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Abstract

This work empirically examines six structural models of theterm structure of credit risk
spreads: Merton (1974), Longstaff & Schwartz (1995) (with and without stochastic in-
terest rates), Leland & Toft (1996), Collin-Dufresne & Goldstein (2001), and a constant
elasticity of variance model. The conventional approach totesting structural models
has involved the use of observable data to proxy the latent capital structure process,
which may introduce additional specification error. This study extends Jones, Mason &
Rosenfeld (1983) and Eom, Helwege & Huang (2004) by using implicit estimation of
key model parameters resulting in an improved level of modelfit. Unlike prior studies,
the models are fitted from the observed dynamic term structure of firm-specific credit
spreads, thereby providing a pure test of model specification. The models are imple-
mented by adapting the method of Duffee (1999) to structuralcredit models, thereby
treating the capital structure process is truly latent, andsimultaneously enforcing cross-
sectional and time-series model constraints. Quasi-maximum likelihood parameter esti-
mates of the capital structure process are obtained via the extended Kalman filter applied
to actual market trade prices on 32 firms and 200 bonds for the period 1994 to 2000.

We find that including an allowance for time-variation in themarket liquidity pre-
mium improves model specification. A simple extension of theMerton (1974) model
is found to have the greatest prediction accuracy, althoughall models performed with
similar prediction errors. At between 28.8 to 34.4 percent,the root mean squared error
of the credit spread prediction is comparable with reduced-form models. Unlike Eom,
Helwege & Huang (2004) we do not find a wide dispersion in modelprediction errors,
as evidenced by an across model average mean absolute percentage error of 22 percent.
However, in support of prior studies we find an overall tendency for slight underpredic-
tion, with the mean percentage prediction error of between -6.2 and -8.7 percent. Un-
derprediction is greatest with short remaining bond tenor and low rating. Credit spread
prediction errors across all models are non-normal, and fatter tailed than expected, with
autocorrelation evident in their time series.

More complex models did not outperform the extended Merton (1974) model; in
particular stochastic interest-rate and early default accompanied by an exogenous write-
down rate appear to add little to model accuracy. However, the inclusion of solvency ra-
tio mean-reversion in the Collin-Dufresne & Goldstein (2001) model results in the most
realistic latent solvency dynamics as measured by its implied levels of asset volatility,
default boundary level, and mean-reversion rate. The extended Merton (1974) is found
to imply asset volatility levels that are too high on averagewhen compared to observed
firm equity volatility.

We find that the extended Merton (1974) and the Collin-Dufresne & Goldstein (2001)
models account for approximately 43 percent of the credit spread on average. For BB
rated trades, the explained proportion rises to 55 to 60 percent. For investment grade
trades, our results suggest that the amount of the credit spread that is default related is
approximately double the previous estimate of Huang & Huang(2003).

Finally, we find evidence that the prediction errors are related to market-wide factors
exogenous to the models. The percentage prediction errors are positively related to the
VIX and change in GDP, and negatively related to the Refcorp-Treasury spread.
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Chapter 1

Introduction

Understanding credit risk is central to the smooth operation of capital markets and sta-

bility of the banking system. Credit risk is the risk of unexpected value changes of

debt instruments due to changes in perceived default risk ofthe issuer, that is, the firm’s

inability to meet promised debt payments in a timely manner.Financial claims that rep-

resent a promise to pay include a risk premium to compensate the holder for lost value

in the event of default by the obligor. Structural credit models describe default risk in

terms of unexpected movements in total firm value, where total firm value comprises the

market value of debt and equity instruments issued by the firm.

This study presents empirical tests of alternative structural models of the defaultable

bond credit spread, in which we adopt a novel approach of estimating the models directly

from observed credit spreads. We incorporate a test of the Merton (1974, hereafter

Merton) model, and compare its predictive accuracy againsta representative sample of

recent theoretical extensions that have relaxed the strongassumptions of the original

Merton model.

Robert Merton first proposed a structural approach in 1974 bydrawing on the sem-

inal option valuation model of Black & Scholes (1973). Sincethen, there has been a

plethora of theoretical extensions that can be jointly classified as structural models. The

essential characteristic of a structural model is that the default risk premium is a function

of the potential for the latent firm value process to reach a lower default boundary. In this

respect, the problem of defaultable debt valuation is akin to the problem of valuing an

option in which the unobserved firm value is the underlying variable, and an unobserved

lower value of the firm is the strike price.

Structural credit models are central to financial theory andcredit risk-management

practice. For example, because structural models relate observable debt prices to as-

sumptions about the firm’s asset risk, leverage, and dynamicbehaviour of management,

they offer a link between capital structure theory and assetvaluation theory. Testing

alternative structural models is an indirect test of capital structure theory to the extent

that the market anticipates and prices into the term structure of credit spreads, expected

1



2 CHAPTER 1. INTRODUCTION

management behaviour.

For finance practitioners, the recent growth in traded credit derivative markets and

development of portfolio credit models has been supported by use of variations of the

Merton model. For example, one of the most widely used commercial structural models

is Moody’s-KMV Credit Monitor, which is used by banks and traders to guide risk-debt

valuation and the risk management of debt portfolios. As observed in the financial press,

‘... Merton models are now so frequently used that they are actually driving the credit

market’, (Ferry 2003).

Importantly, structural models also hold a central position in modelling the adequacy

of bank capital and estimation of bank solvency. Crouhy, Galai & Mark (2000) describe

a common method for constructing economic capital models for credit risk based on

particular assumptions about multiple obligor default consistent with the Merton model.

Recently, this method of capital modelling has been embedded in global bank regulation

issued by the Bank for International Settlements, commonlyknown as Basel II. Under

recent changes, the minimum capital formula to be applied byall internationally active

advanced banks is based on a result obtained by Gordy (2002).He derives a closed-form

solution for the risk weighting of each loan in a bank’s portfolio under the assumption

that joint defaults are explained by a structural model incorporating a single source of

common firm-asset return.

The competing method of defaultable debt valuation is termed ‘reduced-form’ and

is exemplified by Jarrow & Turnbull (1995), Madan & Unal (1999), Duffie & Single-

ton (1999), Duffee (1999), and Bakshi, Madan & Zhang (2001).Reduced-form models

value defaultable debt instruments by assuming that the firmmay default at any instant

of time. The rate of instantaneous default is assumed to evolve stochastically through

time by an exogenously specified stochastic process. There is no relationship assumed

between the instantaneous default rate process and firm value. Reduced-form models of-

fer mathematical tractability, and have achieved success at valuing defaultable debt. For

example, Duffee (1999) reports an ability to predict bond yields reasonably well using

a translated two-factor square-root diffusion model of theinstantaneous default rate. A

similar result is reported by Bakshi et al. (2001) who consider alternative specifications

and conclude that reduced-form models, which include leverage and book-to-market ra-

tio firm-specific information, offer the best fit.

However, reduced-form models do not attempt to explain credit spreads by firm cap-

ital structure theory and are therefore less rich in their implications. We therefore focus

attention on empirical testing of structural models in preference to reduced-form models.

Despite the central role of Merton-style structural modelsin financial theory, market

practice, and global bank regulation, the models have to date been unable to accurately

predict observed levels of credit spreads. The empirical weakness of the model at asset

valuation is well established in a series of studies. Commencing with Jones, Mason &
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Rosenfeld (1983, hereafter JMR), who find that a Merton-typemodel is unable to price

investment-grade corporate bonds better than a naive modelthat assumes no risk of de-

fault. The Merton model is found to generally overvalue bonds and underestimate credit

spreads. Pricing errors are related to equity variance, leverage, maturity, and time pe-

riod. A subsequent study by Lyden & Saraniti (2000, hereafter LYS) tests whether the

Longstaff & Schwartz (1995, hereafter LS) model, which includes a more realistic spec-

ification of the default process and includes a stochastic risk-free rate, improves on the

performance of the Merton model. Their study is the first to explore the broader class of

structural models in a systematic manner. Like JMR they find an overall underprediction

of credit spreads with prediction errors related to coupon and remaining time to maturity

of the bond. Significantly, the LS model was found to not improve prediction accuracy.

Finally, the most comprehensive test of structural models was most recently conducted

by Eom, Helwege & Huang (2004, hereafter EHH). Using a similar method to JMR and

LYS, EHH test a version of the Merton model and four subsequent theoretical exten-

sions. Confirming the prior studies, the Merton model underpredicts credit spreads on

average, however, they also find that the other models tend tooverpredict credits spreads

on average. Valuation prediction accuracy is found to be very poor with the newer struc-

tural models tending to severely overstate credit spreads on firms with high leverage

or high asset volatility, yet underpredict credit spreads on safe bonds. Thus, it is well

founded in the extant literature that the Merton model underpredicts credit spreads, and

more so for short-tenor debt, and debt issued by default-remote ‘safe’ firms.

We therefore face the problem that the fundamental economicmodel for valuing

default risk, which has immense practical and social value in its application, has failed

to pass its most basic test; to explain real world credit spreads. Recently, a plethora of

theoretical extensions have been proposed to address the underprediction problem. A

line of inquiry pursued by the extant theoretical literature has been to relax the simplistic

assumptions of the Merton model. Notwithstanding, these theoretical enhancements, the

empirical literature has conspicuously lagged and failed to provide conclusive guidance

on which model is superior. Further, LYS and EHH’s results suggest that some of these

enhancements have not increased valuation accuracy over and above the original Merton

model.

Despite performing poorly at debt valuation, structural model predictions have been

found to be highly correlated with other measures of firm default risk. Ogden (1987)

uses probit analysis to regress firm credit ratings against firm volatility and leverage as

an indirect test of the Merton model. He finds that their two variable model explains 79

percent of the cross-sectional variation in issuer ratingsand the predicted credit spread

explains nearly 60 percent of the variation in observed market spreads. Delianedis &

Geske (1998) extract risk-neutral probabilities of default from the Merton and Geske

(1977) structural models and perform an event study with rating migrations. They find
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first that these implied probabilities of default, from bothstructural models, possess

significant and very early information about subsequent credit rating migrations. Tudela

& Young (2003) further show that the implied probabilities of default from a Merton-

style model are successful in discriminating between failing and non-failing rms. Their

implementation of the Merton approach outperforms a reduced-form model based solely

on company account data. Thus, practitioner use of structural models is supported by

these studies when used as an early indicator of default riskand rating migration, or for

assessing relative credit spreads between firms.

A possible reason for the contradictory performance of structural models may be due

to the common use of proxy variables to represent latent variables, thereby introducing

a source of estimation error. A proxy variable is a physical representation of a latent

variable that is used in place of indirect estimation of the latent variable. A proxy for

firm asset value is usually calculated as the sum of market value of equity and book

value of debt, with the default boundary arbitrarily set to be variously: the book value

of liabilities; the book value of debt; or, some proportion of either. The proxy method

has been extensively used in the extant empirical literature by JMR, LYS, EHH, and

partially by Huang & Huang (2003, hereafter HH). Since the total market value of the

firm is rarely traded, it is not possible to directly estimatethe stochastic process of the

firm through historical observation of the firm’s return. Similarly, it is even less clear

where the default boundary of the firm may be as this is not observable unless ex post

after the firm defaults.

In contrast, the reduced-form literature, has followed a different estimation approach.

With no theoretical relationship posited between the stochastic default process and firm

capital structure process, researchers have relied on implicit estimation of parameters

from observed bond prices. For example, estimation methodssuch as quasi maxi-

mum likelihood using the extended Kalman filter (Duffee 1999), or maximum likelihood

(Duffie, Pederson & Singleton 2000). These methods ensure that the models are cali-

brated with minimal average prediction bias. An obvious advantage of such an approach

is that the models are fitted as well as they can be to the data. The residual errors are

therefore related to model specification and not introducedby choice of proxy variable.

Maximum likelihood estimation methods have been applied ina limited way to struc-

tural credit models, and suggest that prediction errors canbe controlled to levels found in

reduced-form model implementations. Ericsson, Reneby & Wang (2003) fit a structural

model on the time-series of firm equity prices using a maximuma likelihood method

from Duan (2004). They test only one structural model specification but find predic-

tion errors to be smaller and distinctly less variable than those found in previous im-

plementations of structural and reduced-form models. Bruche (2005) repeats Ericsson

et al. (2003) and achieves a similar result with a non-linearsimulated maximum likeli-

hood method. He shows that a maximum likelihood method, using non-linear ltering,
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is superior to the exact maximum likelihood method of Ericsson et al. (2003) because

measurement error can be explicitly included, thus avoiding serious bias in structural

model parameter estimates. Given the presence of market micro-structure, taxes, and

price recording errors, it is unreasonable to assume zero measurement error. We adopt

a similar method to Bruche (2005) and include specific allowance for measurement er-

ror, but use the more widely practiced estimation method of the extended Kalman filter

(Cumby & Evans 1995, Claessens & Pennacchi 1996, Duffee 1999, Keswani 2005).

Secondly, the proxy method treats the capital structure of the firm as observable,

however, the firm’s observed debt-ratio is unlikely to be a sufficiently precise measure

of firm solvency to be accurate in debt valuation. In an examination of defaulted firms,

Davydenko (2005) reports that firms default, on average, when their assets are 72 percent

of the value of the face value of debt. However, as many as one-third default when asset

values are above this point, and an equal number of firms belowit avoid default for

at least a year. He concludes that, ‘even if boundary-based models can be calibrated

to predict the average probability of default, they are still likely to lack accuracy in

the cross-section.’ Further, in the presence of recapitalisation costs, Fischer, Heinkel

& Zechner (1989) show that firms will be unwilling to adjust their debt-ratios unless

there is a sufficiently large shock away from their desired target. The term structure of

a firm’s credit spreads contains information about expectedchanges to the firm’s future

debt levels, but in the presence of costly capital reorganisation costs, we can expect a

large cross-sectional variation in the credit spreads of longer dated bonds not explained

by current gearing ratios. A better method of estimation is to cast each model in state-

space form, in which the transitional density of the firm’s observed time-series of credit

spreads is represented by a measurement equation with error, that is dependent upon the

transition of the firm’s latent capital structure process. The latter is determined by the

theoretical form of the structural model and is implied by the observed pattern of credit

spreads.

Finally, another weakness of the extant empirical literature is the failure to control

for non-default related premiums. It is widely accepted that the credit spread contains

premiums for more than default risk, for example, tax and liquidity (Delianedis & Geske

2001, Elton, Gruber, Agrawal & Mann 2001). Without control for the these components

of the credit spread, the proxy estimation method will result in underpredicted credit

spreads, and a maximum likelihood method will overstate asset volatility and understate

solvency. To understand the influence of non-default components of the spread on model

estimates and performance, we fit the models with three different empirical equations:

no premium assumed as a base case; a constant premium per bond; and finally a constant,

and time-varying premium combined, where time-variation is controlled by inclusion of

the Refcorp ten year constant maturity spread in the measurement equation.

While Ericsson et al. (2003) and Bruche (2005) demonstrate the advantages of maxi-
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mum likelihood methods over the proxy estimation method, neither study systematically

tests a range of structural models. The question of whether theoretical developments

have improved the Merton model, remains open to question. There is therefore a gap in

the literature between the extant discussion of corporate structural model specification

by EHH, and the advantages of improved estimation techniques suggested by Erics-

son et al. (2003), Bruche (2005), and as implemented in the reduced-form literature by

(Duffee 1999).

Our hypothesis is that the apparent poor prediction accuracy observed in the ex-

tant empirical literature is the result of estimation methods that assume that the firm

asset process is observable, or is otherwise closely correlated with an observable proxy.

Furthermore, it is hypothesised that the prediction errorsevident from structural credit

models are related to omitted factors that can be inferred from the extant theoretical and

empirical evidence concerning the dynamic behavour of firm capital structure.

To test the first part of our hypothesis, we fit five different structural models similar

to EHH, but on firm specific term structure of credit spreads. Unlike the extant litera-

ture, we infer model parameters from the term structures directly, thereby avoiding the

potential errors introduced in model estimation from proxyvariables. We then compare

our prediction errors with those of EHH and HH. The second part of our hypothesis is

tested by regressing independent variables against the model prediction errors where the

selection of variables is guided by stylised facts gatheredfrom a review of the capital

structure literature.

This study extends EHH with the introduction of alternativeestimation methods and

data. We therefore continue the line of enquiry that commenced with JMR and LYS. Our

estimation method is a non-linear extended Kalman filter adapted from Duffee (1999)

for the use with structural models. A unique feature of our study is that we estimate

the models directly from firm-specific credit spreads measured across the term structure,

with constant and time-varying controls for the liquidity premium. Specifically, our

study introduces the following enhancements to the EHH method:

1. the use of high frequency real trade data. Frequent data observations are more

appropriate when estimating the specifications of the firm’scontinuous latent asset

process;

2. the use of more than one bond on issue by the firm. We fit the models to the term

structure of credit spreads thereby enforcing both cross-sectional valuation and

transitional distribution model constraints;

3. models are estimated via quasi maximum likelihood, with controls for unexplained

components of the credit spread, thereby ensuring the best possible fit to the data.

Any biases that remain are therefore attributable to model specification and not ad

hoc proxy variable selection;
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4. missing data and measurement error is explicitly allowedfor by the transformation

of the models into state space form and subsequent filtering.

There is strong evidence that the credit spread is unlikely to contain compensation

for default risk alone; liquidity, tax, and other non-credit related factors have been found

to be embedded in credit spreads (Elton et al. 2001, Delianedis & Geske 2001, Longstaff

2002). When referring to ‘credit’ spreads we refer to the difference in yield between the

yield to maturity of corporate bonds and the yield to maturity of same maturity Treasury

bonds, and acknowledge that there may exist some compensation for other factors.

The models chosen for examination are similar to EHH and HH and enable compar-

ison with their results. We select models where tractable solutions are available. Firstly,

we implement the extended Merton model of EHH. This serves a useful comparison

between our results and EHH. Secondly, we implement two versions of the LS model.

This model represents an exogenous boundary model, and is the first major extension

of the Merton model which includes many features subsequently adopted in the theo-

retical literature. It has also been studied by EHH and LYS. The first version, hereafter

referred to as the LS1 model, holds the risk-free rate constant, and is comparable to the

base case model of HH. The second version, hereafter referred to as the LS2 model,

incorporates a stochastic risk-free rate. An endogenous boundary model is represented

by the Leland & Toft (1996, hereafter LT). This model has alsobeen fitted by HH and

EHH. Next we consider the most commonly studied dynamic boundary model of Collin-

Dufresne & Goldstein (2001, hereafter CDG). Finally, an alternative to the usual asset

distribution assumption of geometric Brownian motion is tested by way of a constant

elasticity of variance model (hereafter CEV). This model has the property that asset

variance increases as default is approached, thus consistent with hypothesised manage-

ment behaviour under the agency theory of (Jensen & Meckling1976). A structural

CEV model of capital structure was first proposed by Barone-Adesi & Colwell (1999),

and has been independently suggested for valuing equity default swaps (Albanese &

Chen 2005, Campi & Sbuelz 2005).

This study is the first to systematically compare a range of structural models for

miss-specification using quasi maximum likelihood methods, thus limiting the influence

of estimation errors introduced by the use of proxy variables. We ask which of the

theoretical extensions tested, if any, have improved modelspecification. Secondly, we

ask whether the prediction error biases are consistent withthe prior literature, and what

theoretical developments can be inferred from their presence after consideration of the

biases and the related capital structure literature. Further, we provide a comparison to

HH by asking how much of the credit spread is explained by structural models, when the

structural models are fitted directly from credit spreads. Finally, we determine where the

implied default boundary is relative to the firm’s debt level.

We find that all models underpredict short-term spreads on low leveraged firms and
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on short-term debt. Recent theoretical extensions to include stochastic interest rates and

firm target debt management behaviour do not appear to have significantly improved

model performance. Prediction errors across all models arenon-normal and fatter tailed

than expected with autocorrelation evident in their time series. Inclusion of dynamic

recovery risk, linked to an observable business cycle proxy, and a firm asset jump, appear

to be necessary theoretical enhancements.

Chapter 2 sets out a review of the theoretical and empirical literature, related capital

structure theory and evidence, and a summary of extant research methods and findings.

In Chapter 3, the data and econometric estimation method is discussed including an ex-

planation of the empirical forms of the models to be tested. Findings are detailed in

Chapter 4, including a discussion of diagnostic results, comparison of implied and ob-

served solvency, a quantification of the extent to which credit spread levels are explained

by default risk models, and testing for potential missing variables. Chapter 5 concludes.



Chapter 2

Literature Review

2.1 Introduction

Since the seminal work of Black & Scholes (1973) and Merton (1974) the theoreti-

cal credit literature has grown rapidly, however, empirical studies have been relatively

few, particularly in the comparison of competing models. The aim of the chapter is

to summarise past empirical work, showing where this study contributes to the extant

empirical literature, and to describe the choice of models and potential sources of miss-

specification that may exist in the extant models.

In this chapter we review of the extant credit risk models placing particular focus on

assumptions made about firm asset process and capital structure dynamics. The central

difference between a reduced-form approach to bond valuation, versus the structural

model approach, is that the latter posits that credit spreaddynamics are a function of

management decisions concerning the firm’s physical capital structure. Underpinning

all structural models of credit risk is a hypothesised relationship between the dynamic

process of the firm’s solvency and its credit spreads; ceteris paribus, short-term credit

spreads are a function of present debt levels, long-term spreads are also a function of the

firm’s expected future debt-ratio, and the change in credit spreads is a function of the

firm’s expected rate of change in its debt-ratio. For the solepurpose of bond valuation,

it is not necessary that the structural model be based on an accepted theory of the firm;

reduced-form models are an example of a valuation approach that works without seeking

theoretical justification. However, a theoretically well-founded specification is more

likely to prove a more robust valuation model.

We therefore review the related capital structure theory and evidence, in order to

place the structural models in perspective of the theory of the firm. We classify the

theoretical literature by the manner in which the firm’s default boundary is assumed to

evolve; distinguishing between those where the default boundary level is assumed to

be exogenous to the model, and those where it is determined bymanagement reacting

endogenously within the model. We further distinguish between the assumption of static

9
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and dynamic variation of the default boundary.

We show how the theoretical models of capital structure and empirical evidence of

capital structure dynamics have influenced the design of extant structural credit models.

We summarise the capital structure evidence into a set of stylised facts. Gaps and incon-

sistencies in the application of capital structure theory are identified as possible sources

of structural model miss-specification suitable for further testing.

The remainder of the chapter is set out as follows. The difference between reduced-

form and structural credit models is explained in Section 2.2. Section 2.3 describes the

Black-Scholes-Merton model, its assumptions, and their limitations. In Section 2.4 we

review a sample of main structural models, classifying models by the assumed properties

of the default boundary. Section 2.5 briefly reviews the two main theories of capital

structure, Pecking-Order and Trade-Off theory, describing the static and dynamic forms.

A set of stylised facts are gathered and their implication ondebt valuation and structural

model design is discussed. Finally, in Section 2.6 the extant empirical literature on

structural model testing is reviewed noting the contribution of this study.

2.2 Reduced-Form versus Structural Models

There are two theoretical approaches to the valuation of default-risky bonds. The first,

termed ‘structural modelling’, characterises default as the result of the firm’s asset value

failing to exceed a future critical value, termed the default boundary, at which point

default is triggered. Black & Scholes (1973) and Merton are the earliest examples.

Credit spreads result from a theoretical model describing the firm value process and

its lower default boundary. Equivalently, a structural model can be described as having

an underlying ratio of firm value to the default boundary thatrepresents a measure of

economic solvency.

The second approach does not impose a theoretical structureto the specification of

default. In the reduced-form literature, default is assumed to be a random event with a

probability governed by a known intensity, or hazard rate, process. Default is therefore

always an unexpected surprise. There is no attempt to parameterise default intensity from

any underlying theory of the firm and the dynamics of the firm’sunderlying solvency,

instead the intensity is derived directly from credit spreads or other observable data such

as credit ratings. Examples of this approach include: Jarrow & Turnbull (1995), Jarrow

(1997), Duffie & Singleton (1999), and Madan & Unal (1996).1 In contrast, the default

event in structural modelling depends upon the first passageof a continuously diffu-

sive state variable to a fixed boundary. In continuous time, default is instantaneously

predictable and therefore never a surprise.

1Nandi (1998) gives an overview of earlier reduced-form models. Duffie & Singleton (2003) and
Schönbucher (2003) discuss more recent developments including methods of estimation.



2.3. THE BLACK-SCHOLES-MERTON MODEL 11

Where pricing data is readily available, the reduced-form approach is able to repli-

cate observed credit spreads relatively simply and in a manner consistent with no arbi-

trage. Thus, it fits neatly into the financial engineer’s toolkit for relative debt pricing.

Of course if price data is limited (the market is not complete), reduced-form models are

of limited assistance. This is a particular problem for credit modelling where there are

often insufficiently similar assets available to fully spanthe market on default risk for

an individual issuer. Litterman & Iben (1991) demonstrate how different firms can be

grouped into cohorts of similar rating agency grades and industry, under a strong as-

sumption of homogeneity, in order to achieve sufficient datapoints to construct a term

structure of hazard rates.

On the other hand, structural models are well known for beingdifficult to estimate

since the underlying stochastic process driving the risk ofdefault is unobserved. Despite

this, structural models are worthy of study for two reasons.Firstly, they are valuable in

their own right as tools for theoretical development. Structural models relate debt valua-

tion to an underlying theory of the firm directly, or to stylised facts that obtain from our

understanding of how the firm manages default risk and bankruptcy costs. Credit spread

term structures are the market’s perception of how management will balance the costs

and benefits of debt, over time, responding to shocks in the firm’s operating cash flows,

and the value of its assets. Direct measurement of the firm’s debt management policy

is difficult since the firm’s capital structure target, if it exists, is not directly observable

and may be masked by the influence of transaction costs. Robust structural models,

estimated from market prices, could bring additional information to the problem of un-

derstanding dynamic capital management, and whether firms do target a debt-ratio or

not, as perceived and encapsulated in prices by the debt markets. Secondly, structural

models are finding uses in risk management for the estimationof firm-specific default

risk, pricing of credit, and portfolio modelling of joint default risk including being the

basis for the setting of regulatory capital for the largest international banks operating

under the Basel II supervisory accord.

We focus our attention on structural models of credit risk, and in particular, the

empirical estimation of several competing models, using a latent variable approach that

minimises the potential confounding error present when thefirm’s solvency is incorrectly

assumed to be observable, and well approximated, by accounting and stock information.

2.3 The Black-Scholes-Merton Model

Black & Scholes (1973) first proposed that debt and equity arecontingent claims on the

assets of the firm. Their argument is elegantly simple. In a leveraged firm, shareholders

have a claim to the residual value of the firm with a payoff analogous to a call option.

Assume the firm is financed by equity and a single zero-coupon bond and there are no
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transaction costs, taxes, and other market imperfections.At maturity of the bond, if firm

value is insufficient to pay the bondholders, the shareholders will rationally default to

floor their loss at zero, and allow ownership of the firm to transfer to the bondholders. If

firm value exceeds the face value of debt, shareholders maximise their wealth by paying

bondholders and receiving the value of the firm in return. Therefore, a share represents

the right to buy the firm’s assets from bondholders contingent on the future value of the

firm relative to the face value of debt. The value of the default-risky debt is established by

put-call parity arguments to be equivalent to the value of a riskless bond and a short put

option on the firm’s assets. Credit risk is a function of the capital structure and dynamics

of the firm. This simple insight represents the classic economic model of credit risk that

links debt and equity valuation to the rational behaviour ofshareholders, the volatility of

the firm’s assets (its operational risk), and the level of firmgearing. For different bond

maturities, a term structure of bond values, or credit spreads, can be fully determined.

A shortcoming of the model is the simplicity of its assumptions. While the model

can show how bond value will change in response to leverage and therefore the influence

of gearing on borrowing costs, it does not explain what the optimal choice of debt for

the firm should be, or why the firm has the present level of debt.Without the presence

of taxes and bankruptcy costs, there is no benefit of debt to offset the increased costs

of borrowing. The model is therefore unable to satisfactorily link asset value to capital

structure theory. In Section 2.3.1 we discuss the model’s assumptions, and limitations,

more fully.

2.3.1 Theory

Merton applies Black & Scholes (1973) directly to the valuation of default-risky bonds.

To keep the debt valuation solution tractable, he makes the following simplifying as-

sumptions:

[A1] Markets are complete and frictionless; no transactioncosts, taxes, or other market

imperfections including bankruptcy costs. Trading of the firm’s assets takes place

in continuous-time;

[A2] The value of the firm is independent of the capital structure of the firm. This is

the Modigliani & Miller (1958) theorem. It follows from [A1]that, in the absence

of taxes and bankruptcy costs, firm value is independent of the level of debt;

[A3] The risk-free rate,r, is the same for all maturities over time;

[A4] Firm value return is stochastic described by geometricBrownian motion with drift

dV (t)
V (t)

= (r−δ )dt + σvdW (t)Q (2.1)
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whereV (t) is the stochastic market value of the firm,r is the risk-free rate,δ is the

net payout to other claimants (for example, dividend payments), σv is the time-

invariant volatility of the firm’s assets, andW (t)Q is a standard Weiner process

under the risk-neutral measure;

[A5] The firm is leveraged by a single-zero coupon bond liability with face valueF,

payable at maturityT .

The assumptions imply a simplistic theory of capital structure. The firm’s market

value leverage will evolve stochastically up to the point ofmaturity of the debt. Share-

holders are indifferent to the intermediate levels of gearing, and passively wait for the

outcome of whether firm assets exceed the face value of debt ornot. Likewise, bond-

holders are indifferent to the firm’s intermediate levels ofgearing, and hold no solvency

covenants that may have otherwise enabled them to trigger early default.

