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Appendix A.

Computation and Estimation

In this Appendix, we describe the prototype model used in “Business Cycle Accounting”

and the details of the computation of equilibria and estimation of parameters. We also

discuss the sensitivity analysis we did for the benchmark prototype model allowing for

variable capital utilization, investment adjustment costs, and an alternative specification

for the investment wedge. Finally, we include figures, tables, and proofs not shown in the

main text.

A.1. The Benchmark Model

Below we will use the following notation for our model variables:

N : population (Nt = (1 + gn)
t)

c: per-capita consumption

x: per-capita investment

k: per-capita net capital stock

l: per-capita labor input

tr: per-capita government transfers

C: total consumption (Ct = Ntct)

X: total investment

K: total stock of capital

L: total labor input in production

Z: labor-augmenting technical change (Zt = zt(1 + gz)
t)

r: rental rate on capital

w: wage rate
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τv: tax rate on v

v̂: detrended per-capita variable V (i.e., v̂t = Vt/[Nt(1 + gz)
t])

Consider an economy with households, firms, and the government. The representative

household chooses consumption, investment, and labor to solve the following maximization

problem:

max
{ct,xt,lt}

E

∞
∑

t=0

βt U(ct, 1 − lt)Nt (A.1.1)

subj. to (1 + τct)ct + (1 + τxt)xt = (1 − τkt)rtkt + (1 − τlt)wtlt + τktδkt + trt(A.1.2)

Nt+1kt+1 = [(1 − δ)kt + xt]Nt (A.1.3)

ct, xt ≥ 0 in all states, (A.1.4)

taking processes for the rental rate, wage rate, the tax rates, and transfers as given. The

representative firm solves a simple static problem at t:

max
{Kt,Lt}

F (Kt, ZtLt) − rtKt − wtLt.

The government sets rates of taxes and transfers in such a way that their budget constraint

at t, namely,

Gt +Nttrt = τkt(rt − δ)Ntkt + τltwtltNt + τctNtct + τxtNtxt,

is satisfied. In equilibrium, the following conditions must hold:

Nt(ct + xt) +Gt = F (Kt, ZtLt)

Ntkt = Kt

Ntlt = Lt.
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We now derive first-order conditions in this economy. The Lagrangian for the house-

hold optimization problem is given by

L = E
∑

t

β̃t
{

U(ĉt, 1 − lt) +
ζ

3
min(x̂t, 0)3

+ µt

{

(1 − τkt)rtk̂t + (1 − τlt)ŵtlt + τktδk̂t + t̂rt − (1 + τct)ĉt − (1 + τxt)x̂t

}

+ λt

{

(1 − δ)k̂t + x̂t − (1 + gz)(1 + gn)k̂t+1

}

}

,

where β̃ = β(1 + gn)h(1 + gz) and h(·) depends on our choice of utility. If U(c, 1 − l) =

c1−σv(l), then h(1 + gz) = (1 + gz)
1−σ. Notice that the Lagrangian has no term for

the nonnegativity constraint on investment. Instead, we have included a penalty function

indexed by ζ. As ζ approaches infinity, the solution to the problem with a penalty function

and no constraint on investment is the same as the solution to the original problem with

ζ = 0 and xt ≥ 0 imposed.

The first-order conditions for the problem are

U2(ĉt, 1 − lt)

U1(ĉt, 1 − lt)
=

1 − τlt
1 + τct

ŵt

1 + τxt
1 + τct

U1(ĉt, 1 − lt) − ζmin(x̂t, 0)2

= β̂Et

[

U1(ĉt+1, 1 − lt+1)

1 + τct+1

{

(1 − τkt+1)rt+1 + δτkt+1 + (1 − δ)(1 + τxt+1)
}

− (1 − δ)ζmin(x̂t+1, 0)2
]

, (A.1.5)

where β̂ = βh(1 + gz)/(1 + gz). If U(c, l) = c1−σv(l), then β̂ = β(1 + gz)
−σ.

In addition, we have first-order conditions for the firm’s static problem. These are

rt = F1(k̂t, ztlt)

ŵt = F2(k̂t, ztlt)zt.
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Finally, we have a resource constraint given by

ĉt + ĝt + x̂t = F (k̂t, ztlt)

once we detrend variables.

A.2. Algorithms for Computing Equilibria

Below we show how to compute the equilibrium using a nonlinear method and a log-linear

method. We need to use the nonlinear methods to compute equilibrium paths during the

1930s because the declines in aggregate variables are so large. We use the log-linear method

when we derive estimates of the process for the wedges and for computing equilibria in

the postwar period. The log-linear method is convenient with our maximum likelihood

estimation (MLE) procedure because a nonlinear method with a very large state space

is computationally demanding when computing likelihood estimates.1 With estimates of

our stochastic process we determine expectations. These expectations are inputs to our

nonlinear model and used when we do our accounting exercise.

From here on, we make the following functional form assumptions and auxiliary

choices:

F (k, l) = kθl1−θ

U(c, 1 − l) = (c(1 − l)ψ)1−σ/(1 − σ)

st+1 = P0 + Pst + Qεs,t+1, εs ∼ N(0, I) (which is represented either as a Markov

chain using the method of Tauchen 1986 or as a continuous process).

log(zt) = log z(st)

log ĝt = log ĝ(st)

τlt = τl(st)

1 We experimented with very different expectations and found that they had only a very small impact
on our results and, therefore, did not affect our conclusions.
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τxt = τx(st)

τkt = τk(st)

τct = τc(st)

A.2.1. Nonlinear Computation

For our nonlinear solution method, we assume that the vector autoregressive process for

the state can be well approximated by a Markov chain. Let s be the index for the state.

Then at time t, if the state is s, ĝt = ĝ(s), τlt = τl(s), τxt = τx(s), and zt = z(s). The

transition matrix for s is given by Π with π(s, s′) being the probability of going from state

s to state s′.

The state of the economy in any period can be summarized by two scalars: k̂ and s.

Our Fortran code computes the decision rule ĉ(k̂, s). All other decisions can be determined

via static first-order conditions once we know ĉ(k̂, s). In particular, l(k̂, s) and x̂(k̂, s) can

be determined once we know consumption.

To compute ĉ(k̂, s), we apply the finite-element method using the dynamic first-order

condition as the residual and Galerkin bases. More specifically, we assume that the con-

sumption function is well approximated by

ĉ(k̂, s) =

nnodes
∑

j=1

αsjΨj(k),

where the Ψj is a function that takes on nonzero values in two cells (or “elements”) of a

grid over k̂ around grid point (or “node”) j. The algorithm is to find the coefficients αsj ,

j = 1, . . .nnodes, s = 1, . . . S that satisfy the following equations:

∫

R(k̂, s;α)Ψj(k̂) dk̂ = 0
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for all s and j where

R(k̂, s;α) =
1 + τx(s)

1 + τc(s)
U1(ĉ, 1 − l)

− ζmin(x̂, 0)2 + β̂(1 − δ)ζ
∑

s′

πs,s′ min(x̂′, 0)2

− β̂
∑

s′

πs,s′
U1(ĉ

′, 1 − l′)

1 + τc(s′)
{

(1 − τk(s
′))F1(k̂

′, z(s′)l′) + τk(s
′)δ + (1 − δ)(1 + τx(s))

}

.

The investments x and x′ satisfy resource constraints

x̂ = F (k̂, z(s)l) −
∑

j

αsjΨj(k̂) − ĝ(s)

x̂′ = F (k̂′, z(s′)l′) −
∑

j

αsjΨj(k̂
′) − ĝ(s′).

The next period capital stock is given by

k̂′ = ((1 − δ)k̂ + x̂)/[(1 + gn)(1 + gz)].

The labor inputs l and l′ solve

U2(ĉ, 1 − l)

U1(ĉ, 1 − l)
=

1 − τl(s)

1 + τc(s)
F2(k̂, z(s)l)z(s)

U2(ĉ
′, 1 − l′)

U1(ĉ′, 1 − l′)
=

1 − τl(s
′)

1 + τc(s′)
F2(k̂

′, z(s′)l′)z(s′).

