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1 INTRODUCTION

Abstract

After decades of intensive research on the statistical size distribution of income and de-

spite its empirical weaknesses, the lognormal distribution still enjoys an important pop-

ularity in the applied literature dedicated to poverty and inequality. In the present study,

we emphasize the drawbacks of this choice for the calculation of the elasticities of poverty.

Using last version of WIID database, we estimate the growth and inequality elasticities

of poverty using 1,842 income distributions under fifteen rival distribution assumptions.

Our results confirm that the lognormal distribution is not appropriate for the analysis

of poverty. Most of the time, it implies an overestimation of the elasticities and bias our

estimation of the relative impact of growth and redistribution on poverty alleviation.

1 Introduction

Midway to the end of the Millennium Development Goals (MDG), it seems that the prime

objective of halving extreme poverty will be achieved in 2015. Even if the estimated lev-

els of poverty are still debated (Chen and Ravallion 2004, Bhalla 2004, Sala-i Martin 2006),

all authors agree that poverty has largely declined during the last decade. Half of the way

is done, but this result conceals the great heterogeneity of observed outcomes in the de-

veloping countries in terms of poverty reduction. Whereas Asia greatly contributed to the

reduction of the world poverty headcount, many African countries do not registered any

improvement. In half of the Sub-Saharan African countries, extreme poverty has even wors-

ened during the 90’s. So, the poverty file is not closed and there is much to do to improve

our understanding of poverty and suggest the appropriate treatment.

From an analytical point of view, poverty is directly linked to mean income and inequal-

ity. As the effects of any variable on poverty are channeled through mean income and its

distribution, it is important to know how they are determined, and to investigate the sen-

sibility of poverty measures to variations of these two elements so as to choose the most

efficient policies for poverty reduction. Since the international community has decided to

target its interventions on poverty alleviation, many famous studies like Ravallion (2001) or

Dollar and Kraay (2002) have considered growth as the most efficient way of fighting poverty.

This focus on growth is perfectly illustrated by the 2005 Word Development Report (World

Bank 2005) in which the investment-growth-poverty relationship is the main motto. Such

a partial analysis of the poverty issue, based on the growth-poverty relationship, led some

authors to the conclusions that the MDG only resulted in pure rhetorical changes for the

biggest multilateral institutions since their recommendations and politics did not evolve. At

the same time researchers were largely involved in the justification of growth-oriented poli-

cies in terms of poverty alleviation, but the measure of the efficiency of these policies has

been greatly debated. As Dollar and Kraay (2002) argued that the income of the poor grew

at the same rate as mean income, the estimation of a mean value for the growth elasticity

of poverty is widely discussed. Besley and Burgess (2003) suggest the use of a value of −0.7

but Bhalla (2004) gets an mean elasticity of −3.4. The difference is not meaningless since the
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1 INTRODUCTION

achievement of the objective of halving extreme poverty under the first result implies a rate

of growth which is five time larger than the one corresponding to the elasticity calculated by

Bhalla (2004)1.

As a reaction to this omnipresence of growth, some recent studies, like Heltberg (2002),

Bourguignon (2003) or Ravallion (2005), have emphasized the fundamental role of distribu-

tion features in the determination of the poverty rates. Their main message is that growth

reduces poverty more efficiently in less inegalitarian countries. Lopez and Servèn (2006) also

explain that the contribution of inequality reduction to poverty alleviation is higher in richer

countries. So, redistribution policies and distributional consequences of growth should not

be ignored and the diminution of inequalities should be considered like growth as an inter-

mediate objective of poverty alleviation policies.

However, even if everyone agrees with the necessity of considering the distribution is-

sue for poverty analysis, there is no consensus on the relative contribution of growth and

inequality reduction to poverty alleviation. In the case of factors which contribute simul-

taneously to growth and inequality contraction, it may be of little interest to look for this

relative contribution. It is obviously not the situation of all the determinants of growth.

When some factors work in opposite direction — trade openness and financial development

are frequently accused of contributing to development at the expense of widening inequal-

ities — it is crucial to know more about the trade-off that are facing decision-makers. Of

course, Dollar and Kraay’s (2002) results suggest that the growth process is distribution-

neutral, but, as emphasized by Kanbur and Lustig (2000), if the combination of different

tools is distribution-neutral on average, it may not be the case for each tool considered in-

dependently. Looking for the elasticities of poverty is therefore necessary to build efficient

policies to fight poverty.

A direct estimation of these elasticities for different values of mean income and different

degree of inequality can easily be achieved under the assumption that the observed distri-

butions can be described by a known statistical distribution. In most studies (Quah 2001,

Bourguignon 2003, Epaulard 2003, Kalwij and Verschoor 2005, Lopez and Servèn 2006) the

lognormal distribution is used. This is a curious choice since these authors choose to set

aside all the XXth century debates on the statistical size distributions of income. Since late

XIXth century and the pioneering works of Pareto, research has been extremely active to re-

trieve the functional form which fits best the observed distributions. Practical considerations

and considerable influence of the study of Aitchison and Brown (1957) may still explain the

current popularity of the lognormal distribution, but cannot justify its systematic use in em-

pirical studies. Many authors have pointed out its empirical weaknesses and have suggested

alternative functional forms2 like Maddala and Singh (1976), Dagum (1977) or the general-

1According to Besley and Burgess (2003), halving extreme poverty requires that the developing world grows
at an annual rate of 3.8% between 1990-2015. With the elasticities suggested by Collier and Dollar (2001) and
Bhalla (2004), the needed growth rates is only 1.4% and 0.8% respectively.

2A quite comprehensive survey is Kleiber and Kotz (2003).
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2 METHODOLOGY

ized beta 2 distribution (McDonald 1984). For instance, Bandourian et al. (2002) showed that

the lognormal distribution was dramatically outperformed by many alternative functional

forms for a relatively large sample of developed countries, even in the set of two parameters

distributions. If the lognormal distribution is such a poor approximation of income distribu-

tions, elasticities obtained through the lognormality hypothesis are questionable. Of course,

this is also the case for all policy recommendations based on this assumption.

In the present paper, we intend to shed light on the consequences of the use of a po-

tentially inadequate distributional hypothesis using alternative distributions which are sup-

posed to fit better observed distributions. Using a data set of 1,842 income distributions for

142 developed and developing countries, we conclude that the quality of our predictions can

be significantly improved with more flexible functional forms. Moreover, we find that esti-

mated elasticities under the lognormal assumption generally overestimate “real” elasticities

and bias under certain conditions the estimated trade-off between pure growth and redistri-

bution strategies for poverty alleviation in favor of the growth objective.

The paper is organized as follow. The following section introduces the methodology used

for the estimation of the desired elasticities. Data and raw results are presented in section 3.

Section 4 is concerned with the criterion used for the choice of an adequate functional form

for income distributions and section 5 deals with the drawbacks of the lognormal hypothe-

sis. Section 6 concludes.

2 Methodology

2.1 Calculation of the elasticities of poverty

In the present paper, we focus on absolute poverty. Any absolute poverty measure is a non-

linear combination of a poverty line, the mean income and a set of inequality parameters

which fully describes the Lorenz curve L(p). Our preferred measures of poverty are the

widely used Foster, Greer and Thorbecke (1984) measures Pθ:

Pθ =
∫z

0

( z − y

z

)θ
f (y)d y, (1)

where y is income, z the poverty line, f is the income density function and θ the parame-

ter of inequality aversion. For θ = {0,1,2}, Pθ is respectively the headcount, poverty gap and

severity of poverty index. Under the hypothesis that incomes follow a known distribution,

f gets a functional form and the set of inequality parameters can be reduced to a few ones.

Our choice for this “analytical” approach is justified in Bresson (2006). This approach allows

to estimate the required elasticities individually for each observation with few information,

to separate perfectly the growth and redistribution effects, and to compute inequality elas-

ticities of poverty that can be compared in cross-section analysis. For the present paper,

we are working with the following distributions: Pareto, lognormal, gamma, Weibull, Fisk,
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2 METHODOLOGY

Singh-Maddala, Dagum and beta 23.

To get the parameters of these distributions, we can use some method of moments. With

the help of the per-capita income and the Gini index, we can easily obtain the parameters

of two parameters distributions like the Pareto, the lognormal, the gamma, the Weibull or

the Fisk distributions. Several reasons led us to forsake this approach. The first one is that

one needs more information about inequality for more than two parameters distributions.