At maturity of the bond,t = T , if assets fail to exceed the required repayment

on debt,F, it is rational for value maximising shareholders to not pay, thereby lim-

iting their payoff to zero. Otherwise, ifV (T ) > F, it is optimal for them to payF

and receiveV (T )− F. The payoff at maturity to shareholders is therefore given by,

E(T ) = max[0,V (T )−F]. Conversely, the value at maturity of the bond is obtained

from put call parity asP(T ) = F −max[0,F −V (T )]. Thus, the payoff to bondholders

is equivalent to a portfolio comprising a riskless bond paying face value,F, and a short

‘put-to-default’ option on the firm. From (Black & Scholes 1973), Merton shows the

value of the default-risky bond, at timet = 0, to be

P(0,T ;V (0),F,Θ) = Fe−rT
(

N(d2)+
V (0)

F
e(r−δ )T N(−d1)

)

(2.2)

where

d1 =
ln V(0)

F +(r−δ +
σ2

v
2 )T

σv
√

T
(2.3)

d2 = d1−σv

√
T (2.4)

and N(·) denotes the area under the standard cumulative normal distribution and the

conditioning parameters areΘ = {r,σv,δ}. The bond’s credit spread is defined as the

difference between the risky yield to maturity and the risk-free spot rate,

s(0,T ;V (0),F,Θ) = − 1
T

ln

(

P(0,T ;V (0),F,Θ)

F

)

− r . (2.5)

It should be noted that the underlying capital structure process is risk-neutral. That is,

under the assumption of no-arbitrage, debt valuation can beperformed as if investors do

not require a premium for the uncertainty of their investment, and require only the risk-



14 CHAPTER 2. LITERATURE REVIEW

free rate of return. The probability of the firm’s assets crossing the default boundary (i.e.

the firm defaulting), and the expected payoff in default, do not include any compensation

for a risk premium. For debt valuation purposes it is not necessary to distinguish between

risk neutral and real-world probabilities, however, the latter is strictly lower due to the

additional premium for risk taking by risk-averse investors. It follows that parameters

of the asset process obtained implicitly from asset prices will overestimate the true real-

world (or physical) probability of default.

2.3.2 Firm solvency dynamics

LS first noted that for the purpose of valuing debt, it is not knowledge of the stochastic

process followed by the firm’s assets per se, but rather knowledge of the process followed

by the ratio of the firm’s value of assets,V , to the default boundary,K. We define the

firm’s log-solvency ratio to bex(t) = lnV (t)− lnK(t), and following LS, a description

of the stochastic differential process forx(t) is then sufficient to value debt without

knowledge of the firm’s asset value or the default boundary level. The log-solvency

ratio,x(t), can be interpreted as a continuous measure of the firm’s solvency. The larger

its value, the greater the buffer between the firm’s present value and its default boundary,

hence the increased ability of the firm to absorb unexpected shocks and remain solvent.

A similar measure, popularised by Moody’s-KMV for the purpose of default prediction,

is the ‘distance-to-default’, orDD(t) (Crosbie & Bohn 2002). This latter measure is

the number of standard deviations the firm’s assets are from the default boundary, when

measured from time-t to the maturity of the bond at time-T given by the Merton model

as

DD(t) =
lnV (t)− lnK +(µ −σ2

v /2)T

σv
√

T
, (2.6)

whereµ is the expected rate of return on the firm’s assets. The firm’s risk-neutral prob-

ability of default, measured from time-t to time-T, is givenby N(−DD(t)).

The distance-to-default nests the log-solvency ratio. Thus, log-solvency ratio is eco-

nomically equivalent to an unstandardised distance-to-default, measured instantaneously

relative to immediate asset values, and not projected to thematurity of the bond, or other

future date. Compared to the distance-to-default statistic, the log-solvency ratio is inde-

pendent of bond maturity and does not require estimation of the firm’s expected rate of

return. However, unlikeDD(t), the log-solvency ratio is not a sufficient measure of de-

fault risk without knowledge of the firm’s asset volatility.So whilst theoretically correct

in use as a state variable for our purpose of debt valuation, it is not a complete a measure

of firm default risk for the purpose of default prediction.2

2The empirical performance of the distance-to-default measure as a predictor of future default events
has been assessed by Bharath & Shumway (2004), as contributory factor explaining forward risk-neutral
hazard rates by Duffie, Saita & Wang (n.d.), and on firm equity return and prediction of default by Vassalou
& Xing (2004). Since the liabilities of the firm vary over time, and bond maturities vary between firms, it is
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Merton assumes the default boundary is equal to the face value of debt, which is

constant for all time. Therefore,K(t) = K = F ∀ t ε [0,T ] andx(t) = lnV (t)− lnK.

A simplifying assumption of Merton is that default can only occur atT , if x(T ) ≤ 0.

From Ito’s lemma and equation (2.1) it follows that the stochastic differential equation

of x(t) is arithmetic Brownian motion with constant drift

dx(t) = (r−δ −σ2
v /2)dt + σvdW (t)Q . (2.7)

With no loss of generality, we letK = F = 1 so that equation (2.2) is more compactly

expressed as being conditional on the firm’s initial log-solvency ratio,x(0). The present,

time t=0, value of a zero-coupon bond, with a one dollar face value payable at time t=T,

is then

P(0,T ;x(0),Θ) = e−rT N(d2)+ ex(0)−δT N(−d1) (2.8)

where

d1 =
x(0)+ (r−δ +

σ2
v
2 )T

σv
√

T
,

d2 = d1−σv

√
T .

2.3.3 Default and Recovery

The Merton model defines a functional relationship between the risk-neutral probability

of default and the risk-neutral expected payoff to bondholders in the event of default.

This is illustrated in this section by expressing the Mertonmodel into the notation of an

equivalent reduced-form model. LetQ(0,T ;x(0),Θ) be the risk-neutral probability of

default at timeT , and (1-ω)K be the risk-neutral expected payoff to bondholders in the

event of default. Using the terminology of LS, the fraction of bond face value lost in

bankruptcy,ω , is termed the ‘writedown rate’ and 1−ω the ‘recovery rate’.

Given the firm’s asset return is assumed to be normally distributed in the Merton

model, the risk-neutral probability of the firm defaulting at time-T, measured from t=0,

is the area under the standard normal distribution whereV (T ) < K. The risk-neutral

probability of default is therefore given by

Q(0,T ;x(0),Θ) = N(−d2) . (2.9)

The risk-neutral expected recovery rate is the expected value ofV (T ), given that the firm

usual to setT=1, and replaceK with K(t), measured as the rms book measure of short-term debt, plus one
half of its long-term debt, based on its quarterly balance sheet.
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has defaulted andV (T ) < K, expressed per dollar ofK

(1−ω) =
E[V (T )|V (T ) < K]

K
=

V (0)

K
e(r−δ )T N(−d1)

N(−d2)
. (2.10)

Once again, we generalise withF = K = 1, and recognising thatx(0) = lnV (0)− lnK,

the risk-neutral expected recovery rate, per dollar of facevalue, is compactly expressed

in terms of the log-solvency ratio as

(1−ω) = ex(0)+(r−δ )T N(−d1)

N(−d2)
. (2.11)

The fair value of the default-risky bond is the present valueof the risk-neutral expectation

of the bond’s payoff at time-T. The bond will pay either its one-dollar face value if the

firm is solvent at timeT , or the expected recovery,(1−ω) if in default. The fair value

is therefore the given by3

P(0,T ;x(0),Θ) = e−rT (

Q(0,T ;x(0),Θ)(1−ω)+ (1−Q(0,T ;x(0),Θ))
)

. (2.12)

Thus, we show that the Merton model implies that a firm’s risk-neutral default prob-

ability and its risk-neutral expected recovery rate are endogenous and are negatively

correlated. A rise in default risk caused by an increase in asset volatility, or reduction in

solvency, or lower asset growth, will also result in reducedexpected bond recovery. An

increase in leverage increases the likelihood of default and decreases the expected recov-

ery for bondholders. An increase in volatility increases the value of the put-to-default

option and therefore increases the credit spread by similarly increasing the probability

of default and reducing the recovery for bondholders. The short rate and net payout

jointly influence the drift of the firm’s assets; the greater the positive drift the lower the

likelihood of default and better recovery for bondholders.

Real-world, or physical probabilities, can be obtained from the Merton model with

an adjusted drift rate. All previous results hold with the difference that the drift rate of

the firm is adjusted upwards by the addition of an asset risk premium, π, so that the

log-solvency process of the firm evolves as

dx(t) = (r + π −δ −σ2
v /2)dt + σvdW (t)P, (2.13)

whereP denotes a physical probability distribution. This result is used by HH to calibrate

the Merton model parameters to observed historical defaultrates.

3Note that equation (2.8) can be obtained by substituting into equation (2.12), the risk-neutral expected
default (equation (2.9)) and risk-neutral expected recovery (equation (2.11)).
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2.3.4 The Predicted Term Structure of Credit Spreads

A firm’s term structure of credit spreads is the set of credit spreads, observed jointly

at time-t, for bonds issued by the same firm with different remaining maturities. The

Merton model predicts that a bond’s credit spread at time-t,is a function of its term to

maturity, T − t, the log-solvency ratio of the issuing firm,x(t), the firm’s asset return

volatility, σv, the risk-free rate,r, and the net payout to other claimants,δ . and By

varying the remaining maturity, holding all other parameters constant, the Merton model

predicts a theoretical term structure for the firm. In Figure2.1(a), we plot the predicted
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Figure 2.1: Shown in figure (a) is the credit spread term structure predicted by the Merton model at different
initial levels of log-solvency,x(t) = lnV (t)/K. The risk-neutral default probability is shown in (b), and
the risk-neutral expected recovery rate is shown in (c). Initial log-solvency levels of 1.44 (low risk), 0.775
(medium risk), and 0.367 (high risk), are equal to the samplequartile levels of the log of the market solvency
ratio. The market solvency ratio is calculated from CRSP andCOMPUSTAT data as the sum of the firm
equity value and book debt over book debt. Other parameters are σv = 25 percent,r=6 percent, andδ=5
percent.

credit spread term structures, assuming different levels of initial solvency, for a repre-

sentative firm. Figure 2.1(b) shows the implied risk-neutral probabilities of default, and

Figure 2.1(c) shows the risk-neutral expected recovery rates, corresponding to the model
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parameters and solvency levels. The initial level of unobserved log-solvency,x(t), is set

equal to the quartiles of our sample of observed log-solvency ratios, measured across

trade dates and firms. For illustration only, we use the observed log-solvency ratio as a

proxy for the unobserved latent firm solvency,x(t). Table 3.5 reports the market credit

spreads observed in our sample, pooled across time and firms,by quartiles of the market

log-solvency ratio.

The observed log-solvency ratio is calculated as the firm’s market value of equity

plus book value of debt, divided by the book value of debt. Computation of the observed

solvency ratio is explained further in Section 3.2.6 where we use it to drive our initial

firm-specific estimate of the latent log-solvency ratio, andto derive a firm-specific initial

estimate of asset volatility. Other parameters are chosen for illustration.

As shown in Figure 2.1, the shape of the term structure of credit spreads is a function

of the term structures of the default probability, expectedrecovery rates, and the time

value of money. For the safest firms, at the upper quartile of solvency atx(t)=1.44,

credit spreads are low and increase monotonically with maturity from zero at time-t to

approximately 50 basis points at(T − t)=30 years. The default probability is the lowest

for the safest firms and rises approximately linearly with respect to maturity from zero

at time-0, to approximately 25 percent at(T − t)=30 years . The expected recovery rate

for the safest firms is the highest, beginning at 100 percent at time-t, and decreases with

maturity to approximately 50 percent at(T − t)=30 years. Thus, the combined effect of

increasing default probabilities and decreasing recoveryrates, causes the credit spread

to increase with maturity. The negative correlation between default and recovery with

maturity, is caused by the increasing volatility of the firm’s future asset value over time.

As maturity is lengthened, the range of possible asset values that may result at maturity

increases, causing a greater chance of asset values ending below the default boundary.

If the firm defaults, the expected asset value available to pay bondholders in recovery is

also lower.

For the highest risk firms, illustrated in Figure 2.1(a) by the lower quartile of sol-

vency ratios, the credit spread term structure initially increases rapidly caused by the

very steep rise in default rate as shown in Figure 2.1(b). Thedefault probabilities are

the highest for this quartile, rising from zero at time-t to approximately 60 percent at

(T − t)=30 years, and the recovery rates, as shown in Figure 2.1(c),are the lowest falling

to approximately 40 percent at(T − t)=30 years. Higher default risk and lower recov-

ery is due to the initial firm value starting close to the default boundary. The default

probability rises with maturity but at a decreasing rate. The resulting flattening of the

default probability results in a falling credit spread for medium and long-term bonds due

to the influence of discounting; the present value cost of default outweighs the marginal

increase in default probability. Figure 2.1(a) shows the peak credit spread for the highest

risk quartile of firms to be at approximately(T − t)=5 years. Thus, the Merton model,
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and structural models generally, predict a characteristic‘hump-shape’ to credit spread

term structures of high risk firms. Empirically there is mixed support for this predic-

tion. Sarig & Warga (1989) average credit spreads across firms and time and report

downward sloping term structures for firms rated B and C. However, Helwege & Turner

(1999) show that this does not hold when term structure is measured from bonds issued

by the same firm on the same date. They conclude that most speculative grade firms

exhibit positively sloped credit spread term structures.

The Merton model, like all structural models, is a dynamic model of the credit spread

term structure. The term structure, at a given time-t, is a result of the model’s predic-

tion at time-t by equation (2.8) for for different remainingmaturities as shown in Fig-

ure 2.1(a). The term structure will also vary in time as a function of the path taken by

the firm’s log-solvency ratio as modelled by equation (2.7).For a given maturity, the

credit spread is expected to change over a finite time step as afunction of the firm’s

expected future log-solvency ratio. Knowledge of a firm’s model parameters, therefore

facilitates prediction of a credit spread term structure and the likely transition of the

credit spreads between time periods. We refer to the former model property as a cross-

sectional constraint and the latter as a time-series constraint. The distinction is important

when implicitly estimating parameters from term structuremodels. If we were to aver-

age spreads over time, or find the best fitting parameters to match a firm’s term structure

at a single point in time, then parameters are fitted using only cross-sectional informa-

tion without regard to how well the time-series of observed credit spread movements is

explained by the model. If we were to fit the time-variation ofconstant maturity bond

spreads then we would select parameters that are maximised to only explain the time

series transition of credit spreads without regard to how well the model jointly fits bonds

of different maturity. Geyer & Pichler (1999) show that in the context of risk-free term

structure modelling, the state-space estimation method, ‘simultaneously integrates time

series and cross-sectional aspects of the model. Since thisapproach is consistent with

the underlying economic model, and can utilise all available information, it provides a

powerful test’, (Geyer & Pichler 1999, p.1). Therefore, in order to provide the strongest

test of model specification, we transform the credit models into state-space form as de-

scribed further in Section 3.2, and estimate the models on panel data.

2.3.5 Limitations of the Black-Scholes-Merton Model

In this section we describe the main simplifying assumptions of the Merton model. In

particular, the Merton model assumes an unrealistically simple capital structure, and ig-

nores dynamic capital management. As discussed further in Section 2.4, efforts to relax

these unrealistic assumptions has motivated the development of the broader structural

modelling literature.
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2.3.5.1 Complex Debt Structures

Firms are usually funded by many individual coupon-paying bonds, together with bank

finance, trade credit, leasing, and other forms of credit. Unlike the Merton model, the

aggregate payment pattern for the firm requires almost continuous partial liquidation of

firm assets. Consequently, neitherF nor T is unambiguously observable. In practice,

researchers have approached estimating the Merton model byseveral methods.

Firstly, samples may be restricted to include only firms withrelatively simple capital

structures that are close to the single-payment zero-coupon bond ideal of the Merton

model. This approach is widely adopted in the empirical literature, for example JMR

select firms with ‘a small number of debt issues’, LS include firms with only one publicly

traded bond, and EHH select firms with no more than two publicly traded bonds on issue.

An obvious problem with restricting the sample is that the sample is biased towards firms

that are less actively traded in the market and are less representative of firms that access

the bond market.

Secondly, the level ofF may be estimated by a proxy variable that attempts to include

a weighting across maturities. The proxy adopted by Moody’s-KMV, for the purpose of

default probability prediction, is to setF to be one-half of total long-term debt plus all

debt due in one year (Crosbie & Bohn 2002, Vassalou & Xing 2004). The rationale is that

the short dated liabilities contribute more to default risk, however, Bharath & Shumway

(2004) show that default prediction accuracy is relativelyunaffected by whetherF is the

face value of debt or a more complex proxy.

Unlike default prediction modelling, where average calibration error is mitigated by

mapping the measuredDD(t) to historical default rate data, the predicted credit spread

obtained from the Merton model is sensitive to the choice of default boundary. The dif-

ficulty in choosing a default boundary is reflected in the various approaches followed in

the literature with no single method dominating. EHH assumethe firm’s default bound-

ary to be equal to the book value of total liabilities. They observe that the Moody’s-KMV

rule of thumb for weighting debt by maturity results in a lower default boundary com-

pared to using total liabilities, and therefore a much lowerpredicted credit spread that

compounds the underprediction bias of the Merton model. LS tested alternative mea-

sures of the default boundary and found the ‘Equal All’ approach gives the lowest price

prediction errors. This assumes that all debt is retired at the maturity of the bond, with

equal priority given to all creditors in the event of default. JMR assume that the default

boundary is equal to the face value of the bond being valued.

Finally, the Merton model has been extended to value coupon-paying debt in an ad

hoc manner by EHH. They sum the default-risky present value of the bonds promised

payments assuming independence between the payments. The default boundary is not

the face value of the promised payment, but rather the total of the firms liabilities. The

approach is simple in practice to apply and is shown by EHH to perform relatively well
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compared to more complex structural models. We adopt a similar extension to the Mer-

ton model as EHH, but unlike all prior studies, we do not assume the default boundary

to be an accounting value, but rather let the log of the ratio of the firm value to default

boundary be an unobserved state variable that is recovered implicitly from the observed

term structure of credit spreads. The state variable and ourextension to the Merton

model is explained more fully in Section 3.2.6.1.

The advantage of our method of implying the default boundaryis threefold. Firstly,

we do not impose a bias due to ad hoc choice of the default boundary. In the absence

of any single proxy dominating in prior studies, it is far from clear what an appropri-

ate proxy should be. Secondly, accounting leverage is updated only quarterly whereas

our credit spread data is observed on a daily basis with approximately a week on average

between observations per bond. Our method enables an estimate of the underlying lever-

age of the firm on each trade date. Finally, the firm may not default when market value

hits the face value of debt. HH assume that the firm’s default boundary is equal to 60

percent of total liabilities when calibrating their base case LS model to observed average

default rates. HH argue that the default boundary must be below the level of liabilities,

on average, based on prior studies of bond recovery rates that show assets available for

distribution to bondholders are less than can be reasonablyexplained by the presence

of bankruptcy costs alone. Recently, Davydenko (2005) provides evidence that default

occurs, on average, when firm value is 72 percent below the face value of total debt.

However, since as many as one third of defaults happen above this boundary, while 54

percent of rms with market assets below the face value of debtdo not default for at least

a year, and 38 percent never default throughout his sample period. For defaulted firms,

the mean ratio of the firm market value to the face value of debtis 65.1 percent with a

26.6 percent standard deviation.

Davydenko’s (2005) empirical observations cast considerable doubt on the accuracy

of empirical studies of structural model performance in which the default boundary is

assumed to be a simple observation of accounting debt. He poses the question,

How can models of credit risk be advanced, given this evidence regarding

empirical default triggers? One approach is to try to model more accurately

the boundary empirically, in the hope that its value can be explained if a suf-

ficient number of firm characteristics are included as explanatory variables.

An alternative is to abandon hope of predicting default as a deterministic

‘cause-and-effect event, and assume that either the boundary or the true

value of assets is unobservable. (Davydenko 2005, p.25)

Our method of implicitly estimating the unobserved log-solvency ratio is consistent

with the suggestion of Davydenko (2005), and avoids adding unnecessary bias and noise

into the structural model estimation process that is likelyto be prevalent in the extant

empirical studies of JMR, LYS, EHH, and HH.
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2.3.5.2 Default Only at Maturity

In the Merton model, default can only occur at maturity of thebond,T , regardless of the

path followed by the firm’s asset value prior to maturity. Thus, firm net worth may be

negative prior to bond maturity, but since repayment of the bond is fixed at time-T, the

firm will not default if the firm is otherwise solvent at time-T. However, in practice, it

is common that bonds include covenants designed to reduce the risk of wealth transfer

from bondholders to shareholders by specifying that the bond’s face value is to be repaid

immediately should the firm fail to maintain minimum solvency levels at all times (Smith

& Warner 1979).

Black & Cox (1976) extend the Merton model default process toinclude a minimum

net worth ‘safety’ covenant. They assume that should firm value fall below the levelK =

F exp−r(T − t) prior to time-T, the firm is defaulted by bondholders. Unlikethe Merton

model, default in the presence of safety covenants becomes afirst-passage distribution of

asset value to default boundaryK. The default boundary is assumed to be exogenously

known and its dependency on time is purely arbitrary.

LS suggest that an exogenous default boundary may be used to model default under

alternative assumptions of the default process. In the simplest net worth insolvency

case,K may represent total liabilities. Alternatively,K may be the result of contractual

covenants agreed with bondholders as per Black & Cox (1976),or it may be the level of

firm assets associated with default by lack of working capital. The latter may arise where

the firm is net worth positive but has an insufficient excess ofcurrent assets over current

liabilities to meet liabilities falling due. For bond valuation purposes, it is sufficient that

K represent the lower level of firm value at which it is exogenously known that default

will occur. Unlike Black & Cox (1976), LS assume the default boundary is constant

through time.

Davydenko (2005) finds that the ratio of the market value of assets to the face value

of debt is the single most important predictor of default therefore providing empirical

support for LS’s contention. Unfortunately, it is not straight forward to exogenously

know what the appropriate level of default boundary,K, relative to firm value,V , is

firm-by-firm.

Rather than assuming an exogenous, continuous default boundary, an alternative

method for extending the Meton model to include early default is offered by Geske

(1977) (hereafter Geske). He models default-risky debt as acompound option. At each

promised payment date shareholders choose to pay a strike price for the right to continue

ownership of the firm, or otherwise allow the firm to default. However, the more com-

plex the firm’s debt structure is, and the greater the number and frequency of coupon

payments to be made are, the less tractable the compound option solution becomes. The

model has therefore experienced little empirical implementation (EHH being a notable

exception).
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2.3.5.3 No Bankruptcy Costs

The Merton model assumes that there is no loss of firm value as aconsequence of default,

that is, there are no bankruptcy costs associated with default. Since firm asset ownership

passes to the bondholders at default, any loss in value results in a reduced payoff to

bondholders. By ignoring bankruptcy costs, that are otherwise rationally expected by

bondholders, the Merton model may overprice debt and underpredict credit spreads.

Bankruptcy costs arise for a number of reasons. These can be either direct costs

(legal and other professional fees), or indirect costs (reduced management focus and

consequent loss in firm competitiveness, loss of key suppliers and markets and increased

operating costs). Direct costs are estimated to be five percent, three percent and four

percent of firm assets by Warner (1977), Weiss (1990), and Altman (1984) respectively.

While direct costs appear relatively minor, especially in apresent value context, indirect

costs could be very substantial. This is particularly so if we consider the underinvestment

agency problem raised by Myers (1977). Underinvestment occurs when shareholders in

a high default risk firm choose rationally not to invest in positive NPV projects, if the

future benefits are likely to pass primarily to bondholders.Altman (1984) estimates to-

tal bankruptcy costs, including indirect costs, on large industrial firms to be 24 percent.

Alderson & Betker (1995) measures the difference between the going concern value,

immediately prior to default, and firm liquidation value. They estimate average total

bankruptcy costs to be 36.5 percent of the prior-to-defaultgoing concern value. Fo-

cussing only on highly-leveraged transactions, Andrade & Kaplan (1998) estimate the

total net cost of financial distress to be 10 to 20 percent of non-distressed firm value.4

2.3.5.4 No Breach of Absolute Priority Rule

The Absolute Priority Rule (APR) describes an ideal outcomein bankruptcy law where

no claimant can receive payment from firm assets until more senior claimants have been

satisfied in full. A breach occurs where there is effectivelyan ex post change in priorities

of creditors resulting from the bankruptcy process (Franks& Torous 1989). The Merton

model assumes bondholders receive the value of the firm in theevent of default. A breach

of APR decreases the amount of firm assets receivable by the bondholders in the event

of default and increases the required credit spread, if expected ex ante by bondholders,

in a similar manner to bankruptcy costs.

Under U.S. bankruptcy law there are two possible methods of corporate bankruptcy:

Chapter 7 provides for the orderly liquidation of a firm’s assets by a court-appointed

trustee, and payment to claimants in order of priority is always maintained; Chapter

11 provides for reorganisation of the firm by which a plan of reorganisation must be

4Qualitatively, they concluded bankruptcy costs were mainly attributable to: curtailed capital expendi-
ture, asset disposals at depressed prices, and delay in restructuring.
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negotiated among the various parties and agreed with the court (Weiss 1990, p.291).

Importantly Chapter 11 provides protection from creditorsfor management acting on

behalf of shareholders, while a reorganisation plan is developed. Costs accrued during

this period are ultimately borne by creditors. Chapter 11 isthe predominate method of

bankruptcy filing. Because of the need for agreement amongstclaimants, in Chapter

11 junior creditors and residual claimants have increased bargaining power and may

threaten to delay the final resolution and to force the firm to incur additional costs. For a

reorganisation plan to be agreed, a majority in number and atleast two-thirds by amount

owed to the creditors who vote in each class of impaired creditors must approve the plan

before it can be confirmed by the bankruptcy court. Importantly, even equity holders

must also approve the plan by a two-thirds majority, giving them some bargaining control

over creditors. In order to avoid costly reorganisation, creditors may therefore rationally

agree to violate the APR in order to speed agreement.

Weiss (1990) examines 37 listed U.S. firms that filed for bankruptcy between 1979

and 1986. He finds that the priority of claims is violated for 29 of the 37 firms studied

and that the breakdown of priority occurs primarily betweenthe unsecured creditors and

equity holders and among the unsecured creditors. The common occurrence of breaches

in APR is reported by Franks & Torous (1989) who examined the terms of reorganisation

of 30 firms that emerged from Chapter 11. Of their sample, 27 firms exhibited breaches

of APR, and in 18 cases shareholders received some consideration.

Eberhart, Moore & Roenfeldt (1990) examines the return to shareholders resulting

from 30 U.S. bankruptcy filings over the period 1979 to 1984. The average value re-

ceived by shareholders in breach of APR was found to be 7.6 percent of firm value.

Analysis of the share price before and after the filing showedthat the equity market an-

ticipated the breach of APR beforehand. A similar result is obtained by Betker (1995)

who examines 75 Chapter 11 U.S. corporate bankruptcies from1982-1990. He finds

that the average value of APR gained by shareholders to be 2.86 percent of firm value,

measured at the firm’s emergence from bankruptcy. Eberhart &Sweeney (1992) show

that in the bankruptcy filing month, bond prices incorporatethe subsequent breaches of

APR in an unbiased manner.

The effect of breaches of APR and bankruptcy costs act to reduce the recovery to

bondholders in the event of default. The historical recovery rate on senior unsecured

bonds is estimated by Altman & Kishore (1996) to be, on average, 47.65 percent of the

face value of the bond, and includes average bankruptcy costs and breaches of APR. A

simple way to include the combined effect in structural model was suggested by LS who

specify an exogenously determined recovery rate, informedfrom bond recovery studies

such as Altman & Kishore (1996). Consequently, their model incorporates but does not

attempt to separately estimate the effect of bankruptcy andAPR breach costs. EHH also

extend the Merton model in a similar manner, and assume the bond recovery is a constant
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51.31 percent of the face value of total liabilities.

2.3.5.5 Static Capital Management

In the Merton model the level of debt is fixed regardless of thepath taken by the firm’s

solvency. This has been criticised as being an unrealistically passive description of man-

agement behaviour by Taurén (1999) and Collin-Dufresne & Goldstein (2001) (hereafter

CDG). Observation of physical debt-ratio dynamics suggests management adjust their

issuance of debt versus equity, and dividend policy, in order to revert their firm’s debt-

ratios towards a preferred target debt-ratio over time (Taggart 1977, Marsh 1982, Jalil-

vand & Harris 1984, Hovakimian, Opler & Titman 2001).

By implication the risk-neutral log-solvency ratio,x(t), is also likely to be mean-

reverting to a target level to the extent that market bond prices factor in mean-reversion

of the firm’s future debt-ratios. With reversion to a debt target, management is unlikely

to let debt-ratios fall too far, should firm value rise unexpectedly, thereby acting to in-

crease debt and increase future default risk. Similarly, the firm value is less likely to

progress towards insolvency without management effort to reduce the level of the default

boundary by adjusting the firm’s operating plan and funding strategy to reduce its future

debt-ratio. CDG show that the effect on credit spreads of assuming mean-reversion in

the log-solvency ratio is to reduce long-term credit spreads levels and volatilities relative

to the Merton model. The credit spread term structure flattens, and by controlling the

target-debt-ratio, offers more degrees of freedom to matchobserved credit spread term

structures.

By relaxing Merton’s assumption of passive capital structure management, an im-

portant new field of capital structure model theory is revealed by CDG. We therefore

discuss more fully the literature related to capital structure management in Section 2.5.

2.3.5.6 Constant Risk-Free Rate

The Merton model assumes a constant risk-free rate. JMR suggest that this assumption

could be the cause of the Merton model’s underprediction of credit spreads on investment

grade bonds. They infer this conclusion by regressing residual price prediction errors

against dummies for the year amongst other variables, and note the year of observation

is a significant explanatory variable. A time-varying assetvolatility or a time-varying

risk-free rate is suggested as possible sources of error.

LS describe more fully the influence of a stochastic risk-free rate on predicted credit

spreads. They show that default probability and credit spreads are positively related

to correlation between firm asset return and the risk-free rate. The risk-neutral future

distribution of firm asset value depends on the risk-free rate. If the correlation is positive,

changes in the risk-free rate tend to be in the same directionof the firm’s asset changes.
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For example, an increase in the risk-free rate is associatedwith a positive innovation in

firm value. Introducing additional future volatility by wayof stochastic interest rates

tends to increase overall firm value volatility, thereby increasing the probability that

future firm asset value will reach the default boundary and the firm will default. If

correlation is negative, changes in the risk-free rate tendto dampen changes in the firm

asset values and the probability of default reduces. Consequently, firm asset volatility is

higher, in the presence of negative interest rate correlation, for the same predicted level

of credit spread.

Empirical evidence is conflicting as to whether interest rate correlation has a mate-

rial effect on explaining default risk and credit spreads. Clouding the evidence is the

presence of call provisions in some bond indentures, and theinfluence of the historical

interest rate environment in the sample period. JMR’s sample covered the period of high

interest rate uncertainty from 1975 to 1981. Also in the sameperiod, most corporate

bonds were callable or subject to sinking fund provisions, thereby making the valuation

problem complex and incomplete within the Merton model. Forexample, Ogden (1987)

fits the Merton model to bonds traded between 1973 and 1985 andfinds that the risk-

free rate and yield curve slope partially explain credit spread prediction errors from the

Merton model. However, all bonds in his sample are fully callable or partially callable

via sinking fund provisions.