A.2.2. Log-Linear Computation

We now describe the steps taken for the log-linear solution method (with an interior solu-

tion and ζ = 0). Because we are going to apply maximum likelihood estimation, we will

derive the solution analytically.
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We start by writing the system of equations in terms of k and s. This is done by

replacing r, w, ĉ, and x̂ in the first-order conditions with functions of the states. Thus we

start with

ĉt + ĝt + (1 + gz)(1 + gn)k̂t+1 − (1 − δ)k̂t = ŷt = k̂θt (ztlt)
1−θ (A.2.1)

ψĉt
1 − lt

= (1 − τlt)(1 − θ)k̂θt l
−θ
t z1−θ

t (A.2.2)

(1 + τxt)ĉ
−σ
t (1 − lt)

ψ(1−σ)

= β̂Etĉ
−σ
t+1(1 − lt+1)

ψ(1−σ)[θk̂θ−1
t+1 (zt+1lt+1)

1−θ + (1 − δ)(1 + τxt+1)], (A.2.3)

which can be reduced to the following:

ψ[k̂θt (ztlt)
1−θ − (1 + gn)(1 + gz)k̂t+1 + (1 − δ)k̂t − ĝt]

= (1 − τlt)(1 − θ)k̂θt l
−θ
t z1−θ

t (1 − lt)

(1 + τxt)[k̂
θ
t (ztlt)

1−θ − (1 + gn)(1 + gz)k̂t+1 + (1 − δ)k̂t − ĝt]
−σ(1 − lt)

ψ(1−σ)

= β̂Et[k̂
θ
t+1(zt+1lt+1)

1−θ − (1 + gn)(1 + gz)k̂t+2

+ (1 − δ)k̂t+1 − ĝt+1]
−σ(1 − lt+1)

ψ(1−σ)

[θk̂θ−1
t+1 (zt+1lt+1)

1−θ + (1 − δ)(1 + τxt+1)].

Next, we compute the steady state of the system for constant values for z, the taxes,

and government spending:

k̂/l =

(

(1 + τx)(1 − β̂(1 − δ))

β̂θz1−θ

)1/(θ−1)

ĉ =
[

(k̂/l)θ−1z1−θ − (1 + gz)(1 + gn) + 1 − δ
]

k̂ − ĝ = ξ1k̂ − ĝ

ĉ =
[

(1 − τl)(1 − θ)(k̂/l)θz1−θ/ψ
]

(1 − 1/(k̂/l) k̂) = ξ2 − ξ3k̂,

where the last two equations imply k̂ = (ξ2 + ĝ)/(ξ1 + ξ3), ĉ = ξ1k̂ − ĝ, l = (1/(k̂/l))k̂.

The log-linearization is done around these steady-state values. Detrended consump-
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tion is given approximately by

ĉt ≈ ĉ log ĉt

≈ k̂θ(zl)1−θ[θ log k̂t + (1 − θ)(log zt + log lt)]

− (1 + gz)(1 + gn)k̂ log k̂t+1 + (1 − δ)k̂ log k̂t − ĝ log ĝt.

The labor input is then derived from the static first-order condition (A.2.2):

0 ≈ ψ
{

k̂θ(zl)1−θ[θ log k̂t + (1 − θ)(log zt + log lt)]

− (1 + gz)(1 + gn)k̂ log k̂t+1 + (1 − δ)k̂ log k̂t − ĝ log ĝt
}

+ (1 − θ)(1 − τl)k̂
θl−θz1−θ(1 − l)

{

1/(1 − τl) τlt

− θ log k̂t + θ log lt − (1 − θ) log zt + l/(1 − l) log lt
}

,

which we write succinctly as

log lt = φlk log k̂t + φlz log zt + φllτlt + φlg log ĝt + φlk′ log k̂t+1. (A.2.4)

Using this equation for log l, we use the other static first-order conditions to write log ŷ,

log x̂, and log ĉ as follows:

log ŷt = φyk log k̂t + φyz log zt + φylτlt + φyg log ĝt + φyk′ log k̂t+1

= (θ + (1 − θ)φlk) log k̂t + (1 − θ)(1 + φlz) log zt

+ (1 − θ)[φllτlt + φlk′ log k̂t+1] (A.2.5)

log x̂t = (1 + gz)(1 + gn)k̂/x̂ log k̂t+1 − (1 − δ)k̂/x̂ log k̂t (A.2.6)

log ĉt = φck log k̂t + φcz log zt + φclτlt + φcg log ĝt + φck′ log k̂t+1

= [ŷ log yt − x̂ logxt − ĝ log ĝt]/ĉ, (A.2.7)

where the φ’s are known functions of the parameters.

Capital is derived from the dynamic first-order condition

0 ≈ (1 + τx)ĉ
−σ(1 − l)ψ(1−σ) {−ψ(1 − σ)l/(1− l) log lt − σ log ĉt}

8



+ ĉ−σ(1 − l)ψ(1−σ)τxt

− β̂Et
{[

θk̂θ−1(zl)1−θ + (1 − δ)(1 + τx)
]

·
[

ĉ−σ(1 − l)ψ(1−σ) {−ψ(1 − σ)l/(1− l) log lt+1 − σ log ĉt+1}
]

+ ĉ−σ(1 − l)ψ(1−σ)
[

θk̂θ−1(zl)1−θ(1 − θ)

· (log lt+1 + log zt+1 − log k̂t+1) + (1 − δ)τxt+1

]}

, (A.2.8)

which simplifies to

0 ≈ (1 + τx) {−ψ(1 − σ)l/(1 − l) log lt − σ log ĉt} + τxt

− Et
{

(1 + τx) {−ψ(1 − σ)l/(1 − l) log lt+1 − σ log ĉt+1}

+ β̂
[

r(1 − θ)(log lt+1 + log zt+1 − log k̂t+1) + (1 − δ)τxt+1

]}

,

where r = θŷ/k̂.

We guess the following form of the solution for capital:

log(k̂t+1) = γ0 + γk log k̂t + γz log zt + γlτlt + γxτxt + γg log ĝt (A.2.9)

and set γ’s so that the dynamic residual (A.2.8) is exactly 0. We can do this by first

ignoring shock terms and find γk that satisfies a particular quadratic equation (that does

not depend on any other γ coefficient). Then, we can find γz, γl, γx, and γg by solving

a linear system of equations with γk assumed known. Finally, we use the steady-state

equations to determine γ0.

We start by deriving γk. To do this, we need to write out the coefficients on k̂t+2, k̂t+1,

and k̂t in the dynamic first-order condition (A.2.8) making use of the φ’s from the static

first-order conditions (A.2.4)–(A.2.7). For now, we can ignore the expectations operator.
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We get the following:

0 ≈ −(1 + τx)
{

−ψ(1 − σ)l/(1 − l)[φlk log k̂t + φlk′ log k̂t+1]

− σ[φck log k̂t + φck′ log k̂t+1]
}

+Et(1 + τx)
{

−ψ(1 − σ)l/(1− l)[φlk log k̂t+1 + φlk′ log k̂t+2]

− σ[φck log k̂t+1 + φck′ log k̂t+2]
}

+ β̂Et
[

r(1 − θ)((φlk − 1) log k̂t+1 + φlk′ k̂t+2)
]

,

which simplifies to

0 =[β̂r(1 − θ)φlk′ − (1 + τx)ψ(1 − σ)l/(1 − l)φlk′ − (1 + τx)σφck′ ]k̂t+2

+[β̂r(1 − θ)(φlk − 1) − (1 + τx)ψ(1 − σ)l/(1 − l)φlk − (1 + τx)σφck

+ (1 + τx)ψ(1 − σ)l/(1− l)φlk′ + (1 + τx)σφck′ ]k̂t+1

−[−(1 + τx)ψ(1− σ)l/(1 − l)φlk − (1 + τx)σφck]k̂t

+ all other terms (A.2.10)

or, more succinctly, rewrite (A.2.10) as (a+ bL+ cL2)k̂t+2 = other terms, where γk is the

root of the quadratic inside the unit circle. Note that γk does not depend on the other

unknown γ’s.