For large datasets, this supplementary information is usually given by points of the Lorenz

curve, but the resolution of the resulting systems of nonlinear equations is generally cum-

bersome. Second, Gini coefficients are systematically truncated in the available datasets. As

we used the points of the Lorenz curve to assess the quality of the fit (cf sec. 4), it appeared

that this truncation most of the time increases the size of errors in a significant manner4.

To avoid these shortcomings, we choose to estimate the parameters of our different distri-

butions uniquely from the available points of the Lorenz curve. The Lorenz curves corre-

sponding to each distribution are presented in table 1.

Table 1: The Lorenz curve of used classical distributions

Name Lorenz curve Scale parameter

Pareto L(p)= 1− (1−p)1− 1
α y0 =

µ(α−1)
α

Lognormal L(p)=Φ
(

Φ
−1(p)−σ

)

ȳ = lnµ− σ2

2

Gamma L(p)=G
(

G−1(p,c ,γ),c ,γ+1
)

ρ = µ
γ

Weibull L(p)=GG

(

W −1(p,c ,β),c ,β,1+ 1
β

)

ρ = µ

Γ

(

1+ 1
β

)

Fisk L(p)= B1
(

p,1+ 1
τ , τ−1

τ

)

κ= µ

Γ
(

1+ 1
τ

)

Γ
(

1− 1
τ

)

Singh-Maddala L(p)= B1

(

1− (1−p)
1
λ ,1+ 1

τ ,λ− 1
τ

)

κ= µΓ(λ)
Γ
(

1+ 1
τ

)

Γ
(

λ− 1
τ

)

Dagum L(p)= B1

(

p
1
θ ,θ+ 1

τ ,1− 1
τ

)

κ= µΓ(θ)
Γ
(

θ+ 1
τ

)

Γ
(

1− 1
τ

)

Beta 2 L(p)= BG2
(

B2
−1(p,c ,λ,θ),c ,1,λ+1,θ−1

)

κ= µΓ(θ)Γ(λ)
Γ(θ+1)Γ(λ−1)

Note: Φ stands for the c.d.f. of the standard normal distribution, c for any constant term, G for the c.d.f.
of the Gamma distribution, GG for the c.d.f. of the generalized gamma distribution, W for the c.d.f. of the
Weibull distribution, B1 for the c.d.f. of the Beta distribution of the first kind, B2 for the c.d.f. of the Beta
distribution of the second kind, BG2 for the c.d.f. of the generalized Beta distribution of the second kind.
More details on the last distributions in Kleiber and Kotz (2003).

For the derivation of income and inequality elasticities, we follow Kakwani (1993). With

3We also tried to use the generalized gamma, the beta of the first kind and the generalized beta of the second
kind distributions. As the estimators of the non-linear least-squares were not convergent with these functional
forms, we gave up using these distributions. For a closer look at the linkages between all these distributions, see
McDonald (1984).

4Truncations and rounding are also a matter of concern for points of the Lorenz curve, but the loss of pre-
cision is less important.

5

ha
ls

hs
-0

05
62

64
8,

 v
er

si
on

 1
 - 

3 
Fe

b 
20

11



2 METHODOLOGY

the headcount index, the growth elasticity of poverty, ηµ is simply:

η0,µ =−
z f (z)

P0
, (2)

where µ stands for mean income. For θ 6= 0, the elasticity is:

ηθ,µ =−
θ(Pθ−1 −Pθ)

Pθ
. (3)

For the estimation of the inequality elasticity of poverty, we have to deal with the prob-

lem that income distributions can change in various ways. Under a strong hypothesis of a

two-parameter distribution5 any variation of an inequality index leads to a unique Lorenz

curve. So is it for the inequality elasticities6. However, these estimated elasticities cannot

be compared through different statistical distributions since they all imply different trans-

formations of the Lorenz curve. For more flexible functional forms, we have to chose how

the Lorenz curve should move to get a unique value of the desired elasticity corresponding

to given initial conditions. Kakwani (1993) suggests the following shift of the Lorenz curve:

L∗(p)= L(p)−ε
(

p −L(p)
)

, (4)

where ε indicate a proportional change in the Gini coefficient7. Such transformation of the

Lorenz curve implies Lorenz dominance. So, for negative (positive) value of ε, the situa-

tion of the poor never worsen (improve). From equation (4), Kakwani (1993) proposed the

following Gini elasticities:

η0,G = (µ− z)
f (z)

P0
, (5)

ηθ,G = θ+
µ− z

z

Pθ−1

Pθ
∀θ 6= 0. (6)

5This is a strong hypothesis since we simultaneously assume that :

• the income distribution that is considered can be described by the chosen statistical distribution;

• the income distribution changes in such a way that the final distribution can also be described by the
same kind of statistical distribution.

6For example, the “natural” Gini elasticity of the headcount index under a strong lognormality assumption
is:

η∗0,G =λ





log
(

z
µ

)

σ
+

σ

2









σ

2
−

log
(

z
µ

)

σ





G

σ
p

2ϕ
(

σp
2

) ,

were λ and ϕ represent the hazard rate and density function of the standard normal distribution.
7It can easily be shown that ε can also be interpreted as the same proportional increase of all the standard-

ized moments of the Lorenz curve defined by Aaberge (2000) as:

Dt = (t +1)
∫1

0
p t−1(

p −L(p)
)

dp.
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2 METHODOLOGY

The transformation presented in equation (4) is also of great interest because it gives the

possibility to compare the inequality elasticities obtained through different distributional

assumptions. The interest is not only practical, since the strict respect of a particular dis-

tribution for poverty analysis is not neutral in terms of the relative importance of growth

and inequality elasticities, and so may reflect some political preferences. With a common

strategy for the evolution of inequality and a weak distributional hypothesis — we just as-

sume that the current distribution can be described by the chosen statistical distribution —,

estimated elasticities do not depend on the specific distributional changes corresponding

to each distribution. On the figure 1 one can observe the differences between several two-

parameter distributions which are used in the present study. In each quadrant, the solid line

represents the Lorenz curve corresponding to a Gini coefficient equal to 0.55. The dashed

and the dotted lines corresponds to the Lorenz curves respectively obtained through the

same statistical distribution and through Kakwani’s transformation for a 30% decrease of

the Gini index.
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0.
0
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2

0.
4

0.
6

0.
8
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0
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0

Fisk

Figure 1: “Natural” vs Kakwani’s transformation of the Lorenz curve for two parameters

distributions.

In all cases, we can observe that the Lorenz curve resulting from Kakwani’s transforma-

tion are more skewed toward the upper point of the Lorenz curve than the “natural” curve
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2 METHODOLOGY

corresponding to the same value of the Gini coefficient. This means that the poorest bene-

fit more from the fall of income inequality with Kakwani’s transformation. Since the Foster

et al. (FGT) measures are directly linked to the slope and curvature of the Lorenz curve, we

should generally obtain greater inequality elasticities of poverty than those that are derived

from a transformation which preserves the type of the distribution. For the three-parameter

distributions that are used in the study, namely the beta of the second kind, the Maddala

and Singh (1976) — also known as the Burr XII distribution— and the Dagum (1977) — also

called the Burr III distribution —, elasticities are not unique. So for a same distribution,

“natural” elasticities can be either larger or lower than those corresponding to the Kakwani’s

transformation. However, since the poor are particularly sensitive to this transformation

of the Lorenz curve, we can reasonably consider that our estimated Gini elasticities will be

quite high.

The other interesting feature of Kakwani’s (1993) formula is that the respective impor-

tance of growth and inequality elasticities is easily predicted, especially for the headcount

index. We note:

η0,µ

η0,G
=

z

z −µ
(7)

ηθ,µ

ηθ,G
=

z(Pθ−1 −Pθ)

z(Pθ−1 −Pθ)−µPθ−1
∀θ 6= 0 (8)

Equation (7) is particularly interesting since we can see that, for the headcount index,

the ratio of the growth elasticity to the Gini elasticity obtained through Kakwani’s transfor-

mation does not depend on the income distribution. So, it will be the same, whatever distri-

butional assumption is made. As it only depends on per capita income, we can already know

that growth policies8 will be more efficient in terms of poverty reduction that redistributive

policies when the ratio of the mean income to the poverty line is low. On the contrary, re-

distribution is the only effective tool for rich countries.