The conclusions of JMR and Ogden (1987) may have been unduly influenced by

the high proportion of callable bonds in their samples sincecorporates issued few non-

callable bonds prior to the mid-1980s. Duffee (1998) reports that in 1984 only 271

bonds, out of a population of 5,497 bonds issued by corporates, were noncallable for life.

The proportion increased dramatically post 1985, and by 1995, 2,814 from 5,291 were

noncallable. In the more recent studies of LYS and EHH, theirsamples have excluded

bonds that are callable and subject to sinking fund provisions. Both studies conclude that

adding correlated stochastic interest rates to structuralmodels has not improved credit

spread prediction accuracy.

In contrast to JMR, EHH find no evidence that interest rate correlation is a significant

omission from the Merton model since neither interest rate volatility, nor correlation with

firm asset return, differs between those bonds that underpredict and overpredict credit

spreads. However, the LS and CDG models, which include stochastic and correlated

interest rates, exhibit a systematic prediction error. Firms with very negative (positive)

estimated correlations have greater underprediction (overprediction) of credit spreads

relative to the Merton model. A similar result is offered by LYS who tests the LS model

with and without stochastic interest rates. With a constantinterest rate they report a

mean credit spread underprediction error of 8.78 basis points. The error worsens to an

underprediction of 25.37 basis points when stochastic interest rates are introduced with

firm-wise observed correlations. Further, absolute spreadprediction errors are found to
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be insensitive to the choice of interest rate correlation assumption, suggesting that adding

firm-wise correlation to the model has not improved cross-sectional spread prediction

accuracy.

Lastly, researchers have attempted to measure the correlation between firm asset

value and interest rates using a proxy for the unobservable firm asset return. For example,

using the industrial stock index returns, as a proxy for firm asset return, LS report the

correlation in first differences with 30-year Treasuries tobe -27 percent. A similar value

was assumed by HH when fitting the LS model to historical default rates. EHH also

assume stock return is a proxy for asset return, but their method is closer to the spirit

of the Merton model; they measure stock return at a firm and notindex level, and use a

risk-free rate proxied by the 3 month T-bill as their risk-free rate. Using a 5 year window

of firm equity return they report a much lower average correlation of only -2 percent.

Similarly, LYS measure the correlation between monthly stock prices and the yield of

the on-the-run 10 year Treasury for the period January 1990 to June 1999. The average

interest rate correlation is found to be -7.2 percent.

It therefore remains unclear as to whether the absence of stochastic interest rates in

the Merton model is a serious omission. Attempts at measuring the level of correlation

directly suggests the correlation is small on average. Tests of predictive accuracy with

the LS and CDG models suggest that including firm-wise interest rate correlation has

not improved accuracy and may have decreased it. The theoretical models that have

included interest rate correlations, such as LS and CDG, have used a simple Vasicek

(1977) single-factor model, and perhaps this is not sufficiently descriptive of the risk-

free yield curve, since accuracy of credit spread predictions have not improved over the

single-factor structural credit models.

2.3.6 A Summary of the Merton Model

In this section we introduced the Merton model describing its theoretical foundation

as an option theoretic model of corporate bond valuation. The Merton model is parsi-

monious with few variables to be estimated, however, it has unrealistically simple as-

sumptions. We discussed the main theoretical limitations of the model and the empirical

evidence against the simplifying assumptions. In the next section we discuss the main

theoretical extensions to the Merton model that attempt to relax its assumptions.

2.4 A Survey of Structural Models

The structural model literature consists of extensions to the Merton model addressing the

aforementioned limitations. The plethora of models with minor variations is extensive

and so we restrict our discussion to main theoretical developments, which in turn, guides

a representative selection of models for testing.
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Following a well accepted taxonomy (see Uhrig-Homburg (2002) and Leland (2004)),

we first distinguish between models that assume that the default boundary is determined

from an optimal decision made within the debt valuation problem (endogenous bound-

ary models), or the default boundary is assumed to be exogenously known and is a given

input into the debt valuation problem (exogenous boundary models). We propose a fur-

ther sub-classification in which we distinguish whether thedefault boundary is predicted

to change stochastically through time (endogenous-dynamic, exogenous-dynamic mod-

els), or whether the firm’s default boundary is assumed to be anon-stochastic function

of time, either constant or a deterministic function (endogenous-static, exogenous-static

models).

Set out in table 2.1 is a summary of the models discussed in this section classified

according to the aforementioned scheme. Abbreviations in bold refer to models that we

later fit and test comparatively.
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Table 2.1: Tabled is a classification of extant theoretical structural models.

Barrier Default Barrier

Behaviour Endogenous Exogenous

Static

Leland (1994) Merton (1974)(EM )
Leland & Toft (1996)(LT ) Black & Cox (1976)
Acharya & Carpenter (2002) Geske (1977)

Kim, Ramaswamy & Sundaresan (1993)
Longstaff & Schwartz (1995)(LS1,LS2)
Briys & de Varenne (1997)
Zhou (1997)
Barone-Adesi & Colwell (1999)(CEV)

Dynamic

Fischer et al. (1989) Nielsen, Saá-Requejo & Santa-Clara (1993)
Anderson, Sundaresan & Tychon (1996) Saá-Requejo & Santa-Clara (1999)
Mella-Barral & Perraudin (1997) Taurén (1999)
Leland (1998) Mueller (2000)
Fan & Sundaresan (2000) Collin-Dufresne & Goldstein (2001)(CDG)
Goldstein, Ju & Leland (2001) Demchuk & Gibson (2006)
Moraux (2002)
Dangl & Zechner (2004)
Francois & Morellec (2004)
Galai, Raviv & Wiener (2005)
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2.4.1 Endogenous Boundary Models

Endogenous boundary models are a group of models in which thedefault boundary is

the outcome of an optimal decision made by shareholders within the bond valuation

model. Unlike the exogenous boundary model, such as Merton,shareholders not only

decide whether to default the firm, but also the level of the default boundary. The first

group considered here is the simplest static boundary structural models in which the

boundary is assumed to be a deterministic function of time. We then discuss the second

subgroup of more complex dynamic boundary models where the boundary is assumed

to be stochastically time-varying.

2.4.1.1 Endogenous-Static

In an early extension of the Merton model, Black & Cox (1976) consider the valuation

of debt when management choose the timing of default, actingto optimise the value of

shareholder equity. In doing so the early default assumption of Merton is relaxed and

the level of the default barrier is determined endogenously. It is assumed that the firm

is financed by equity and a single consol (infinite maturity) bond paying a continuous

coupon. For large firms with many debt issues, this choice of bond payment is a more re-

alistic representation of the firm’s aggregate going-concern debt financing requirements

than Merton’s single zero-coupon bond assumption. At each point in time, management

choose whether to pay coupons or otherwise default and pass the assets of the firm to

bondholders. Default will be avoided provided that the value of equity, after the coupon

payment, is not less than the coupon payment. Thus, default occurs if the value of the

firm falls to a point where new equity cannot be raised to service debt; in continuous

time equivalent to the value of equity equal to zero. An important result achieved by

Black & Cox (1976) is to identify the shareholder wealth maximising default boundary

as

K =
c

r + σ2
v
2

(2.14)

wherec is the coupon rate, andr is the risk-free rate. Equation (2.14) shows that the

default barrier is independent of firm value, and decreases as asset volatility and the

risk-free rate increase.

Leland (1994) extends Black & Cox (1976) to include the effects of tax and bankruptcy

costs on the default boundary. Taxation presents management with an opportunity to

increase firm value by utilising tax savings on interest payments. An optimum value

maximising level of debt exists, at which point the marginalbenefit of the tax shield is

equalled by the marginal cost of increased bankruptcy risk.Like Black & Cox (1976),

Leland (1994) assume that management seek to maximise the value of the shareholder’s
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claim, and not the value of the firm. They find that the default boundary of the firm is

K =
(1− τ)c

r +
σ2

v
2

, (2.15)

whereτ is the tax rate.

Equation (2.15) shows that the default barrier is positively related to the after-tax

coupon rate, and is negatively related to the risk-free rateand firm asset volatility. The

default boundary is unaffected by bankruptcy costs, which are borne by the bondholders

in the event of default, and not by the shareholders, and therefore do not enter into con-

sideration by management when setting the firm’s debt-ratio. Bankruptcy costs reduce

the overall value of the firm, but leave the value of equity unchanged with the cost passed

to bondholders in a reduced value of the bond.

LT extends Leland (1994) and Black & Cox (1976) with the more realistic assump-

tion that the firm issues finite maturity debt. To find a tractable solution for the value

of the firm’s debt, they assume debt is ‘rolled over’, i.e. refinanced, in perpetuity at a

constant maturity,T maintaining a constant level of principal. The firm’s capital struc-

ture is assumed to be time-homogeneous and management choose the optimal debt level

only initially leaving the aggregate level of debt static thereafter. In addition to the ex-

planatory variables in equation (2.15), the default boundary is found to be an increasing

function of the debt-ratio, and bankruptcy costs, and a decreasing function of debt ma-

turity (refer equation (3.35)). Default only occurs when new equity cannot be raised,

which will generally occur when debt service costs equal theexpected equity return.5

The LT model provides a plausible theoretical basis for Davydenko’s (2005) obser-

vation that firms default with negative net equity and not immediately at a zero equity

default boundary. The reason is related to the maturity of debt and expected equity

return. With long-term debt, the default boundary will typically be less that the debt

principal due to the potential for equity to appreciate before the debt is rolled over. The

longer the maturity of the debt and the higher the expected equity return, the greater the

opportunity for the firm to attract additional equity and avoid bankruptcy despite imme-

diate negative net worth. However, as maturity approaches zero, new equity will only be

attracted if the value of the firm, after bankruptcy costs, exceeds the par value of debt.

Thus, the default boundary is predicted to approachK = P/(1−α) asT → 0, whereP

is the debt principal andα ≥ 0 is the bankruptcy cost. Thus, default is predicted to occur

when the firm has positive net worth if bankruptcy costs are non-zero.

5Debt service is defined as the intertemporal change in firm value due to leveraging; includes after tax
cost of coupons and principal repayments at par, less funds from new debt issued at market value and cash
available for payout to shareholders generated from operations.
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2.4.1.2 Endogenous-Dynamic

The models of Black & Cox (1976), Leland (1994), and LT assumethat management

make a single initial capital structure decision, with the level of debt principal remaining

time homogeneous thereafter for the remaining maturity of the bond being valued. In

practice, firms can be expected to adjust their level of debt over time, in particular to

preserve the value of tax shields should as assets grow over time as expected. The

absence of time-varying management adjustment of firm gearing is a weakness in the

endogenous-static structural models. In this section we consider a group of structural

models that permit the debt-ratio of the firm to adjust over time in response to asset

growth and exogenous shocks to the firm’s asset value. We refer to these as endogenous-

dynamic models since these models permit dynamic adjustment of the default boundary.

Endogenous-dynamic capital structure models retain the same basic assumptions

of Leland (1994), but assume management adjusts the firm’s debt-ratio in response to

changing firm value. Depending upon the importance of transaction costs associated

with adjusting the firm’s debt-ratio, the literature predicts different relationships between

current firm leverage and the term structure of credit spreads. Initially we discuss models

that ignore any bargaining between bondholders and equityholders.

Fischer et al. (1989) recognise that changing the firm’s capital structure is costly and

will not occur until there is sufficient movement in the debt-ratio. Thus, it is hypothe-

sised that firm’s have a ‘region of no recapitalisation’ bounded by an upper and lower

solvency barrier. The firm capital structure policy followsa simple rule; gearing is in-

creased if the firm’s ratio of asset value to debt reaches an upper boundary, but default

occurs if the asset value of the firm reaches the lower defaultboundary. Compared with

Leland (1994), the option to recapitalise at an upper boundary causes an initially lower

optimal debt level and higher default risk. Importantly, Fischer et al. (1989) show that

firms may allow their debt-ratios to vary over time within a set of optimal boundaries.

Therefore, firms with similar recapitalisation preferences and similar default risks may

exhibit different observed debt-ratios on any given balance date. The cross-sectional ob-

served term structure of credit spreads may therefore be poorly explained by the use of

current balance sheet debt if used to proxy for the firm’s default point in the presence

of recapitalisation costs. This may be an explanation for the large firm-wise prediction

error variance reported by EHH who use balance sheet debt to estimate the firm’s default

boundary.

Using similar capital management rules as Fischer et al. (1989), Dangl & Zechner

(2004) show that default risk is monotonically decreasing with respect to rising solvency

under static analysis when incremental adjustments to capital structure are made. How-

ever, with significant fixed costs of recapitalisation, the firm is assumed to leverage back

to its initial optimum in the event that the upper boundary offirm value to debt-ratio is

hit. Such an adjustment is only warranted if bond indenturesprohibit the issuing of new
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debt, therefore forcing the firm to retire existing debt and re-issuing new debt, or if rais-

ing debt has significant fixed costs that encourage large scale debt issuance in preference

to smaller incremental debt raisings. It follows that Dangl& Zechner (2004) predict that

the probability of default, at the upper solvency boundary,is equal to the probability of

default at the initial optimum solvency point. Thus, default risk is predicted to be ‘U’-

shaped with respect to solvency; initially it falls with increasing asset value relative to

debt, but then rises as the re-leveraging solvency boundaryis approached. This hypoth-

esis does not appear to be well supported empirically. For example, structural models

that map a predicted distance-to-default to observed default rates, show monotonically

increasing default risk with respect to increasing leverage (Sobehart & Stein 2000, Cros-

bie & Bohn 2002).

Goldstein et al. (2001) provide a variation to Fischer et al.(1989) in which the state

variable is not the value of the firm, but rather the firm’s earnings before interest and

tax expenses. The EBIT state variable is therefore unaffected by the firm’s choice of

leverage, whereas the firm value state variable in other endogenous-dynamic models

must be interpreted as the pre-leverage firm value.

Like LT, endogenous-dynamic models also predict that default will occur below the

face value of debt. Unless debt is immediately due, shareholders will continue to service

debt until the expected value of the firm is not sufficient to warrant paying coupons. For

bankruptcy costs of 5 percent, the equivalent of default boundary to face value of debt,

K/F, is reported to be: Fischer et al. (1989), 57 percent; Goldstein et al. (2001, Table

2), 51 percent; Dangl & Zechner (2004), 69 percent.6 Empirical support is provided by

Davydenko (2005) who finds that on averageK/F is 65 percent, but varies widely in the

cross-section, depending on balance sheet liquidity, asset volatility, and asset tangibility.

An important theoretical result of the aforementioned endogenous-dynamic models

is the prediction of asymmetric debt-ratio adjustments. The result arises from assuming

that shareholders follow a second-best capital managementpolicy in which they max-

imise their own wealth. Fischer et al. (1989) argue under a second-best policy it is never

optimal for debt to be repurchased when firm value declines. This is because the rising

cost of bankruptcy is fully borne by the bondholders. The implication is that capital ad-

justments are asymmetric and negative value shocks are not matched by reducing debt.

Under an alternative first-best policy, shareholders maximise total firm value and may

seek to reduce some debt rather than default, thereby introducing some debt reduction

near the default boundary. This is only likely if there is a precommitment in the bond

indenture to maintain a minimum level of solvency.

Some support for the hypothesised asymmetric recapitalisation behaviour is given by

6Independently Huang & Huang (2003) estimate the default boundary to be 60 percent of the face value
of debt using the reasonable ‘back-of-the-envelope’ assumption that bond recovery is 50 percent of debt
face value with 10 percent total bankruptcy costs.
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Gilson (1997) who examines the behaviour of leverage ratiosbefore and after bankruptcy

proceedings. He finds that firms that proceed through Chapter11 do experience a de-

crease in leverage after recontracting with creditors, butthat the leverage ratios remain

well above the industry mean, and substantially above the levels five years prior to en-

tering Chapter 11. He concludes that the optimal target debt-ratio has most likely in-

creased. One possible reason cited is that restructured firms benefit from the additional

operational discipline imposed by debt (Jensen 1986).

The predicted asymmetric capital adjustment behaviour is aconsequence of assum-

ing strict second-best behaviour, in the presence of bankruptcy costs, with no voluntary

debt reduction agreed by bondholders. We now discuss a second group of endogenous-

dynamic models that consider the potential for negotiationbetween stockholders and

bondholders at the default boundary.

Working in discrete-time, Anderson & Sundaresan (1996) estimates the default bound-

ary as an outcome from a non-cooperative game; shareholdersmake take-it-or-leave-it

offers of debt service to bondholders. In the presence of bankruptcy costs, bondholders

may accept to renegotiate a lower than contracted payment topreserve the value of their

claim on the firm and avoid the costs of bankruptcy. In other words, reduction in lever-

age occurs at a reorganisation boundary that is higher than the insolvency boundary in

the absence of negotiation. The resultant reduction in debt, due to the threat of default, is

termed strategic default. Shareholders have an incentive to offer below contracted debt

payments, but not sufficiently low to force rejection by bondholders and subsequent liq-

uidation. Bondholders will rationally accept a lower debt service payment up until the

point at which the concessions offered equal the expected bankruptcy costs. The greater

the potential bankruptcy costs the greater the concessionsthat will be accepted. Thus,

the assumption of negotiation in the presence of bankruptcycosts implies firms contrac-

tually default at a higher asset value than they otherwise would in the absence of the

opportunity to negotiate.

For a given level of gearing, the potential for future strategic debt service implies

higher credit spreads than predicted by Merton. Mella-Barral & Perraudin (1997) and

Anderson et al. (1996) work in continuous-time and solve thevalue of a consol bond

analytically. Fan & Sundaresan (2000) introduce taxes and assume equal bargaining

power between shareholders and bondholders. They find that because shareholders have

some power to exploit bondholders, the default boundary is always higher than predicted

by Leland (1994) resulting in a greater probability of default.

Default may also arise from a breach of minimum cash flow covenants. Fan & Sun-

daresan (2000) examine non-negotiable cash flow covenants and their influence on the

bargaining process. They suggest that in the presence of cash flow covenants, sharehold-

ers would rather sacrifice dividends to reinvest and avoid a premature liquidation of the

firm. They reinvest the minimum amount such that the strategic default point is reached
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before the cash flow covenant becomes binding.

In summary, the endogenous-dynamic models provide a rich theoretical field for

predicting the relationship between dynamic capital structure choice and credit spread

term structures. These are as follows:

1. In the presence of bankruptcy costs and taxes, shareholders will not allow the

firm’s debt-ratio to deviate to below a desired level of gearing necessary to protect

the value of tax shields. The option to increase leverage in the future results in

higher predicted future credit spreads relative to the endogenous static models;

2. Where there are costs of recapitalisation, the firm will resist increasing leverage

until the benefit exceeds the cost, resulting in a region of norecapitalisation, mak-

ing inference of the firm’s target debt-ratio impossible from simply observing its

current debt-ratio. If the costs are largely fixed, or bond indentures prevent in-

cremental debt changes, the firm will increase is predicted to change to increase

its leverage sharply from an upper solvency boundary to its optimal level. The

speed of mean-reversion in debt-ratios depends upon the size of recapitalisation

costs, and whether it is a smooth adjustment depends upon theproportion that is

variable as opposed to fixed. Slower rates of mean-reversionwill result in lower

future credit spread term structures more closely represented by the static models;

3. In the absence of bargaining between bondholders and equityholders, debt-ratios

may not revert as a result of downward shocks in firm value since the increased

potential cost of bankruptcy is passed to bondholders, whena second-best capital

management strategy is followed by shareholders;

4. If bargaining is permitted, then the theory of strategic debt service suggests that

default will occur at higher firm asset values, when bankruptcy costs are high and

impediments to renegotiation are low. Shareholders are able to extract a negotiated

debt service reduction or reduction in the amount of debt, bythreatening to default.

This mechanism may cause the future debt-ratio to reduce in response to negative

shocks in firm value as a consequence of partial debt forgiveness by bondholders.

Credit spreads are predicted to be higher than in the absenceof bargaining, a

consequence of the potential to default earlier, and the expected increased loss

associated with debt renegotiation.

Relative to the Merton model, the theoretical extensions ofthe endogenous model lit-

erature suggest a greater likelihood of future default and higher future credit spread. For

empirical estimation, the implication is that the default boundary is not simply proxied

by the current balance sheet level of debt:

1. The presence of longer tenor debt encourages shareholders to maintain debt ser-

vice payments despite the firm value falling below the face value of debt;
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2. If bankruptcy costs are high, the owners have bargaining strength, and the debt

can be easily negotiated, shareholders will seek to offer below the contracted debt

payment. Default, under the original terms of the debt contract, occurs earlier at a

higher solvency threshold;

3. Default can be triggered by breach of minimum cash flow covenants, however,

the influence of liquidity default is contingent upon how binding the liquidity

covenant is relative to the strategic default threshold.

2.4.2 Exogenous Boundary Models

Exogenous boundary models abstract from the complexity of the endogenous boundary

models. Rather than specifying the default boundary level to be the outcome of share-

holder wealth maximisation, the default boundary is assumed to be known exogenously.

The default boundary may be assumed to be constant, or a deterministic function of time,

which we term exogenous-static. Alternatively, the default boundary may be assumed

to vary stochastically through time, in which case we define the model as exogenous-

dynamic. The difference between endogenous and exogenous dynamic forms of struc-

tural models is that the former specifies the default boundary’s time variation as the con-

sequence of shareholders re-evaluating the firm’s capital structure at each point in time,

whereas the latter assumes that the default boundary variesthrough time in a stochastic

manner independent of shareholder choice.

The Merton model is an example of an exogenous-static model that assumes the

default boundary to be equal to the book value of the firm’s debt. By construction, the

default boundary is time-invariant. In some more recent exogenous boundary models,

the default boundary is stochastic. However, this leads us to two particular challenges

facing exogenous models. Firstly, there is a wide variety ofpotential underlying default

boundary processes that could be selected. The exogenous literature, does not in itself

provide a theoretical basis for one preference over another. A robust choice of default

boundary process should therefore be one that is consistentwith the well established

capital structure literature. Secondly, as discussed in the previous section, due to the

complex firm-specific factors affecting the timing of default, the default boundary is not

readily proxied by observable variables. This raises the difficult question of how the

models should be parameterised. We suggest this is best solved by latent estimation of

the models and an examination of the resultant prediction errors for miss-specification.

In this section we review the extant exogenous boundary structural credit models

distinguishing between static and dynamic approaches. We show how the firm’s latent

solvency ratio is determined by the specification of the default boundary and compare

the behaviour of the firm’s solvency ratio with the extant capital structure literature.
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2.4.2.1 Exogenous-Static

We use the term exogenous-static to group models in which thefirm’s default boundary

is determined independently of shareholder preferences and is a constant function of

time.

The simplest version of this model is to assume that the firm isfunded by a single

bond and its default boundary is determined by the bond’s indenture. For example,

the Merton model assumes that the default boundary is equal to the face value of debt

payable only at maturity. Black & Cox (1976) permit early default where they let the

default barrier be equal to a minimum solvency level, as contained in the bond indenture,

which is assumed to grow over time at the risk-free rate. A more common method to

modelling the triggering of early default was first suggested by LS. Their model assumes

the default barrier is constant through time but are silent on the level of the barrier.

Importantly, they show that the ratio of firm value over the default barrier is a sufficient

state variable to value bonds with coupons and across multiple bonds issued from the

same firm. The spanning of multiple securities by a predefinedunderlying state process,

is the defining feature that makes the exogenous-boundary model form useful in finance,

and is the property we exploit further in Section 3.2 to to derive estimates of the state

process. To illustrate this property we first consider the LSmodel in detail.

LS define default as the first passage of firm asset valueV (t) across a constant default

boundary,K. Unexpected shocks inV are correlated byρr,V with a stochastic risk-free

rater(t) that follows a mean-reverting stochastic process as per Vasicek (1977), thereby

characterising LS as a two-factor model of the log-solvencyratio x(t) = lnV (t)/K

dx(t) = (r(t)−δ − σ2
v

2
)dt + σvdW Q

V,t (2.16)

dr(t) = κr(θ − r(t))dt + σrdW Q
r,t , (2.17)

where,W Q
V,t andW Q

r,t are Weiner processes,κr is the speed of mean-reversion for the

instantaneous short rate,θ is the long-run level ofr(t), andσr is the short rate volatility.

Defining the first passage stopping time byτ = inf{t ≥ 0 : x(t) = 0} then the proba-

bility of default betweent = 0 andT is

Q(0,T ;x(0),r(0),Θ) = Pr(τ ≤ T |τ ≥ t = 0) . (2.18)

With no explicit modelling of the firm’s cash flows and debt covenants, there is no spe-

cific bankruptcy cause ascribed toK; it is simply the value of the firm at which default

is triggered. This simplification enables LS to value complex debt structures. Att = τ
all debt is assumed to default under cross-collateralisation rules. Different priority lev-

els between debtors is accommodated by varying the writedown rateω . Valuation of a

zero-coupon bond then proceeds as the risk neutral expectedpayoffs in default and non-
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default states. The assumption that payment to bondholdersoccurs only at the original

bond maturity facilitates the valuation of coupon paying bonds by valuing each con-

tracted payment as a zero-coupon bond and summing together as a ‘portfolio of zeros’.

The division of assets in the event of default, is also exogenously specified. A pro-

portion(1−ω) of F is assumed to be paid to bondholders at the original maturityof the

debt.7 The writedown rate,ω , representsK/F, being the expected outcome from strate-

gic default and negotiation, or bankruptcy and liquidationincluding expected breaches

of APR. However, as noted by Briys & de Varenne (1997), there is nothing to limit the

payment to bondholders to be no greater than the value of the firm nor to ensure that the

value of the firm is sufficient to cover the payment of the bond at maturity. They suggest

a more structured barrier equal to the present value of the firm’s single-zero coupon li-

ability adjusted for expected APR breaches. Unfortunately, the adjustment by Briys &

de Varenne (1997) prohibits valuation of complex debt structures since the boundary is

made a function of the face value of debt.8

A further weakness of the LS model is evident from examination of the latent log-

solvency process in equation (2.17). Ifr(t) is on average greater than(δ −σ2
v /2), then

the firm is assumed to deleverage ad infinitum. Such behaviouris not expected in the

presence of tax shield benefits (nor observed empirically).

The LS model has been extended to consider alternative assetprocesses. Zhou

(1997) extends LS to a jump diffusion model. The motivation to consider downward

jumps in firm value comes from the empirical observation thatstructural models under-

state short term credit spreads. The potential for the firm value at default, to jump below

the face value of debt, gives an endogenous variation in recovery rates. The first-passage

crossing time is solved by Monte Carlo. HH describe an alternative jump-diffusion

model with the assumption of a constant risk-free rate. Theyadopt the same exogenous

default boundary and recovery assumptions of LS but let the asset value evolve with a

double-exponential distribution such that a semi-analytic solution for the crossing time

is known.9 The calibration of the jump component is difficult considering that the firm

asset process is unobserved. HH and Delianedis & Geske (2001) demonstrate that by ad-

justing jump parameters the predicted credit spreads on short tenor bonds can be made

close to those observed, but the resultant jump parameters are found to be unrealistic.

Further, jump parameters have most effect at short tenors and without mean-reversion in

the leverage level, the previous criticism of the LS model remains. A simple compari-

son of Merton against a jump-diffusion equivalent derived from Merton (1976) by Hull,

Nelken & White (2004) showed that in all cases the non-jump Merton model provided

7Termed a ‘Treasury at Default’ assumption. Alternative writedown specifications are ‘Recovery of Par
at Default’ and ‘Recovery of Market Value’. The differencesare explained further in Guha (2003).

8Formally,K = α exp(−rT )F where 0< α < 1 is a scalar to accommodate expected breaches of APR.
9The probability of default requires numeric methods to solve for a Laplace inversion. Refer to Huang

& Huang (2003, Appendix B2).
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significantly better predictions of default probabilitiesand credit spreads.

Drawing from agency theory, Barone-Adesi & Colwell (1999) propose a model for

valuing zero-coupon bonds where the volatility of the firm’sassets increases as the firm’s

value approaches the default boundary. This is consistent with Jensen & Meckling’s

(1976) theory of asset-substitution that proposes that it is in the interests of shareholders

to take greater business risks, thus increasing the volatility of the firm, the closer to the

firm is to default. Using a constant barrier and risk-free rate, a closed-form value for a

zero-coupon bond is obtained under the assumption that the return on the firm follows

a constant elasticity of variance (CEV) process as first described by Cox (1975). Under

the CEV model the firm’s asset value has a local volatility that is a deterministic function

of solvency.

Barone-Adesi & Colwell (1999) propose the firm follows the CEV process

dX(t) = (r−δ )X(t)dt + σ̄vX(t)ρdW (v, t)Q, (2.19)

whereX(t) = V (t)−K is the firm’s net worth, as measured by its equity value, andσ̄v

is a constant scale factor for the instantaneous volatility. The local asset return volatility

is given byσ̄vX(t)(ρ−1) and is therefore time-varying withX(t). Default occurs at the

first passage ofX(t) to zero;τ = inf{t ≥ 0 : X(t) = 0}. For the case where(ρ −1) < 0,

volatility increases with default risk and declines with solvency, which is the agency

theory predicted relationship. Because the firm’s level of solvency is time-varying, it

follows that the firm’s asset return volatility is also time-varying. However, the func-

tional relationship is constant through time, fixed by the elasticity parameterρ , and so

the firm’s volatility is assumed to have a rigid volatility skew.

Usefully, the probability of the first passage time is known analytically for a 100

percent drop in value to zero. This result has been used by Campi & Sbuelz (2005)

and Albanese & Chen (2005) to value equity default swap contracts, and by Campi,

Polbennikov & Sbuelz (2005) to value bonds and credit derivatives.10

A weakness of the extant CEV models is that default occurs only when the firm

is market-value insolvent. This precludes the possibilityof strategic default or default

with the firm having positive net worth. A more general approach is achieved in our

estimation method by lettingK be the earliest unobservable default threshold whether

triggered by insolvency or strategic default. This impliesthat volatility increases as the

point of default is reached, but permits the value of equity to be strictly positive.