Given γk, we can solve a linear system for the other γ’s. At this point, we do not

ignore the expectations operator:

0 ≈ (1 + τx)
{

−ψ(1 − σ)l/(1 − l)[(φlz + φlk′γz) log zt

+ (φll + φlk′γl)τlt

+ φlk′γxτxt + (φlg + φlk′γg) log ĝt

− σ[(φcz + φck′γz) log zt + (φcl + φck′γl)τlt

+ φck′γxτxt + (φcg + φck′γl) log ĝt]
}

+ τxt
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− Et(1 + τx)
{

−ψ(1 − σ)l/(1 − l)[(φlk + φlk′γk)(γz log zt + γlτlt + γxτxt + γg log ĝt)

+ (φlz + φlk′γz) log zt+1

+ (φll + φlk′γl)τlt+1

+ φlk′γxτxt+1

+ (φlg + φlk′γg) log ĝt+1]

− σ[(φck + φck′γk)(γz log zt + γlτlt + γxτxt + γg log ĝt)

+ (φcz + φck′γz) log zt+1

+ (φcl + φck′γl)τlt+1

+ φck′γxτxt+1

+ (φcg + φck′γg) log ĝt+1]
}

− β̂r(1 − θ)Et
[

(φlk + φlk′γk − 1)(γz log zt + γlτlt + γxτxt + γg log ĝt)

+ (φlz + φlk′γz + 1) log zt+1

+ (φll + φlk′γl)τlt+1

+ φlk′γxτxt+1

+ (φlg + φlk′γg) log ĝt+1

]

− β̂(1 − δ)Etτxt+1,

which reduces to

0 = (κ0 + κ1 · γs)
′[log zt, τlt, τxt, log ĝt]

′ + (ζ0 + ζ1 · γs)
′Et[log zt+1, τlt+1, τxt+1, log ĝt+1]

′

= (κ0 + κ1 · γs)
′[log zt, τlt, τxt, log ĝt]

′ + (ζ0 + ζ1 · γs)
′P [log zt, τlt, τxt, log ĝt]

′, (A.2.11)

where x · y denotes element-by-element multiplication of vectors x and y; κ0, κ1, ζ0, and

ζ1 are vectors of length 4 with elements equal to functions of the parameters and γk; and

γs = [γz, γl, γx, γg]
′. The γ’s that set this residual to zero satisfy a four-dimensional linear

system,

(κ0 + κ1 · γs)
′ + (ζ0 + ζ1 · γs)

′a = 0.
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A.2.2.1. Checking a Test Case

Assume gn = gz = ψ = 0, σ = δ = 1, ĝt = τlt = τxt = 0, and

log zt+1 = ρ0 + ρ log zt + εz,t+1

so that

P =











ρz 0 0 0 ρ0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1











, Q =











σz 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0











.

The solution in this case:

log k̂t+1 = log(βθ) + θ log k̂t + (1 − θ) log zt.

Using the formulas above, we have the following steady state:

k̂ = (βθ)1/(1−θ)z

ĉ = (1 − βθ)/(βθ)k̂

ŷ = z1−θ k̂θ

and γk from quadratic

0 = − φck′ k̂t+2 − [β̂r(1 − θ) + φck − φck′ ]k̂t+1 + φckk̂t + all other terms

=βθ/(1 − βθ)k̂t+2 − [(1 − θ) + θ/(1 − βθ) − βθ/(1 − βθ)]k̂t+1 + [θ/(1 − βθ)]k̂t

=βθk̂t+2 − [(1 − θ)(1 − βθ) + θ − βθ]k̂t+1 + θk̂t,

which implies γk = θ. The other coefficients satisfy

0 ≈ −(φcz + φck′γz) log zt − φck′γlτlt − φck′γxτxt − φck′γg log ĝt + τxt

+ (φck + φck′θ)(γz log zt + γlτlt + γxτxt + γg log ĝt)

+ (φcz + φck′γz)Et log zt+1

+ (1 − θ)
[

γz log zt + γlτlt + γxτxt + γg log ĝt − Et log zt+1

]

and, therefore, γz = 1 − θ, γl = γg = 0, γx = −1 + βθ.
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A.2.2.2. Computation for the General Log-Linear Case

Assume that the solution is

log k̂t+1 = a log k̂t + b [ log zt τlt τxt log ĝt ]
′
+ constant,

where a is a scalar and b is 1 × 4. Assume that the residual from the dynamic first-order

condition is

f(Et log k̂t+2, log k̂t+1, log k̂t, log zt+1, log zt, τlt+1, τlt, τxt+1, τxt, log ĝt+1, log ĝt)

≈ a0Et log k̂t+2 + a1 log k̂t+1 + a2 log k̂t + b0Etst+1 + b1st.

Then the general solution algorithm is to find a that solves the quadratic equation

a0a
2 + a1a+ a2 = 0

and b that solves the linear equations

a0ab+ a0bP + a1b+ b0P + b1 = 01×4.

Note that this implies

b = −[(a0a+ a1)I4×4 + a0P
′]−1(b0P + b1I4×4)

′.

A.2.3. Allowing for Adjustment Costs

To allow for adjustment costs, we solve the household maximization problem for the bench-

mark model, namely (A.1.1) subject to (A.1.2), (A.1.4), and

Nt+1kt+1 = [(1 − δ)kt + xt − ϕ(xt/kt)kt]Nt (A.2.12)

instead of (A.1.3), where

ϕ(x/k) =
a

2

(x

k
− b
)2

.
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As a sensitivity check we set b equal to the investment-capital trend rate (i.e., b = (1 +

gz)(1 + gn) − 1 + δ) and increase a from 0. To do this, we need to modify the dynamic

first-order condition. We replace (A.2.8) by

[

1 + τxt
1 + τct

U1(ĉt, 1 − lt) − ζmin(x̂t, 0)2
]

(

1

1 − ϕ′(x̂t/k̂t)

)

= β̂Et

{

U1(ĉt+1, 1 − lt+1)

1 + τct+1

{

(1 − τkt+1)rt+1 + δτkt+1

}

+

[

1 + τxt+1

1 + τct+1
U1(ĉt+1, 1 − lt+1) − ζmin(x̂t+1, 0)2

]

·

(

1

1 − ϕ′(x̂t+1/k̂t+1)

)

·

{

1 − δ − ϕ

(

x̂t+1

k̂t+1

)

+ ϕ′

(

x̂t+1

k̂t+1

)

x̂t+1

k̂t+1

}

}

. (A.2.13)

In summary, allowing for adjustment costs involves two changes in the system of

equations: replacing (A.1.3) and (A.2.8) with (A.2.12) and (A.2.13).

For the benchmark model with adjustment costs, we can construct

τ̃xt =
1 + τxt

1 − ϕ′(x̂t/k̂t)
− 1

using series on τxt, x̂t, and k̂t from the benchmark model without adjustment costs. The

effective investment wedge corresponding to this rate (1/(1 + τ̃xt)), when fed into the

benchmark model with adjustment costs, yields almost exactly the same results for equi-

librium output, hours, and investment. (There is a slight difference because the effective

depreciation rates are different for the two models.)