When θ 6= 0, distribution matters. However, we can notice that the ratio is always nega-

tive. It can be easily shown that its absolute value decreases with mean income. So redis-

tributive policies becomes more and more attractive as per capita income increases.

2.2 Some alternative functional forms for the Lorenz curve

In addition to known distributions, we tried to use some ad hoc functional forms for the

Lorenz curve. Characterizing a distribution through the direct estimation of the Lorenz

curve has been first used by Kakwani and Podder (1973) and has known further important

developments. Most of the time, these functional forms are used for descriptive purposes,

but Datt and Ravallion (1992) suggested that they could be used to estimate elasticities of

poverty. These Lorenz curves can be seen as ad-hoc since they are generally not theoretical

8By growth policies, we mean policies that would lead to an increase of mean income with no distributional
change. Of course, this is a pure theoretical view since observed growth always implies some redistribution.
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2 METHODOLOGY

grounded — the only exception may be Maddala and Singh (1977). However, they generally

fit pretty well the data and their estimation is rather easy. Nevertheless, the use of ad hoc

Lorenz curves raises some problems. First, the underlying distribution function may not

be defined for the value of the poverty line9. Second, the corresponding cumulative distri-

bution functions (c.d.f.) have sometimes no closed form. To calculate the value of the FGT

measures and their elasticities, we have to use the following properties of the Lorenz curve10:

∂L(p)

∂p

∣

∣

∣

∣

p=P0

=
z

µ
, (9)

∂2L(p)

∂p2

∣

∣

∣

∣

p=P0

=
1

µ f (z)
. (10)

Despite the attractiveness of these functional forms, Datt and Ravallion (1992) is the only

study in which ad hoc Lorenz curve are used. In the present paper, we include the functional

forms11 described by Kakwani and Podder (1973), Maddala and Singh (1977), Gaffney, Koo,

Obst and Rasche (1980), Kakwani (1980), Arnold and Villaseñor (1989), Fernandez, Garcia,

Ladoux, Martin and Ortega (1991) and Chotikapanich (1993).

All the distributions and Lorenz curves used in the present paper are described in table 2.

Equations for the computation of the poverty headcount for all the used distributions are

presented in table 3.

Table 2: The different ad hoc functional forms used

Name Lorenz curve

Kakwani and Podder (1973) L(p) = pr e−s(1−p)

Chotikapanich (1993) L(p) = ekp−1
ek−1

Gaffney et al. (1980) L(p) =
(

1− (1−p)φ
)

1
ζ

Fernandez et al. (1991) L(p) = pϑ
(

1− (1−p)φ
)

Maddala and Singh (1977) L(p) =−bd p + (1−b +bd )pa +b
(

1− (1−p)d
)

Kakwani (1980) L(p) = p −ξpν(1−p)υ

Arnold and Villaseñor (1989) L(p) = f
(

p2−L(p)
)

+g L(p)(p−1)+q
(

p−L(p)
)

1−L(p)

Note: Φ stands for the c.d.f. of the standard normal distribution, G for the c.d.f. of the Gamma
distribution, GG for the c.d.f. of the generalized gamma distribution, W for the c.d.f. of the Weibull
distribution, B1 for the c.d.f. of the Beta distribution of the first kind, B2 for the c.d.f. of the Beta
distribution of the second kind, BG2 for the c.d.f. of the generalized Beta distribution of the second
kind. More details on the last distributions in Kleiber and Kotz (2003).

9This is also a well-known feature of the Pareto distribution.
10More details on the use of ad hoc Lorenz curves for poverty analysis in Datt (1998)
11We also tried to estimate the parameters of Castillo et al. (1999) class of Lorenz curve, but estimators were

not convergent.
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3 DATA AND RESULTS

3 Data and results

Income distribution data are from the UNU-WIDER World Income Inequality Database (ver-

sion 2.0a., June 2005). Dropping observations when quality and reference population were

not satisfying12, we get a sample of 1,842 distributions for 142 developed and developing

countries from 1950 to 2002. For each distribution we can make use of 6 to 13 points13 of

the Lorenz curve to estimate the parameters of the different Lorenz curves. Most functional

forms imply non-linear least squares estimations, but estimators are convergent. To com-

pute our poverty measures and scale parameters, we use PPP per capita income from Penn

World Table 6.1. The main characteristics of the database are summarized in tables 11 and

12. For the present exercise, we exclusively work with the traditional 2$PPP poverty line14, 15.

Mean elasticities for the various poverty measures and distributions are reported on ta-

ble 4. Whatever poverty measure we choose, we can observe great differences between most

distributions. In the case of the beta 2 distribution, the average growth elasticity of the head-

count index is approximately −5.5 but −1.27 with the Weibull distribution. Bootstraped16

standard errors shows that differences are often significant at the 5% level.

However, one should be careful in interpreting these estimated elasticities. In table 4,

we can observe some erroneous values. In particular, we obtain some positive values for

the growth elasticities although these are theoretically always negative. These irregular val-

ues are due to parameters which do not satisfy the validity conditions of the Lorenz curve

(i.e. L(0) = 0, L(1) = 1 and ∂2L(p)
∂p2 É 0) or intervals of definitions which do not include the

poverty line. The percentage of valid estimations are reported in table 4. It appears that

the Pareto distribution and the ad hoc functional forms for the Lorenz curve cannot be em-

ployed each one individually to analyze poverty for the whole sample. As the Pareto dis-

tributions and Kakwani and Podder (1973), Kakwani (1980), Arnold and Villaseñor (1989)

and Chotikapanich (1993) Lorenz curves can only be used on a small part of the sample,

we temporally exclude them from the set of tools used for the estimation of the elasticities.

With the ramaining functional forms, we can concentrate on a subsample which includes

82.5% of initial observations. For this subsample, the mean income is slightly lower but the

difference is not significatively different. The average value of the Gini index is quite equal.

12In particular, we removed many observations related to urban or rural populations.
13We add the (0,0) and (1,1) points since some functional forms for the Lorenz curve do not necessarily

respect the conditions L(0) = 0 and L(1) = 1. In our sample, the average number of observations is 10.
14For international comparisons, the 1$PPP poverty line is also widely used. We prefer using the 2$PPP line

because it increases the ratio of the poverty line to mean income. Since our sample includes high income coun-
tries, it seems more reasonable to adopt the most meaningful line. We also have to mention that a lower poverty
line would increase the number of invalid estimations for the ad hoc Lorenz curves since most of them are not
defined ∀z ∈ R

+. A last reason is that the behavior of most distributions greatly varies at the tails. Our results
would presumably be even more heterogeneous with the 1$PPP poverty line.

15Strictly speaking the exact value is 2.16$ in 1996 PPPs. The poverty line defined for the Millennium Devel-
opment Goals is fixed for 1993 PPPs, but Penn World Tables 6.1 are based on 1996 values.

16 For the present study, we use a two stage bootstrap procedure. In the first stage, individual elasticities are
estimated on many samples with replacement of the points of the Lorenz curve. Then, the required statistics are
computed on samples with replacement of the available distributions.
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3 DATA AND RESULTS

Table 3: Calculation of the headcount index for the different functional forms

Name Headcount index (c.d.f.)