The aforementioned exogenous-boundary models assume the writedown rate,ω , is

exogenously determined and unrelated to the firm’s asset value. Intuitively, it would

10Equity default swaps are a recent financial innovation used as an alternative to credit default swaps.
Normally these instruments pay 50 percent of notional valueif the firm’s equity price drops by 30 percent.
Campi & Sbuelz (2005) value the special case of a benchmark equity default swap that pays nothing in the
event of a 100 percent value drop. The instruments are described in more detail in Medova & Smith (2004).



40 CHAPTER 2. LITERATURE REVIEW

seem reasonable that the firm’s post-default recovery prospects would be tied to the

stochastic process that led to default. However, the LS model and subsequent exogenous-

boundary literature, define the default barrier as an absorbing state for the firm value

process; the expected value of bond recovery ceases to be informed from the ongoing

dynamics of the firm post default, even though bankruptcy proceedings may take several

years to complete and the firm may not be liquidated. The distinction between imme-

diate liquidation, and continuation under Chapter 11 with court imposed renegotiation,

was first suggested by Francois & Morellec (2004) in the context of extending the Leland

(1994) model. Under U.S. Bankruptcy Code firms can either liquidate assets immedi-

ately under Chapter 7, or renegotiate with their creditors under Chapter 11. The latter

is the predominate option chosen. Upon entering Chapter 11,the court grants the firm

a period of observation, protected from the actions of bondholders to liquidate assets,

during which time the firm renegotiates its debt. Consequently, liquidation does not

arise at the moment of first passage under Chapter 11 bankruptcy. At the end of this

period, the court decides whether the firm continues as a going concern or not (Francois

& Morellec 2004, page 390).

Following Francois & Morellec (2004), Moraux (2002) separates default timing

from liquidation. The former remains as specified under LS sothat default remains

exogenous and is triggered by the first passage of firm value toa constant boundary. Un-

like LS, once the default boundary is hit the firm remains trading and the state process

continues for the duration of the period the firm remains in administration under Chap-

ter 11. Liquidation is then a separate uncertain event that occurs if the cumulative time

spent below the reorganisation barrier exceeds a given fixedperiod of time. Francois &

Morellec (2004) assume liquidation occurs when the unbroken period of time spent in

default exceeds a fixed period. Moraux (2002) defines liquidation by the total cumula-

tive time the firm value is below the reorganisation boundary. He shows that the effect

of delayed liquidation is bounded between the results of twowell known models that

have analytic solutions. With infinite delay, there is no early liquidation of the firm, and

the model approaches Merton; with coincident default and liquidation, the model ap-

proaches Black & Cox (1976). A further refinement is suggested by Galai et al. (2005)

to trigger liquidation after the weighted cumulative time in default exceeds a maximum

time, where the weight is the distance of the firm value from the reorganisation bound-

ary. The model therefore weights the severity of the financial distress. However, debt

can only be valued numerically. While promising in the suggestion that the writedown

rate should be endogenously related to the stochastic stateprocess, no empirical tests of

these models appears to have been attempted. The models are limited to simple capi-

tal structures and involve time-intensive numeric solutions that discourage econometric

estimation of parameters.
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2.4.2.2 Exogenous-Dynamic

Lastly, we consider a group of structural models in which thedefault boundary is as-

sumed to vary stochastically through time, but unlike the endogenous models, time-

variation in the default boundary is governed by an exogenously known stochastic pro-

cess and not by shareholders seeking to maximise their wealth at each point in time.

The first group of related models that fits this description belong to models that

share the assumption that the default boundary is a traded financial instrument. Nielsen

et al. (1993) and Saá-Requejo & Santa-Clara (1999) let the default boundary be the

exogenously determined market value of the firm’s liabilities. The default boundary

value is specified as a geometric Brownian motion under risk neutrality with correlated

innovations with the firm asset return and risk-free rate. The state variable, for pricing

purposes, is the log of the ratio of firm value to the default boundary,x(t), which is shown

to be an arithmetic Brownian motion with constant driftµx (Saá-Requejo & Santa-Clara

1999, Equation 5)

dx(t) = µxdt + σxdWx,t , (2.20)

whereσx is the volatility of the change in the solvency ratio,x(t), anddWx,t is a Brownian

motion correlated with the risk-free rate innovations. Default is triggered on the first

passage ofx(t) to zero. The constants in equation (2.20) summarise a largernumber of

parameters that we do not reproduce here.11 Since we only need to estimate the joint

process in equation (2.20), the model has been criticised for its unwarranted complexity

by Uhrig-Homburg (2002, p. 54). Not surprisingly, the modelshares some similarity

with a constant rate version of the LS model. The key difference between the two models

is that the drift rate does not vary with the risk-free rate, which it does in the LS model.12

A further difficulty with the model is that the market value ofthe firm’s liabilities must

approach the value of the firm in default; at some stage the twomarket assetsV andK

become one. This does not appear to have been treated in the model. Recently, Hsu, Saa-

Requejo & Santa-Clara (2003) have redefined the meaning ofV to be the continuation

value of the firm in a non-default state andK to be the value of the firm in bankruptcy.

However, it still appears problematic to treatV andK as separate financial assets when at

default they are the same asset, and it is conceptually problematic to correlate the return

on the same underlying asset in two mutually exclusive states of the world;V andK

cannot trade simultaneously. In contrast,K is usually treated as a threshold value ofV

in the exogenous boundary literature, or alternatively, within the endogenous boundary

literature the value of the firm’s liability is valued coherently with firm assets and equity.

In neither case does the default boundary suffer from definitional problems.

11Refer Saá-Requejo & Santa-Clara (1999, Equations (6)-(8)).
12If we were to fit the two models implicitly from market prices,we would find it impossible to dis-

tinguish between Saá-Requejo & Santa-Clara (1999), with its correlated stochastic boundary and constant
drift µx, and a constant short rate LS model with its constant boundary and drift(r−δv).



42 CHAPTER 2. LITERATURE REVIEW

The other type of exogenous-dynamic boundary model assumesthat the default

boundary varies in a stochastic manner that mirrors the stylised facts of observed capital

structure dynamics. Thus, the models permit expected management driven capital struc-

ture changes, but the expected debt-ratio behaviour must beexogenously known before

debt can be valued.

As discussed in Section 2.4.1.2, there is good theoretical reason to suggest that man-

agement (acting on behalf of shareholders) dynamically adjust their firm’s debt-ratio

over time. Rather than attempting to fully explain debt-ratio dynamics as a consequence

of shareholder wealth maximisation, the exogenous-boundary models take an assumed

debt-ratio behaviour as given. The theoretical complexityis reduced, but the disadvan-

tage is that we must a priori form an opinion as to the most appropriate underlying

stochastic process for the firm’s capital structure process.

Further, the process for the latent log-solvency ratio (thestate variable,x(t)) must be

parameterised. To date, the exogenous-dynamic empirical literature has parameterised

expected capital structure dynamics from observed changesin book debt-ratios. How-

ever, since we have shown that the firm’s book value of debt to be potentially unreliable

as a measure of the default boundary, using capital structure parameters sourced from

debt-ratio movements may also be flawed. Alternatively, we propose to parameterise

the capital structure process implicitly from the credit spreads and avoid the potential

measurement error introduced by use of proxy variables.

Taurén (1999) propose a structural model in which the statevariable is the firm’s ratio

of book liabilities to its market value of assets that follows a mean reverting stochastic

process. Thus, the default boundary, represented by the firm’s liabilities, is assumed to

be stochastic and governed by a known process that represents, in a reduced manner, the

dynamic behaviour of the firm’s management. Like the endogenous-dynamic literature,

permitting mean-reversion in firm-leverage captures the additional risk to bondholders of

management’s option to re-leverage the firm in the future. The effect of assuming mean-

reversion in firm leverage results in higher forward defaultrates, and a flatter credit

spread term structure relative to the Merton and LS models. Longer-term credit spreads

are an increasing function of the firm’s target leverage and decreasing with respect to the

speed of reversion. In addition, short-term spreads are more sensitive to the current level

of leverage. It is argued by Taurén that capital structure mean-reversion results in more

realistic credit spread term structures.

Independently, Collin-Dufresne & Goldstein (2001) (hereafter CDG) suggested a

similar model, which has become the most widely known and empirically studied target-

leverage structural model, empirically fitted by EHH and HH.CDG differ from Taurén in

their choice of state variable and boundary dynamics. The default boundary is assumed

to change dynamically over time. As in Taurén the firm adjusts its level of debt, mean

reverting to a long-run target level. Secondly, the firm willissue debt opportunistically
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to time the debt market, issuing more (less) debt when the current risk-free rate is below

(above) the long-run risk-free rate level and therefore expected to increase (decrease) in

future. The default boundary is assumed to evolve as

d lnK(t) = κv
(

lnV (t)− lnK(t)−ν −φ(r(t)−θ)
)

dt

= κv
(

x(t)−ν −φ(r(t)−θ)
)

dt . (2.21)

Thus, the default boundary is assumed to be a function of the current level of the log-

solvency ratio,x(t), a long-run target level of the log-solvency ratio,ν , the speed of

mean-reversion to the target in the absence of debt market timing,κv ≥ 0, the sensitivity

of the firm’s debt issuance policy to the expected change in the risk-free risk-free rate,

φ , and the trend in risk-free rate expectations given by the difference in the current short

rate,r(t), and its expected long-run level,θ , as per Vasicek’s (1977) interest rate model.

The LS model is nested within CDG. For estimation purposes werestate the models to

be dependent on their log-solvency ratiosx(t) defined as the log of the ratio of the firm’s

market value to its default boundary (refer Appendix A for derivation). The dynamic

process for the log-solvency ratio in the LS model is given by

dx(t) = (r(t)−δ −σ2
v /2)dt + σvdW Q

v,t , (2.22)

and for the CDG model it is

dx(t) = κv

[(

r(t)−δ −σ2
v /2

κv
+ ν + φ(r(t)−θ)

)

− x(t)

]

dt + σvdW Q
v,t , (2.23)

wheredWv,t is correlated with the short rate under the Vasicek (1977) model.

From equation (2.22), it is evident that the LS model has no mean-reversion; share-

holders do not invoke the option to re-leverage nor attempt to reduce bankruptcy costs. In

the other models, there is an assumed continuous adjustmenttowards a long run solvency

ratio target, that is symmetrical above and below the target. Implicit in this specification

is that capital structure adjustments are continuous and that shareholders actively adjust

debt-ratios downwards in response to rising bankruptcy costs. We can also see that the

log-solvency ratio drift is time-varying and positively related to the risk-free rate. An

increase in the short rate, ceteris paribus, decreases default risk and credit spreads. From

equation (2.23), the CDG model’s log-solvency drift rate isshown also to be positively

influenced by the level of target log-solvency,ν , and to the size of the risk-free term-

structure slope; the latter is intended to capture management debt-timing behaviour.

Mueller (2000) shows that the drift rate in equation (2.21) can be expanded to in-

clude multivariate factors influencing the direction of capital structure decisions. The

resultant model has the disadvantage of a significant increase in numeric processing

needed to solve the expected first passage crossing time. More recently, Demchuk &
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Gibson (2006) adapt the CDG model without a substantial increase in numeric complex-

ity. They assume that management adjusts debt levels continuously toward a target as

per CDG, but with the target a stochastic function of by recent past equity returns.

2.5 Capital Structure Theory and Evidence

As discussed in Sections 2.4.1 and 2.4.2, recent extensionsof the Merton model have

either evolved to have endogenous default boundaries or exogenous default boundaries.

The former group of models is motivated by the hypothesis that shareholders adjust

capital structure to maximise the value of their claim, balancing the benefits of tax shields

against bankruptcy costs. The latter group takes the dynamic process for capital structure

as given.

A possible cause of the credit spread prediction biases associated with structural

models, may be due to the model’s implied capital structure dynamic process spec-

ification being inconsistent with actual firm capital structure behaviour. In this sec-

tion we compare the underlying state variable dynamics assumed in the main structural

credit models with the parallel theoretical and empirical literature on capital structure

behaviour. Specifically, we examine the main theories of capital structure; the trade-

off, pecking-order, and market timing theories. From this review we identify potential

sources of miss-specification for further examination in our model residual prediction

error testing.

2.5.1 Trade-Off Theory

In perfect and frictionless markets Modigliani & Miller (1958) prove that the choice of

capital financing between debt and equity has no affect on thevalue of the firm. However,

in the presence of taxes, firm value can be increased by borrowing and reducing the tax

burden by claiming a tax deduction on interest expenses (thetax shield). Borrowing

also introduces default and potential bankruptcy costs that can decrease firm value. The

static trade-off theory states that the firm chooses an optimal debt level that balances

the benefit of tax shield with the added cost of potential bankruptcy. In other words, an

optimal firm maximising debt-ratio is predicted to exist.

The dynamic version of the trade-off theory states that firmswill adjust their debt-

ratios towards an optimal debt-ratio target, but in the presence of recapitalisation costs,

the adjustment process may be slow. Firms are not likely to becurrently at their target

debt-ratio, and are expected to mean-revert to it over time.

For the endogenous boundary structural models to be consistent with the trade-off

theory, the firm’s debt-ratio should be set by shareholders with regard to the effect of

tax shields and bankruptcy costs, and the default boundary of the firm chosen as con-

sequence of optimising the debt-ratio. The endogenous boundary models shown in Ta-
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ble 2.1 are all consistent with the trade-off theory’s prediction of the existence of an

optimal debt-ratio. However, the focus of the decision maker in the endogenous bound-

ary models is shareholder wealth maximisation and not maximisation of the firm’s value.

For the exogenous boundary models to be consistent with the trade-off theory, the

firm’s capital structure must be specified as a stochastic process with mean-reversion to

a target level. Most exogenous-dynamic structural credit models make this assumption,

with variations on whether the target is fixed or time-varying. Taurén (1999) assumes

the firm’s debt-ratio reverts to a fixed target debt-ratio, Mueller (2000) permits the firm’s

target log-leverage ratio to vary with business conditionscontingent on macroeconomic

factors such as GDP, Collin-Dufresne & Goldstein (2001) vary the target log-leverage

ratio with the slope of the risk-free yield curve, Demchuk & Gibson (2006) assume

stochastic mean-reversion of the firm’s log-leverage ratioto a target that is negatively

related to the historic return on the equity market index.

2.5.2 Pecking Order Theory

The static pecking order theory states that a firm will financeits investment needs in

a preferential order of funding sources using those with thelowest information cost

first (Myers 1984, Myers & Majluf 1984). The theory is based onthe assumption that

informational asymmetry costs typically dominate other agency and bankruptcy costs

associated with debt. Management will therefore seek to finance investments in order

of decreasing information asymmetry. Retained earnings has no information asymmetry

and is preferred first followed by collateralised debt, unsecured debt and lastly equity.

Unlike the trade-off theory, the choice between debt or equity is made in a predetermined

order according to the amount of external funding required.The lowest information cost

source is internal cash flows, followed by debt, then followed lastly by equity. Thus a

firm will borrow, rather than issue equity, when internal cash is not sufficient to fund cap-

ital expenditures. No target debt level exists and dividends are assumed to be ‘sticky’.

Thus, the firm’s observed debt-ratio is predicted to be simply the outcome of the cumu-

lative need for external funds. The main difference betweenthe trade-off model and the

pecking order model is that the former predicts the firm to have an optimal debt-ratio,

and the latter predicts that there is no optimal target debt-ratio.

In the dynamic version of the pecking order theory, also offered by Myers (1984),

management are concerned with future as well as current information costs. Firms with

large expected future investments are predicted to maintain low default risk levels of

debt (i.e. maintain their debt capacity), to avoid the future cost of financing with higher

premium debt or forgoing the investment. Thus, management are predicted to adjust

leverage to maintain a minimum level of expected future debtcapacity dependent upon

their expected future investments and current debt capacity. When the firm is not debt

constrained, or its investment opportunity set is low, the firm is predicted to not actively
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manage its debt-ratio. If the firm is approaching its debt capacity threshold, reversion to

a safe region is predicted, even though there is no explicit debt-ratio target. Therefore,

in practice the firm may appear to have a ‘soft’ debt-ratio target resulting from anticipat-

ing future investment requirements subject to also maintaining sufficient debt capacity

to provide financial flexibility (Fama & French 2002). Importantly, Shyam-Sunder &

Myers (1999) demonstrate that cyclical changes in operating earnings and capital ex-

penditure can lead to autocorrelated behaviour in the net external funding deficit, and

therefore mean-reverting behaviour of the firm’s debt-ratio even when the pecking-order

theory holds. Consequently, mean-reversion of the debt-ratio is a consistent prediction

from both the trade-off and dynamic pecking order theories.

There is no endogenous boundary structural model explicitly based on the pecking-

order theory. If we were to construct such a model, we would have to specify the firm’s

stochastic net external funding requirement, with knowledge of the firm’s cash flows and

investment plans, in order to endogenously determine a projected path for the changes

in debt and equity funding over time. Clearly this is an daunting task for outside parties

to the firm to undertake.13

More simply we can value debt using an exogenous boundary model that specifies

mean-reversion of the capital structure, whether by the trade-off or pecking order theory,

without resolving which theory holds. For example, Taurén(1999) specify the firm’s

debt-ratio to be mean-reverting under an Ornstein-Ulenbeck stochastic differential pro-

cess.

2.5.3 Market Timing Theory

Market timing theory proposes that managers, when decidingto issue debt or equity, are

predominately influenced by current economic conditions inthe debt and equity mar-

kets, and attempt to lower their average cost of capital by timing the raising of capital.

As discussed further in Section 2.5.4, there is increasing empirical support for this be-

haviour.

The theory of equity market timing is contingent upon there being information asym-

metry between management and investors. Management must believe that equity is un-

derpriced relative to the firm’s value based on their own inside information, and the

market must react slowly to the information released from the equity issue announce-

ment. If these conditions hold, and management prove to be correct on average, then

extra value can be gained for the benefit of existing long-term shareholders. Baker &

Wurgler (2002) propose that equity market timing is the predominant behavioural char-

13Goldstein et al. (2001) use the firm’s cash flow as the state variable but assume shareholder’s maximise
the value of their claim. A pecking-order based structural model could be developed from the same state
variable but replacing the assumption that the debt-ratio is the outcome of wealth maximisation behaviour
undertaken by shareholders, with the assumption that it is the cumulative result of the firm’s investment
strategy, net external funding requirements, and preferential access to funding sources.
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acteristic of management to such an extent that a firm’s present capital structure is the

consequence of past efforts to time the equity market. Theirview is supported by survey

evidence gathered in an anonymous survey of 392 chief financial officers by Graham &

Harvey (2001). They find that one of the most important determinants of equity issuance

is management’s belief as to whether the equity market has, in their view, mispriced the

firm’s stock.

Debt market timing is based on the assumption that management attempt to exploit

expected changes in the level of interest rates. More debt ispredicted to be issued when

the risk-free rate is low and expected to rise in the future. Following the expectations

theory of interest rates, this is expected when the slope of the yield curve is positive and

present risk-free rate is low. The survey of Graham & Harvey (2001) also finds quali-

tative support for debt market timing, particularly largerfirms, with more sophisticated

treasury functions, who cite the level of interest rates as an important consideration when

making debt issues.

There is no endogenous boundary structural model consistent with the marketing

timing theory. However, the theory is readily implemented via an exogenous boundary

model because the target level of solvency is easily conditioned on external market fac-

tors. For example, debt market timing behaviour is assumed by CDG who specify the

risk-neutral target leverage ratio to be a decreasing function of the stochastic spot rate

and an increasing function of the stochastic slope of the yield curve. In a variation of

the CDG model, Demchuk & Gibson (2006) construct am exogenous boundary model

with equity timing capital structure behaviour. They assume that the firm continuously

adjusts its capital structure, i.e. issues either equity ordebt, in response to the observed

past returns of the stock market index and to changes in its leverage ratio. They create

a stock market index variable that, in the spirit of Baker & Wurgler (2002), measures

recent aggregate equity market performance. It is a time weighted geometric average of

the historical stock market index return with a higher weighting placed on recent per-

formance, and is introduced into the CDG framework in replacement of the stochastic

risk-free rate.

Similar to Demchuk & Gibson (2006), Baker & Wurgler (2002) construct an index

of past equity returns designed to measure the extent to which the firm has historically

raised external funds when its equity return was high. Their‘external finance weighted-

average’ market-to-book ratio is a weighted average of the firm’s past market-to-book

ratios which, for example, takes high values for firms that raised debt or equity when

their market-to-book ratio was high. The variable is found to be explain present leverage

ratios; firms with current low leverage are those that raisedfunds when their market

valuations were high, as measured by the market-to-book ratio, while high leverage firms

are those that raised funds when their market valuations were low.

The structural modelling literature has the capacity to include market timing be-
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haviour in the valuation of risky debt. The CDG model includes debt timing behaviour

and Demchuk & Gibson (2006) includes equity timing behaviour. In a repeat the of the

HH base case exercise, the Demchuk & Gibson (2006) show that their model can po-

tentially explain more of the credit spread than existing models, for example, 40 percent

of the credit spread on Aaa bonds can be explained by their model compared to only 18

percent for the CDG model.

2.5.4 Empirical Evidence

That firms mean-revert their debt-ratios over time is widelysupported empirically (Taggart

1977, Jalilvand & Harris 1984). More recently, Fama & French(2002) show firm-

specific debt-ratios to be very slowly mean-reverting at a rate between 0.07 and 0.18

per annum. Frank & Goyal (2003) find the average firm debt-ratio mean-reverts at 0.124

per annum on average. For small firms the rate was faster at 0.115 and slower for large

firms slower at 0.104.

What is unclear is whether leverage mean-reversion evidence supports the trade-off

theory or dynamic pecking order theory. If it is the latter, then the endogenous boundary

model literature is misspecified since it relies upon the existence of an optimal debt level,

whether it be to maximise firm value or shareholder wealth. Shyam-Sunder & Myers

(1999) show that such slow rates of debt-ratio mean-reversion can also be explained by

the dynamic pecking order theory. They are unable to reject the dynamic pecking order

model because such a slow rate may be due to autocorrelated net cash flows or from

firms reserving debt capacity for future financial flexibility as posited in the dynamic

pecking order theory. The slowness of reversion is attributed to management giving low

priority to maintaining a target debt-ratio; an opinion supported by a qualitative survey

of financial controllers undertaken by Graham & Harvey (2001).

Baker & Wurgler (2002) reject both the pecking order and trade-off theories. They

argue that if the trade-off theory holds, temporary fluctuations in the market-to-book

ratio, or any other variable, should have temporary effects. However, their finding of

statistically robust persistence in past equity returns isnot consistent with dynamic debt

management under the trade-off theory. Only an exogenous boundary model, such as

CDG and Demchuk & Gibson (2006), is consistent with the market timing theory. That

Graham & Harvey (2001) find that two-thirds of surveyed ChiefFinancial Officers claim

market timing influences their sourcing of funding, supports market timing behaviour

as the predominant explanatory model of the firm’s dynamic capital structure. If mar-

ket timing is the main capital structure behaviour, then only an exogenous boundary

structural credit model conditioned on past equity returnswould be consistent with the

empirical literature supporting market timing behaviour.

That past stock prices influence firm leverage is supported byWelch (2004). He finds

that firm leverage ratios are are strongly negatively related to past stock returns, which
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is inconsistent with the trade-off theory’s prediction that firms will increase leverage to

revert to a static debt-ratio in response to decreasing market leverage. Using a variation

of Baker & Wurgler’s (2002) market timing variable, Kayhan &Titman (2007) confirm

that historical stock price changes and external funding deficits have a significant effect

on capital ratios over the short to medium term, but in the longer term there is evidence

of partial reversion back to target ratios based on traditional trade-off variables. Firms

are found to raise equity capital when their stock prices arehigh and tend to reduce

their debt-ratios subsequently. The persistence of the equity market influence partially

persists for up to 10 years.

Frank & Goyal (2003) and Fama & French (2002) argue that firms with more asym-

metric information should follow the pecking order of funding sources more closely.

However, small high growth firms issue significant amounts ofequity, in contradiction

of the pecking order theory. In contrast, the pecking order theory explains well the equity

issuance of large mature firms. The result is explainable if capital constraints are consid-

ered in the context of a dynamic pecking order model. Lemmon &Zender (2002) find

that small high growth firms carry additional equity due to the presence of debt capacity

constraints. Similarly, Dissanaike, Lambrecht & Saragga (2001) show, on a sample of

UK firms, that those that did not target a debt-ratio were on average larger, more prof-

itable, have higher market-to-book ratios, and carry more tangible assets, than firms that

did target a debt-ratio. Debt targeting may therefore be a consequence of concern over

managing future debt capacity.

Instead of firm size, Chang, Dasgupta & Hilary (2006) use equity analyst coverage

as a proxy for information asymmetry. They find that firms withlow coverage and

high information asymmetry, are more affected by Baker & Wurgler’s (2002) external

finance weighted market-to-book ratio. In other words, these firms seek external funds

when their share price is high relative to recent history. The implication is that firms with

high information asymmetry, including small firms, will have term structures of credit

spreads that reflect the potential to re-leverage based on the expected evolution of market

equity returns.

Korajczyk & Levy (2003) consider the influence of macroeconomic conditions on

firm leverage and show that it affects firm behaviour via market timing subject to capital

constraints. Empirically they find that unconstrained firmsare more sensitive to market

conditions and are more likely to issue equity when the recent average stock price is

high. A constrained firm is defined as not having sufficient cash to undertake investment

opportunities and faces severe agency costs when accessingfinancial markets. Con-

strained firms are more influenced by the deviation from firm-specific target, exhibiting

faster reversion, and were only marginally affected by macroeconomic conditions.

Hovakimian et al. (2001) find that deviation from target is animportant but not dom-

inant factor in explaining capital structure adjustments.The likelihood of issuing equity
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is positively related to the firm’s current and immediate past stock return, and firms with

a low market-to-book ratio tend to issue debt rather than equity.

In summary, the most recent literature emphasises the role of information asym-

metry, equity market timing, past external funding deficits, and current debt capacity

in explaining changes and the level of firm capital structure. Where firms have high

information asymmetry, they access the external markets less frequently and equity mar-

ket conditions are more persistent. Firms with immediate debt capacity constraints are

less concerned with market timing and exhibit relatively faster debt-ratio reversion rates.

Large, mature firms are more likely to conform to the pecking order theory and be less

influenced by equity market timing. Finally, concern for maintaining future debt ca-

pacity may result in slow levels of mean-reversion to an apparent target even though an

optimal debt target does not exist.

Finally, the trade-off theory has limited empirical support in explaining short term

changes in capital structure, although evidence by Kayhan &Titman (2007) suggests

that the trade-off theory may hold in part over the longer term.

2.5.5 Implications for Structural Credit Models

The earliest structural credit models assume passive capital structure management. Based

on the evidence of the capital structure literature, such a specification is not supported.

The future path of thr firm’s capital structure is more likelyto be the result of external

funding requirements, subject to capital constraints and information asymmetries.

The endogenous boundary literature is premised on the existence of an optimal trade-

off between bankruptcy costs and tax shields, yet managing the firm’s deviation from an

optimal target is not supported as an imperative of management. On the other hand, the

exogenous boundary literature has been extended to accommodate market timing be-

haviour, and can accommodate differences in capital constraints and information asym-

metry across firms.

The essential characteristics of a model consistent with the empirical literature is one

that specifies:

Mean-reversion of leverage to target:The speed of mean-reversion depends upon the

level of the firm’s debt capacity. For large and well rated firms the rate of mean-

reversion is likely to be very small, and higher for smaller or poorly rated firms;

Leverage depends on past equity performance:High historical equity returns are as-

sociated with lower leverage with the effect on leverage persisting well into the

future. Equity market timing is greater when the firm has higher information

asymmetries, for example, small firms.

Therefore, of the extant structural credit models, the dynamic exogenous boundary mod-

els with mean-reversion and market timing are the most likely to correctly incorporate
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the firm’s expected future leverage path, for example, CDG and Demchuk & Gibson

(2006). To the extent that existing models do not include such behaviour, but the bond

market expects it, credit spread prediction errors are likely to be related to these missing

characteristics. Specifically, the capital structure literature suggests the following errors

may exist in some structural models where they are absent:

Mean-reversion of firm solvency to a target: When the firm is debt constrained, in the

absence of mean-reversion, the credit model will overpredict long term spreads

due to the absence of leverage reversion to a less constrained region. For un-

constrained firms (high credit rating), long term credit spreads are expected to be

understated due to the absence of mean-reversion to a soft target arising from au-

tocorrelated external funding requirements. Thus, a negative relationship between

credit spread prediction errors and the bond’s term to maturity is expected;

Firm solvency as a function of equity market timing: When the equity market has per-

formed strongly, future leverage and default risk is expected to be low due to firms

favouring equity over debt issuance. In the absence of equity market timing, credit

models can be expected to overestimate long term credit spreads when recent eq-

uity performance is strong. Thus, a positive relationship between spread prediction

error and recent equity market performance is expected. Theerror is expected to

be higher for small firms since information asymmetry is higher.

We later test for the influence of these stylised facts on model prediction error in

Section 4.2.2.

2.6 Review of Prior Credit Spread Studies

While the theoretical field has seen considerable research effort, the empirical testing of

structural credit models has not kept pace. The number of studies that directly assess

the performance of structural model predictions remains quite small in comparison. As

noted by EHH,

...the empirical testing of these models is quite limited. Indeed, only a few

articles implement a structural model to evaluate its ability to predict prices

or spreads. (Eom et al. 2004, p.200)

In this section we review the findings from prior empirical research, summarise

methods and limitations, and place our work in the context ofaddressing some of these

shortcomings.
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2.6.1 Past Findings on Predictive Accuracy

Until recently, the most comprehensive empirical studies of a structural model’s pricing

accuracy was conducted on the Merton model by JMR. Their study has since been widely

cited as supporting the view that the Merton model underestimates credit spreads. Their

method of estimation pioneered fitting of structural modelsand so we first examine this

aspect of their work.

JMR collected Standard & Poors price data on 350 bonds, issued by 27 firms, sam-

pled over the period 1977 to 1981. They carefully selected firms to include only those

displaying a simple capital structure, close to the Merton ideal; with one class of stock

and mostly public, long dated bonds with limited numbers of issues outstanding. The

sample unavoidably included callable bonds due to the high prevalence on issue in the

sample period, and so the Merton model was modified to includethe influence of call

provisions on bond value. As an additional control, a naive model was constructed in

which the bond’s promised cash flows were discounted at the maturity matched relevant

risk-free rate plus the effects of call provisions.