To do log-linear computation (as in the baseline economy) in the case with adjustment

costs and τct = τkt = 0, we start with

ĉt + ĝt + (1 + gz)(1 + gn)k̂t+1 − (1 − δ)k̂t + ϕ(x̂t/k̂t)k̂t = ŷt = k̂θt (ztlt)
1−θ(A.2.14)
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ψĉt
1 − lt

= (1 − τlt)(1 − θ)k̂θt l
−θ
t z1−θ

t (A.2.15)

(1 + τxt)ĉ
−σ
t (1 − lt)

ψ(1−σ)/
(

1 − ϕ′(x̂t/k̂t)
)

= β̂Etĉ
−σ
t+1(1 − lt+1)

ψ(1−σ)
[

θk̂θ−1
t+1 (zt+1lt+1)

1−θ +
(

1 − δ

− ϕ(x̂t+1/k̂t+1) + ϕ′(x̂t+1/k̂t+1)x̂t+1/k̂t+1

)

(1 + τxt+1)/
(

1 − ϕ′(x̂t+1/k̂t+1)
)]

. (A.2.16)

Assuming ϕ(x̂/k̂) = ϕ′(x̂/k̂) = 0, the log-linearization of these equations yields the same

results as in the benchmark with the exception of the intertemporal condition:

0 ≈ (1 + τx)
{

−ψ(1 − σ)l/(1− l) log lt − σ log ĉt + η(log x̂t − log k̂t)
}

+ τxt

− Et

{

(1 + τx) {−ψ(1 − σ)l/(1− l) log lt+1 − σ log ĉt+1}

+ β̂
[

r(1 − θ)(log lt+1 + log zt+1 − log k̂t+1)

+ (1 + τx)(1 + gz)(1 + gn)η(log x̂t+1 − log k̂t+1)

+ (1 − δ)τxt+1

]

}

, (A.2.17)

where r = θŷ/k̂ and η = ϕ′′(x̂/k̂)(x̂/k̂) = ab.

As before, we guess a solution of the form (A.2.9) and set γ’s so that the dynamic

residual (A.2.17) is exactly 0. We start by deriving γk. To do this, we need to write out the

coefficients on k̂t+2, k̂t+1, and k̂t in the dynamic first-order condition (A.2.17) making use

of the φ’s from the static first-order conditions. For now, we can ignore the expectations

operator. We get the following:

0 =
[

β̂r(1 − θ)φlk′ − (1 + τx){ψ(1 − σ)l/(1− l)φlk′ + σφck′ − β̂(1 + gn)(1 + gz)ηφxk′}
]

k̂t+2

+
[

β̂r(1 − θ)(φlk − 1) − (1 + τx){ψ(1− σ)l/(1− l)(φlk − φlk′) + σ(φck − φck′)

− β̂(1 + gn)(1 + gz)η(φxk − 1) + ηφxk′}
]

k̂t+1

+
[

(1 + τx){ψ(1 − σ)l/(1 − l)φlk + σφck − η(φxk − 1)}
]

k̂t

+ all other terms (A.2.18)
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or, more succinctly, rewrite (A.2.18) as (a+ bL+ cL2)k̂t+2 = other terms, where γk is the

root of the quadratic inside the unit circle. Note that γk does not depend on the other

unknown γ’s.

Given γk, we can solve a linear system for the other γ’s. At this point, we do not

ignore the expectations operator:

0 ≈ (1 + τx)
{

−ψ(1 − σ)l/(1− l)[(φlz + φlk′γz) log zt + (φll + φlk′γl)τlt

+ φlk′γxτxt + (φlg + φlk′γg) log ĝt]

− σ[(φcz + φck′γz) log zt + (φcl + φck′γl)τlt

+ φck′γxτxt + (φcg + φck′γl) log ĝt]

+ ηφxk′ [γz log zt + γlτlt + γxτxt + γg log ĝt]
}

+ τxt

− Et(1 + τx)
{

−ψ(1 − σ)l/(1 − l)[(φlk + φlk′γk)(γz log zt + γlτlt + γxτxt + γg log ĝt)

+ (φlz + φlk′γz) log zt+1

+ (φll + φlk′γl)τlt+1

+ φlk′γxτxt+1

+ (φlg + φlk′γg) log ĝt+1]

− σ[(φck + φck′γk)(γz log zt + γlτlt + γxτxt + γg log ĝt)

+ (φcz + φck′γz) log zt+1

+ (φcl + φck′γl)τlt+1

+ φck′γxτxt+1

+ (φcg + φck′γg) log ĝt+1]
}
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− β̂r(1 − θ)Et
[

(φlk + φlk′γk − 1)(γz log zt + γlτlt + γxτxt + γg log ĝt)

+ (φlz + φlk′γz + 1) log zt+1

+ (φll + φlk′γl)τlt+1

+ φlk′γxτxt+1

+ (φlg + φlk′γg) log ĝt+1

]

− β̂(1 + τx)(1 + gn)(1 + gz)ηEt
[

(φxk + φxk′γk − 1)(γz log zt + γlτlt + γxτxt + γg log ĝt)

+ φxk′(γz log zt+1 + γlτlt+1 + γxτxt+1 + γg log ĝt+1)

− β̂(1 − δ)Etτxt+1,

which reduces to a system like (A.2.11).

A.2.4. An Alternative Investment Wedge

In a comment on our paper, Christiano and Davis (2006) note that our findings may be

sensitive to the particular choice of the intertemporal wedge. In theory the choice of the

intertemporal wedge should not matter in the sense that it just implies a (slightly) different

map between the detailed economy and the prototype economy. However, in practice,

stochastic processes for the wedges are estimated, and therefore we want to make sure

that our substantive findings are not affected by the choice. Here we describe Christiano

and Davis’ (2006) alternative investment wedge, and later we demonstrate that our findings

are not sensitive to this alternative.2

Christiano and Davis (2006) assume that the intertemporal wedge is τk and that the

dynamic first-order condition (with adjustment costs) is given by

U1(ĉt, 1 − lt)/(1 − ϕ′(x̂t/k̂t))

= β̂Et

{

U1(ĉt+1, 1 − lt+1)(1 − τkt+1)
[

rt+1 +
1

1 − ϕ′(x̂t+1/k̂t+1)

2 We also explain later why the methodology used by Christiano and Davis (2006)—which is not the
methodology used in the final version of our paper—can lead to a different conclusion.
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·

{

1 − δ − ϕ

(

x̂t+1

k̂t+1

)

+ ϕ′

(

x̂t+1

k̂t+1

)

x̂t+1

k̂t+1

}

]

}

.

Here, τk resembles a tax on the gross return to capital. In Appendix C, we compare our

predictions based on the τk wedge with those based on the τx wedge.3

A.3. MLE Estimation

We now describe the general method we use to estimate the processes governing the four

exogenous variables in st with the data described above.

A.3.1. State-Space Form

Xt+1 = AXt +Bεt+1

Yt = CXt + ωt

ωt = Dωt−1 + ηt,

where Xt = [log k̂t, log zt, τlt, τxt, log ĝt, 1]′, Yt = [log ŷt, log x̂t, log lt, log ĝt], and

A =





γk γz γl γx γg γ0

04×1 P P0

0 01×4 1





B =





01×4

Q
0





C =







φyk φyz φyl 0 φyg φy0
φxk 0 0 0 0 φx0
φlk φlz φll 0 φlg φl0
0 0 0 0 1 0






+







φyk′
φxk′

φlk′
0






[ γk γz γl γx γg 0 ]

and elements of D are the parameters governing serial correlation of the measurement

error. Assume that Eηtη
′
t = R, Eεtη

′
s = 0 for all periods t and s. Define Ȳt ≡

3 We report results only for the postwar period applying a log-linear approximation method, so we
have dropped the penalty functions needed for our nonlinear solution method.
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Yt+1 −DYt. Then we can rewrite the system as

Xt+1 = AXt +Bεt+1

Ȳt = C̄Xt + CBεt+1 + ηt+1.

A.3.2. Log-Likelihood Function

L(Θ) =
T−1
∑

t=0

{

log |Ωt| + trace(Ω−1
t utu

′
t) − log |∂f(Zt,Θ)/∂Zt|

}

, (A.3.1)

where the parameters to be estimated are stacked in vector Θ, the innovation vector is ut,

and its covariance is Ωt. The last term in (A.3.1) is nonzero if the elements of Y are not

the raw series but depend on the raw series Z plus the parameter vector. For example, if

we estimate gz and use per-capita values as our raw data, then Z is per-capita data and

Y is detrended per-capita data.

The innovation vector ut and its covariance Ωt are defined as follows:

ut = Ȳt − Ê[Ȳt|Ȳt−1, Ȳt−2, . . . , Ȳ0, X̂0]

= Yt+1 − Ê[Yt+1|Yt, Yt−1, . . . , Y0, X̂0]

= Yt+1 −DYt − C̄X̂t

Ωt = Eutu
′
t = C̄ΣtC̄

′ + R+ CBB′C ′,

which in turn depends on the predicted state X̂t:

X̂t = Ê[Xt|Yt, Yt, . . . , Y0, X̂0].