Pareto P0 = 1−
(

z
y0

)−α

Lognormal P0 =Φ
( z−µ

σ

)

Gamma P0 =G(z,ρ,γ)

Weibull P0 = 1−e
−

(

z
ρ

)β

Fisk P0 =
(

1+
( z
κ

)−τ)−1

Singh-Maddala P0 = 1−
(

1+
( z
κ

)τ)λ

Dagum P0 =
(

1+
( z
κ

)−τ)−θ

Beta 2 P0 = B2(z,κ,λ,θ)

Kakwani and Podder (1973) (sP0 + r )P0
r e−s(1−P0) = z

µ

Chotikapanich (1993) P0 = 1
k log

(

z
(

ek−1
)

kµ

)

Gaffney et al. (1980) φ
ζ

(

1− (1−P0)φ
) 1
ζ
−1(1−P0)φ−1 = z

µ

Fernandez et al. (1991) φP0
ϑ(1−P0)φ−1 +ϑP0

ϑ−1
(

1− (1−P0)φ
)

= z
µ

Maddala and Singh (1977) −bd +a(1−b +bd )P0
a−1 +bd (1−P0)d−1 = z

µ

Kakwani (1980) 1−ξP0
ν(1−P0)υ

(

ν
P0

− υ
1−P0

)

= z
µ

Arnold and Villaseñor (1989) P0 =− 1
2m

(

n + r
(

g +2 z
µ

))

(
√

(

g +2 z
µ

)2
−m

)−1

w =− f − g −q −1

m = g 2 −4 f

n = 2 f w −4q

r =
p

n2 −4mw 2

Note: Φ stands for the c.d.f. of the standard normal distribution, G for the c.d.f. of the Gamma distribu-
tion, B2 for the c.d.f. of the Beta distribution of the second kind.
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Table 4: Mean value of growth and Gini elasticities of P0, P1 and P2: whole sample.

Distribution Growth elasticity Gini elasticity Valid
P0 P1 P2 P0 P1 P2 estimations (%)

Pareto 2 2.57 3.41 -22.92 -17.15 -14.07 27
(5.29) (9.63) (10.52) (11.24) (9.82) (14.15)

Lognormal -4.73 -5.06 -5.3 78.43 90.82 102.83 100
(0.14) (0.13) (0.15) (2.97) (3.93) (3.8)

Gamma -1.81 -1.89 -1.94 24.53 34.65 44.7 100
(0.07) (0.07) (0.1) (1.31) (1.22) (2.6)

Weibull -1.27 -1.33 -1.36 15.32 25.28 35.21 100
(0.05) (0.05) (0.05) (0.64) (0.92) (1.03)

Fisk -2.21 -2.33 -2.41 27.09 37.09 47.04 100
(0.05) (0.03) (0.04) (0.81) (1.07) (1.38)

Beta 2 -5.5 -5.76 -5.96 100.89 112.15 123.2 100
(0.86) (0.87) (26.54) (24.76) (21.1) (13×102)

Singh-Maddala -1.93 -2.05 -2.12 23.18 33.17 43.12 100
(0.07) (0.08) (0.67) (1.11) (1.37) (9.19)

Dagum -1.88 -2 -2.08 22.43 32.42 42.37 100
(0.17) (0.17) (0.19) (1.80) (2.06) (2.13)

Kakwani and Podder (1973) −68×106 -4.35 -4.89 12×107 51.77 82.6 39
(22×109) (61.48) (0.53) (2×1011) (39.73) (4.06)

Arnold and Villaseñor (1989) -0.91 -0.89 -0.85 1.37 3.09 4.87 37
(22.24) (57.75) (16.5) (300.73) (720.72) (176.07)

Chotikapanich (1993) 1.04 2.42 3.89 -6.99 -7.87 -9.86 48
(5) (16.11) (15.87) (19.01) (73.36) (83.06)

Gaffney et al. (1980) -2.09 -2.09 -2.17 23.73 33.48 43.45 94
(0.21) (0.09) (0.09) (4.75) (1.45) (1.69)

Fernandez et al. (1991) -1.86 -1.97 -2.04 22.27 32.25 42.2 95
(14×104) (0.09) (0.2) (7×104) (1.44) (1.75)

Kakwani (1980) -0.68 -1.59 -1.22 3.4 14.47 17.59 41
(0.13) (2.28) (0.46) (0.99) (17.57) (3.05)

Maddala and Singh (1977) 40.3×104 -2.6 -2.61 −41×105 39.01 40.63 83
(11×106) (0.48) (0.31) (14×107) (4) (1.98)

Note: bootstraped standard errors in parentheses.
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3 DATA AND RESULTS

Mean and median values of the elasticities are reported in table 5.

Table 5: Mean value of growth and Gini elasticities of P0, P1 and P2: valid common

sample.

Distribution Growth elasticity Gini elasticity
P0 P1 P2 P0 P1 P2

Lognormal -4.09 -4.42 -4.67 56.12 67.31 78.14
(0.2) (0.23) (0.25) (5.74) (6.08) (6.07)

Gamma -1.66 -1.75 -1.81 18.33 27.49 36.57
(0.08) (0.09) (0.09) (1.55) (2.23) (2.48)

Weibull -1.24 -1.3 -1.34 12.52 21.52 30.5
(0.05) (0.05) (0.06) (0.87) (1.2) (1.83)

Fisk -2.16 -2.29 -2.36 22.58 31.62 40.62
(0.05) (0.05) (0.05) (1.42) (1.92) (2.45)

Beta 2 -3.12 -3.39 -3.58 34.24 44.05 53.66
(0.25) (0.26) (0.27) (4.38) (4.65) (4.96)

Singh-Maddala -1.85 -1.98 -2.05 18.07 27.12 36.12
(0.06) (0.06) (0.06) (1.05) (1.44) (1.81)

Dagum -1.75 -1.88 -1.96 16.33 25.37 34.38
(0.09) (0.09) (0.1) (1.17) (1.43) (1.76)

Gaffney et al. (1980) -2 -2.01 -2.09 18.29 27.09 36.11
(0.06) (0.07) (0.07) (1.1) (1.31) (1.9)

Fernandez et al. (1991) -1.77 -1.89 -1.96 17 26.03 35.03
(0.43) (0.07) (0.08) (0.99) (1.52) (1.55)

Maddala and Singh (1977) -2.25 -2.46 -2.61 21.5 30.9 40.17
(0.16) (0.26) (0.29) (1.69) (2.11) (2.18)

Note: bootstraped standard errors in parentheses. Common sample: 82.5% of initial obser-
vations; mean income: 6,963 $PPP; mean Gini: 0.39.

Differences between mean elasticities still remain important and frequently significant

at the traditional level. In the case of the growth elasticity of the poverty headcount, values

are ranged from −4.09 for the lognormal distribution to −1.24 for the Weibull distribution.

However, as noted earlier, distributions generally exhibit different behaviors on the tails. As

the absolute values of the elasticities of poverty increase rapidly with mean income, the dif-

ferences stated in table 4 may only result from extreme values of the calculated elasticities.

To “control” for these extreme values, we reported the median for each elasticity, functional

form and poverty measure in table 6. Values are less heterogeneous, but we still notice sig-

nificant differences.

In both tables 5 and 6, it appears that the lognormal distribution always provide the

largest absolute mean and median values of both growth and Gini elasticities. On the con-

trary, lowest absolute values are provided by the Weibull distribution. However, even if most

distributions lead to average growth elasticities close to 2 — a common value in the poverty-

related literature — whatever poverty measure is considered, we cannot tell which value is
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3 DATA AND RESULTS

Table 6: Median value of growth and Gini elasticities of P0, P1 and P2: valid common

sample.

Distribution Growth elasticity Gini elasticity
P0 P1 P2 P0 P1 P2

Lognormal -2.66 -3.05 -3.34 13.01 20.56 27.66
(0.2) (0.2) (0.21) (1.3) (1.66) (1.97)

Gamma -1.43 -1.54 -1.6 6.1 12.47 18.3
(0.12) (0.13) (0.12) (0.69) (0.87) (1.04)

Weibull -1.26 -1.29 -1.32 5.46 11.3 17.14
(0.08) (0.08) (0.08) (0.44) (0.73) (0.97)

Fisk -2.28 -2.39 -2.45 10.75 16.54 22.44
(0.08) (0.09) (0.08) (0.75) (0.98) (1.26)

Beta 2 -2.35 -2.58 -2.71 12.14 19.31 26.24
(0.11) (0.11) (0.12) (1.28) (1.6) (1.9)

Singh-Maddala -1.86 -1.92 -1.97 9.11 15.14 21.15
(0.06) (0.07) (0.06) (0.69) (1) (1.37)

Dagum -1.65 -1.7 -1.75 8.32 14.31 20.14
(0.09) (0.09) (0.1) (0.67) (0.97) (1.21)

Gaffney et al. (1980) -1.96 -1.92 -1.97 9.7 15.29 21.19
(0.07) (0.07) (0.08) (0.63) (0.97) (1.39)

Fernandez et al. (1991) -1.73 -1.78 -1.84 8.5 14.48 20.34
(0.4) (0.08) (0.08) (0.69) (0.99) (1.24)

Maddala and Singh (1977) -2.03 -2.15 -2.21 10.75 18.16 24.22
(0.21) (0.17) (0.21) (1.29) (1.55) (2)

Note: bootstraped standard errors in parentheses. Common sample: 82.5% of initial obser-
vations; mean income: 6,963 $PPP; mean Gini: 0.39.
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4 WHICH DISTRIBUTION SHOULD WE CHOOSE?

the good one. Thus, we need to use some criterion to choose between the different func-

tional forms the one that is the most appropriate for poverty analysis.