To fit the Merton model, JMR used two different methods to estimate the firm’s asset

volatility. The first relies on constructing a monthly time series of the approximate value

of the firm. Firm value is estimated as the sum of the market value of equity, the market

value of traded debt, and the market value of nontraded debt.The latter was estimated by

assuming that the ratio of book to market values was the same for traded and nontraded

debt, and was then applied to the book value of the nontraded debt. Asset volatility

was then calculated as standard deviation of monthly firm value return measured over

the prior 24 months. This method is general and does not impose any model specific

assumptions.

The second method relies on inverting the implied asset volatility from the Merton

model. Since equity is a derivative of the firm’s assets we know from Ito’s Lemma that

the volatility of equity is related to asset volatility by

σe = σv
V (t)
E(t)

∂E(t)
∂V (t)

, (2.24)

whereσe is the equity volatility,E is the market value of equity,V is the market value

of firm assets, andσv is the volatility of the firm’s assets. For the Merton model the

partial derivative of equity value with respect to asset value is given byN(d1) whered1

is defined in equation (2.3) andN(·) is the cumulative density function of the standard

normal distribution.

JMR use the time series method to obtain initial estimate ofV (t), E(t). The standard

deviation of equity is measured directly as the sample standard deviation of the firm’s

daily equity return observed over the last three months. An estimate of asset volatility is

then obtained by inputting the sample equity volatility into equation (2.24) and solving
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for asset volatility.

The findings of JMR give mixed support for the Merton model. For investment grade

bonds the model was unable to perform better than their naivemodel. For sub-investment

grade bonds, the Merton model provided some incremental explanatory power over the

naive model. The mean percentage pricing error for the wholesample was 4.5 percent

and 10 percent on the sub-investment grade bonds indicatinga tendency to overvalue

and therefore underestimate credit spreads. An examination of the residuals showed that,

across all rating levels, the higher (lower) the estimated asset volatility the more likely

the bond price was underestimated (overestimated). A year effect was noted as possi-

bly caused by time variation in the risk-free rate that a stochastic rate model may have

improved. Bonds paying larger coupons tended to be overvalued in the sub-investment

grade, which may indicate a possible missing tax effect related to default risk. JMR con-

clude that introducing uncertain interest rates and tax would improve the valuation of

corporate bonds. However, their results may have been influenced by the large number

of callable bonds in their sample and the high prevailing interest rate volatility caused

by a shift in Federal Reserve monetary policy during the sample period (EHH).

A further problem with the JMR sample concerns the lack of control over matrix

prices in the Standard & Poors bond price data set. Warga & Welch (1993) report that

the data contains mostly matrix prices and not actual trade prices. A matrix price is a

hypothetical price used where no trade was observed. It is calculated from, ‘rules that

specify the addition of a fixed spread over either an activelytraded benchmark issue of

the same company, another company’s issue with similar rating, maturity, and coupon,

or a U.S. Treasury’, (Warga & Welch 1993, p.963).

The JMR study was followed Ogden (1987), who selects 57 newlyissued bonds

with maturities greater than 10 years, issued between 1973 and 1985. On the date of

issue, he finds credit spreads to be underpredicted, by an average of 104 basis points. A

similar call for the inclusion of stochastic interest rate was made, but is also potentially

influenced by the prevailing volatile interest rate environment.

A particular feature of structural credit models is the upward sloping term structure

of low-default risk bonds and the “hump-shaped” rise and fall of high-default risk bonds

(refer Figure 2.1). Sarig & Warga (1989) examined the Mertonmodel’s predicted credit

spread term structure shape with observed data. Their data comprised trader quotes for

corporate zero-coupon bonds collected over the period 1985to 1987. Matrix price data

points were removed. Over half the bonds in the sample were callable and a further filter

applied to remove bonds where the call option was likely to beeconomically valuable.

Treasury rates were then deducted from observed bond yieldsand the resulting yield

spread data averaged over time and across issuers grouping by similar ratings. The re-

sulting credit spread term structures showed a similar pattern to Merton. Their finding

that high-risk credit spreads are downward sloping was subsequently questioned by Hel-
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wege & Turner (1999), whose data was the primary issue yields, on matched pairs of

bonds of different maturities, issued on the same day over the period 1977 to 1994. For

speculative grade borrowers, Helwege & Turner (1999) find that the term structure on

the day of issue was, on average, upwardly sloping by 14 basispoints. However, five out

of fourteen cases of non-callable bond term structures weredownward sloping as pre-

dicted by Merton, thereby demonstrating that the credit risk term structure is influenced

by firm-specific factors.

Wei & Guo (1997) compared the accuracy of the Merton and LS models to predict

the credit spread term structure using weekly observationsof Eurodollar yields sampled

during 1992. Five data points along the Eurodollar term structure, spanning seven days

to one year, were used to invert the models for the unknown parameters using maximum

likelihood. The models were refitted each week cross-sectionally adopting a similar

approach to that pioneered by Brown & Dybvig (1986) in fittinga single factor bond

pricing model to the risk-free term structure. The ratio of firm value to default boundary

V (t)/K was permitted to vary and re-estimated each week. Their paper is therefore

similar in spirit to our proposed latent estimation method except that we propose fitting

parameters constrained intertemporally and cross-sectionally. They find that the Merton

and LS models provide similar explanatory power, despite the additional number of

parameters in the LS model. When the volatility estimate in Merton is allowed to be re-

estimated each week, the model clearly outperformed LS, thus suggesting that implied

volatility is time-varying.

A difficulty with Wei & Guo (1997) is that they only consider very short-term debt

of one year or less.14 For tests of model predictive accuracy we are interested in com-

paring performance over longer time periods typical of corporate bond tenors. Because

structural models rely on diffusion of the firm value across adefault boundary, very short

tenors do not provide a sufficient period of time for differences in stochastic process to

be robustly tested. We would expect larger differences between models to appear over

longer term structure periods. The estimated parameters reported appear to be adversely

affected as a consequence. At a mean of 1.025, the estimated ratio of V (t)/K implies

that firms are very close to their default boundaries and willalmost certainly default. The

mean variance is correspondingly very low at a reported level of only 0.9 percent (refer

(Wei & Guo 1997, Exhibit 9)). To match the short term credit spreads in the sample,

with a mean of 45 basis points for a 7 day tenor, the firm is implied to be very close to

default in order to invoke a sharp non-linear rise in credit spreads as illustrated in the

upper plot for the highly leveraged firm in Figure 2.1. When estimating credit model

parameters by inversion, it is important to control for non default risk related pricing

factors. For example, in estimating a reduced-form model from bond spreads, Duffee

(1999) controls for the unexplained, non-stochastic components of the credit spread, by

14Specifically, 7 days, 1, 3, 6, and 12 months.
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the use of an intercept term that implies a constant non-zeroprobability of default at

all tenors. It would have been informative to see what additional explanatory power the

credit models could provide over and above the assumption ofa constant credit spread.

Unfortunately, Wei & Guo’s (1997) method of cross-sectional estimation precluded this;

without the additional time-series restrictions on the model, it would be impossible to

estimate a non-stochastic component of the credit spread.

The testing of credit models has been hampered by ‘poor quality and limited avail-

ability of corporate bond price data’ (LYS. p.3). This situation was partly remedied by

the introduction of the Bridge Information System’s bond database, first applied to test-

ing the Merton and LS model by LYS. Their database comprised daily bid quotes shared

in a consortium by major U.S. investment banks (Bridge Information Systems). The

data is not without some potential error however, with the authors noting that, ‘Bridge

quotes reflect the informed judgment of Bridge personnel rather than results of specific

transactions’, (LYS, p.3). Firms were selected that had only a single bullet bond issued,

including banks, in the final sample of 56 issuers. Model parameters were estimated

from observable proxies. Estimates of asset volatility arethe annualised historical ob-

served quarterly value of outstanding stock plus book valueof non-bond liabilities and

the market value of the bond. Various tests of different default boundaries for the Merton

model were attempted with the best performing found to beK equal to total book lia-

bilities. The LS model was estimated in two steps: firstly, just the introduction of early

default was incrementally tested relative to the Merton model by fitting a single-factor

constant interest rate version of LS; secondly, the full LS model with correlated stochas-

tic risk-free rate model was fitted. The asset-rate correlation was proxied by the sample

correlation between the monthly stock price and yield of on-the-run 10 year Treasury

bonds. Firm level correlations fluctuated widely ranging from -44.7 percent to 28.9 per-

cent with an average of -7.2 percent. Recovery rates were tested using a single rate of

47.7 percent and varying by industry as per historical ratesfound by Altman & Kishore

(1996).

The results of LYS supported earlier problems with the Merton model and was damn-

ing of the performance of the LS model. Specifically, the introduction of early default

while, ‘certainly more realistic, does not seem to improve model accuracy’, (LYS, p.13).

The median spread prediction error for the Merton model was found to be 58.5 basis

points, and LS was 62.7 basis points using individual firm correlations and only 52.0

basis points with either a constant interest rate or assuming a stochastic rate with zero

correlation. The theoretical improvements made by LS over Merton were not supported

empirically. Introducing stochastic interest rates into the LS model did not improve price

prediction relative to the Merton model. The LS model prediction error biases were

found to be directionally the same as Merton but greater. Overall both models were

found to underestimate credit spreads, more so with longer dated tenors and with higher
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coupon rates. Possible reasons suggested by the authors were the presence of a liquidity

premium, not controlled for in their experiment, and concerns about the appropriateness

of their brute force volatility estimation procedure. Theystate that,

The classical model could still be correct if, perhaps amongother possi-

bilities, we have greatly mis-estimated future asset volatility. At the end

of the day, we are unable to distinguish two hypotheses: Either the model

is rejected or expected future asset volatility differs significantly from past

volatility. (LYS, p.8)

Their firm selection procedure also limits the conclusions that can be drawn. Only firms

with single public bond issues were included. This precludes larger firms from their

sample where we would expect greater information to be contained in public bond and

equity markets, and their results to be more representativeof the broader bond market.

Similar to preceding papers, their test is cross-sectionalonly, and with only a single bond

outstanding, the model’s ability to replicate the firm’s term structure of credit spreads

remains untested.

In the most comprehensive study to date, EHH extend the scopeof LYS and un-

dertake a ‘horse race‘ amongst five structural models: Merton, Geske, LT, LS, and

CDG. Their data source is the Fixed Income Database (FID) containing month-end

firm-specific bid quotes made by Lehman Brothers bond tradersover the period 1986 to

1997.15 The sample was restricted to senior noncallable bonds issued by non-financial

and non-utility companies that had a simple capital debt structure with only one or two

public bonds on issue and were listed.16 To avoid biases due to infrequent trading,

bonds of remaining maturity of less than one year were omitted. The resultant sample

comprised 182 bonds, from issuers mostly in the manufacturing industry (68 percent of

sample) that tended to be large and of low risk.

The five models were implemented using observable equity andaccounting data.

Thus, their study shares a similar method to JMR and LYS. The exogenous default

boundary was assumed equal to the firm’s total book liabilities, and firm asset value

equal to the sum of total liabilities and the market value of equity. A 10 year time se-

ries of observed monthly leverage ratios (total liabilities over firm value) was used to

estimate the parameters of the firm’s mean-reverting leverage process. For the LS and

CDG models, the mean-reversion of the latent leverage ratio, the sensitivity of leverage

to the risk-free term structure, and target leverage ratios, were all estimated by regress-

ing leverage on lagged leverage and interest rates. The sample correlation coefficient

15Lehman Brothers maintain a comprehensive database of pricequotes to support their widely published
bond indexes (refer Hong & Warga (2000) for description)

16Gas and electricity utilities were excluded on the basis that their return on equity and therefore default
risk is influenced by regulation. We see no reason to exclude the firms from our sample given that they rep-
resent an important source of debt in the bond market and market prices for bonds should fully encapsulate
the issuer’s default risk. These firms may have targets set bygovernment but they are not guaranteed.
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between asset and interest rate movement was estimated to beonly -2 percent. Asset

volatility was estimated by equation (2.24) where the knownMerton model analytic so-

lutions for the partial derivatives was applied across all models, although not strictly

correct, was considered a tractable approximation.

EHH’s main finding is that the five structural bond pricing models tested all had diffi-

culty in accurately predicting credit spreads, demonstrating wide dispersion in prediction

errors. The single-factor models of Merton and Geske, on average underpredicted credit

spreads, but the other three more advanced two-factor models overpredicted. At the ex-

tremes, the Merton model was the worst at underpredicting and the CDG model was

the worst at overpredicting with mean percentage prediction errors of -50.4 percent and

269.8 percent respectively.17 The main point made by EHH is that the mean prediction

errors mask the true extent of their poor performances. Referring instead to the absolute

prediction errors the Merton and Geske models are fairly similar in having the lowest

errors (78.0 percent and 66.9 percent). Once again, the poorest performer was clearly

the CDG model at 319.3 percent. The LS model was found to overpredict with a mean

prediction error of 42.9 percent outperforming LT at 115.7 percent.

The results of EHH are surprising. Their conclusion that theLS model overpredicts

credit spreads is in contradiction to LYS. The absolute spread prediction error was nearly

double that of the Merton model indicating much wider prediction error variance. The

LS model showed a tendency to predict either very high or verylow credit spreads with

most dispersion occurring with shorter maturities. The LS model is nested in the CDG

model and it is to be expected that many of the same error patterns were also evident

in the CDG model. With a mean percentage spread prediction error of 270 percent, the

CDG model overpredicted credit spreads by more than the LS model. However, with

its additional parameter control over long term credit spreads, and consistency with the

capital structure stylised facts, we would have expect the model to perform better than

the LS model. It is therefore important to understand whether this finding obtains in

other samples.

As these models contain a second stochastic factor for the risk-free rate, regression

testing of the errors against interest rate volatility was performed by EHH and found

to be significant. When the interest rate volatility is high,the two-factor models tend to

overpredict credit spreads. Further, the correlation between asset return and interest rates

was found to have minimal influence on predicted spreads. Taken together, the results

suggest that introducing a stochastic interest rate factorhas led to no greater prediction

accuracy and has introduced additional over-sensitivity to interest rates.

Because the CDG model nests LS, but contains more variables that are difficult to

estimate, the worsening of performance may be due to measurement error. We can

identify two possible causes. Unlike the LS model, CDG requires estimates of the target

17Refer Eom et al. (2004, Table 3).
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leverage ratio and speed of the leverage ratio reversion to the target, estimated by a

univariate regression on the time series of observed leverage ratios. In small samples,

the estimate of the speed of mean-reversion may be biased downwards when the process

is close to being a unit root (refer Ball & Torous (1996) and references therein). The

second problem may reside with their method for estimating the target log-solvency

ratio, ν . In general, the expected first passage time is very sensitive to the level of the

drift rate. Their estimation method involves solving for the target ratio under the physical

measure using a regression on first differences of the observed market leverage ratio, then

estimating the real expected growth of the firm’s assets to back outν , which is defined

under the risk-neutral measure.18 The expected growth rate is taken as the past 10 years

of value growth. Since realised growth may differ from the expected an alternative is also

tested using a longer-term view of market-wide equity returns (15 percent return and an

equity risk premium of 6 percent is applied). Under the alternative estimation method,

the mean spread prediction error decreases to 79 percent, but still remains higher than

the LS model. Their results indicate that errors in the CDG model are very sensitive to

the target leverage ratio assumption, which of course, is unobservable. Consequently,

EHH suggest that,

An alternative to using estimates of mean asset returns and speed of adjust-

ment would be to simply estimate the implied risk neutral long-term mean

of leverage, which not only fits the data to the spreads, but avoids estimation

of the mean asset return in the model. (Eom et al. 2004, p.523)

EHH find the LT model consistently overpredicts credit spreads. The mean percent-

age spread prediction error is 115 percent. The problem is worse on high-coupon bonds,

short maturities, and for sub-investment grade issuers. Its behaviour is different to the

other models considered, tending to overpredict across allleverage levels and was not

sensitive to parameter estimates.

In summary, EHH find that all models except LT, exhibit a similar pattern of error.

Prediction errors are positively related to leverage; overprediction occurred with higher

leverage and under prediction with lower leverage firms. Theresults confirm a lever-

age bias consistent with the view of JMR that the Merton modelovervalues safe bonds.

A similar result is found when spread prediction errors by bond rating are examined;

spreads are overpredicted for poorer rated issuers and underpredicted for investment

grade, with the exception of LT. This model exhibited the lowest leverage and no signif-

icant rating bias. No reason is apparent why the LT model should not exhibit the same

leverage bias as the other structural models, although it isinteresting to note that it is

the only endogenous-barrier model tested. The other key latent variable is asset volatil-

ity. Here, a positive bias is generally reported; when assetvolatility is estimated to be

18Refer Eom et al. (2004, Appendix B.2) for details.
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high from the use of 150 day historical window on stock prices, the credit spread is over

estimated and vice versa. The exception is again the LT model.

Structural models are sensitive to the choice of default boundary level and asset

volatility, both of which are estimated from observable proxy data. The spread under-

prediction problem with investment grade debt was found to be typically less severe

when the book value of leverage was close to the market value of leverage. Conversely,

the underprediction problem was worst for firms with high market-to-book ratios (ex-

cept for the LT model). EHH suggest debt markets are less sanguine about the future

prospects of high market-to-book firms; the debt markets imply a higher default bound-

ary or a lower leverage target to accommodate the risk of reversion. Since the default

boundary is unobservable, there is no empirical reason to consider the book value of

liabilities to be an accurate proxy for the default boundary. Recently, Davydenko (2005)

confirmed in a study of defaulted companies, that the defaultboundary is typically less

than the face value of the firm’s total debt.

HH assess the ability of a variety of structural models to explain the observed credit

spread levels. The models examined included LS (with and without stochastic interest

rates), LT, CDG, Anderson & Sundaresan (1996), Anderson et al. (1996), Mella-Barral

& Perraudin (1997), and a jump-diffusion extension of LS. Using a mixture of implied

and observed variables, a novel calibration approach is performed. Rather than model

individual firms and their quoted credit spreads, a representative generic firm was created

for different levels of default risk based on issuer ratings. The average 10 year cumu-

lative default rates for each rating class was obtained fromMoody’s (data compiled for

the period 1973-1998), and a representative bond was assumed to be ranked senior un-

secured with a constant recovery rate of 51.31 percent of face value. Typical leverage

ratios and associated market equity premiums were matched to the rating agency levels.

For the exogenous-boundary LS, CDG, and jump-diffusion models, the default bound-

ary was assumed to occur at 60 percent of the value of liabilities. Corresponding mean

credit spreads on 10 year bonds were then obtained from Lehman Bond indexes and other

studies. To fit each model, model specific variables such as the asset risk premium, asset

volatility, and firm asset value are solved in order to match the known target variables

of leverage ratio, equity premium, and cumulative real default probability. The resul-

tant predicted credit spread for each generic firm was then compared with the long-run

average observed credit spread.

To compare the results of HH with EHH we calculate an equivalent credit spread

predicted error for HH by comparing the model predicted spread with the market average

level as reported by HH. Table 2.2 presents the difference between the extant studies.

EHH find a wide disparity in percentage spread prediction errors across models. The

EHH find that the CDG model excessively overpredicts compared to the other models.

In contrast, HH find a relatively smaller overprediction. EHH report that the LT and
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Table 2.2: Shown is the mean percentage credit spread prediction error reported by Eom et al. (2004)
(EHH) and Huang & Huang (2003) (HH). Results for HH are the author’s calculations and are computed
by deducting the reported model predicted credit spreads from the market average divided by the market
average. HH results are sourced from HH’s Tables 3, 4, and 6 for a single A rated bond. EHH mean
percentage error is sourced from EHH’s Table 3. EHH only report an overall sample average error, but
from their Table 1, the sample average firm rating is comparable at approximately A-. All numbers are in
percentage.

Study

Model EHH HH

LT 115.7 -68.7
LS 42.9 -88.2
CDG 269.8 71.1

LS models also overpredict, yet HH find underprediction of market credit spreads. In

contradiction to EHH, HH do not report wide variance of credit spreads predictions as a

problem,

We show a large class of structural models - both existing andnew ones -

that incorporate many realistic economic considerations can indeed generate

very consistent credit yield spreads if each of the models iscalibrated to

match historical loss experience data. (Huang & Huang 2003,p.3)

Therefore, it appears that by calibrating each model to match observed default rate levels,

some of the firm-specific discrepancies that may have been measurement errors under

EHH’s proxy method, appear to have been removed. If this result arises when models

are calibrated to loss rates, then calibrating to observed credit spreads could potentially

result in a similar finding.

However, the HH method is not without its own shortcomings. Firstly, calibrating to

real default rates necessitates a change in measure of the drift rate to include the firm’s

expected rate of return under the real measure as was discussed in Section 2.3.1. The

task of estimating the unobserved risk premium on firm assetsis not a trivial exercise

and potentially introduces further estimation errors. Secondly, real transaction price

data is not used; the credit spreads are for hypothetical bonds only issued by a generic

representative firm. Thirdly, the representative firm and its associated default rate require

averaging of characteristics across firms and across time (for example default rates are

measured over a 25 year period and credit spreads are pooled by rating grade over time).

Finally, we note that this is not a test of a structural model’s prediction of the dynamic

term structure of credit risk. The full extent of a structural model’s predictions remain

untested.

Anderson & Sundaresan (2000) explore the relative ability of alternative endogenous

boundary models to explain the time-series variation in 30-year maturity, on-the-run
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bond yields for industrial corporations as reported in the Salomon Brothers Book of An-

alytical Yields. Models considered include Merton, Leland, and Anderson & Sundaresan

(1996) at an economy-wide level for a generic firm with characteristics constructed from

aggregate data; annual aggregate balance sheets of non-financial corporations reported

in the US Federal Reserve’s Flow of Funds Accounts, and monthly aggregate index data

from 1970 to 1996 for S&P ratings of AAA, A, and BBB. Financingby way of a single

consol bond is assumed so that analytic solutions are obtained for the various models

considered. In their regressions, an intercept term is usedto capture a premium for the

illiquidity of corporate bond markets relative to Treasuries caused by a tax differential

between corporate and Treasury bond income, and any other systematic bias that may

be prevalent in the credit model. Their study is the first to control for non-credit related

factors in the fitting of structural models and the estimation of standard errors around

implied parameter estimates.

Anderson & Sundaresan (2000) find that a consol version of theMerton model con-

tributes very little incremental spread prediction over and above the intercept term, how-

ever the models do explain intertemporal variations in credit spreads related to leverage

changes. The implied asset volatility was close to the S&P 500 and considered therefore

unrealistically high. Their study is useful in highlighting that econometric estimation of

structural model parameters can give superior informationabout relative model perfor-

mance compared to the cross-sectional methods employed by earlier studies. However,

the study does acknowledge limitations. The measurement offirm characteristics and

yield spreads is extremely coarse and limited only to investment grade default risk, ma-

turity is limited to 30 year bonds to match against consol bond predictions, no term

structure restrictions are enforced on the models (given the infinite maturity assumption)

therefore dynamic term structure predictions of finite maturity structural models remain

untested.

2.6.2 Non-Default Components of the Credit Spread

There is evidence that the credit spread is unlikely to contain compensation for default

risk alone; liquidity, tax, and other non-credit related factors have been found to be em-

bedded in credit spreads (Elton et al. 2001, Delianedis & Geske 2001, Longstaff 2002).

As shown by Anderson & Sundaresan (2000), controlling for any non-credit related

components of the credit spread is important for unbiased estimation of structural mod-

els. Similarly, Duffee (1999) also estimates an intercept term when estimating implied

parameters for a reduced-form model. The difference between the two studies is that

Duffee (1999) assumes the presence of a constant non-zero instantaneous default risk,

whereas, Anderson & Sundaresan (2000) assume a constant non-zero credit spread pre-

mium without implying that the effect is the result of default risk. The latter specification

is more consistent with the presence of liquidity and tax premiums and is adopted in our
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empirical testing discussed further in Chapter 3.

How much of the credit spread is related to default risk is an unresolved question

and estimates vary widely between studies. HH calibrate structural credit models to

the long-term average default rate for a representative firm, and suggest that structural

models account for only a small fraction of the observed corporate-Treasury yield. They

conclude that the LS model explains only 16 percent of observed AAA credit spreads,

increasing to 29 percent for BBB, and 83 percent for B rated firms. The LT model

achieves a better performance explaining 59 percent for AAA, 31 percent for Baa, and

87 percent for B rated firms. The CDG model exhibits explanatory behaviour similar to

the LS model.

Independently, Delianedis & Geske (2001) suggest that only5 percent of the AAA

credit spread is related to default risk and 22 percent of theBBB credit spread, which

is of a similar magnitude to the LS base-case model of HH for mid-rated firms. The

remaining components are hypothesised to be related to taxes, liquidity, jumps in asset

values, and market risk factors.

Elton et al. (2001) find that the level of credit spreads can beexplained by three

components: i) compensation for default risk, ii) compensation for state taxes charged

on corporate bond income that is exempt on government bonds,iii) compensation for

additional systematic risk over and above that incurred by government bonds. They

conclude that on average, taxes and default risk account forat most 20 percent of the

credit spread.

How much of the credit spread is related to default risk requires an estimate of the

credit spread due to default risk. Elton et al. (2001) use historical real probabilities

of default obtained from rating agency data. HH calibrate various structural models

to similar rating agency default data, then obtain the predicted credit spreads from the

calibrated models. Delianedis & Geske (2001) use the predicted spreads from a Merton

model with parameters fitted from observable equity market and accounting proxy data.

In all these studies, reliance is made on the predicted spreads from structural models

fitted by proxy variables.

2.6.3 Contribution to the Literature

We extend EHH with improved estimation methods and data, thereby building upon

the extant literature of JMR, LYS, and EHH. We are also able toanswer how much of

the credit spread is explained by the structural models, therefore providing a comparison

with HH using actual trade data and models calibrated with minimum average prediction

error.

As an alternative to the traditional ‘observed-proxy’ methods employed in the extant

literature, we adapt an estimation technique from the interest rate term structure mod-

elling field. Using an extended Kalman filter (EKF) quasi-maximum likelihood method,
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model parameters are estimated with asymptotic standard errors. A strong advantage

of this technique is that full use is made of cross-sectionaland time-series predictions

of the models, thereby using more information and constraining the parameter solutions

to be truly consistent with the model’s stochastic asset value assumptions. Latent esti-

mation should provide the best opportunity for these modelsto perform in an unbiased

manner, and the resulting credit spread prediction errors,a more accurate guide to future

research direction. To the best of our knowledge this is the first test between competing

corporate structural credit models where the credit model is fitted as a latent process in

a state-space framework.

The use of Kalman filtering to parameterise term structure models is common in term

structure model fitting (Chen & Scott 1995, Geyer & Pichler 1999, Duan & Simonato

1999). In an approach related to that used in this study, Duffee (1999) applies EKF to

estimate a reduced-form hazard rate model of the term creditspread term structure. Our

empirical method follows closely, but is applied to structural credit models. We also use

actual trade data, instead of bid-quotes, and therefore have an additional complication of

dealing with unequal time steps between trades. Other researchers have applied EKF on

panel data in different contexts. Cumby & Evans (1995), Claessens & Pennacchi (1996),

Keswani (2005), and Duffie et al. (2000) apply EKF to estimatemodels of sovereign

bond prices. Despite a long-history of application to sovereign debt modelling, state-

space methods have seen little application in corporate debt modelling. The notable

exception in corporate debt modelling is the fitting of a single reduced-form model by

Duffee (1999). A similar, but unrelated method of maximum likelihood estimation is

presented by Ericsson & Reneby (2002). They derive a likelihood function for the firm’s

equity, which is then fitted to a time series of stock price data from which teh firm asset

parameters are estimated. The credit spread is then predicted from the resulting firm

asset parameters. Their method only applies a time-series restriction on the likelihood

function whereas we estimate model parameters directly from the history of credit spread

term structures. The EKF method also has the advantage of handling missing data and

measurement error that an exact likelihood method cannot.

2.7 Selection of Models for Testing

To extend and contrast EHH, we parameterise several alternative models treating the

log-solvency ratio as truly unobserved. The models considered are an extended Merton

model (EM), a single factor LS model (LS 1) and two-factor LS model (LS 2), the LT

and CDG models, and lastly a single-factor CEV model.

The models are chosen to be comparable with earlier empirical studies, where tractable

solutions are available, that represent the range of structural modelling literature. The

EM closely mirrors a similar ad hoc implementation of the Merton model by EHH.
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The LS1 model is a simple single-factor implementation of the LS model with a con-

stant interest rate. It is comparable to the LS base case model in HH. A two-factor

LS model allows comparison against the LS1 model to gauge theincremental benefit

of the stochastic interest rate process to the models. The LTmodel is a parsimonious

endogenous boundary model previously tested by EHH and HH. The CDG model is

the most widely analysed model with debt targeting and debt market timing behaviours

drawn from the capital structure literature. Finally the CEV model offers a closed-form

solution with a time-varying local asset volatility.



Chapter 3

Method

In this section we describe our method for estimating structural models. Unlike the proxy

variable methods of JMR and EHH, and loss calibration methodof HH, we show how the

firm’s asset process can be implied from the observed time series of firm-specific credit

spreads. The models are therefore fitted to observed term structures of credit spreads

with minimum prediction error. We treat the firm’s asset process as truly unobserved

and estimate its stochastic properties, and its path through time, implicitly as a latent

process. By doing so, we allow each model to be estimated as well as it can within the

limitations of its theoretical construction. No errors areintroduced through the use of

inappropriate observable proxy variables. We can therefore compare the relative perfor-

mance of models, on a level playing field, where each model is permitted to perform

with a minimum of bias. Any errors remaining are likely to represent theoretical spec-

ification errors only, which are then subject to further tests for model robustness. Our

method provides a sharper instrument to test the performance of structural models than

has hitherto been used.

Our model estimation method follows closely (Duffee 1999),which we adapt for

estimation of structural, as opposed to reduced-form, credit models. However, unlike his

study, we use actual trade data instead of month-end broker quotes, and we control for

the effect of non-default related premiums directly as a component of the credit spread.

We refer to these components of the credit spread loosely as the ‘liquidity’ premium.

Three methods of controlling for the liquidity premium are conducted: no premium for

comparison with prior studies; a constant premium component of the bond spread; a

constant premium component and a time-varying premium thatis a linear factor of the

Refcorp 10 year maturity bond spread. A selection of firms is made choosing firms that

have bonds that actively trade across a broad range of maturities.