The predicted state evolves according to

X̂t+1 = AX̂t +Ktut,

where Kt is the Kalman gain,

Kt = (BB′C ′ + AΣtC̄
′)Ω−1

t

Σt+1 = AΣtA
′ + BB′ − (BB′C ′ + AΣtC̄

′)Ω−1
t (C̄ΣtA

′ + CBB′)
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with state covariance Σt.

For the results in the paper, we fixed parameters of preferences, production, and

growth and estimated the processes for the wedges. The parameters that were fixed were

ψ = 2.24, σ = 1, β = 0.9722, θ = 0.35, δ = 0.0464, gn = 1.5%, and gz = 1.6%. We also

set the measurement errors equal to zero (D = R = 04×4) in all periods and all numerical

experiments.4 The parameters that were estimated were elements of P0, P , and Q.

The parameter choices were based on time series during the pre-World War II period.

There have been some modest changes in growth rates, depreciation rates, and capital

shares in the post-World War II period. Since we separately estimate the means of the

wedges in the pre- and postwar periods, our main results are not affected. One advantage

of keeping the utility and technology parameters fixed is that we can back out wedges for

the entire century. (These are shown later in Figures A1 and A2.)

A.4. Decomposing Macro Aggregates

Here, we describe the details of our implementing our accounting procedure for the Great

Depression and postwar periods. They differ slightly because the equilibria are computed

differently in the two periods: we use a nonlinear computational routine for the Great

Depression and a log-linear computational routine for the postwar period.

A.4.1. Great Depression Period

Because shocks are large during the Great Depression period, we need to compute equilibria

nonlinearly. We use a large (i.e., 459 state) Markov chain to approximate the process for

the shocks to avoid having to compute a five-dimensional continuous-state model.

Specifically, using estimates for the matrices underlying the stochastic process on

4 This choice makes no difference for our results.
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wedges, namely P0, P , and Q, we construct a Markov transition matrix using a method-

ology that is similar to—but not the same as—Tauchen (1986). The difference is that

Tauchen rewrites the problem to have a diagonal covariance matrix on the disturbances

and we assume a dense covariance matrix. We do this because it allows us more flexibility

in choosing the grid over our state variables.

Given a Markov chain, we want to find the realization of the wedges, one consistent

with the estimated process, that implies exact agreement between model simulations and

observations. For log zt, we use the specified production function above and observations

on output, labor input, and the capital stock (accumulated via perpetual inventory with

the observed investment series). For τlt, we use the static first-order condition (A.2.2)

along with series for capital, labor, consumption, and zt. For log gt, we have a direct

measure.

We cannot infer a realization for τxt directly from static first-order conditions. Instead,

we find the realization of τxt that gives an exact match of the model simulation and

U.S. observations over a specified period (e.g., the Great Depression or the 1982 recession).

We start by making a guess for the series τxt for the period in which we are interested. For

example, when we examine the period of the Great Depression, we make a guess about

the realization of τxt from 1929 through 1939. A good starting point for this guess can be

derived from the log-linear decision rule on investment, which is a function of the capital

stock and the other wedges. This amounts to solving one equation in one unknown (τx).

With a guess for the realization of τxt and realizations for all of the other wedges, we

simulate the model as follows. We take our Markov chain for the wedges (found using the

variation on Tauchen’s method) and append it by N states, where N is the number of

years in the period we want to study. Suppose that the original chain had M states. The

appended chain has M + N . In the case of the Great Depression, for example, we have

N = 11, which is the length of the period 1929–1939. The first of the appended states

21



corresponds to the first year; the first year is 1929 in the case of the Great Depression. We

have values for z1929, τl1929, ĝ1929. We have a guess for τx1929. For each of the N additional

states, we use our version of Tauchen’s method to compute the transition problems from

this state to the M original states. Because we want a sequence for τxt during the Great

Depression that generates an exact match between data and model for all wedges on, we

have to iterate (reguessing the sequence and updating the Markov chain transition) until

there is an exact match. The derived wedges are shown in Figure 1 of the paper.

Once we have this realization for all of the wedges—one that can exactly generate the

data—we turn off one or more of the wedges by setting them at their initial levels (say,

1929 in the case of the Depression). For example, to see how important log z is in the

Great Depression, we can set τx, τl, and ĝ (in all states) equal to their 1929 levels. We

hold fixed the underlying stochastic process. This means that we hold the Markov chain

transition probabilities fixed for each new simulation. The results of the one-wedge-alone

or one-wedge-off experiments are shown in Figures 2–4.

A.4.2. Postwar Period

In the postwar period, there is no need to approximate the stochastic process for the

wedges using a Markov Chain because the shocks are much smaller. In this case, a log-

linear approximation of the five-dimensional, continuous state model works well.

As in the Great Depression, we fix the stochastic process st when considering the

marginal effect of one wedge. To accomplish that, we set each of the wedges equal to the

sum of a constant times an indicator function plus the corresponding state in s times one

minus the indicator function; for example,

τlt = χτ̄l + (1 − χ)s2t,

where s2t is the second element of the state vector st and χ is equal to 0 or 1 depending
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on whether variations in the wedge τlt are being analyzed or not, respectively.5

A.5. A Model with Capacity Utilization

In the cases where we allow for capacity utilization (Figures 9–12 in the paper), we use

the following functional form for technology:

F (k, zl) = kθzl

and redo the steps outlined above.

In the log-linearized solution, we have the following new first-order conditions:

ĉt + ĝt + (1 + gn)(1 + gz)k̂t+1 − (1 − δ)k̂t = k̂θt ztlt

ψĉt = (1 − τlt)k̂
θ
t zt(1 − lt)

(1 + τxt)ĉ
−σ
t (1 − lt)

ψ(1−σ)

= β̂Etĉ
−σ
t+1(1 − lt+1)

ψ(1−σ)

[θk̂θ−1
t+1 zt+1lt+1 + (1 − δ)(1 + τxt+1)].

The new steady state in this case is k̂ and l that solve

ψ[k̂θzl − (1 + gn)(1 + gz)k̂ + (1 − δ)k̂ − ĝ] = (1 − τl)k̂
θz(1 − l)

(1 + τx) = β̂[θk̂θ−1zl + (1 − δ)(1 + τx)].

Solving this system of equations is like solving a problem of the form ξ1k̂ − ξ2 = ξ3k̂
θ,

5 In earlier versions of the paper we set τlt = s2t and set it equal to a constant when its effects were
not being analyzed. The quantitative impact was very small for our prototype model with a τx

investment wedge. They are not small for Christiano and Davis (2006), who prefer to use a τk wedge
and to set adjustment costs very high. In the published version of our paper, we described our current
procedure which is consistent with our propositions that separate the direct effects of fluctuations in
the wedges with indirect effects due to forecasting fluctuations in other wedges. Later, we show that
if Christiano and Davis (2006) were to apply the procedure that is consistent with our propositions,
their predictions would line up almost exactly with ours.
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where

ξ1 = (ψ + 1 − τl)ξ − ψ[(1 + gn)(1 + gz) − 1 + δ]

ξ2 = ψĝ

ξ3 = (1 − τl)z

ξ = (1 + τx)[1 − β̂(1 − δ)]/(β̂θ).

We compute k̂ with a simple Newton algorithm starting with k̂ = (ξ3/ξ1)
1/(1−θ), which is

the exact solution if ĝ = 0. The solution for k̂ in the ĝ > 0 case will be higher. Once we

have k̂, we have l = ξk̂1−θ/z.

The new log-linearized first-order conditions (ignoring constants) imply the following

for detrended consumption:

ĉt ≈ ĉ log ĉt

≈ k̂θzl[θ log k̂t + log zt + log lt]

− (1 + gz)(1 + gn)k̂ log k̂t+1 + (1 − δ)k̂ log k̂t − ĝ log ĝt.

