model vs. Exogenous Growth Model vs. U.S. Data

(standard deviations)

Output
σ(γ)

Investment/Output
σ(xk/y)

Hours Worked
nn)(σ

Labor Productivity
σ(γy/n)

Case σ Endog. Exog. Endog Exog. Endog. Exog. Endog. Exog.

1 .90 .0371 .0182 .0163 .0116 .1008 .0124 .0161 .0100

2 1.00 .0286 .0175 .0102 .0106 .0622 .0113 .0130 .0103

3 1.25 .0216 .0165 .0051 .0090 .0301 .0096 .0130 .0108

4 1.50 .0191 .0159 .0033 .0082 .0187 .0086 .0136 .0111

5 1.75 .0178 .0156 .0023 .0077 .0128 .0081 .0140 .0113

6 2.00 .0171 .0153 .0017 .0074 .0093 .0077 .0142 .0114

7 2.50 .0162 .0150 .0010 .0071 .0052 .0073 .0146 .0116

8 3.00 .0157 .0147 .0006 .0070 .0029 .0071 .0148 .0117

U.S. .0214 .0214 .0119 .0119 .0342 .0342 .0124 .0124

Source of U.S. data: Burnside and Eichenbaum (1996)



Table 3.2

An Autocorrelation Comparison:
Endogenous Growth Model vs. Exogenous Growth Model vs. U.S. Data

Output
ρ1(γy)

Consumption
ρ1(γc+xh)

Hours Worked
ρ1(n)

Labor Productivity
ρ1(γy/n)

Case σ Endog. Exog. Endog Exog. Endog. Exog. Endog. Exog.

1 .90 .169 −.019 .247 .316 .949 .744 .972 .201

2 1.00 .145 −.014 .199 .239 .949 .767 .763 .156

3 1.25 .114 −.007 .141 .146 .949 .805 .344 .101

4 1.50 .098 −.004 .115 .104 .949 .830 .211 .074

5 1.75 .089 −.003 .100 .081 .949 .849 .154 .059

6 2.00 .082 −.002 .090 .066 .949 .864 .124 .049

7 2.50 .073 −.001 .077 .049 .949 .888 .093 .037

8 3.00 .067 −.000 .069 .038 .949 .906 .077 .029

U.S. .213 .213 .400 .400 .825 .825 .295 .295

Note: The column labeled ρ
1
(z) corresponds to the first-order autocorrelation coefficient of z.

Source of U.S. data: Burnside and Eichenbaum (1996)



Table 3.3

A Comparison of Cross-Correlations with Output Growth:
Endogenous Growth Model vs. Exogenous Growth Model vs. U.S. Data

(Endogenous σ = 1.25; Exogenous σ = 0.90)

Lag (j)
Variable

Model
or Data −2 −1 0 1 2

Output γy,t+j Endog.
Exog.
Data

.100
−.012
−.081

.114
−.019

.214

1.000
1.000
1.000

.114
−.019

.214

.100
−.012
−.081

Investment/
Output

(xk/y)t+j Endog.
Exog.
Data

.195
−.052
−.315

.209
−.057
−.139

.506

.624

.509

.483

.470

.454

.458

.357

.159

Hours
Worked

nt+j Endog.
Exog.
Data

.196
−.053
−.328

.209
−.057
−.327

.507

.624

.118

.484

.471

.308

.459

.358

.280

Labor
Productivity

γy/n,t+j Endog.
Exog.
Data

.143
−.022

.272

.158
−.029

.384

.962

.961

.482

.245

.158
−.166

.226

.121

.144



Table 4.1

Another Volatility Comparison:
Extended Endogenous Model vs. Exogenous Model vs. U.S. Data

(standard deviations)

Model or
Data

Parameters
σ, η, δh

GDP
σ(γ)

Consumption Share
σ[(c+ηxh)/GDP]

Investment Share
σ[xk /GDP]

Hours Worked
nn /)(σ

Labor Productivity
σ(γy/n)

Extended
Endog. (case 37) 1.273, 1.0, .0445 .0219 .0118 .0118 .0341 .0126

Exog. .90, 1.0, .075 .0182 .0116 .0116 .0124 .0100

U.S. Data .0214 .0119 .0119 .0342 .0124

Table 4.2

Another Autocorrelation Comparison:
Extended Endogenous Model vs. Exogenous Model vs. U.S. Data

Model or
Data

Parameters
σ, η, δh

GDP
ρ1(γy)

Consumption
ρ1(γc+ηxh)

Physical Capital
ρ1(γk)

Hours Worked
ρ1(n)

Labor Productivity
ρ1(γy/n)

Extended
Endog. (case 37) 1.273, 1.0, .0445 .141 .358 .484 .956 .342

Exog. .9, 1.0, .075 −.019 .316 .740 .744 .201

U.S. Data .213 .400 .774 .852 .295
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Figure 1

Responses of Capital Investment
to a Positive Productivity Shock
in the Extended Endogeous Growth Model

(Shock is one S.D. in period 3;
responses are % deviations from balanced growth path.)
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Figure 2

Responses of Measured Categories
to a Positive Productivity Shock
in the Extended Endogeous Growth Model

(Shock is one S.D. in period 3;
responses are % deviations from balanced growth path.)