The credit models are fitted with respect to minimising the error in predicted ver-

sus observed credit spreads, as opposed to predicting bond values. The latter is likely

to contain error related to estimation of the risk-free yield curve, and our main focus is

65
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on isolating the errors related to credit risk valuation, weprefer to optimise model fit

to observed credit spreads. Observed credit spreads are calculated by deducting from

corporate bond yields, the equivalent maturity Treasury bond yields, with the same ma-

turity on the date of the trade. Since the credit data may contain some recording errors,

we explain a method of cleansing extreme outliers. In Section 3.1, the source, sampling,

and preparation of the corporate bond data is described.

Section 3.2 describes the method of fitting the credit modelsto the bond data. In

particular, we extend (Duffee 1999) to deal with unequally spaced observations. The

credit models are estimated by first converting them into state-space form comprising

two equations: a dynamic measurement equation inclusive ofa measurement error, and

a latent log-solvency ratio that is related to the observed measurement error. So while we

cannot observe the firm’s log-solvency process directly, wecan infer with confidence its

path and parameters from the observed path taken by the firm’sterm structure of credit

spreads, and with knowledge of the theoretical model that determines the form of the

log-solvency process. By use of an EKF, quasi maximum likelihood estimates of model

parameters are obtained from the time series of observed credit spread term structures.

A similar method is shown in Section 3.3 to estimate the risk-free rates for use in the

two-factor credit models.

3.1 Data

In Section 3.1.1, the source of traded bond data is discussed. The selection criteria of

firms and bond issues is described in Section 3.1.2, the method of converting bond prices

to credit spreads is explained in Section 3.1.3, and the treatment of outlier observations

is discussed in Section 3.1.4. The resultant cleaned sampledata set of credit spreads is

described in Section 3.1.5. The data and method used for calculating the Refcorp bond

yield spreads is described in Section 3.1.6.

3.1.1 Credit data sources

Secondary market price data, on North American corporate bonds, is sourced from the

Fixed Income Securities Database for Academia (FISD). The FISD data contains trade

prices reported by the National Association of Insurance Commissioners (NAIC), sup-

plemented with additional issue and firm characteristics supplied by LJS Global Ser-

vices, Inc. Warga (2000) provides a further description of the NAIC data.1 The sample

period is from 1 January 1994 to 31 December 2000.

Prior to the availability of the NAIC data, the extant empirical literature for reduced-

form, and structural credit modelling, has predominately used month-end bid quotes

1A product of the Fixed Income Research Program at the University of Houston, College of Business
Administration.
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originated by Lehman Brothers traders, quoted for the purpose of regular construction

of the Lehman Brother’s bond indexes, as reported in the Fixed Income Database (FID),

and described further by Hong & Warga (2000). Much of our empirical knowledge

comes from this single data source, for example, Duffee (1999), Eom et al. (2004),

Mueller (2000), Bakshi et al. (2001), Ericsson & Reneby (2002), Elton et al. (2001), and

Collin-Dufresne, Goldstein & Martin (2001).

Insurance companies are required by the National Association of Insurance Compa-

nies to provide a record of all bond transactions via quarterly submission of Schedule D

reports. Included in the report is the date of the transaction, the par amount traded and

the total market value of the transaction. Prices are recorded for the day of the trade. We

can be confident that the data is representative of a broader bond-trading market. Hong

& Warga (2000) report that insurance companies account for roughly 25 percent of the

market for non-investment grade debt, while their share of trading in the investment-

grade debt market is around 40 percent.

For estimating continuous time models we ideally want to usedata that is close to

be continuously observed, in other words, the data has a small interval between obser-

vations. In particular, the EKF used by Duffee (1999) and by this study, linearises the

non-linear relationship between the model pricing function (the measurement equation)

and the firm’s log-solvency transition (the transition equation). The smaller the observa-

tion interval, the better the approximation. In contrast toDuffee (1999), we use NAIC

sample data, which comprises actual corporate bond prices trade prices recorded for the

date of trade. We therefore have, on average, a shorter observation period more suited

for calibrating continuous-time credit models.

3.1.2 Sample Selection

Unlike the extant empirical literature of EHH, Lyden & Saraniti (2000), and JMR, we

do not have the objective of selecting only firms with simple capital structures and few

bonds on issue. Instead we select firms with a broad range of maturities traded so that we

obtain the most information possible across bonds and across the term structure. That

tends to direct our sampling toward more frequently traded firms.

The NAIC database comprises all fixed interest trades by North American insurance

companies including Treasury and corporate debt trades over the period commencing

1 January 1994 to 31 December 2000. Before combining bought and sold trades, the

data comprises over 734,000 trades. For our purposes we require panel data from a

smaller subset of corporate firms that exhibit relatively frequent trading, and have several

outstanding bonds with remaining maturities that span a term structure, with a history

of trading over an extended period of time. Unlike early empirical studies we do not

restrict ourselves to firms with debt structures that approximate the zero-coupon Merton

ideal (see for example JMR and EHH). This enables us to consider the broad population
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of corporate issuers, tempered only by the limitations of data availability and accuracy.

We exclude government entities (FISD industry code 04), banks (FISD industry code

20), and savings and loan institutions (FISD industry code 25). Deposit-taking institu-

tions have a special role in the economy and bond pricing may be influenced by the

implicit government guarantee arising from the moral hazard associated with their fail-

ure. Since financial firms are a major source of bond issues, wehave chosen to include

them in the sample.

Where issuing firms are non-listed subsidiaries of a listed parent, the parent’s market

capital and balance sheet data is used. Where there is more than one subsidiary within

a corporate group with a unique CUSIP (for example, Ford Motor Company and Ford

Motor Credit Company), only one subsidiary is included in the sample.

The second level of filtering removes issues that may be subject to embedded option

features, or credit enhancements, not included in the theoretical models under consider-

ation. From issue-level data sourced from FISD we:

1. exclude bonds that are convertible, or redeemable (via call, IPO clawback, main-

tenance and replacement call or sinking fund), subject to puts, or are credit en-

hanced, for example by financial guarantees; and,

2. include only fixed-interest coupon bonds, and corporate debentures with semi-

annual compounding with 30/360 day convention, where thereare no planned

future variation in coupons.

Further issue-level filters are then applied to minimise potential data errors. To un-

derstand what data errors may be present in the NAIC data we reviewed prior studies that

have utilised schedule D submissions from insurance companies. Hong & Warga (2000)

match the recorded bond prices between New York Stock Exchange’s Automated Bond

System (ABS), and Schedule D sourced NAIC price data supplied by Capital Access

Inc. (CAI), and compare with the closest-in-time bid quotesfrom Lehman Brothers as

reported in the FID. They find that the transaction-based prices from the ABS and NAIC

sources are broadly in agreement with each other and with themonth-end dealer quotes

given by Lehman Brothers dealers. A source of bias was identified in the recording

practices of NAIC, in which total transaction costs were rounded upward to the nearest

$1,000. Hong & Warga (2000) minimised the bias by restricting their sample to trades

with costs of $500,000 or more.2 Bedendo, Cathcart & El-Jahel (1994) exclude bonds

with transaction prices below $80 and above $135 as well as bonds with negative credit

spreads.

2For example, a sale with the value of $1,500,900 would be reported as $1,501,000. To limit the potential
upward bias in reported prices we adopt the same filter rule and exclude trades of less than $500,000 in total
cost which limits the maximum percentage error in reported price to be no more than 0.20 percent of the
total transaction cost.
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Chakravarty & Sarkar (1999) use CAI sourced NAIC data to compare spreads be-

tween government, corporate and municipal debt. In order tominimize incidences of

data entry error, they remove all observations where the transaction price is outside the

range $500,000 to $1,500,000. Some entries were observed onnon-trading days and

were removed, and trades occurring on June 30, 1995, June 30,1996, and December 31,

1997 are removed. Anecdotal evidence suggests insurance companies may have used

these dates for recording transactions that they had failedto report in a timely manner.

Consideration is made of the prior findings of errors in the NAIC data. We therefore

exclude observations if:

1. there are missing or invalid trade dates;

2. the credit spread is negative (due to measurement error orestimation error for the

matched Treasury rate);

3. the remaining maturity of the bond, at the time of the trade, is less than 12 months.

We exclude very short-dated bonds due to their sensitivity to small measurement

errors as suggested by Cooper & Davydenko (2004);

4. the remaining maturity is greater than 30 years because this is the maximum con-

stant maturity Treasury (CMT) risk-free maturity available;

5. total cost of the trade is less than $500,000 in total cost as per Hong & Warga

(2000); and,

6. trades occur on 30 June 1995, 30 June 1996 and 31 December 1997 as in Chakravarty

& Sarkar (1999).

Where more than one trade occurs on a single day, we use a single representative obser-

vation calculated as the weighted average price, where the relative total transaction costs

form the weight. This removes duplicate records caused wheninsurance companies are

on both sides of the same transaction.

After these adjustments the data set comprises 1,373 issuers, with 8,799 issues and

96,472 trades. We then apply issuer-level filters to select firms with patterns of trading

suitable for robust panel estimation. We select firms with:

1. at least 3 bonds, where each averages at least 6 trades per annum, for a minimum

period of 12 months;

2. a broad range of remaining terms to maturity; and,

3. a complete balance sheet history on COMPUSTAT and stock prices from CRSP

over the sample period.This information is used for comparison with the firm’s

observable solvency ratio, and for deriving initial parameter estimates for the EKF.
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To reduce the dimension of the model estimation, no more thanten bonds are in-

cluded per issuer. Where more than ten bonds have met the filter rules, the most fre-

quently traded are chosen. Finally, the beginning, and end dates, of the issuer’s sample

period are chosen as the earliest, and latest dates respectively, that a cross-section of

maturities is evident. Consequently, the beginning and enddates of each issuer’s sam-

ple vary slightly. Our selection criteria is intended to result in a sample of observations

that are closely spaced in time and well represented across the dynamic term structure

of the issuing firm. The overall density of the observations provides cross-sectional and

time-series information best suited to fitting continuous-time structural credit models.

Figure 3.1 shows an example of the trading density for Northrop Grumman Corporation

(Northrop). Each point represents an observed trade from one of the four bonds in the

sample. Each bond has a different maturity causing the distribution of trades into a pat-

tern of distinct parallel lines. Two features in Figure 3.1 are noteworthy. Firstly, our

selection criteria results in trades with a broad distribution across the term structure rep-

resented by the vertical spacing of observations. Secondly, the horizontal axis shows the

passage of time and an overall shortening of the remaining maturities. The final sample

comprises 32 issuers, 200 bonds, and 8,953 trades. Table 3.1shows the final sample of

firms and numbers of bonds and observations per issuer. TableC.1 details each bond’s

characteristics and descriptive statistics of the bond’s credit spreads. The relatively small

sample size is due mainly to merger and acquisition activitycausing incomplete COM-

PUSTAT and CRSP histories, which are not strictly required for successful model fitting,

but are necessary to compare implied solvency ratios with observed market leverage ra-

tios.

3.1.3 Calculating the Observed Credit Spreads

Similar to EHH, the observed credit spread is calculated as the difference between the

yield to maturity of the corporate bond and the par yield of anon-the-run Treasury bond

of the same remaining maturity. The corporate yield to maturity is calculated as the

rate that equates the present value of the contractual cash flows (obtained from the FISD

database) with the trade price assuming by convention a semi-annual compounding and

a 30/360 day count convention. The Treasury yields are constant maturity Treasury

yield rates (CMT) sourced from the Federal Reserve H15 report and interpolated to the

remaining maturity matched to the corporate bond. We use theNelson & Siegel (1985)

model for inteprolation and construct 1,753 risk-free termstructures corresponding to

the number of unique trading days in the sample.

Adopting the notation of EHH, the risk-free constant maturity yield at timet for a
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Table 3.1: Shown are the final sample of issuers, number of bonds per issuer and number of observations per
issuer. CUSIP identifies the issuer, and SIC is the Standard Industry Code (SIC) of the issuer, as reported
in the Fixed Income Securities Database. The Ticker is the stock exchange unique identifier of the issuer,
if listed, and of its parent if unlisted. Where a financial services issuer is a wholly owned subsidiary of a
non-financial firm, the industry sector refers to the predominate activity of the corporate group.

No. No.
Issuer CUSIP Ticker SIC Sector Issues Trades

Aetna Inc. 8117 AET 6324 Finance 3 88
Associates Corp. 46003 C 6141 Finance 10 316
Atlantic Richfield Co. 48825 ARC 2911 Industrial 3 122
A T & T Corp. 1957 T 4813 Utility 3 160
Bear Stearns Companies Inc. 73902 BSC 6211 Finance 10 349
Black & Decker Corp. 91797 BDK 3540 Industrial 3 180
Boeing Co. 97023 BA 3721 Industrial 3 151
Dayton Hudson Corp. 239753 TGT 5331 Industrial 10 328
Commonwealth Edison Co. 202795 UCM 4911 Utility 8 306
Enron Corp. 293561 ENE 5172 Industrial 6 186
Federated Department Stores 31410H FD 5311 Industrial 4 182
Ford Motor Co. 345370 F 3711 Industrial 9 365
General Motors 370442 GM 3711 Industrial 9 501
Georgia Pacific Corp. 373298 GP 2600 Industrial 3 120
HCA Healthcare Corp. 19767Q HCA 8062 Industrial 4 135
IBM Corp. 459200 IBM 7370 Industrial 3 285
International Paper Co. 460146 IP 2600 Industrial 5 209
Lehman Brothers Holdings Inc. 524908 LEH 6211 Finance 10 405
Merrill Lynch & Co. 590188 MER 6211 Finance 10 513
Motorola Inc. 620076 MOT 3663 Industrial 4 125
Nabisco Group Holdings Corp. 629527 NGH 2052 Industrial 6 381
Niagara Mohawk Power Corp. 653522 NMK 4931 Utility 4 206
Northrop Grumman Corp. 666807 NOC 3812 Industrial 4 214
Paine Webber Group Inc. 695629 PWJ 6211 Finance 9 326
Penney J C Co. Inc. 708160 JCP 5311 Industrial 6 263
Philip Morris Companies Inc. 718154 MO 2111 Industrial 10 529
Seagram Co. Ltd. 811850 VO 3652 Industrial 4 188
Sears Roebuck Acceptance Corp. 812404 S 5311 Industrial 9 397
Service Corp. International 817565 SRV 7200 Industrial 8 250
Union Pacific Corp. 907818 UNP 4011 Utility 8 321
Viacom Inc. 925524 VIA.B 4841 Industrial 3 259
Wal-Mart Stores Inc. 931142 WMT 5331 Industrial 9 593

Total 200 8,953



72 CHAPTER 3. METHOD

 0

 5

 10

 15

 20

 25

 30

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

R
em

ai
ni

ng
 B

on
d 

M
at

ur
ity

 (
yr

s)

Cumulative Time (yrs)

16731
69804
69808
69822

Figure 3.1: Presented is a plot the structure of the NorthropGrumman Corporation’s sample data. Each
observation is an observed trade plotted by remaining maturity on the vertical axis, and the passage of time
along the horizontal axis. Evident is the irregular spacingof observations coinciding with actual trades,
and the.banding of observations into four parallel lines corresponding to the bonds on issue. The bonds
are identified by their Fixed Income Securities Database identifier. Further details are shown in Table C.1.
Sample average remaining maturities are 6.4 yrs (16731), 8.2 years (69804), 18.0 years (69808), and 28.0
years (69822). The downward slope to the right is a result of the remaining maturity decreasing with time.
The firm sample period is 27 February 1996 to 22 December 2000.

Table 3.2: This table shows a summary of the distribution of bond characteristics per issuer. Further details
by issuer and issue are shown in Table C.1. Number of issues isthe number of bonds sampled per issuer.
Sample period refers to the cumulative trading periods per issuer. Number of trades is the number of price
observations per issuer. The mean interval is the average time between observed trades. Mean maturity
refers to the average remaining maturity at each trade per issuer.

Across 32 Issuers

Issuer-level statistic Min. Median Max.

Number of issues 3 6 10
Sample period (yrs) 3.30 6.22 6.97
No. of trades 88 261 593
No. of trading days 84 233 486
Mean interval (yrs) 0.0141 0.0262 0.0550
Mean maturity (yrs) 5.54 8.12 21.43
Min. maturity (yrs) 1.00 1.12 12.00
Max. maturity (yrs) 10.01 19.71 29.99
Mean coupon (%) 6.41 7.21 9.92
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Treasury bond maturing at timeT is give by the Nelson & Siegel (1985) model as

y(t,T ;Θr(t)) = β0 + δ1(β1 + β2)
(1− e−(T−t)/δ1)

T − t
−β2e−(T−t)/δ1, (3.1)

where, the parameter set isΘr(t) = (β0,β1,β2,δ1), andβ0 > 0 andδ1 > 0. For every

date of bond trading in our sample, new parameters are estimated by minimising the sum

of squared errors, between the model predictions and observed yield spreads, simulta-

neously across ten equally weighted maturities (3 and 6 months, 1, 2, 3, 5, 7, 10, 20,

and 30 years). The sample average parameter value set isΘ̄r =(0.0630, -0.2612, 0.2528,

3.8128). The average RMSE is 8.5 basis points, which is comparable to the level of error

reported by Nelson & Siegel (1985).

3.1.4 Treatment of Outliers

A disadvantage of using actual traded bond prices is the potential for additional data

handling errors. This has not been a consideration in the extant empirical literature of

structural models due to the predominate use of month-end bid quotes. The greater

frequency of data recording, and large volumes of data handling, leaves the NAIC data

more at risk of containing recording errors. The filter rulesdescribed above help to

remove known problems, but idiosyncratic errors may still influence individual trade

prices, and therefore, observed credit spreads.

A review of the literature found little consistency in dealing with idiosyncratic out-

liers in the NAIC bond data, but did confirm that data errors may be present. For ex-

ample, Bedendo et al. (1994), when fitting spline curves to interpolate across the term

structure of credit spreads, found evidence of extreme observations that are, ‘suggestive

of obvious pricing errors’. They judgmentally remove outliers without applying an ob-

jective cleaning rule. Campbell & Taksler (2002) addressedthe problem in the NAIC

data by excluding the top and bottom one percent of credit spreads. Motivated by these

studies we developed an objective cleaning method that resulted in minimal modification

of the data.

We identify potential data errors by recognising that the deviation in credit spreads

expected across bonds of different maturities is likely to be much lower that the dif-

ferences arising from an incorrect data entry. We start by constructing issuer specific,

time-series of credit spreads, pooling all maturities together. Where more than one ma-

turity is traded on the same day, we use a simple average as a single observation for the

trade date. The first differences in the resulting time-series are then standardised, and

absolute deviations greater than four, replaced by the meanof the adjacent observations

for the bond with the outlier. Consequently, outliers are cleaned only when large, in

first difference terms, and directionally inconsistent, relative to adjacent trades across all

bonds. Our method of outlier data replacement improves on Bedendo et al. (1994) and
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Campbell & Taksler (2002) since we use all the available price information on the firm’s

other bond prices. In total, only 70 out of 8,953 data points were cleaned representing

only 0.78 percent of the final sample.

An example of the filtered and cleaned data set for Northrop isshown in Figure 3.2.

Evident is an increase in spreads through the sample period,consistent with the market

trend as evidenced by a similar increase in the generic Baa Moody’s corporate spread

shown in Figure 3.3.
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Figure 3.2: Presented is a plot of the Northrop Grumman Corporation’s bond credit spreads, by time from
the beginning of the firm’s sample. The bonds are identified bytheir Fixed Income Securities Database
identifier. Further details are shown in Table C.1. Average remaining maturities are 6.4 years (16731), 8.2
years (69804), 18.0 years (69808), and 28.0 years (69822). The firm sample period is 27 February 1996 to
22 December 2000.

3.1.5 Sample Description

As shown in Table 3.2, the median firm has 6 issues observed at various times over a

period of 6.22 years, with an average time step between trading days of 0.0262 years, or

approximately 10 calendar days. For the median firm, the termstructure spans from a

minimum remaining term to maturity of 1.12 years to a maximumof 19.71 years. Note

that because more than one of the issuer’s bonds may trade on the same day, the median

firm’s number of trades of 261, exceeds the median firm’s number of trading days of

233.
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Table 3.3: This table shows the frequency distribution of credit spread observations within the sample.
Industry refers to the industrial sector of the issuing firm,Issuers is the count of issuing firms, and Trades
are the counts of bond trades.

Issuers Issues Trades

Industry No. (%) No. (%) No. (%)

Industrial 22 68.8 125 62.5 5,963 66.6
Finance 6 18.8 52 26.0 1,997 22.3
Utility 4 12.5 23 11.5 993 11.1

Totals 32 100.0 200 100.0 8,953 100.0

Duffee (1999, Table 1) applies a similar estimation method on 161 issuers reported

in the FID database. He uses month-end quotes and monthly time partitions compared

to our use of actual trades with a 10 day average interval between trades. His median

firm has 92 month-ends over 7.6 years, which equates to 227 bidquotes compared to our

261 actual trades. Thus, we have slightly more data per issuer, with information on the

firm’s default risk observed approximately three times as frequently.

Table 3.3 shows that industrial firms comprise 62.5 percent of our sample by num-

ber of issues, followed by finance at 26.0 percent, and utilities at 11.5 percent. EHH

exclude financial firms and their sample includes only 5.5 percent in transport and utili-

ties. Table 3.4 shows the sample credit spreads by rating andremaining maturity at the

time of their trade. As expected the median credit spread is higher for poorer ratings

and higher for longer dated maturities. Davydenko & Strebulaev (2004, Table II) report

similar results for credit spread levels and sample standard deviations across a larger

sample (43,402 trades in total compared to our 8,953) confirming that our sample is rep-

resentative of the larger NAIC universe. Our median credit spread is 81 basis points,

increasing from 50 basis points for AA trades, 78 basis points for A, 97 basis points for

BBB, and up to 157 basis points for BB trades.3 Table 3.4 shows that spreads are on

average, monotonic with remaining maturity; spreads for AAand BBB are lower for the

medium tenors than the short maturities (4 basis points for AA and 13 for BBB medians)

and only one basis point higher for A rated issuers. The expected monotonic increase is

present in long maturities where we find all spreads are greater than shorter maturities.

Table 3.5 shows the credit spread descriptive statistics, after controlling for gearing,

matching solvency and credit spreads on the date of trade. Itis convenient to express sol-

vency in a manner that is consistent with structural credit modelling. We therefore use an

observable proxy that hereafter is referred to as the observed log-solvency ratio (S), de-

fined as the natural log of the inverse of the observed leverage ratio,S = ln((D + E)/D),

whereD is the total book value of debt, andE is the market value of equity. Book val-

3The comparable median spreads from Davydenko & Strebulaev (2004, Table II) are 51, 71, 103 and
197 basis points respectively.
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Table 3.4: This table reports the descriptive statistics ofthe sample credit spreads by issuer rating and
remaining maturity, coincident with the trade date. All credit spreads are reported in basis points.

All AA A BBB BB

Panel A: All

Mean 102 62 91 115 312
Median 81 50 78 97 157
Std. Dev. 124 36 51 109 486
5% quantile 31 23 34 45 86
95% quantile 201 132 189 218 1,465
n 8,953 1,691 3,704 3,263 295

Panel B: Remaining Maturity≤7 years

Mean 102 61 89 117 378
Median 73 51 70 96 159
Std. Dev. 158 36 58 145 628
5% quantile 28 24 28 39 64
95% quantile 207 132 201 212 1,729
n 4,107 875 1,687 1,409 136

Panel C: Remaining Maturity 7−15 years

Mean 93 60 84 100 270
Median 75 47 71 83 155
Std. Dev. 93 36 45 68 328
5% quantile 32 20 40 48 97
95% quantile 182 129 175 185 1,285
n 3,407 727 1,266 1,276 138

Panel D: Remaining Maturity>15 years

Mean 120 77 108 142 166
Median 109 65 100 121 163
Std. Dev. 57 35 37 72 32
5% quantile 60 44 60 83 122
95% quantile 217 159 181 246 209
n 1,439 89 751 578 21
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ues of debt are quarterly values reported by COMPUSTAT (items 45 and 51), and the

market value of equity is obtained from CRSP for the day of thetrade. Lower values of

log-solvency measure greater levels of debt relative to firmvalue. As expected, Table 3.5

shows that, on average, higher credit spreads are associated with lower levels of solvency

as expected. The median spread in the upper quartile of log-solvency is 65 basis points

and 99 basis points in the lowest quartile. Also observable is a higher median spread

associated with longer remaining maturity for all quartiles of log-solvency except the

upper quartile (lowest default risk). In Figure 3.3 the timeseries of the median monthly

sample credit spread and Moody’s generic corporate spread indexes are shown. The me-

dian spread has a 90.4 percent correlation with the Moody’s Aaa index levels and 41.4

percent in first differences with the index showing that our sample of firms exhibits simi-

lar time series behaviour relative to the wider universe of publicly traded debt. The level

of our median credit spreads aligns most closely with the Moody’s Aaa index although

our most frequently observed sample corporate rating is single A. This is possibly due to

our sample selection method that favors mature listed firms with frequently traded, and

therefore, relatively more liquid bonds.

Across our sample and the Moody’s indexes, there is a generalupward shift in credit

spreads during the sample period. Most noticeable is the sharp increase in credit spreads

in August 1998 when the Russian default and LTCM bail-out triggered a rise in sec-

ondary market yields (hereafter we refer collectively as the LTCM crises). The effect of

the LTCM crises on market-wide bond credit spreads is shown in Table 3.6. Before 1

August 1998, the sample average credit spread is 70 basis points. After 1 August 1998,

the average increases to 159 basis points. Controlling for rating, the rise in spreads post

the LTCM crises is just over double the pre-crises values forratings AA, A, and BBB.

The increase, is however much larger for the highest defaultgrade BB, being an increase

of around six and a half times.

3.1.6 Refcorp Yield Spread

Motivated by the observation that our sample contains a potential systemic shift in credit

spreads due to the LTCM liquidity crises, we incorporate issue-specific and market-wide

liquidity components in the predicted credit spread. In addition to a constant yield spread

intercept term, we also wish to control for a time-varying liquidity premium. As a direct

measure of market-wide liquidity we follow Longstaff (2002) and construct a 10 year

constant maturity spread between bonds issued default freefrom the U.S. government

agency Refcorp, and on-the-run Treasury bonds.

Refcorp was established in 1989 to raise funds for the Resolution Trust Corporation,

in turn created to resolve insolvent savings and loans deposit-taking institutions in the

late 1980s. Refcorp issued USD 30 billion of debt from 1989 to1991 with various

long-dated maturities, of which about 90 percent is traded in strip form (Reinhart &
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Table 3.5: This table shows descriptive statistics of the sample credit spreads reported by remaining matu-
rity, and quartiles of observed log-solvency of the issuingfirm, as measured on the trade date. We define
log-solvency as:S = ln((D+E)/D), whereD is the total book value of debt, andE is the market value
of equity. Book values of debt are quarterly values reportedby COMPUSTAT (items 45 and 51), and the
market value of equity is obtained from CRSP for the day of thetrade. All credit spreads are reported in
basis points.

Quartiles of observed log-solvency (S)
All 100-75% 75-50% 50-25% 0-25%

Panel A: All maturities

Mean 102 74 92 106 135
Median 81 65 75 90 99
Std. Dev. 124 44 54 82 218
5% quantile 31 24 34 38 41
95% quantile 201 157 193 211 240
n 8,953 2,239 2,237 2,238 2,239

Panel B: Maturity 1-7 years

Mean 102 78 87 101 139
Median 73 67 64 76 89
Std. Dev. 158 49 57 102 270
5% quantile 28 24 67 32 37
95% quantile 207 173 189 218 243
n 4,107 1,121 883 945 1,158

Panel C: Maturity 7-15 years

Mean 93 63 80 100 131
Median 75 56 67 85 96
Std. Dev. 97 34 47 60 166
5% quantile 32 24 34 45 48
95% quantile 182 119 167 190 254
n 3,407 879 854 902 772

Panel D: Maturity 15-30 years

Mean 120 97 120 129 128
Median 109 88 104 111 125
Std. Dev. 57 41 49 65 65
5% quantile 60 45 63 77 77
95% quantile 217 166 218 240 195
n 1,439 239 500 391 309

Quartile ranges > 1.440 1.440− 0.775− < 0.367
of S 0.775 0.367
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Table 3.6: This table shows credit spreads by rating before and after 1 August 1998, approximately the date
of the LTCM crises on bond credit spreads. Credit spreads andissuer ratings are matched on the date of
trade. All credit spreads are reported in basis points.

All AA A BBB BB

Panel A: Spreads pre 1 August 1998

Mean 70 42 65 81 155
Median 63 41 62 77 139
Std. Dev. 37 14 26 33 59
5% quantile 28 21 30 42 83
95% quantile 133 66 106 135 271
n 5,797 1,107 2,361 2,087 242

Panel B: Spreads post 1 August 1998

Mean 159 100 138 174 1,030
Median 166 96 127 148 1,249
Std. Dev. 189 34 51 160 823
5% quantile 69 54 74 91 144
95% quantile 257 166 228 287 2,870
n 3,156 584 1,343 1,176 53

Sack 2002). Refcorp bonds are taxed at the same rate as Treasury bonds and Refcorp

is considered to be a default-free issuer; coupon payments are ultimately backed by

the U.S. Treasury, and principal payments are backed by pledged non-marketable zero-

coupon Treasury bonds. Despite their default-free status,the bonds are not as liquid as

Treasury bonds making their spread relative to on-the-run Treasury bonds suitable for

quantifying the change in general market preference for liquidity.

Our choice of Refcorp bonds as a measure of market-wide liquidity is motivated by

Longstaff (2002) and Reinhart & Sack (2002) who report a significant increase in the

Refcorp spread post the LTCM crises in August 1998, which we also note to be a feature

of corporate credit spreads in Figure 3.3. Reinhart & Sack (2002) estimate the total liq-

uidity premium in AAA 10 year yield spreads to be between 14 and 34 basis points, and

in BBB 10 year yield spreads between 31 to 78 basis points and concluded that a height-

ened preference for liquidity during the hedge fund crises contributed at least as much

as credit risk to the widening of corporate credit spreads. Longstaff (2002) estimates

the Refcorp spread to range between 10 and 16 basis points, rising to 90 basis points at

the end of 2000. He shows that changes in the Refcorp spread are related to consumer

confidence, flows into money market and stock mutual funds, and foreign holdings of

Treasury bonds, and consequently interprets the Refcorp spread as a flight-to-liquidity

premium. Recently, Longstaff, Mithal & Neis (2005) directly estimate the non-default

component of corporate credit spreads by comparing credit default swap premiums to

bond spreads. They estimate the non-default component to betime-varying and strongly

related to measures of individual bond liquidity, such as issue size and bid-ask spreads.
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Table 3.7: This table reports descriptive statistics of thedaily term structure strip yields.