As before, the labor input is derived from the static first-order condition (A.2.2)

0 ≈ ψ
{

k̂θzl[θ log k̂t + log zt + log lt]

− (1 + gz)(1 + gn)k̂ log k̂t+1 + (1 − δ)k̂ log k̂t − ĝ log ĝt
}

+ (1 − τl)k̂
θz(1 − l)

{

1/(1 − τl) τlt

− θ log k̂t − log zt + l/(1 − l) log lt
}

,

which we write succinctly as

log lt = φlk log k̂t + φlz log zt + φllτlt + φlg log ĝt + φlk′ log k̂t+1.

Using this equation for log l, we use the other static first-order conditions to derive output,
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investment, and consumption as follows:

log ŷt = φyk log k̂t + φyz log zt + φylτlt + φyk′ log k̂t+1

= (θ + φlk) log k̂t + (1 + φlz) log zt

+ φllτlt + φlk′ log k̂t+1

log x̂t = (1 + gz)(1 + gn)k̂/x̂ log k̂t+1 − (1 − δ)k̂/x̂ log k̂t

log ĉt = φck log k̂t + φcz log zt + φclτlt + φcg log ĝt + φck′ log k̂t+1

= [ŷ log yt − x̂ logxt − ĝ log ĝt]/ĉ.

The new dynamic first-order condition implies the following for capital:

0 ≈ (1 + τx)ĉ
−σ(1 − l)ψ(1−σ) {−ψ(1 − σ)l/(1− l) log lt − σ log ĉt}

+ ĉ−σ(1 − l)ψ(1−σ)τxt

− β̂Et
{[

θk̂θ−1zl + (1 − δ)(1 + τx)
]

·
[

ĉ−σ(1 − l)ψ(1−σ) {−ψ(1 − σ)l/(1 − l) log lt+1 − σ log ĉt+1}
]

+ ĉ−σ(1 − l)ψ(1−σ)
[

θk̂θ−1zl

· (log lt+1 + log zt+1 − (1 − θ) log k̂t+1) + (1 − δ)τxt+1

]}

,

which simplifies to

0 ≈ (1 + τx) {−ψ(1 − σ)l/(1 − l) log lt − σ log ĉt} + τxt

− Et
{

(1 + τx) {−ψ(1 − σ)l/(1− l) log lt+1 − σ log ĉt+1}

+ β̂
[

r(log lt+1 + log zt+1 − (1 − θ) log k̂t+1) + (1 − δ)τxt+1

]}

,

where r = θŷ/k̂.

The form of the solution is given by (A.2.9). To compute γk, we need to write out the

coefficients on k̂t+2, k̂t+1, and k̂t in the dynamic first-order condition making use of the

φ’s from the static first-order condition. For now, we can ignore the expectations operator.
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We get the following:

0 ≈ −(1 + τx)
{

−ψ(1 − σ)l/(1 − l)[φlk log k̂t + φlk′ log k̂t+1]

− σ[φck log k̂t + φck′ log k̂t+1]
}

+Et(1 + τx)
{

−ψ(1 − σ)l/(1− l)[φlk log k̂t+1 + φlk′ log k̂t+2]

− σ[φck log k̂t+1 + φck′ log k̂t+2]
}

+ β̂Et
[

r(φlk log k̂t+1 + φlk′ k̂t+2 − (1 − θ) log k̂t+1)
]

,

which simplifies to

0 =[β̂rφlk′ − (1 + τx)ψ(1 − σ)l/(1− l)φlk′ − (1 + τx)σφck′ ]k̂t+2

+[β̂r(φlk − 1 + θ) − (1 + τx)ψ(1− σ)l/(1− l)φlk − (1 + τx)σφck

+ (1 + τx)ψ(1 − σ)l/(1− l)φlk′ + (1 + τx)σφck′ ]k̂t+1

−[−(1 + τx)ψ(1− σ)l/(1 − l)φlk − (1 + τx)σφck]k̂t

+ all other terms.

Given γk, we solve a linear system for the other γ’s. In particular, we have

0 ≈ (1 + τx)
{

−ψ(1 − σ)l/(1 − l)[(φlz + φlk′γz) log zt

+ (φll + φlk′γl)τlt

+ φlk′γxτxt + (φlg + φlk′γg) log ĝt

− σ[(φcz + φck′γz) log zt + (φcl + φck′γl)τlt

+ φck′γxτxt + (φcg + φck′γl) log ĝt]
}

+ τxt

− Et(1 + τx)
{

−ψ(1 − σ)l/(1− l)[(φlk + φlk′γk)(γz log zt + γlτlt + γxτxt)

+ (φlz + φlk′γz) log zt+1

+ (φll + φlk′γl)τlt+1

+ φlk′γxτxt+1

+ (φlg + φlk′γg) log ĝt+1]
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− σ[(φck + φck′γk)(γz log zt + γlτlt + γxτxt + γg log ĝt)

+ (φcz + φck′γz) log zt+1

+ (φcl + φck′γl)τlt+1

+ φck′γxτxt+1

+ (φcg + φck′γg) log ĝt+1]
}

− β̂rEt
[

(φlk + φlk′γk − 1 + θ)(γz log zt + γlτlt + γxτxt)

+ (φlz + φlk′γz + 1) log zt+1

+ (φll + φlk′γl)τlt+1

+ φlk′γxτxt+1

+ (φlg + φlk′γg) log ĝt+1

]

− β̂(1 − δ)Etτxt+1,

and after this, the procedure is the same as for the benchmark model.
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Appendix B.

Data and Sources

In this Appendix, we describe our data and their sources. Early drafts of the paper reported

results for the annual data described in Section 1. We subsequently redid the exercises

for the postwar period using quarterly data (which can be updated by future users of the

codes). The Bureau of Economic Analysis (BEA) has done comprehensive revisions of the

national accounts and reenumerated many of the standard national income and product

account (NIPA) tables. Thus, the NIPA tables with annual data do not correspond to the

current naming scheme of the BEA. We do have all of the original tables that we used in

this project, along with documentation.

B.1. U.S. Historical Annual Data Measures and Sources

Here, we provide a list of the variables in the model and their data analogs. Because we

work with data going back to 1900, the main output series for the annual data is gross

national product.

B.1.1. Measures

• Per-capita output (y)

GNP

− Sales tax

− Military compensation

+ Services from consumer durables (with return = 4% )

+ Depreciation from consumer durables

• Per-capita investment (x)
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Gross private fixed investment

+ Private inventories

+ Government gross investment

+ Net factor payments (GNP-GDP)

+ Personal consumption expenditures on durables

− Sales tax × share of durables in PCE

All deflated by the GNP deflator and Population over 16

• Per-capita government (g)

Government consumption

− Military compensation

+ Military equipment

− 1/2 Military facilities

+ Net exports of goods and services

All deflated by the GNP deflator and Population over 16

• Per-capita labor input (l)

(Civilian annual manhours / Population over 16) / (50 weeks × 100 hours)

B.1.2. Sources

The specific sources of the data listed above are as follows:

◦ National accounts, pre-1929

Kendrick (1961), Table A-IIb (all mil. $)

Total consumption expenditures

New construction and equipment

Change in business inventories
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Net foreign investment

Government purchases of goods and services

GNP (commerce concept)

Kendrick (1961), Table A-IIa (in mil. 1929 $)

GNP

Change in business inventories

◦ National accounts, post-1929

www.bea.gov, old NIPA Table 1.1 (in bil. $)

Gross domestic product (GDP)

Personal consumption expenditures (PCE)

PCE durable goods

PCE nondurable goods

PCE services

Gross private domestic investment (GPDI)

GPDI fixed investment

GPDI change in private inventories

Net exports of goods and services

Government consumption expenditures and gross investment

www.bea.gov, old NIPA Table 1.9 (in bil. $)

Gross national product (GNP)

www.bea.gov, old NIPA Table 3.9 (in bil. $)

Government consumption expenditures

www.bea.gov, old NIPA Table 5.1 (in bil. $)