4 Which distribution should we choose?

As different distributions imply different results for the elasticities of poverty, the question

is now to choose the distribution which corresponds best to the empirical distributions of

our data set. We assume that we should converge to the true value of the elasticities as

the quality of the fit improves. In the statistical size distribution literature, the traditional

approach consists in using statistics based on the regression errors. In this way, we calculate

the following traditional statistics of goodness-of-fit:

ssr =
N
∑

i=1

(

L(pi )− L̂(pi )
)2

, (11)

sae =
N
∑

i=1

∣

∣L(pi )− L̂(pi )
∣

∣ , (12)

with L̂ standing for the estimated Lorenz curve.

A problem with these sums of squared (ssr ) and absolute (sae) errors is that all errors

are given the same weight. As Datt (1998) notes we are only interested in errors up to the

value of the headcount index for the purpose of poverty analysis. In this way, he proposed

using the following partial ssr :

pssr =
n
∑

i=1

(

L(pi )− L̂(pi )
)2

, (13)

with n corresponding to the first population quantile where pn Ê P̂0. However, in the par-

ticular case of the headcount index, we are only interested in the quality of the fit in the

vicinity of the estimated headcount17. Thus, we propose a measure based on squared er-

ror with weight decreasing with the distance from the estimated value of the headcount. To

make comparisons feasible between each functional form, we normalize the measure by the

sum of weights. It also allows us to do comparisons with the traditional ssr statistic. This

weighted ssr is:

w ssr =
∑N

i=1

(

L(pi )− L̂(pi )
)2 (

1−|pi − P̂0|
)2

∑N
i=1

(

1−|pi − P̂0|
)2

. (14)

However, these criteria just focus on the precision of the estimation, but the use of more

flexible functional forms may lead to an improvement of the fit that is not sufficient to com-

pensate for the loss of degrees of freedom. In order to compare non-nested models while

17Remember that the headcount is defined as the point of the Lorenz curve where the slope is equal to the
ratio of the poverty line to mean income, as in equation (9). So its elasticities depend only on the form of the
Lorenz curve close to the estimated headcount.
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4 WHICH DISTRIBUTION SHOULD WE CHOOSE?

penalizing for the addition of new parameters, we can use the Akaike and Schwartz infor-

mation criteria (cf. (Gujarati 2004)). These measures are respectively:

ai c = e2K /N

∑N
i=1

(

L(pi )− L̂(pi )
)2

N
(15)

bi c = N K /N

∑N
i=1

(

L(pi )− L̂(pi )
)2

N
(16)

where K is the number of estimated parameters.

To ease the comparison of the average value of these different statistics between each

functional form, we computed the ratios of mean and median statistics for each distribu-

tion to the mean and median of the best-fitted distribution. Results are shown in table 7 for

the whole sample (including non-valid estimations) and in table 8 for our restricted sam-

ple. It appears that all two-parameter distributions (Pareto, lognormal, gamma, Weibull, Fisk

and Chotikapanich 1993) performs very poorly in comparison with three-parameter distri-

butions (beta 2, Singh-Maddala, Dagum, Kakwani and Podder 1973, Gaffney et al. 1980 and

Fernandez et al. 1991) and four-parameter distributions (Maddala and Singh 1977, Arnold

and Villaseñor 1989 and Kakwani 1993). In particular, we can see that the lognormal is av-

erage about 5 to 10 times less precise than Kakwani (1980) and Maddala and Singh (1977).

This result is not surprising since a single inequality parameter can hardly account for the

observed heterogeneity of income distributions. The use of the Akaike and Schwartz infor-

mation criteria is translated into a fall of the ratios of goodness of fit, but still justifies leaving

two-parameter distributions in favor of more flexible functional forms.

Despite the obvious superiority of some functional forms, in particular the Kakwani (1980)

and Maddala and Singh (1977) forms, we cannot reject the other distributions. If a distribu-

tion generally poorly fit the data, it does not mean that the fit is systematically poor. To get a

more precise picture of the respective performance of each functional form, we ranked the

different valid estimations for each observed distribution by their respective value for each

statistic. The frequency18 of first ranking and the median rank of each functional form are

reported in table 9. We note that, even if two-parameter distributions are most of the time

outperformed by more flexible functional forms, they sometime fit better than more flexible

functional forms. In particular, the lognormal distribution is the best choice for 2.7% of the

observed income distributions, according to our w ssr statistic. So lognormality is not the

rule, but it can be the exception.

Before turning back to elasticities, we have to notice that the observed ranking inside

each family of functional forms is rather surprising. An important number of studies have

insisted on the merits of the different functional forms used in the present study but com-

prehensive comparisons of functional forms for income distributions and Lorenz curve are

18The counts of ranking for each functional form and each criterion are reported in tables 13 to 17. The
number of observations in table 15 differs from those of the other tables since per capita income informations
are missing for about 250 observations. Since calculation of the w ssr statistic requires this information, the
numbers of observations for the ranks are lower.
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Table 7: Ratios of goodness-of-fit.

Distribution ssr sae w ssr ai c bi c
Mean Median Mean Median Mean Median Mean Median Mean Median

Pareto 98.82 133.79 14.55 15.34 112.10 161.57 61.75 101.54 60.10 93.20
Lognormal 8.92 4.51 3.26 2.50 9.57 4.88 5.91 3.74 5.72 3.41
Gamma 30.17 20.16 6.53 5.24 33.92 21.86 18.71 17.28 18.23 15.57
Weibull 32.07 31.47 7.43 6.99 35.50 35.26 20.03 26.21 19.50 23.90
Fisk 9.50 5.03 3.37 2.56 9.10 4.87 6.31 3.88 6.10 3.60
Beta 2 2.29 1.30 1.51 1.29 2.56 1.36 2.49 1.29 2.31 1.23
Singh-Maddala 1.88 1.38 1.40 1.30 1.97 1.56 1.63 1.18 1.59 1.13
Dagum 1.79 1.49 1.49 1.36 1.97 1.75 1.52 1.30 1.49 1.25
Kakwani and Podder (1973) 89.82 70.88 8.86 8.08 65.35 16.58 64.76 69.51 65.13 64.59
Arnold and Villaseñor (1989) 22032.78 1.40 12.92 1.28 113.35 1.31 49939.50 1.39 42958.82 1.38
Chotikapanich (1993) 48.11 34.53 7.90 6.46 53.90 42.35 29.45 28.88 28.73 26.08
Gaffney et al. (1980) 1.45 1.34 1.33 1.26 1.57 1.48 1.23 1.13 1.21 1.09
Fernandez et al. (1991). 1.64 1.52 1.47 1.40 1.84 1.87 1.38 1.29 1.35 1.24
Kakwani (1980) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Maddala and Singh (1977) 1.07 1.05 1.06 1.07 1.06 1.04 1.12 1.05 1.11 1.04
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Table 8: Ratios of goodness-of-fit (restricted valid sample).

Distribution ssr sae w ssr ai c bi c
Mean Median Mean Median Mean Median Mean Median Mean Median

Lognormal 8.49 4.41 3.15 2.37 10.21 5.01 5.74 3.81 5.54 3.51
Gamma 36.59 20.31 6.69 4.93 40.49 20.54 23.31 17.23 22.65 15.96
Weibull 38.94 30.63 7.61 6.55 43.40 34.05 25.03 26.35 24.29 24.43
Fisk 7.69 4.58 3.05 2.33 7.68 4.55 5.32 3.55 5.12 3.28
Beta 2 1.77 1.21 1.36 1.17 2.22 1.28 1.83 1.20 1.72 1.14
Singh-Maddala 1.36 1.29 1.26 1.19 1.50 1.46 1.12 1.10 1.10 1.06
Dagum 1.60 1.38 1.37 1.25 1.85 1.63 1.30 1.17 1.28 1.14
Gaffney et al. (1980) 1.35 1.23 1.23 1.15 1.49 1.38 1.10 1.06 1.08 1.02
Fernandez et al. (1991) 1.52 1.40 1.37 1.27 1.72 1.72 1.22 1.21 1.20 1.17
Maddala and Singh (1977) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table 9: Goodness of fit: frequency of first ranking and median rank.