Statistic Minimum Maximum No. obs.

Mean 3.6 29.5 26.5
Min 1.0 29.0 23
Max 7.5 30.0 29
n 1,753 1,753 1,753

Changes in the non-default component are found to be relatedto similar market-wide

liquidity factors that Longstaff (2002) also found as significant regressors on changes in

Refcorp bond spreads. We therefore consider the observableRefcorp spread as a rea-

sonable observable measure of the time variation in a market-wide liquidity premium.

We enter the Refcorp spread into the predicted spread, scaled per issuer to accommodate

different firm sensitivities to changes in market-wide liquidity preferences.

To measure the Refcorp spreads we first obtain bid yields froma sample of traded

bond strips sourced from Bloomberg (PXRS screen). Table 3.7shows a summary of the

strips. The strip data is trimmed to include maturities between one and 30 years as at

the quotation date; in total, we have 46,416 prices for 34 Refcorp strips for the period

beginning 3 January 1994 to 29 December 2000. Table 3.7 showsthe distribution of

yields available each trading day. On average, there are 26.5 yields available per day.

The average minimum maturity is 3.6 years and the maximum of the minimum maturities

observed for all days is 7.5 years. The maximum sample maturity averages 29.5 years

with a minimum of 29 years. Consequently, we have insufficient data to construct a

complete daily yield curve but we are able to interpolate theRefcorp yield between

maturities of 7.5 years and 29 years. We choose a 10 year constant maturity Refcorp

spread as our instrumental variable due to similarity with the median remaining maturity

of our sample data. Refcorp strip yields are quoted on a semi-annual compounding

convention as per Treasury bonds but with zero coupon payments. In contrast, the CMT

series is quoted as a par yield with coupons. We therefore convert the CMT rate to

an equivalent Refcorp basis before calculating the Refcorpspread. The CMT series is

initially boostrapped to spot rates and expressed as a semi-annual zero-coupon yield.

The Refcorp premium is then calculated as the difference in the linearly interpolated 10

year Refcorp bid yield and the 10 year zero-coupon adjusted CMT yield.

In Figure 3.3 the monthly mean 10 year Refcorp spread is plotted against our sample

of monthly median credit spreads measured over all firms and trades. The correlation

between Refcorp liquidity spreads and corporate bond spreads is high (85.4 percent cor-

relation in levels and 29.2 percent in first differences). From 1995 to the beginning

of 1998, the spread on our sample of corporate bonds generally declined in a manner

matching the fall in Refcorp spreads; by the third quarter of1998 the LTCM crises had

pushed spreads higher, from where they generally tended to increase for the remainder
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Table 3.8: This table shows descriptive statistics of the Refcorp yield spread estimated daily for the pe-
riod 3 January 1994 to 29 December 2000. The spread is the difference between the 10 year constant
maturity zero-coupon Refcorp strip bid yields and the 10 year zero-coupon constant maturity on-the-run
Treasury bond. First differences of the spread is denoted by∆10yr. AR(1) refers to the coefficient on the
autoregressive lag. All spreads are reported in basis points and standard errors are shown in parentheses.

Statistic 10 yr ∆10 yr

Mean 24.28 0.01
Median 20.76 -0.01
Std Dev 12.37 4.25
Min -1.68 -37.23
Max 71.06 45.64
AR(1) 0.94 -0.35

(0.01) (0.02)
n 1,753 1,752

of our sample. Interestingly, the LTCM crises did not impactthe Refcorp spreads as

much as it did corporate credit spreads; the flight-to-liquidity was coincidentally associ-

ated with an increase in perceived credit risk (flight-to-quality). Thus, the average rise

in corporate credit risk post August 1998 cannot be fully accounted for by a change in

the market’s increased preference for liquidity.

Table 3.8 reports descriptive statistics for the daily 10 year Refcorp yield spread

level and first differences. The mean 10 year Refcorp spread is 24 basis points, reaching

a maximum of 71 basis points and a minimum of -1.7 basis points. The presence of

negative spreads is also reported by Longstaff (2002) but isnot frequent and the mean

spread is likewise found to be significantly different from zero. Table 3.8 also shows

mean-reversion in Refcorp spreads as evidenced by the negative coefficient on the first

difference time-series.

Given the magnitude and time-variation in the Refcorp spread, we have evidence that

a component of the corporate-Treasury credit spread is likely to be unrelated to changes

in idiosyncratic firm default risk; Refcorp and Treasury bonds have equivalent default

risk yet we see a time-varying price differential that Longstaff (2002) has shown to be

related to ‘flight-to-liquidity’ measures, and in our own sample we see a similar increase

in Refcorp spreads associated with the LTCM crises.

3.2 Fitting the Credit Models

The credit models are fitted to the observed firm-specific termstructure of credit spreads

with key parameters estimated implicitly from bond price data. Section 3.2.1 introduces

the state-space framework. In Section 3.2.3 the empirical forms of the measurement

equations are described and the generic form of the underlying state process is described

in Section 3.2.4. The extended Kalman filter (EKF) method of estimation is explained in



82 CHAPTER 3. METHOD

 0

 50

 100

 150

 200

 250

 300

1994 1995 1996 1997 1998 1999 2000 2001

C
re

di
t S

pr
ea

d 
(b

as
is

 p
oi

nt
s)

Year

Aaa Bench
Baa Bench
Sample Median
Refcorp 10yr

Figure 3.3: This is a plot of the monthly median credit spreadsampled, against the monthly Moody’s
generic credit spreads, and monthly Refcorp 10 year constant maturity Treasury spread.

Section 3.2.5. Model specific details including the parameters, bond valuation functions,

and model-specific state-space equations are explained in 3.2.6.

3.2.1 Introduction to Model Estimation Method

Our estimation method follows Claessens & Pennacchi (1996), Cumby & Evans (1995),

and Duffee (1999), by use of an EKF to estimate an underlying stochastic model of

the observed term structure of credit yield spreads. Unlikethese earlier studies, our

method uses corporate bond trade data and is applied to corporate structural models of

credit risk. A Kalman filter is a maximum-likelihood method widely used in finance and

economics for estimating term structure models, in which the observable data from the

market is used to infer the values for an underlying unobserved state process. The EKF

is a category of filter where the measurement equation is non-linear with respect to the

state process. The EKF has been applied to yield curve modelling by Lund (1997) and

in pricing sovereign bonds by Claessens & Pennacchi (1996),Cumby & Evans (1995),

Keswani (2005), and Duffie et al. (2000). Its application to corporate debt credit mod-

elling has been limited to estimation of a two-factor reduced form model on monthly

bid-quotes by Duffee (1999). Further examples of the EKF’s use in financial time-series

modelling is provided by Harvey (1989), and Durbin & Koopman(2001).

In our modelling, the state variable is the firm’s solvency. For all models except
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the CEV model, the state variable is the natural log of the ratio of firm value to the

default boundary,x(t) = lnV (t)/K(t). For the CEV model, the state process is defined

as the distance of the firm from the default boundary scaled bythe default boundary,

X(t) = (V (t)−K)/K. The passage of the state variable to zero is the trigger for default.

We cannot observe the state variable directly, however we can observe the credit spreads

of the firm’s bonds as traded in the market, and from their timeseries behaviour, infer the

path taken by the firm’s solvency, and the most likely parameters governing the solvency

process under the respective credit model.

Before estimating the credit models by EKF, it is first necessary to express them in

terms of a state-space framework comprising a measurement and transition equation.

Here we introduce the generic state-space framework into which all models fit. Sec-

tions 3.2.3 and 3.2.4 further elaborate by incorporating bond and issue dependencies.

Let y(t) = (y1(t),y2(t), . . . ,yn(t))
′
be a vector of time-t observed credit spreads for

i=(1 to n) bonds and letα(t) be the value of the state variable at time-t. Suppressing

dependence on other model parameters for clarity, we have the measurement equation

y(t) = d(t)+G(α(t))+ε(t), t = 1, . . . ,τ (3.2)

whered(t) is ann by one vector andε(t) is ann by one vector of serially uncorrelated

disturbances with mean zero andn by n covariance matrixH(t), that is,E(ε(t)) = 0

andVar(ε(t)) = H(t). The functionG(·) maps the state vector to the observed credit

spread.

The error term,ε , in equation (3.2) is referred to as the measurement error. Afeature

of the state-space set up is the inclusion of an error term separate from the variability

of the underlying state variable itself. The latter is governed by the variance of the state

process. The measurement error, on the other hand, recognises that the observation may

be imperfectly measured and hence an additional source of error is introduced into the

system via the measurement equation alone. In finance, measurement errors pertain to

incorrect recording of deals, rounding errors, etc.

The values ofy(t) depend upon the path taken by the unobserved state variable.The

state variable transition equation is specified by the specific credit model but in all cases

follows a univariate first-order Markov process of the general form

α(t) = T̄ (t)α(t −1)+ c̄(t)+ R(t)η(t), t = 1, . . . ,τ (3.3)

whereT̄ (t) is an autoregressive coefficient, ¯c(t) andR(t) are constants, andη(t) is an

independent and identically distributed error term with mean zero and varianceQ(t),

that is,E(η(t) = 0) andVar(η(t)) = Q(t). The disturbances of the measurement and

transition equations are assumed to be uncorrelated with each other in all time periods

and with the initial starting value of the state variable,α(0).
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In Table 3.9 the parameters of the credit models and state variables are summarised.

The parameter set,ψ , is model specific and is comprised of implied model parameters

(Panel A) and implied state-space parameters (Panel B) thatare inferred from maximum-

likelihood estimation. The latter are termed hyperparameters and the set is denotedψh.

Other model parameters include those that are exogenously set or otherwise known such

as bond cash flow characteristics (Panel C).

In the remainder of this section we elaborate on the measurement and transition equa-

tions, the state-space form of the models, and the method of quasi maximum-likelihood

estimation by EKF.

3.2.2 Calculating the Predicted Credit Spread

The predicted credit spread is calculated as the differencebetween the yield to maturity

of the risky corporate bond and an equivalent risk-free bondyield to maturity. The

equivalent risk-free bond yield is found by first valuing thecorporate bond as if it was a

Treasury bond. A risk-free value for the same promised cash flows of the corporate bond

is calculated by discounting the corporate bond’s promisedcash flows at the relevant

Treasury spot rates. The Treasury spot rates are in turn taken from the Vasicek (hereafter

Vasicek) interest rate model, estimated at the trade date, for the term of the promised

cash flow holding interest rate model parameters constant through the sample. In other

words, the interest rate model is not updated through time, but the forward estimates of

future interest rates update as we step through the sample.

We chose the Vasicek model for valuing an equivalent risk-free Treasury bond to

minimise error from the yield curve fitting in the two-factorcredit models, which use the

Vasicek model internally for discounting expected payoffs. For the sake of comparability

between models, we retain the same risk-free term structurefor all models. The fitting

of the Vasicek interest rate model is discussed further in Section 3.3.

Denotep(t,T ) as the time-t value of a default-risky bond, maturing at timeT with

face value of one-dollar, andB(t,T ) as the risk-free equivalent Treasury bond value. The

bond hasz = 1,2, . . .m promised payments at timet(z) with maturity att(m) = T . The

continuous yields-to-maturity for the default-risky bondyc, and the equivalent risk-free

bondrc, are inverted, using the bisection numeric search method, from

p(t,T ) = e−yc(T−t) + c
m

∑
z=1

e−yc(t(z)−t), (3.4)

and,

B(t,T ) = e−rc(T−t) + c
m

∑
z=1

e−rc(t(z)−t), (3.5)

wherec is the coupon, and the value of the default-risky bond is evaluated from the

relevant credit model and the value of the default-free bondequivalent value obtained
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from the Vasicek term structure model.

To compare the model results with observed yield spreads, the continuous yield-to-

maturity estimates are converted to semi-annual compounding equivalent rates by

ys = 2(eyc/2−1) (3.6)

rs = 2(erc/2−1).

The predicted credit spread, before allowance for any liquidity premiums, is then cal-

culated as the difference between the default-risky yield-to-maturity and the riskless

equivalent yield-to maturity, conditional on all firm parameters and bond characteristics

g(t;ψi) = ys − rs. (3.7)

Promised cash flows are sourced from the FISD file.

3.2.3 Generic Measurement Equations

We are motivated by the empirical findings by Delianedis & Geske (2001), Elton et al.

(2001), and HH, that corporate bond credit spreads contain significant non-credit related

premiums. We therefore construct three alternative empirical specifications to control

for their potential influence on model fit and relative performance. The first assumes no

liquidity and tax components in the credit spread as per the extant empirical literature of

JMR, Lyden & Saraniti (2000), EHH, and HH. The second includes a constant premium

for each bond in the measurement equation, thereby capturing differential tax, stationary

liquidity components, and other unexplained components ofthe credit spread. This al-

lows a comparison of spread errors with Duffee (1999), who likewise assumes a constant

unexplained spread component. Finally, the third method controls for additional time-

varying flight-to-liquidity components of the credit spread that are related to changes in

the general market preference for liquidity as measured by the Refcorp ten year constant

maturity credit spread. The use of the yield spread differential between Refcorp bonds

and Treasury bonds has been shown by Longstaff (2002) and Longstaff et al. (2005)

to be an observable measure of the time-varying liquidity premium embedded in the

corporate-Treasury yield spread.

Henceforth, for ease of exposition, the empirical equations are referred to as having:

1) no liquidity premium, 2) a constant liquidity premium, or3) a time-varying liquidity

premium, acknowledging that not all of the unexplained premium is necessarily liquidity

related.4

Expanding on equation (3.2), the elements of the generic measurement equation are:

4For example, it would also include model misspecification
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1. No Liquidity Premium

yi, j(t) = g(α j(t);ψi, j)+ εi, j(t), (3.8)

where,yi, j is the time-t observed credit spread for bondi issued by firmj, εi, j(t)

is normal i.i.d error,g(·) is the model predicted credit spread, conditional on bond

and firm specific parametersψi, j, and the value of the state process,α j(t). This

specification assumes that the theoretical model factors offirm leverage, asset

volatility, and bond cash flow factors are sufficient to estimate the Treasury bond

spread without bias,

2. Constant Liquidity Premium

yi, j(t) = di, j + g(α j(t);ψi, j)+ εi, j(t), (3.9)

where, in addition to the no-liquidity case,di, j ≥ 0 controls for issue-specific

idiosyncratic tax and liquidity, and other unexplained components of the credit

spread,

3. Time-Varying Liquidity Premium

yi, j(t) = di, j + β R
j Re f (t)+ g(α j(t);ψi, j)+ εi, j(t), (3.10)

where, in addition to the constant liquidity case,β R
j > 0 is the sensitivity of the

firm’s average spread to market-wide liquidity measured relative to a 10 year con-

stant maturity Refcorp spread,Re f (t). This specification follows the observation

that market liquidity, as measured by the Refcorp spread, istime-varying, and in-

dividual issuer’s bond spreads may have different sensitivity to changes market

liquidity.

At time-t we observei = (1,2, · · · ,n(t)) yield-to-maturity credit spreads for firmj,

stacked into the n(t) by one vectory j(t). Likewise, we observe n(t) predictions from the

credit model stacked into the n(t) by one vectorG(α j(t) due to each bond having differ-

ent remaining terms to maturity and coupon rates. The empirical equations (3.8),(3.9),

and (3.10) can therefore be expressed more succinctly as thefirm-specific generic mea-

surement equation

y j(t) = d j(t)+G(α j(t);ψ j)+ε j(t), t = 1, . . . ,τ (3.11)

where, for ease of notation, we letd j(t) be the n(t) by one stack of liquidity premiums

with each i-th element equal todi, j + β R
j Re f (t).

The mapping vector,G(·), depends on the specification of the structural model. As
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shown in Table 3.9 we have 6 different functional specifications corresponding to the

Merton, LT, CEV, CDG, and two forms of LS credit models.

Because we estimate model parameters using actual trade data, and not equally

spaced bid quotes as in Duffee (1999),the time between trades is variable. Lett(z) be the

time of the z-th observation forz = (1,2, . . . ,m) whereτ = t(m). For notational clarity,

we hereafter refer tot(z) by t = z so that the sequence of trade dates(t(1), t(2), . . . , t(m))

is represented by the above notation of(1,2, . . . ,τ).

An additional consequence of using actual trade data is thatthe number of bonds

in the observation vector is variable with 0< n(t) ≤ 10. The EKF procedure is robust

to missing data. Where partial data is missing from the observation vector, information

from the available bonds is used to predict the next set of observations. The method we

adopt for handling missing data is from Harvey (1989, p. 143)and Durbin & Koopman

(2001, p. 92). The size ofY j(t) is redimensioned at time-t according to the number

of bonds that traded on the day. Consequently, the size of themeasurement error vec-

tor, ε j(t) and its covarianceH j(t) is redimensioned to the sizen(t). To facilitate the

redimensioning of the covariance matrix, we follow Duffee (1999) and assume that the

measurement error variance is the same for all of firm-j’s bonds. The assumption is rea-

sonable since measurement errors are likely to be random in nature and not related to

the specific characteristics of the bond. It follows thatH j(t) = I(t)σ2
ε, j whereI(t) is

an n(t) by n(t) identity matrix, the dimension of which varies with time, and σε, j is a

firm-specific, time-inhomogeneous, standard deviation of the measurement error.

3.2.4 Generic State Transition Equation

In the state-space set up, the transition equation is a first-order Markov process that links

the observed discrete pricing process to the unobserved capital structure process.

All models have the generic univariate transition equation

α j(t) = c̄ j(t)+ T̄jα j(t −1)+ R j(t)η(t), t = 1, . . . ,τ (3.12)

whereα j is the latent state variable. From the theoretical foundations of the structural

credit models, the unobserved state variable process can beinterpreted as a dynamic

solvency ratio of the firm.

3.2.5 Applying the Extended Kalman Filter

In this section, the EKF as applied to the credit models explained. We follow closely

the notation of Harvey (1989) and Duffee (1999). The theory and use of Kalman filters

in economics is further explained in Harvey (1989), Hamilton (1994), and Durbin &

Koopman (2001).
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The Kalman filter is a recursive procedure for inferring the optimal estimator,a(t),

of the true latent state-process,α(t), when the measurement equation is functionally

linear with respect to the state variable. For a linear Gaussian model, the Kalman filter is

directly equivalent solving the likelihood function (refer [p.126]Harvey (1989)). Where

the measurement equation is functionally non-linear, as isthe case with structural credit

models, linearisation of the prediction equation providesonly approximately optimal

estimates, as the errors are no longer multivariate Gaussian, and the EKF produces an

approximate quasi-likelihood function. Duan & Simonato (1999) demonstrates that the

quasi-likelihood properties remain reasonably reliable for non-linear Kalman filters in

small samples.

Let a(t − 1) be the optimal estimator ofα(t − 1) given all observations up to and

includingy(t −1), then the optimal prediction ofα(t) is

a(t|t −1) = T (t)a(t −1)+ c̄(t), (3.13)

and the variance, or mean square error (MSE), of the state prediction error is

P(t|t −1) = T̄ (t)P(t −1)T̄ (t)
′
+ R(t)Q(t)R(t)

′
. (3.14)

Moving through time from first to last observations, once a new vector of observed

spreads,y(t), becomes available the prediction,a(t|t − 1), is updated to give the best

inference of the unobserved state value using all information up to, and including, time-

t. The updating equation for the state vector is

a(t) = a(t|t −1)+ P(t|t −1)G(t)
′
F−1(t)

(

y(t)−G(t)−d(t)
)

, (3.15)

where,

F (t) = G(t)P(t|t −1)G(t)
′
+H(t). (3.16)

The EKF is distinguished from a linear filter by the linearisation of the measurement

equation using a Taylor series expression around the conditional mean of the state vector,

a(t|t −1). The vectorG is ann(t) by one vector comprising

G(t) =



















∂g(α(t);ψ1)
∂α(t)

∂g(α(t);ψ2)
∂α(t)

·
·

∂g(α(t);ψn(t))

∂α(t)



















α(t)=a(t|t−1)

(3.17)

whereg(α(t);ψi) is the predicted credit spread from the credit model for the i-th bond

at time-t conditional on the model parameters. The partial derivatives are evaluated
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numerically at the prior period prediction of the state value. The MSE of the updated

state variable is then

P(t) = P(t|t −1)−P(t|t−1)G(t)
′
F (t)−1(t)G(t)P(t|t −1). (3.18)

The step-ahead prediction errors, or innovations, are

v(t) = y(t)−G(t)−d(t). (3.19)

The EKF is defined as the system of prediction and updating equations as shown above.

Given starting values, for the initial state vector,a(0), and variance of the state vec-

tor, P(0), the EKF predictive and updating equations are applied on each trade date to

compute the time-series of step-ahead prediction errors and their variances. From a sin-

gle pass through the EKF, the log-likelihood, conditional on the hyperparameter set is

calculated by

lnL(ψh) = −Nτ
2

ln2π − 1
2

τ

∑
t=1+d

(ln |F (t)|+v(t)
′
F−1(t)v(t)) (3.20)

where the total number of non-missing observations is givenby N = ∑τ
t=1+d n(t) given

that the size,n(t), of the observation vector varies with each trade date andd represents

a diffuse prior and is equal to one where used.

The log-likelihood function is conditional on the hyperparameters. The optimal set

of hyperparameters,̂ψh, is found by numeric search performed to maximise the log-

likelihood function shown in equation (3.20). The optimisation is achieved by an initial

search using the simplex search method, followed by the wellknown Broyden-Fletcher-

Goldfarb-Shanno (BFGS) gradient descent search method that we apply using numeric

gradients. All code is implemented in OX software calling the MaxBFGS routine.5 The

simplex method has the advantage of not requiring gradientsand reduces the risk of

locating a local minimum early in the search process. Transformations are made to the

hyperparameters to enforce economic restrictions on the range of permissible values.

Table 3.9, Panels A and B summarise the model parameter restrictions.

Asymptotic standard errors on the hyperparameters are estimated numerically via

inversion of the Hessian matrix of the log-likelihood function. The EKF provides only

approximate standard errors because of the non-linearity of the measurement equation

and hence error terms.

A pass through of the data for each firm, at the optimal hyperparameter set, gen-

erates a time series of state estimates,ˆa(t), termed the filtered estimates. It is the best

estimate of the state vector given all information up to time-t. However, an improved

5OX is a C based matrix language designed for econometric use.Further details are available at
http://www.doornik.com/products.html#Ox.
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inference of the state vector can be made with the additionalinformation available after

time-t. Following Duffee (1999), a process termed smoothing is applied to the filtered

estimate to give a better inference of the true underlying state process. The smooth-

ing method applied uses the full data set and is termed a fixed-interval smoother and is

further described in Harvey (1989, p.154), and Hamilton (1994, Section 13.6).

Recall that the transition equation is autoregressive, theprocess of smoothing works

backwards from the final prediction of the state vector,a(T ), and its MSE,P(T ). Let

a(t|T ) denote thesmoothed estimate of the state vector andP(t|T ) its MSE, then the

smoothed estimates are given by

a(t|T ) = a(t)+ P∗(t)(a(t +1|T )−T(t +1)a(t)− c̄(t +1)), (3.21)

and

P(t|T ) = P(t)+ P∗(t)(P(t +1|T )−P(t +1|t))P∗′(t), (3.22)

where

P∗(t) = P(t)T
′
(t +1)P−1(t +1|t), (3.23)

with the initial valuesa(T |T ) = a(T ), andP(T |T ) = P(T ).

3.2.6 Model-Specific Implementation

In this section, the model-specific parameters and state-space equations for the credit

models are presented: the EM model (Section 3.2.6.1), the single factor LS1 model and

two-factor LS2 model (Section 3.2.6.2), the LT model (Section 3.2.6.3), the CEV model

(Section 3.2.6.4), and the mean-reverting two-factor CDG model (Section 3.2.6.5). A

summary of model parameters is shown in Table 3.9. The resultant smoothed estimates

are the best estimates of the underlying log-solvency process given all information in

the complete time series of credit spread term structures. Hereafter, when discussing the

estimated path of the firm’s log-solvency, we refer to the smoothed estimates.



3.2.
F

IT
T

IN
G

T
H

E
C

R
E

D
IT

M
O

D
E

LS
91

Table 3.9: This table shows the credit model parameters. Panel A shows parameters inferred from credit spreads with their restrictions. Panel B shows the state variable and other
implied parameters with restrictions, and Panel C shows other exogenously set parameters with their source or assumption. COMP refers to COMPUSTAT, AK is Altman & Kishore
(1996), Roberts is Roberts (2002), and Vasicek refers to estimates sourced from fitting the Vasicek term-structure model to CMT data sourced from the Federal Reserve Board H15
report. FISD is the Fixed Income Securities Database.

Parameter Models: Merton LS1 LS2 LT CEV CDG

Panel A: Implied Model Parameters

Firm volatility σv > 0 > 0 > 0 > 0 n/a > 0
Firm vol. scalar σ̄v n/a n/a n/a n/a > 0 n/a
Firm vol. elasticity ρ n/a n/a n/a n/a < 1 n/a
Firm payout rate δv 0-1 0-1 0-1 0-1 0-1 n/a
Bankruptcy costs αv n/a n/a n/a 0-1 n/a n/a
Mean reversion rate κv n/a n/a n/a n/a n/a > 0
Debt timing φ n/a n/a n/a n/a n/a > 0

Panel B: Implied State-Space Parameters and State Variable

Measurement vol. σm > 0 > 0 > 0 > 0 > 0 > 0
Refcorp slope β R > 0 > 0 > 0 > 0 > 0 > 0
Spread constant d > 0 > 0 > 0 > 0 > 0 > 0
Latent state α(t) lnV (t)/K lnV (t)/K lnV (t)/K lnV (t)/K (V (t)−K)/K ln(V/K)(t)

Panel C: Known Model Parameters

Initial state x(0) COMP, CRSP COMP, CRSP COMP, CRSP endogenous COMP, CRSP COMP,CRSP
Writedown rate ω n/a AK AK AK AK AK
Short-rate r(t) Vasicek Vasicek Vasicek Vasicek Vasicek Vasicek
Long-run rate θ n/a n/a Vasicek n/a n/a Vasicek
Mean-reversion ofr(t) κr n/a n/a Vasicek n/a n/a Vasicek
Asset-rate correl. ρv,r n/a n/a 0 n/a n/a 0
Effective tax rate τ n/a n/a n/a 0.155 n/a n/a
Average debt ratio PLT n/a n/a n/a COMP, CRSP n/a n/a
New bond maturity TLT n/a n/a n/a FISD n/a n/a
Target debt ratio ν n/a n/a n/a n/a n/a Roberts
Bond promised cash c, T FISD FISD FISD FISD FISD FISD
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3.2.6.1 Extended Merton Model

The firm follows the continuous-time capital structure process

dx(t) = (r−δv−σ2
v /2)dt + σvdW Q(t). (3.24)

wherex(t) = ln(V (t)/K).

To estimate the model on discretely observed data, equation(3.24) is discretised

recognising that the time intervals between trades is variable, and permitting the risk-

free rate to vary deterministically through time

x(t) = x(t −1)+ (r(t −1)−δv−σ2
v /2)∆t + σv

√
∆tη(t), η(t) ∼ N(0,1). (3.25)

It follows that the transition equation for the Merton modelis the generic transition

equation (3.12) with the elements

α(t) = x(t), c̄(t) = (r(t −1)−δv −σ2
v /2)∆t,

T̄ = 1, R(t) = σv
√

∆t,
(3.26)

where∆t is the length of the time step,t(z)− t(z−1).

To start the EKF procedure we require an initial estimate of the firm’s implied sol-

vency level,α(0) ≡ x(0). Because the value of the firm and the firm’s default boundary

are not observable, we use an approximation from observableaccounting and market

data. At the first trade date in the sample, we take the last quarterly reported book value

of short-term and long-term debt (D) from COMPUSTAT (items 45 and 51 respectively),

and the market value of equity (E) sourced from CRSP. The observed log-solvency ratio

is then calculated as

S(t) = ln
D(t)+ E(t)

D(t)
, andx(0) = S(0). (3.27)

The initial estimate for the variance of the state vectorP(0) is

P(0) = σ̂v
2(t(1)− t(0))×1000, (3.28)

where,σ̂v is an initial estimate of the firm’s asset volatility, andt(1)− t(0) is the first

time interval in the firm’s sample. For the implementation ofall models we use a diffuse

prior and scale the initial state variance by 1000. The purpose of the diffuse prior is

to recognise that we do not have complete a priori knowledge of the true latent log-

solvency level, and therefore increase the initial state variance to allow for uncertainty

in our initial estimate (Harvey 1989, p. 121). In doing so, subsequent values of the

state process are less influenced by our initial choice. The spread prediction errors from

the first prediction step are excluded from the log-likelihood function (Harvey 1989, p.
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127), resulting in 8,953 spread observations excluding theinitial observations. For ease

of comparison, all descriptive statistics for actual and predicted spreads, exclude the

initial observations.

The initial estimate of asset volatility is the firm-specificstandard deviation of the

historical daily firm asset value return, measured over the sample period, and annualised

over 250 trading days. Observed market value is defined as thesum of the quarterly book

value of debtD, and the daily market value of equity,E. The initial asset payout rate,

δv(0), is the mean estimate of 4.83 percent reported by EHH. The initial measurement

volatility σm(0) is set at 0.245 percent for all firms. The initial spread intercept term

di(0) is the average sample spread per firm, pooled across time and bonds of the issuer.

The Merton model, as originally specified, values only zero-coupon debt. We there-

fore adapt its use for application to coupon-paying bonds via the extension method of

EHH. Our results are therefore broadly comparable with their proxy variable method,

with the exception that, in keeping with the original model,the Merton writedown rate

is endogenously implied, whereas EHH force the writedown rate to be exogenously spec-

ified. Under the sum-of-zeros method, the bond is valued by summing the present value

of each promised cash flow, treating the default-risky valueof the coupon as if it was a

zero-coupon bond. The model permits default only at each coupon date and excludes

the possibility of default between coupon dates. The resultant model, incorporating the

sum-of-zeros and deterministic risk-free rate, is referred to as the extended Merton (EM)

model.