Gross government investment
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www.bea.gov, old NIPA Table 3.7 (in bil. $)

National defense gross investment in structures

National defense gross investment in equipment and software

www.bea.gov, old NIPA Table 3.5 (in bil. $)

Federal excise taxes

State and local sales taxes

State and local other taxes

www.bea.gov, old NIPA Table 6.2 (in mil. $)

Compensation of military employees

www.bea.gov, old NIPA Table 6.3 (in mil. $)

Wage and salary accruals for military

◦ Fixed assets and investments

www.bea.gov, FA Table 1.1 (in mil. $ year-end)

Current-cost net stock of fixed assets, private

Current-cost net stock of consumer durable goods

www.bea.gov, FA Table 7.1 (in mil. $ year-end)

Current-cost net stock of fixed assets, government

Current-cost net stock of fixed assets, government national defense,

equipment and software

Current-cost net stock of fixed assets, government national defense,

military facilities

www.bea.gov, FA Table 1.5 (in mil. $)

Historical-cost investment in fixed assets, private

Historical-cost investment in consumer durable goods
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www.bea.gov, FA Table 7.5 (in mil. $)

Historical-cost investment in fixed assets, government

Historical-cost investment in fixed assets, government national

defense, equipment and software

Historical-cost investment in fixed assets, government national

defense, military facilities

◦ Civilian manhours, pre-1947

Kendrick (1961), Table A-X (millions)

◦ Civilian manhours, post-1947

www.bea.gov, old NIPA Table 6.5 (thousands)

Full-time equivalent employees

Full-time equivalent employees, military

www.bea.gov, old NIPA Table 6.8 (thousands)

Persons engaged in production

Persons engaged in production, military

www.bea.gov, old NIPA Table 6.9 (mil. of hours)

Hours worked by full-time and part-time employees

◦ Population over 16

Historical Statistics, Series A6-8

Economic Report of the President (2001), Table B-34.
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B.1.3. Appendix Figures

Figures A1 and A2 are the efficiency and tax wedges, respectively, over the entire twentieth

century.

B.2. U.S. Postwar Quarterly Data Measures and Sources

For the quarterly series, we have total hours data only after 1959:1. Since there are no

world wars in our postwar sample, we do not adjust for military compensation. The main

output series that we use for the postwar series is gross domestic product.

B.2.1. Measures

• Per-capita output (y)

Real GDP

− Sales tax deflated by the personal consumption expenditures (PCE) deflator

+ Services from consumer durables (with return = 4%) deflated by the PCE

durable deflator

+ Depreciation from consumer durables deflated by the PCE durable deflator

All divided by non-institutional population 16–64

• Per-capita investment (x)

Real gross private domestic investment (fixed plus inventories)

+ Real government gross investment

+ Real personal consumption expenditures on durables

− Sales tax deflated by PCE deflator × share of durables in PCE

All divided by non-institutional population 16–64

• Per-capita government (g)
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Real government consumption

+ Real net exports of goods and services

All divided by non-institutional population 16–64

• Per-capita labor input (l)

Total hours from the current population survey

+ Military hours

All divided by non-institutional population 16–64

B.2.2. Sources

The specific sources of the data listed above are as follows:

◦ National accounts, post-1947, quarterly

www.bea.gov, new NIPA Table 1.1.6 (in bil. chained 2000 $)

Gross domestic product (GDP)

Personal consumption expenditures (PCE)

Gross private domestic investment (GPDI)

Net exports of goods and services

Government consumption expenditures and gross investment

www.bea.gov, new NIPA Table 1.1.5 (in bil. $)

PCE durable goods

PCE nondurable goods

PCE services

www.bea.gov, new NIPA Table 1.1.9 (in 2000 = 100)

Deflator, PCE durable goods

Deflator, PCE nondurable goods
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Deflator, PCE services

www.bea.gov, new NIPA Table 3.9.5 (in bil. $)

Government consumption expenditures

www.bea.gov, new NIPA Table 3.2 (in bil. $)

Federal excise taxes

www.bea.gov, new NIPA Table 3.3 (in bil. $)

State and local sales taxes

State and local other taxes

◦ Flow of funds accounts, post-1952, quarterly

www.federalreserve.gov, Flow Table 10 (in mil. $)

Consumption of fixed capital, consumer durables

www.federalreserve.gov, Level Table 100 (in bil. $)

Current-cost net stock of consumer durables

◦ Hours and population, post-1959, quarterly

Prescott, Ueberfeldt, and Cociuba (2005), Hours.xls

Non-institutional hours from the current population survey

Non-institutional population, ages 16–64
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Appendix C.

Additional Material Not Reported in Text

In this Appendix, we describe further details on results that were mentioned only briefly

in the main text of the paper.

C.1. Results for Government Consumption Wedge

Figures A3 and A4 show results with varying government consumption wedges in the

benchmark model for the Great Depression and the 1982 recession, respectively. The

results for extensions of the benchmark model—with variable capital utilization and with

adjustment costs—are almost identical to Figure A3 and therefore not shown.

C.2. Model with Maximum Investment Wedge

In the paper, we reported on results for the Model with Maximum Investment Wedge. In

this case, the investment wedge was chosen to be as large as it needed to be in order for

investment in the model and data to line up. In Figure A5, we display the investment

series—both model and data—along with consumption and output. (Government con-

sumption in the model is set equal to the 1929 level, but there is little change in the data

over the period 1929–1939.) Notice that consumption in the model rises significantly as

investment falls implying a consumption anomaly.

C.3. Wedges for the Capital Utilization Model

Figure A6 shows all wedges for the model with variable capital utilization. In Figure 9 of

the paper we displayed only the efficiency wedge. Here, we provide the exact analogue of

Figure 1 with all wedges but the government consumption wedge.
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C.4. Results for an Alternative Investment Wedge

Figure A7 shows that our accounting procedure is not sensitive to choosing τk as the

investment wedge rather than τx. This figure shows the model’s prediction for output

based on the two prototype models described in Sections A.1 and A.2.4. For both, we

set the adjustment costs to be extreme (η = 1) so that we could compare the results to

Christiano and Davis (2006).

The line marked Prediction With τx Wedge and Extreme Costs in Figure A7 is the

same as that in Figure 14 in our paper. The line marked Prediction With τk Wedge

and Extreme Costs is what Christiano and Davis (2006) would find if they were to apply

the same accounting procedure that we do. Here, we use Christiano and Davis’ (2006)

estimates for the stochastic process, namely,

st+1 =







−.0112
.0232
.00237
−.0150






+







.952 .0240 −0.00000138 −.00193
.0720 .924 .560 .00263
.00887 −.00471 .988 .000408
−.00448 .0209 −.00102 0.995






st

+







−.0122 0 0 0
−.000902 .00659 0 0
.00235 .000869 −.00110 0

.000000805 .00738 −.00645 .0134






εs,t+1.

In Figure A8, we redisplay the line marked Prediction With τk Wedge and Extreme

Costs from Figure A7. In Figure A8, we label it Prediction Using a Theoretically-Consistent

Methodology. We want to compare this result with the result that Christiano and Davis

(2006) actually report, what we refer to as Prediction Using an Alternative Methodology.

As we noted earlier, our propositions distinguish between the direct effect and the

forecasting effect of fluctuations in wedges. This turned out not to be quantitatively

important for the prototype model with a τx investment wedge.6 However, it is for the τk

6 Even so, we redid all of our numerical results applying the accounting procedure that is consistent
with our propositions.
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prototype model as Figure A8 shows. In fact, because Christiano and Davis (2006) are not

consistently applying the propositions, they find that the investment wedge accounts for

one-half of the downfall in output. In fact, this wedge accounts for only about one-fifth of

the downfall with the caveat that, even then, adjustment costs have to be extreme.

In summary, our main conclusion—that the investment wedge plays a decidedly ter-

tiary role—is not sensitive to using the alternative prototype model proposed by Christiano

and Davis (2006).

C.5. Proof of Propositions

Here, we provide a proof of Proposition 1. The logic behind the other proofs is the same.