Distribution Frequency of first ranking (%) Median rank

ssr sea w ssr ai c bi c ssr sea w ssr ai c bi c
Pareto 0.0 0.0 0.1 0.1 0.1 12 13 12 12 12
Lognormal 1.2 2.4 2.7 9.3 10.4 8 8 8 8 8
Gamma 0.9 0.7 1.0 5.0 5.3 9 9 9 9 9
Weibull 0.2 0.3 0.3 1.0 1.2 10 10 10 10 10
Fisk 0.0 1.0 0.3 4.6 5.3 8 8 8 8 8
Beta 2 17.8 16.5 20.0 11.9 13.4 3 3 4 4 4
Singh-Maddala 8.9 8.5 6.5 13.0 12.6 4 4 5 3 3
Dagum 6.9 7.5 5.3 7.9 8.0 5 5 6 5 5
Kakwani and Podder (1973) 0.3 0.4 0.8 0.2 0.3 12 12 11 12 12
Arnold and Villaseñor (1989) 5.9 6.4 7.8 5.3 5.1 4 3 3 4 5
Chotikapanich (1993) 0.3 0.3 0.3 0.4 0.4 12 12 12 12 12
Gaffney et al. (1980) 3.5 5.5 5.4 10.4 9.8 4 4 4 4 4
Fernandez et al. (1991) 4.2 4.0 3.9 7.8 7.9 6 6 6 6 5
Kakwani (1980) 21.0 19.9 20.3 10.6 8.7 1 1 2 2 3
Maddala and Singh (1977) 29.0 26.7 25.5 12.5 11.6 2 2 2 4 4
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5 THE LOGNORMAL CASE AND THE MOST PLAUSIBLE ELASTICITIES

scarce. Moreover, they rarely mix classical distributions and ad hoc Lorenz curves19. Us-

ing 82 distribution data sets at various years for 23 developed and middle-income coun-

tries, Bandourian et al. (2002) observed that the Weibull and Dagum were the best-fitting

models for the two- and three-parameter distribution family, when opposed to the gamma,

lognormal, generalized gamma, beta 1, beta 2 and Singh-Maddala distributions. Our re-

sults suggest that Fisk and lognormal distributions are the best two-parameter models and

the Singh-Maddala and Gaffney et al. (1980), the best three-parameter models. For ad hoc

Lorenz curves comparisons, Cheong (2002) compared the Kakwani and Podder (1976), Kak-

wani (1980), Gaffney et al. (1980), Fernandez et al. (1991) and Chotikapanich (1993) func-

tional forms on US data from 1977 to 1983 and noticed that Gaffney et al. (1980) and Kak-

wani (1980) were the most powerful models. In the present study, we find that Kakwani

(1980) is the functional form which generally fits best to our sample of distributions. How-

ever, for poverty analysis, we should prefer Maddala and Singh (1977) and Gaffney et al.

(1980) forms since definition intervals are larger.

5 The lognormal case and the most plausible elasticities

In a recent paper, Lopez and Servèn (2006), using the Dollar and Kraay (2002) database, con-

cluded that lognormality cannot be rejected for the estimation of income distributions. So,

even if the lognormal distribution does not fit as well income distributions as other forms

do, it may produce reasonable values for the elasticities of poverty. Nevertheless preceding

results (cf tables 4 to 6) seem to contradict this assertion. To test this hypothesis, we pro-

pose a comparison between estimated lognormal elasticities and the values which seems

the most plausible for each observation. To get these values, we simply keep the estimated

elasticity corresponding to the best fitting20 model for each observation. The composition of

these series of elasticities is given by the first three columns of table 9. Thus, we get growth

and Gini elasticities series for our different poverty measures from the ssr , sae and w ssr

statistics. Summary statistics for these series are given in table 10. Since we are only inter-

ested in the quality of the fit in the vicinity of the estimated headcount, the mixed-series

based on the w ssr criterion will be our preferred series.

It appears that lognormal elasticities are most of the time higher in absolute value than

those obtained in the mixed series. On average, the lognormal elasticities are about 1 to 2

percentage points higher in absolute value for the growth elasticities. Differences in Gini

elasticities are really striking, in particular for the headcount index. Under the lognormal-

ity assumption, the average elasticity is 78.43, twice larger than our preferred value of the

elasticity. Such a large difference cannot be attributed to extreme values since the same

19Most of the time, goodness-of-fit tests of ad hoc Lorenz curves include the lognormal distribution as a
benchmark, but never more performing distributions

20As a robustness test, we also designed series corresponding to estimations that were ranked second ac-
cording to our different statistics. Result for these second-best series do not differ from those obtained with
best-fitting series.
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Table 10: Summary statistics for the mixed series based on the ssr, sae and wssr statistics.

Statistics P0 P1 P2

ssr sea w ssr ssr sea w ssr ssr sea w ssr
Growth elasticities
Mean −2.44 −2.42 −2.90 −3.10 −3.08 −3.49 −3.25 −3.24 −3.67
Min −34.11 −34.11 −55.33 −51.03 −51.03 −55.72 −49.35 −49.35 −56.09
1st quartile −2.97 −2.93 −3.24 −3.55 −3.47 −3.79 −3.66 −3.60 −4.02
Median −1.54 −1.58 −1.74 −2.13 −2.12 −2.22 −2.20 −2.17 −2.34
3rd quartile −0.89 −0.90 −0.91 −1.26 −1.26 −1.29 −1.26 −1.26 −1.30
Max −0.01 −0.01 −0.01 −0.14 −0.14 −0.14 0.00 0.00 0.00
Std deviation 3.65 3.54 3.99 4.95 4.91 5.01 11.80 11.79 11.82
Gini elasticities
Mean 33.49 32.73 41.69 46.92 46.10 54.96 56.90 56.24 65.26
Min −0.31 −0.31 −0.31 0.00 0.00 0.00 0.06 0.06 0.06
1st quartile 1.30 1.30 1.30 4.03 4.03 3.99 6.52 6.49 6.52
Median 6.43 6.78 7.56 18.49 18.51 19.12 24.83 24.99 25.71
3rd quartile 37.00 37.45 41.12 58.96 58.76 62.53 74.20 74.20 77.96
Max 1887.65 1887.65 1887.65 1957.24 1957.24 1957.24 2026.43 2026.43 2026.43
Std deviation 94.55 90.67 98.76 104.72 101.09 109.29 177.56 175.39 180.84
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5 THE LOGNORMAL CASE AND THE MOST PLAUSIBLE ELASTICITIES

phenomenon is observed for median values. However, overestimation of the Gini elasticities

tends to shrink as the θ parameter of the FGT measure increases.

Overestimation is a major problem, but we can imagine that lognormal elasticities are

highly correlated with “true” elasticities, so that we can find the appropriate values of the

desired elasticities through a simple linear correction. Figure 2 clearly show that the corre-

lation between lognormal and the mixed series based on the w ssr criterion is rather low21

(from 0.3 to 0.5 depending on the elasticity and the goodness-of-fit criterion). The plots also

confirm that, on average, the lognormal assumption overestimates, in absolute value, the

growth and Gini elasticities of poverty. So, we should be extremely cautious with simula-

tions based on the lognormality assumption22.
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Note: Vertical and horizontal solid and dashed lines respectively correspond to mean and median values.

Figure 2: Comparison of the estimated elasticities of poverty between lognormal

distribution and wssr series.

Finally, even if the lognormal distribution is not satisfying for a correct prediction of the

magnitude of each elasticity, we may use it to compare the relative effectiveness of pure

growth and pure distributional policies to achieve poverty alleviation. In section 2.1 (equa-

tion 7), we showed that under assumption (4) the ratio of the growth to Gini elasticities is

21The same differences are observed with the mixed series based on the ssr and sae statistics. Plots are
reported on figures 6 and 7.

22Such risks are perfectly illustrated in CGE models by Boccanfuso et al. (2003)
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5 THE LOGNORMAL CASE AND THE MOST PLAUSIBLE ELASTICITIES

independent of the distribution23 when the headcount index is considered.This is not the

case for higher values of the θ parameter of the FGT class of poverty measures. In order to

check whether the lognormal assumption biases policy recommendations in favor of growth

or distributional objectives, we can use the ratio of the lognormal elasticities ratio to the one

corresponding to our best-fitting estimations. A value greater (lower) than unity for this pol-

icy bias ratio indicates that the lognormal assumption bias politics towards growth (inequal-

ity reduction). A kernel estimation of the density of this ratio for the P1 and P2 measures is

reported on figure 3.

P1

de
ns

ity

0.6 1.0 1.8

P2

0.5 1.0 2.0 4.0

Note: Vertical solid and dashed lines respectively correspond to mean and median values.

Figure 3: Gaussian kernel density of the policy bias ratio for P1 and P2 (lognormal

against best-fitting estimations).

As the mean and median value of the policy bias ratio are close to unity, it seems that

the use of the lognormality assumption does not systematically bias analysis in favor of a

particular kind of policy. However, the variance of this ratio is large, in particular for the

P2 measure. Under the lognormal hypothesis, we notice that the relative importance of the

growth elasticity can be overestimated or underestimated in excess of 50%. So we should be

cautious with the use of the lognormal distribution to estimate the growth-inequality trade-

off.

This large variance may be explained by the presence of high income countries in our

sample. As poverty defined with a 2 $ PPP poverty line is essentially a concern for low in-

come countries, it seems important to check if the mean value of our policy bias ratio and

its variance vary with the level of development. On figure 4, we can observe the result of a

non-parametric24 estimation of the mean of this ratio conditional to income per capita. The

gray area represents the 95% confidence interval of this conditional mean using a bootstrap

23Of course, this ratio is not independent of the distributional policy which can be used.
24Estimations are realized with a gaussian kernel. Bandwidth is chosen using the cross-validation procedure.
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6 CONCLUDING REMARKS

procedure. We notice that the estimated ratio is significantly different from unity for income

greater than $4000. So, when the ratio of the per capita income on the poverty line is greater

than 5, the use of the lognormal assumption bias our policy recommendations in favor the

growth objective. Surprisingly we also observe an under-estimation of the ratio for values in

the viciny of the poverty line.
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ra
tio

0.
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5

1.
0

2.
0

4.
0

500 5000 50000

Note: solid and dashed lines respectively correspond to mean and median values. The thick line corresponds to
the gaussian kernel estimation of the conditional mean of the political bias ratio. The gray area represents the
95% confidence interval of this conditional mean using a bootstrap procedure (500 replications, see note 16).

Figure 4: GDP per capita versus policy bias ratio for P1 and P2 (lognormal against

mixed-series wssr): non-parametric regression.

Finally, to test if the lognormality assumption imply some policy bias depending on the

degree of inequality, we also realized a non-parametric estimation of the mean of our policy

bias ratio conditional to the inequality degree. Results are reported on figure 5. We can see

that the relative effect of growth is over-estimated under the lognormality hypothesis when

the Gini coefficient is less than 0.45. Since more than 70% of our sample includes distribu-

tions which exhibits Gini index that are less than 0.45, this result cannot be considered as

trivial.

6 Concluding remarks

Throughout the present paper, we intended to answer the following questions. Which distri-

butional hypothesis is suitable for a good estimation of the growth and inequality elasticities

of poverty? What are the consequences of the use of a distributional assumption that does

not suit to the observed heterogeneity of empirical income distributions? These are impor-

tant questions since standard values of the elasticities of poverty are often used in applied

studies like Collier and Dollar (2001), although uncertainty is great concerning the real val-
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6 CONCLUDING REMARKS
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Note: solid and dashed lines respectively correspond to mean and median values. The thick line corresponds to
the gaussian kernel estimation of the conditional mean of the political bias ratio. The gray area represents the
95% confidence interval of this conditional mean using a bootstrap procedure (500 replications, see note 16).

Figure 5: Gini index versus policy bias ratio for P1 and P2 (lognormal against

mixed-series wssr): non-parametric regression.

ues. Attacking poverty in each developing country requires the design of policies that are

appropriate to the income level and to the degree of inequality of each one of them. With

no proper estimation of the trade-off between the intermediate objectives of growth and re-

distribution, we can doubt of the effectiveness of the policies that are recommended in order

to reach the MDG.

For the first question, we conclude that in the absence of very flexible functional forms

which parameters can easily be estimated, none of the tested distributions performs sys-

tematically better than the others for the description of observed income distributions, and

so for poverty analysis. Pragmatism is required and we have to choose for each distribution

the distributional assumption that fits best data. However, we can assert that two-parameter

distributions should not be used in cross-section studies. More flexible functional forms are

more appropriate for dealing with the heterogeneity of observed income distributions.

Our main result is that the use of poor distributional assumptions may induce some bi-

ases in the analysis of poverty. We chose to illustrate these biases with a comparison of the

elasticities obtained through the popular lognormality assumption with those correspond-

ing to the functional form that fits best each observed distribution. We notice that the use of

the lognormal distribution leads to an overestimation of the effects of growth and inequal-

ity reduction in terms of poverty alleviation. Consequences are probably worse concerning

the estimation of the relative size of these effects for the design of efficient policies aimed

at poverty reduction. In particular we showed that resorting to the lognormal hypothesis in-

troduces a significant bias in favor of growth oriented policies for high income or low and
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6 CONCLUDING REMARKS

moderately unequal countries. Such biases may explain why it seems so difficult to reach

the goals of poverty alleviation in many developing countries.
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6 CONCLUDING REMARKS

Appendix

Table 11: Distribution of the data in time and region.

Period EAP LAC NA MENA SA SSA EEAC WE Total
1950-54 4 7 0 1 11 0 0 4 27
1955-59 13 9 0 2 12 7 0 6 49
1960-64 23 29 0 3 15 8 5 21 104
1965-69 28 22 8 3 20 19 10 24 134
1970-74 35 36 11 2 17 1 9 39 150
1975-79 27 28 11 4 11 7 7 29 124
1980-84 32 27 10 1 9 7 8 46 140
1985-89 38 54 13 5 18 28 30 69 255
1990-94 49 70 13 6 6 58 43 74 319
1995-99 49 83 7 11 8 38 71 131 398
2000-02 11 20 5 3 3 7 12 81 142
Total 309 385 78 41 130 180 195 524 1842
EAP: East Asia and Pacific; LAC: Latin America and Caribbean; NA: North America;
MENA: Middle East and North Africa; SA: South Asia; SSA: Sub-Saharan Africa; EECA:
East Europe and Central Asia; WE: Western Europe.

Table 12: Descriptive statistics of the dataset.

Statistic GDP per capita ($PPP) Gini coefficient
Mean 7705,21 0,39
Minimum 138,77 0,17
1st quartile 1667,04 0,32
Median 4673,94 0,37
3rd quartile 11522,19 0,47
Maximum 48967,56 0,79

27

ha
ls

hs
-0

05
62

64
8,

 v
er

si
on

 1
 - 

3 
Fe

b 
20

11



6
C

O
N

C
LU

D
IN

G
R

E
M

A
R

K
S

Table 13: Goodness-of-fit rank: ssr statistic.

Distribution 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Pareto 0 1 0 0 1 4 11 16 26 55 32 83 91 70 37
Lognormal 22 85 62 90 239 98 227 278 433 256 41 12 1 0 0
Gamma 16 39 35 38 58 254 117 153 302 324 450 58 0 0 0
Weibull 3 10 14 26 28 63 277 113 251 486 234 238 86 14 1
Fisk 0 1 34 129 123 133 241 442 296 233 128 55 28 1 0
Beta 2 328 332 343 149 72 193 236 143 41 6 1 0 0 0 0
Singh-Maddala 165 257 352 384 310 243 101 32 0 0 0 0 0 0 0
Dagum 127 208 202 285 302 287 262 116 51 4 0 0 0 0 0
Kakwani and Podder (1973) 6 4 0 0 0 0 5 2 13 38 165 121 131 134 3
Arnold and Villaseñor (1989) 108 123 67 94 73 53 36 21 12 6 1 2 0 0 0
Chotikapanich (1993) 5 3 0 4 2 1 2 3 10 33 153 325 225 2 0
Gaffney et al. (1980) 65 184 281 372 377 167 43 4 0 0 0 0 0 0 0
Fernandez et al. (1991) 77 126 147 155 190 313 260 175 58 1 0 0 0 0 0
Kakwani (1980) 387 95 79 48 26 11 4 2 0 0 0 0 0 0 0
Maddala and Singh (1977) 535 376 228 70 43 24 22 10 3 0 0 0 0 0 0
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Table 14: Goodness-of-fit rank: sea statistic.