The first-order conditions for the gross output problem are p1tq1t = γqt and p2tq2t =

(1−γ)qt. The first-order conditions for the sector i gross output problem are θpitqit/mit =

1 + τit and (1 − θ)pitqit/zit = vt. Thus, m1t = θγqt/(1 + τ1t) and m2t = θγqt/(1 + τ2t) so

mt = θqt[γ/(1 + τ1t) + (1 − γ)/(1 + τ2t)]. The first-order conditions also imply z1t = γzt,

z2t = (1 − γ)zt, and vt = (1 − θ)qt/zt. Hence,

yt = qt −mt = [1 − θ(a1t + a2t)]qt, (C.5.1)

and substituting the expressions for mit and zit into qt = (mθ
1tz

1−θ
1t )γ(mθ

2tz
1−θ
2t )1−γ and

manipulating gives

qt = κ(a1−γ
1t aγ2t)

θ
1−θ zt. (C.5.2)

Combining the expressions for yt and qt and using zt = F (kt, lt) gives the expression for

At.

To verify our expression for (1 − τlt), compare the first-order condition vtFlt = wt

from the composite goods producer in the detailed economy to the first-order condition

(1 − τlt)AtFlt = wt in the prototype economy to note that (1 − τlt) = vt/At and use
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vt = (1 − θ)qt/z, (C.5.2), and the expression for At. The derivation of the expression for

(1 − τkt) is analogous.

C.6. MLE Estimates for Alternative Models

In Table A1, we report the parameter estimates for the model with variable capital uti-

lization and annual data over the period 1901–1940. In Tables A2 and A3, we report the

estimates for the model with adjustment costs, at the BGG level and four times the BGG

level, based on annual data for 1901–1940. The quarterly estimates for the adjustment-cost

models are reported in Tables A4 and A5. These estimates are based on quarterly data

for the period 1959:1–2004:3.

The hillclimbing procedure that we used had no problems finding maxima (at least

locally) with the annual dataset during the 1901–1940 period. Estimation in the postwar

period was more difficult, and the hillclimbing procedure oftentimes had difficulty finding

higher points on the likelihood surface. Thus, in all cases for the postwar, we initial-

ized guesses using estimates based on annual data for the period 1901–2000, which were

converted to quarterly estimates. We also perturbed the parameter estimates (after the

hillclimbing routine could not find a higher point) many times in search of higher points.

We did not find our results to be sensitive to the estimates of the stochastic process.
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Table A1

Parameters for the Model with Variable Capital Utilization

Annual Data, 1901–1940

P =















.666
(.415,.820)

.171
(.0626,.278)

−.192
(−.390,.0205)

0

−.178
(−.342,.0122)

1.08
(.926,1.10)

.285
(.105,.500)

0

−.0402
(−.434,.367)

.0391
(−.208,.317)

.108
(−.267,.289)

0

0 0 0 .744
(.468,.782)















Q =















.0325
(.0249,.0373)

0 0 0

.0109
(.00414,.0207)

.0342
(.0247,.0389)

0 0

.00971
(−.00976,.0265)

−.000895
(−.0153,.0160)

.0375
(.0187,.0501)

0

0 0 0 .222
(.147,.281)















Mean(s) = [.744 (.708, .787), .229 (.175, .288), .282 (.227, .333), −2.78 (−2.94,−2.53)]

Note: Parameters were estimated using maximum likelihood with data on output, labor, investment,
and government consumption. To ensure stationarity, we added a penalty term to the likelihood

function proportional to max(|λmax|−.995, 0)2, where λmax is the maximal eigenvalue of P . Numbers

in parentheses are 90% confidence intervals for a bootstrapped distribution with 500 replications.
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Table A2

Parameters for the Model with Adjustment Costs at the BGG Level

Annual Data, 1901–1940

P =















.564
(.225,.767)

.0898
(.0213,.192)

−.190
(−.405,.0241)

0

.0470
(−.246,.317)

.995
(.879,1.07)

.219
(.00612,.455)

0

−.378
(−.919,.00349)

.0545
(−.190,.225)

.337
(−.0208,.601)

0

0 0 0 .766
(.401,.842)















Q =















.0567
(.0431,.0641)

0 0 0

−.00425
(−.0210,.0114)

.0554
(.0380,.0638)

0 0

−.0432
(−.0839,−.0103)

.0206
(−.00282,.0409)

.0768
(.0453,.0922)

0

0 0 0 .221
(.143,.271)















Mean(s) = [.537 (.499, .582), −.196 (−.277,−.0941), .291 (.191, .393), −2.80 (−2.97,−2.53)]

See footnotes to Table A1.
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Table A3

Parameters for the Model with Adjustment Costs at 4 times the BGG Level

Annual Data, 1901–1940

P =















.432
(−.0446,.625)

.121
(.0476,.276)

−.0866
(−.191,−.0167)

0

.178
(−.160,.603)

.963
(.796,1.03)

.0938
(.0169,.196)

0

−.659
(−1.00,1.00)

.112
(−.419,.331)

.560
(.264,.942)

0

0 0 0 .783
(.433,.874)















Q =















.0561
(.0422,.0635)

0 0 0

−.00327
(−.0209,.0143)

.0553
(.0381,.0637)

0 0

−.176
(−.252,−.0896)

.0811
(.0247,.137)

.189
(.119,.216)

0

0 0 0 .221
(.143,.271)















Mean(s) = [.536 (.497, .577), −.200 (−.274,−.0962), .292 (.163, .432), −2.81 (−3.00,−2.54)]

See footnotes to Table A1.
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Table A4

Parameters for the Model with Adjustment Costs at the BGG Level

Quarterly Data, 1959:1–2004:3

P =















.988
(.988,.988)

.0235
(.0232,.0239)

.0521
(.0511,.0521)

−.0562
(−.0571,−.0562)

−.00394
(−.00427,−.00381)

.995
(.926,1.10)

.0379
(.0374,.0381)

−.0297
(−.0303,−.0297)

.00739
(.00717,.00744)

−.0781
(−.0782,−.0780)

.879
(.879,.880)

.146
(.145,.147)

−.00155
(−.00190,−.00113)

−.0129
(−.0134,−.0128)

.0480
(.0474,.0482)

.965
(.964,.965)















Q =















.0114
(.0109,.0120)

0 0 0

.00132
(.000723,.00198)

.00641
(.00576,.00701)

0 0

−.00925
(−.00987,−.00863)

.00264
(.00175,.00325)

.0221
(.0213,.0227)

0

−.000388
(−.000910,.000252)

.00619
(.00540,.00681)

.0135
(.0126,.0141)

.00698
(.00626,.00762)















Mean(s) = [−.0239 (−.0261,−.0258), .325 (.325, .325), .476 (.476, .476), −1.53 (−1.53,−1.53)]

See footnotes to Table A1.
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Table A5

Parameters for the Model with Adjustment Costs at 4 times the BGG Level

Quarterly Data, 1959:1–2004:3

P =















1.014
(1.014,1.014)

−.0444
(−.0444,−.0444)

.0361
(.0361,.0361)

−.0168
(−.0168,−.0168)

.00700
(.00700,.00700)

.953
(.953,.953)

.0173
(.0173,.0173)

.00403
(.00400,.00403)

−.106
(−.106,.−.106)

.100
(.100,.100)

.830
(.830,.830)

.140
(.140,.140)

−.0379
(−.0379,−.0379)

−.0158
(−.0158,−.0158)

−.0302
(−.0302,−.0302)

1.044
(1.044,1.044)















Q =















.0114
(.0114,.0114)

0 0 0

.00148
(.00148,.00149)

.00626
(.00626,.00627)

0 0

−.0272
(−.0272,−.0272)

.0122
(.0122,.0122)

.0243
(.0243,.0243)

0

−.0000298
(−.0000317,−.0000287)

.00589
(.00589,.00589)

.00929
(.00929,.00929)

.0115
(.0115,.0115)















Mean(s) = [−.0387 (−.0387,−.0387), .325 (.325, .325), .424 (.424, .424), −1.54 (−1.54,−1.54)]

See footnotes to Table A1.
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