Distribution 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Pareto 0 1 0 0 2 4 11 15 23 49 26 70 96 89 41
Lognormal 45 68 42 82 224 116 236 264 428 275 39 24 1 0 0
Gamma 12 29 32 36 53 267 135 145 307 332 449 45 2 0 0
Weibull 6 9 10 23 33 58 278 118 239 472 209 218 144 27 0
Fisk 19 31 63 147 129 144 223 384 280 189 123 72 34 6 0
Beta 2 304 326 330 166 71 200 232 172 37 5 1 0 0 0 0
Singh-Maddala 156 256 360 350 316 247 120 39 0 0 0 0 0 0 0
Dagum 139 222 205 261 313 276 257 113 51 5 2 0 0 0 0
Kakwani and Podder (1973) 7 3 1 0 0 1 4 7 32 53 169 102 144 99 0
Arnold and Villaseñor (1989) 118 126 85 78 84 42 27 20 8 6 1 1 0 0 0
Chotikapanich (1993) 5 3 1 4 1 0 1 5 11 48 186 362 141 0 0
Gaffney et al. (1980) 101 172 253 369 354 177 59 8 0 0 0 0 0 0 0
Fernandez et al. (1991) 73 168 163 139 172 266 234 202 77 8 0 0 0 0 0
Kakwani (1980) 367 94 66 71 30 14 10 0 0 0 0 0 0 0 0
Maddala and Singh (1977) 492 336 233 118 62 32 17 18 3 0 0 0 0 0 0
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Table 15: Goodness-of-fit rank: wssr statistic.

Distribution 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Pareto 1 0 3 2 1 1 15 15 32 60 50 80 69 63 35
Lognormal 42 82 81 55 108 69 188 219 347 285 73 23 6 0 0
Gamma 15 32 16 40 33 110 83 127 258 280 370 184 30 0 0
Weibull 4 9 14 13 16 17 92 86 225 386 265 208 182 61 0
Fisk 5 17 54 96 70 110 146 368 282 150 136 92 40 12 0
Beta 2 316 295 224 120 66 135 195 162 53 12 0 0 0 0 0
Singh-Maddala 102 144 245 294 313 268 165 46 1 0 0 0 0 0 0
Dagum 83 134 130 153 258 265 282 172 79 16 6 0 0 0 0
Kakwani and Podder (1973) 12 7 2 2 5 6 14 46 88 124 85 80 77 68 6
Arnold and Villaseñor (1989) 123 116 63 98 69 49 33 20 10 7 6 2 0 0 0
Chotikapanich (1993) 5 3 0 4 1 6 0 5 20 110 214 225 158 17 0
Gaffney et al. (1980) 86 156 262 369 384 176 54 5 1 0 0 0 0 0 0
Fernandez et al. (1991) 61 115 131 135 158 309 269 217 96 11 0 0 0 0 0
Kakwani (1980) 321 137 93 62 25 7 4 3 0 0 0 0 0 0 0
Maddala and Singh (1977) 402 331 260 135 71 50 38 19 4 1 0 0 0 0 0
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Table 16: Goodness-of-fit rank: aic statistic.

Distribution 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Pareto 1 0 2 1 0 3 12 15 25 55 33 82 96 74 28
Lognormal 172 84 57 70 207 125 171 250 407 251 39 11 0 0 0
Gamma 92 28 31 34 53 258 102 132 283 323 450 58 0 0 0
Weibull 18 26 16 22 25 56 270 113 243 483 233 238 86 15 0
Fisk 85 46 83 121 128 121 186 369 266 245 119 47 27 1 0
Beta 2 220 291 318 209 100 135 292 187 75 13 4 0 0 0 0
Singh-Maddala 239 315 373 296 267 194 117 42 1 0 0 0 0 0 0
Dagum 145 265 198 281 252 244 257 139 55 7 1 0 0 0 0
Kakwani and Podder (1973) 4 5 0 1 0 0 2 5 11 24 170 131 127 129 13
Arnold and Villaseñor (1989) 98 86 51 70 62 72 73 42 28 7 4 2 1 0 0
Chotikapanich (1993) 8 0 1 6 1 1 4 1 10 32 152 325 225 2 0
Gaffney et al. (1980) 191 271 246 310 309 128 35 3 0 0 0 0 0 0 0
Fernandez et al. (1991) 144 121 162 151 163 277 229 173 80 2 0 0 0 0 0
Kakwani (1980) 196 134 94 84 72 44 21 6 1 0 0 0 0 0 0
Maddala and Singh (1977) 231 172 212 188 205 186 73 33 11 0 0 0 0 0 0
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Table 17: Goodness-of-fit rank: bic statistic.

Distribution 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Pareto 1 0 3 0 0 3 11 16 25 55 33 82 97 74 27
Lognormal 191 74 58 69 209 121 169 248 408 249 37 11 0 0 0
Gamma 97 28 28 35 50 257 100 132 286 323 450 58 0 0 0
Weibull 22 22 16 24 23 57 272 108 245 483 233 238 86 15 0
Fisk 98 50 82 128 115 123 186 357 266 243 120 48 27 1 0
Beta 2 247 320 318 189 92 127 292 182 60 13 4 0 0 0 0
Singh-Maddala 233 326 368 309 257 197 106 47 1 0 0 0 0 0 0
Dagum 148 263 204 294 239 229 260 140 59 6 2 0 0 0 0
Kakwani and Podder (1973) 6 3 0 1 0 0 4 3 11 26 169 130 126 129 14
Arnold and Villaseñor (1989) 94 76 51 68 57 85 63 52 35 7 5 2 1 0 0
Chotikapanich (1993) 7 1 1 6 0 2 4 2 9 32 152 325 225 2 0
Gaffney et al. (1980) 180 282 258 311 302 121 37 2 0 0 0 0 0 0 0
Fernandez et al. (1991) 145 121 169 155 171 266 218 171 81 5 0 0 0 0 0
Kakwani (1980) 161 124 95 80 111 46 27 7 1 0 0 0 0 0 0
Maddala and Singh (1977) 214 154 193 175 218 210 95 43 9 0 0 0 0 0 0
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6 CONCLUDING REMARKS
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Note: Vertical and horizontal solid and dashed lines respectively correspond to mean and median values.

Figure 6: Comparison of the estimated elasticities of poverty between lognormal

distribution and ssr series.

33

ha
ls

hs
-0

05
62

64
8,

 v
er

si
on

 1
 - 

3 
Fe

b 
20

11



6 CONCLUDING REMARKS

−12 −8 −6 −4 −2 0

−
15

−
10

−
5

0

Growth elasticity of P0

sea elasticities

lo
gn

or
m

al

0 50 100 150 200 250

0
10

0
20

0
30

0
40

0
50

0

Gini elasticity of P0

sea elasticities

lo
gn

or
m

al

−15 −10 −5 0

−
15

−
10

−
5

0

Growth elasticity of P1

sea elasticities

lo
gn

or
m

al

0 50 100 150 200 250 300

0
10

0
20

0
30

0
40

0
50

0

Gini elasticity of P1

sea elasticities

lo
gn

or
m

al

−15 −10 −5 0

−
20

−
15

−
10

−
5

0

Growth elasticity of P2

sea elasticities

lo
gn

or
m

al

0 50 100 200 300

0
10

0
20

0
30

0
40

0
50

0

Gini elasticity of P2

sea elasticities

lo
gn

or
m

al

Note: Vertical and horizontal solid and dashed lines respectively correspond to mean and median values.

Figure 7: Comparison of the estimated elasticities of poverty between lognormal

distribution and sae series.
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