Let p(t,T ;c) be the time-t value of a bond paying coupons ofc at datest(z), where

z = (1,2, . . .m), with maturity oft(m) = T . Suppressing the dependency of bond value

on other model parameters, the value of the coupon bond is given by

p(t,T ;c) = c
m

∑
z=1

p(t, t(z))+ p(t,T ). (3.29)

The zero-coupon default-risky bond values,p(t, t(z)), are calculated from the log-solvency

specification of the Merton model shown in equation (2.8). The bond value is then con-

verted to an equivalent yield-to-maturity credit spread asshown in equation (3.7).

The EM model is fitted to observed credit spreads with three different hyperparame-

ter sets corresponding to different liquidity treatments.Suppressing dependency on firm

j gives:
No liquidity:

ψh(1) = {lnσ2
v , lnσ2

m, ln(δv/(1−δv))},
Constant liquidity:

ψh(2) = {lnσ2
v , lnσ2

m, ln(δv/(1−δv)), lndi},
Time-varying liquidity:

ψh(3) = {lnσ2
v , lnσ2

m, ln(δv/(1−δv)), lnβ R, lndi}.

(3.30)
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The hyperparameters are transformed to ensure estimates sit within economically rea-

sonable values. Asset and measurement volatility are restricted to be greater than zero,

asset payout is controlled to be between zero and one using the logit transformation,

spread constants are assumed greater than one, and the sensitivity of credit spread to the

Refcorp yield is assumed to be greater than zero. The risk-free rate is not part of the

hyperparameter set as it is treated as a known state variable.

3.2.6.2 Longstaff and Schwartz 1 and 2

Two forms of LS model are tested. The first, LS1 model, is a single-factor implementa-

tion where the risk free rate is treated as non-stochastic; similar to HH’s base case model.

The second, LS2 model, assumes the risk-free rate is stochastic. The LS1 model is of

interest due to its analytic tractability having a closed-form solution to the first passage

crossing time. The LS2 model must be solved numerically at considerable additional

computing cost and added approximation error. To aid identification, and to facilitate

a comparison with the LS1 analytic solution, zero correlation between asset values and

the risk-free rate is assumed.

The LS1 model shares the same firm asset process as the EM model. Consequently,

the state-space equations are given by equation (3.11), andequation (3.26). The LS1

model differs from the EM in the specification of the default boundary, recovery level,

and the interest rate process. The LS1 model permits early default, and assumes an

exogenous proportion of the face value of debt, equal to(1−ω), is recovered at maturity.

The Merton model permits default only at maturity with an endogenous recovery (refer

equation (2.11)). In our extended implementation of the Merton model, the writedown

rate implicitly varies at each coupon date as a negative function of the log-solvency

level. In other words, the further the at maturity value of the log-solvency level,x(T ),

falls below the default boundary, the greater the expected writedown rate. Holding all

else constant, the closer the firm is to default, the higher the expected writedown rate on

all the remaining coupons and face value in the event of default. Thus, our sum of zeros

extension to the Merton model permits some time-variation in the writedown rate, such

that it varies over time negatively correlated with the log-solvency ratio.

Industry-specific exogenous writedown rates are applied per firm using the prior re-

sults of Altman & Kishore (1996), (refer Table 3.10). Our across-firm sample average

writedown rate is 54.49 percent, with a minimum of 22.26 percent for utilities Com-

monwealth Edison Corp. and Niagara Mohawk Power Corp., and amaximum of 79.50

percent for hospital operator HCA Healthcare Corp. In comparison, EHH and HH apply

a writedown rate of 48.69 percent of face value across all firms. Lyden & Saraniti (2000)

also rely on Altman & Kishore (1996), but apply the senior unsecured average of 52.3

percent across all firms.

The default probability for the LS1 model is calculated analytically using the known
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solution for a single-factor first crossing time problem (Harrison 1985). Suppressing

dependency on model parameters the risk-neutral cumulative probability of default at

any time between times t and T is given by

Q(t,T ) = N

(−x(t)−µ(t)

σv

√

(T − t)

)

+exp
(−2x(t)µ(t)

σ2
v

)

N

(−x(t)+ µ(t)

σv

√

(T − t)

)

, (3.31)

where the drift rate isµ(t) = (r(t,T )− δv −σ2
v /2) andN(·) represents the cumulative

standard normal function. The risk-free rater(t,T ) is the time-t spot rate for payment

to be received in the future at timeT . The drift rate is therefore time-dependent and

assumed to evolve deterministically. The value of a zero-coupon bond per dollar of face

value is

p(t,T ) = e−r(t,T )(T−t)(Q(t,T )(1−ω)+ (1−Q(t,T))
)

, (3.32)

and the time-t value of a bond paying coupons ofc, at timest(z) for z = (1,2, · · ·m), with

a face value of one-dollar payable att(m) = T is given by equation 3.29 using the sum

of zeros approach previously described for the Merton model. The bond value is then

converted to an equivalent yield-to-maturity credit spread by equation (3.7).

The LS2 model introduces a stochastic risk-free rate and shares the same state-space

equations as the LS1 and EM models. It also shares the same writedown assumption as

the LS1 model. However, additional complexity is involved in the computation of the

crossing time, even though there is no correlation assumed between the risk-free rate and

firm return. Volatility in the risk-free rate and dependenceof the firm’s solvency drift

rate on the risk-free rate, require that the crossing time becalculated on the path taken

by x(t) as a function of two stochastic processes. The numeric solution we use follows

the numeric grid method of CDG. Details are shown in AppendixB.1.

For the LS1 and LS2 models, the hyperparameters and initial values, are the same as

the EM model.

3.2.6.3 Leland and Toft

The LT model assumes the firm issues and retires debt continuously. At each point in

time, shareholders consider whether to continue to servicethe debt, which they do pro-

vided that the value of the firm exceeds debt servicing costs.Leland & Toft (1996) show

that the equilibrium default boundary,KLT , is therefore stationary through time, and Le-

land (2004) exploits this stationarity to demonstrate thatvaluation under the LT model

is equivalent to implementing a single-factor LS model withan endogenous writedown

rate. We therefore implement the LT model as a special case ofthe LS1 model.

The two key parameter differences from the LS1 model is that the starting value of

the log-solvency process, and writedown rate, are functionally related and endogenous
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Table 3.10: Shown are the firm specific parameter assumptionsused in model estimation. The writedown
rate,ω, is sourced from Altman & Kishore (1996) matched to each firm on the basis of the firm’s SIC
code. The initial value of the firm’s asset volatility,σv(0) is the sample standard deviation of the daily
time series of the market log-solvency ratio. The initial value of the firm’s log-solvency ratio, denotedx(0),
is the first observation in the sample of the firm’s market log-solvency ratio. The initial estimate of the
constant liquidity component of the credit spread is commonacross all firm’s bonds and is denotedd(0). It
is equal to the pooled sample mean credit spread measured across all the firm’s bonds. The volatility scalar
is computed fromx(0) andσv(0) by equation (3.44).

Issuer SIC ω σv(0) x(0) d(0) σ̄v(0)

Aetna Inc. 6324 0.6132 0.2935 2.4007 0.0029 0.0498
Associates Corp. 6141 0.6132 0.5851 0.2819 0.0018 0.4008
Atlantic Richfield Co. 2911 0.2809 0.1860 1.0831 0.0021 0.0135
A T & Tcorp. 4813 0.6543 0.3364 1.4409 0.0017 1.0742
Bear Stearns Companies Inc. 6211 0.6132 0.2025 0.0477 0.0027 0.0172
Black & Decker Corp. 3540 0.5245 0.2061 0.5126 0.0024 0.0181
Boeing Co. 3721 0.6917 0.3572 1.9513 0.0020 0.0885
Dayton Hudson Corp. 5331 0.5545 0.3664 0.7136 0.0027 0.0955
Commonwealth Edison Co. 4911 0.2226 0.2313 0.4848 0.0027 0.0251
Enron Corp. 5172 0.6100 0.2696 1.3540 0.0028 0.0389
Federated Department Stores 5311 0.5545 0.2426 0.6941 0.0038 0.0288
Ford Motor Co. 3711 0.5245 0.1369 0.1866 0.0030 0.0058
General Motors 3711 0.5245 0.1378 0.4885 0.0027 0.0059
Georgia Pacific Corp. 2600 0.5267 0.2274 0.8526 0.0036 0.0239
HCA Healthcare Corp. 8062 0.7950 0.2758 1.6425 0.0034 0.0416
IBM Corp. 7370 0.5245 0.2812 0.8089 0.0016 0.0440
International Paper Co. 2600 0.5267 0.2370 0.9467 0.0024 0.0269
Lehman Brothers Holdings Inc. 6211 0.6132 0.2409 0.0259 0.0039 0.0282
Merrill Lynch & Co. 6211 0.6132 0.1745 0.0731 0.0022 0.0113
Motorola Inc. 3663 0.5245 0.3643 2.5651 0.0023 0.0938
Nabisco Group Holdings Corp. 2052 0.4558 0.2703 0.4609 0.0029 0.0392
Niagara Mohawk Power Corp. 4931 0.2226 0.2132 0.5322 0.00440.0199
Northrop Grumman Corp. 3812 0.5245 0.3189 1.1845 0.0036 0.0634
Paine Webber Group Inc. 6211 0.6132 0.1449 0.0452 0.0037 0.0067
Penney J C Co. Inc. 5311 0.5545 0.2178 1.2930 0.0043 0.0212
Philip Morris Companies Inc. 2111 0.4558 0.2887 1.4258 0.0031 0.0474
Seagram Co. Ltd. 3652 0.5245 0.2812 1.1444 0.0032 0.0440
Sears Roebuck Acceptance Corp. 5311 0.5545 0.1766 0.5681 0.0027 0.0117
Service Corp. International 7200 0.5245 0.2902 0.9851 0.0104 0.0482
Union Pacific Corp. 4011 0.6917 0.2037 1.1596 0.0035 0.0175
Viacom Inc. 4841 0.6543 0.4488 0.7170 0.0041 0.1756
Wal-Mart Stores Inc. 5331 0.5545 0.3132 2.0136 0.0014 0.0601

Mean 0.5449 0.2663 0.9401 0.0031 0.0527
SD 0.1218 0.0929 0.6696 0.0015 0.0338
Min 0.2226 0.1369 0.0259 0.0014 0.0058
Max 0.795 0.5851 2.5651 0.0104 0.4008
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to the model. We choose to implement a constant writedown rate, consistent with the

assumption of stationary default boundary. Following Leland (2004), the recovery rate

per firm is calculated as the fraction of firm assets availableat default to bondholders,

KLT , per average dollar of face value of bonds outstanding,D̄,

1−ω = max

(

1− (1−αv)KLT

D̄

)

, (3.33)

where 0< αv < 1 is the sum of direct and indirect bankruptcy costs associated with

default. The writedown rate is constrained to be non-negative during the optimisation in

the event thatKLT > D̄ andαv is insufficiently large. With no loss of generality,KLT and

D̄ are expressed per dollar of firm value, thereforeD̄ is equivalent to the firm’s average

debt ratio and is inverted from the time-series of the observed log-solvency ratios by

D̄ =
τ

∑
t=1

(

expS(t)
)−1

/τ . (3.34)

The default boundary is then found as a function of the risk-free rater, asset volatilityσv,

asset payout rateδv, maturity of new issue debtTm, the effective tax rateτx, bankruptcy

costsαv, and debt level̄D

KLT (c,r,σv,δv,Tm,τx,αv,D̄) =
c/r

(

A/rT −B
)

−AD̄/rT − τxc(a+ z)/r

1+ αv(a+ z)− (1−αv)B
, (3.35)

where,

A = 2ae−rT N(aσv
√

Tm)−2zN(zσv
√

Tm)− 2

σv
√

Tm
n(zσv

√
Tm)

+
2e−rT

σv
√

Tm
n(aσv

√
Tm)+ (z−a),

B = −
(

2z+
2

zσ2
v Tm

)

N(zσv
√

Tm)− 2

σv
√

Tm
n(zσv

√
Tm)

+ (z−a)+
1

zσ2
v Tm

,

a =
r−δv−σ2

v /2
σ2

v
,z =

√

(aσ2
v )2 +2rσ2

v

σ2
v

,

and the standard normal density function is denotedn(·), and the standard cumulative

distribution function is denotedN(·). The initial value of log-solvency at t=0 isx(0) =

ln(1/KLT ) and is endogenously determined from the initial parameter estimates.

Because the default boundary is constant, the firm’s log-solvency evolves as per LS1,

and the cumulative risk-neutral probability of default is given by the same first-passage

solution as LS1 (equation (3.31)), after a change in the initial starting value ofx(0) from

ln(V (0)/K) to ln(V (0)/KLT ). Valuation of the finite maturity coupon-paying bond is
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the same as for the LS1 model as shown in equations (3.7), (3.32), and (3.29).

Equation (3.35) requires knowledge of the average maturityof new debt issued. In-

spection of the data shows a systematic difference in the average new issue maturity.

Therefore, the remaining maturity is firm-specific and is calculated as the average orig-

inal contractual maturity of bonds on issue during the sample period. Bond maturity

and issue date is sourced from FISD; new issue maturity is measured as the difference

between the contractual maturity date and the issue date. The overall average new issue

maturity is 15.25 years, with the mean for industrial firms at16.74 years, financial firms

at 7.42 years and utilities at 18.80 years. The all-firm average is comparable with other

studies of debt maturity. For example, Guedes & Opler (1996,Table II) report a mean

new issue maturity, across all U.S.-based firms, of 12.2 years. Table 3.11 shows new

maturity averages per sample firm.

The effective corporate tax rate is assumed equal to 13.3 percent across all firms

as per Leland (2004). His rate includes an estimate of the effect on firm value after

personal shareholder tax. The coupon rate varies by firm and is equal to issue-average

of the filtered bond rates. The overall average coupon rate is7.20 percent per annum

(refer Table C). The initial level of bankruptcy costs is assumed to be a relatively high

75 percent. Experimentation with lower levels such as 30 percent as assumed by Leland

(2004) sometimes failed to result in convergence. A higher initial value led to rapid

convergence in all cases.

Unlike the exogenous boundary models, the initial log-solvency level is endoge-

nously determined from the hyperparameter set, and includes the inferred level of bankruptcy

costs amongst other parameters. We therefore do not assume adiffuse prior, which

would be inconsistent with the theoretical model, but rather let it be endogenously de-

termined from the hyperparameter set, varying with each pass through the filter as the

implied level of bankruptcy costs is iterated.

The state-space equations are the same as the EM, LS1 and LS2 models. There are

three hyperparameter sets estimated. Suppressing dependency on the firm we have:

No liquidity:

ψh(1) = {ln σ̄2
v , lnσ2

m, ln(δv/(1−δv)), ln(αv/(1−αv)),

Constant liquidity:

ψh(2) = {ln σ̄2
v , lnσ2

m, ln(δv/(1−δv)), ln(αv/(1−αv)), lndi},
Time-varying liquidity:

ψh(3) = {ln σ̄2
v , lnσ2

m, ln(δv/(1−δv)), ln(αv/(1−αv)), lnβ R, lndi}.

(3.36)

In addition to the LS1 model, bankruptcy costs are included and constrained to lie be-

tween zero and one using the logit transformation.
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Table 3.11: In the upper panel, shown is the descriptive statistics of the original contractual maturity of
all bonds on issue during the sample period from 5 January 1994 to 27 December 2000. In the lower
panel, descriptive statistics for the original maturity isshown by firms by industry sector. Means are issue-
weighted simple averages.

New Issue Maturity (years)

Name Mean Min Max No of Obs

Aetna Inc. 19.62 5.01 40.03 10
Associates Corp. 6.64 0.48 40.03 653
Atlantic Richfield Co. 16.08 3.99 40.06 57
A T & T Corp. 20.97 2.02 60.07 33
Bear Stearns Companies Inc. 3.48 0.81 29.97 1,118
Black & Decker Corp. 6.79 2.00 12.05 18
Boeing Co. 33.65 10.01 50.06 13
Dayton Hudson Corp. 19.67 2.01 40.01 48
Commonwealth Edison Co. 21.91 1.02 50.26 99
Enron Corp. 10.30 1.51 40.05 44
Federated Department Stores 16.90 5.03 30.06 26
Ford Motor Co. 26.76 5.02 100.09 30
Georgia Pacific Corp. 17.42 3.03 40.07 33
General Motors 22.25 3.05 30.05 31
HCA Healthcare Corp. 20.95 3.02 100.05 26
IBM Corp. 8.38 1.00 100.06 88
International Paper Co. 12.86 1.63 30.05 30
Lehman Brothers Holdings Inc. 5.27 0.80 39.92 410
Merrill Lynch & Co. 3.69 1.00 30.07 970
Motorola Inc. 26.09 5.02 100.05 14
Nabisco Group Holdings Corp. 17.78 3.97 37.07 13
Niagara Mohawk Power Corp. 18.63 1.04 31.02 59
Northrop Grumman Corp. 19.89 9.71 30.03 12
Paine Webber Group Inc. 5.82 0.98 20.24 197
Penney J C Co. Inc. 19.08 2.98 100.09 43
Philip Morris Companies Inc. 8.10 1.01 30.04 51
Seagram Co. Ltd. 18.43 7.04 30.04 5
Sears Roebuck Acceptance Corp. 6.32 0.93 40.05 293
Service Corp. International 12.49 4.99 25.05 17
Union Pacific Corp. 13.69 2.05 30.06 36
Viacom Inc. 15.87 4.73 50.05 13
Wal-Mart Stores Inc. 12.11 1.08 30.06 33

All issues 15.25 3.06 45.53 4,523

Industrials 16.74 3.76 49.33 22
Financial 7.42 1.51 33.38 6
Utilities 18.80 1.53 42.85 4

All firms 15.25 3.06 45.53 32
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3.2.6.4 Constant Elasticity of Variance

The firm’s asset value is assumed to transition in continuoustime by

dV (t) = (r−δv)V (t)dt + σ̄vV (t)ρ dW (v, t)Q, (3.37)

wherer is the risk-free rate,δv is the firm asset payout rate, and̄σv is a volatility scalar.

The instantaneous variance of the firm isσ̄v
2V (t)2ρ , and the variance of the firm’s return

is σ̄v
2V (t)2(ρ−1).

The default boundary is assumed constant. Let the latent state variable beX(t) =

(V (t)−K)/K. Default occurs on the first passage ofX(t) to zero. For comparison with

the other structural models, the equivalent log-solvency ratio of x(t) = ln(V (t)/K), is

recovered fromX(t), by the relationshipx(t) = ln(X(t)+1). From Ito’s lemma and

equation (3.37), it follows thatx(t) is also a CEV process

dX(t) = (r−δv)X(t)dt + σ̄vX(t)ρdW (v, t)Q. (3.38)

Whenρ approaches one, the CEV model approaches the single-factorLS1 model, how-

ever the two models are not strictly nested because, as discussed further below,ρ is

restricted to be less than one.

The CEV model has the convenient property that a closed-formsolution for the

crossing-time to a zero-value boundary is known whenρ < 1. Cox (1975) shows that

Q(t,T ) =
Γ(νQ,HQ)

Γ(νQ)
(3.39)

νQ =
1

2−β
HQ = kX(t)(2−β) exp

(

µ(t)(2−β )(T − t)
)

k =
2µ(t)

σ2
v (2−β )

(

exp(µ(t)(2−β )(T − t))−1
)

whereβ = 2ρ , µ(t) = (r− δv), νQ is a shape parameter andHQ is the evaluation point

in the standard complementary gamma function. A necessary restriction is thatρ < 1

in order for the boundary to be an absorbing state and therefore for the closed-form

crossing-time solution to be equivalent to the cumulative default probability. This is

because, whenρ < 1, the local volatility of the proportional change in solvency becomes

infinite as the firm approaches insolvency. Consequently, the CEV model is not strictly

nested within the LS model.

The time-t value of a one-dollar face value, default-risky,zero-coupon bond is given

by

p(t,T ) = e(−r(t,T )(T−t))
(

1−ωQ(t,T)
)

, (3.40)
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where the risk-free rate is allowed to vary deterministically with time and is maturity

matched with the timing of the promised payment,Q(t,T ) is the cumulative risk-neutral

probability of default at any time between timest and T , and ω is the exogenously

determined writedown rate.

The valuation of a coupon bond follows the method used for theLS1 model, and is

solved for by the same sum of zeros approach, as shown in equation (3.29). The CEV

and LS1 models share common valuation assumptions conditional on the firm’s level of

solvency, but the potential paths are different. The CEV model’s firm volatility increases

as solvency reduces, whereas firm asset return volatility isindependent of solvency level

in the LS1 model.

The elements of the transition equation are found by firstly expressing the continuous

state process shown in equation (3.38) into discrete time using the Eueler approximation

and time dependency on the risk-free rate

X(t) = X(t −1)+ (r(t −1)−δv)∆t (3.41)

+ σ̄vX(t −1)ρ
√

∆tη(t), η(t) ∼ N(0,q(t)).

It follows that the transition equation for the CEV model is the generic transition equa-

tion (equation (3.12)) with the elements:

α(t) = X(t), c̄(t) = 0,

T̄ = 1+(r(t −1)−δv)∆t, R = σ̄vX(t −1)ρ√∆t.
(3.42)

The initial value of the state variable, for each firm, is obtained from the observed market

capitalisation and book debt by

X(0) =

(

V (0)−K
K

)

≡ exp(x(0))−1, (3.43)

where,x(0) is the initial sample value of the firm’s observed log-solvency ratio, shown

in Table 3.10.

No constraint is placed on the path that X(t) may take other than zero being an

absorbing boundary. Due to the discretisation, it is possible that X(t) may be projected

below zero during the filtering procedure. Any prediction ofX(t) below zero in the EKF

is trimmed to zero.

To initialise the variance of the state vector, the volatility scalar is first estimated by

equation (3.44) using the observed sample asset return volatility, σv(0), and an assumed

initial elasticity parameter,ρ(0), taken from a prior result by Albanese & Chen (2005).

They find that equity default swap prices can be explained, onaverage, by a CEV equity

diffusion model withρ equal to -0.65. Since our state variable is defined as the scaled

net worth of the firm, it is reasonable to consider a similar result may hold in our sample.
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The initial estimate of the volatility scalar is then given by

σ̄v(0) = σv(0)X(0)(1−ρ(0)) = σv(0)X(0)1.65. (3.44)

Having estimatedσ̄v(0), the initial diffuse variance of firm solvency is calculatedas

P(0) = σ̄v(0)2X(0)2ρ(0)(t(1)− t(0)) ·1000, (3.45)

where(t(1)− t(0)) is the length of the first observation time interval.

There are three hyperparameter sets conditional on the treatment of the non-credit

component of the credit spread. Suppressing dependence on the firm for notational clar-

ity, we have:

No liquidity:

ψh(1) = {ln σ̄2
v , lnσ2

m, ln (δv/(1−δv)), ln(1−ρ)},
Constant liquidity:

ψh(2) = {ln σ̄2
v , lnσ2

m, ln (δv/(1−δv)), ln(1−ρ), lndi},
Time-varying liquidity:

ψh(3) = {ln σ̄2
v , lnσ2

m, ln (δv/(1−δv)), ln(1−ρ), lnβ R, lndi}.

(3.46)

As shown in equation (3.46), the volatility scalar and measurement errors are trans-

formed to be non-zero, and the elasticity parameter is transformed to constrain the op-

timal estimate to be less than one. The writedown rate is assumed to be exogenously

known, applying the same industry-specific values as applied to the LS1 and LS2 mod-

els, as shown in Table 3.10.

3.2.6.5 Collin-Dufresne and Goldstein

In the CDG model, the dynamic term structure of credit spreads is assumed to be a func-

tion of a bivariate stochastic differential process for themean-reverting capital structure

of the firm and the risk-free risk-free rate

dx(t) = κv

[(

r(t)−δ −σ2
v /2

κv
+ ν + φ(r(t)−θ)

)

− x(t)

]

dt + σvdW Q
v,t

dr(t) = κr(θ − r(t))dt + σrdW Q
r,t .

As per the implementation of the LS2 model, we follow the two-step estimation method

of Duffee (1999) and fit the risk-free rate process separately from the log-solvency pro-

cess, thereby ensuring that the same risk-free rate model parameters are applied equally

to each firm. The risk-free rate is then assumed to be exogenously known and the log-

solvency process implied from the observed credit spreads using the optimal estimates of

the risk-free rate, fitted from a prior filtration. Consequently, the state-space framework
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simplifies to be univariate and the transition equation is the generic transition equation

(equation (3.12)) with the elements:

α(t) = x(t), c̄(t) = κvx̄(t)∆t,

T̄ = 1−κv∆t, R(t) = σv
√

∆t,
(3.47)

where ¯x(t) is the risk-neutral target log-solvency ratio

x̄(t) =

(

r(t)−δ −σ2
v /2

κv
+ ν + φ(r(t)−θ)

)

. (3.48)

The first-passage crossing time of the log-solvency state variable must be numerically

solved due to the CDG model having two stochastic processes.The numeric grid method

of CDG is used, details of which are described in Appendix B.1. The time involved

in searching for an implicit solution for the CDG model is substantial with processing

times, for a single firm solution, varying from 5 hours for theno-liquidity case, to 24

hours for the time-varying liquidity case.6 An important numerical simplification made

is that we value only the principal cash flows and not the coupons of each bond. The

simplification proved to be reasonable because of the panel nature of the data, there are

sufficient bonds to span the term structure for each firm. Further, we seek to minimise

the prediction error of the credit spread, valuing both the risky and risk-free values of

the bond using the same set of promised cash flows. Thus, the simplification is present

in the value of both sides of the credit spread calculation.7

To aid estimation, further simplifying assumptions can reasonably be made. Firstly,

the asset payout rate is assumed to be zero following the finding of EHH, that the effect

of the payout ratio on debt pricing in the CDG model is exactlycancelled by the inclusion

of a target debt-ratio. The amount of payout in interest, dividends, capital raisings and

share repurchases are subsumed into management’s choice ofthe speed of adjustment

toward a target debt-ratio and level of the target.

Secondly, the asset-interest rate correlation is assumed to be zero. EHH report a

correlation of -2 percent and find that CDG model’s credit spread prediction errors vary

little with respect to correlation. Table 3.14 shows the correlation between daily changes

in the 3-month CMT rate and daily changes in the observed log-solvency ratio to be 0.38

percent.

Finally we consider the problem of identifying the solvency-ratio dynamic param-

6In comparison, the LS1 model times range from 4 minutes to 38 minutes. All computations were
performed in OX software using a desktop PC running Windows XP on a Pentium 4, 2.53 GHz processor.

7Testing showed no material difference in the estimates of the LS1 model when shifting from valuing all
cash flows to just the principal cash flows. We can draw furthercomfort that no significant errors have been
introduced by referring to the results shown in Table 4.7. The standardised step-ahead prediction errors are
of comparable magnitude between the analytically calculated LS1 model with no cash flow simplification,
and the numerically solved LS2 model with only the principalamounts valued.
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eters,ν , φ , andκv. The extant empirical estimation method is exemplified by EHH

and Suo & Wang (2006). It involves estimating the parametersof the CDG asset pro-

cess from a regression of observed firm-specific leverage ratios and interest rates. In

the remainder of this section we explore this regression method as a potential means of

identifying initial parameter estimates.

The regression equation for the CDG model is obtained by firstexpressing the log-

leverage process under the physical measure with a constantfirm asset growth ofµ

dx(t) = κv

[(

µ −δ −σ2
v /2

κv
+ ν + φ(r(t)−θ)

)

− x(t)

]

dt + σvdW P
v,t . (3.49)

Let αx = µ −δ −σ2
v /2+ κv(ν −φθ) then,

dx(t) = (αx + κvφr(t)−κvx(t))dt + σvdW P
v,t . (3.50)

Equation (3.50) is then discretised by the Euler approximation

x(t)− x(t −1) = (αx + κvφr(t −1)−κvx(t −1))∆t + σv

√
∆tη(t), (3.51)

whereη(t) ∼ N(0,1). For estimation purposes, equation (3.51) is then expressed as a

linear equation on the risk-free rate and the lagged observed log solvency ratio,S(t),

with a normal i.i.d. error termε(t)

S(t)−S(t −1)

∆t
= a+ bS(t −1)+ cr(t −1)+ ε(t) (3.52)

wherea ≡ αx, b ≡ −κv, andc ≡ κvφ . Parameter estimates are then obtained from the

slope coefficients:̂κv =−b, andφ̂ =−c/b. To find an estimate ofν from the regression

method it is also necessary to know the firm’s expected asset return. Let

ν̂ = φ̂ θ +
a−µ + δv + σ2

v /2
κ̂v

. (3.53)

Then, µ can be further expressed as the sum of the risk-free rate and amarket risk

premium on the firm’s assets.

EHH regress 10 years of monthly data and find an average mean-reversion rate of

0.1. The expected asset return,µ , is obtained from the monthly 10 year historical firm

value return and on average is 24 percent. They recognise that this is an ex-post measure

not necessarily the market’s required return and find that their model prediction errors

are sensitive to the choice ofµ . EHH suggest that the high absolute spread prediction

errors they find with the CDG model may be a result of their estimation method. Alter-

natively, they suggest fitting an implied level ofν from credit spreads. Unfortunately,

no regression statistics or sample estimate ofν is reported to confirm the significance
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of their result. Suo & Wang (2006) find a mean reversion rate close to zero, and conse-

quently, their implementation of the CDG model is little different to the LS model.

As an alternative to regression, HH simply assume the long-run risk-neutral log-

solvency level, ¯x, to be 0.38, which gives an estimate forν of 0.55 based on other as-

sumed parameters including an asset risk premium.8 CDG similarly assumeν to be be-

tween 0.5 and 0.6 which equates to a target debt-ratio of similar magnitudes. The target

debt level chosen by CDG for illustrative purposes appears very conservative and may

result in an over-estimation of long-term credit spreads. Opler & Titman (1994) report

similar debt levels for firms in the top 20 percent of population gearing levels. For other

firms in normal industry conditions the debt-ratio is 0.193 giving a log-solvency level of

1.65. More recently, using the same data sources and time period as our study, Davy-

denko & Strebulaev (2004) report a higher mean debt-ratio of0.322, which is equivalent

to mean log-solvency ratio of 1.13.

The result of applying equation (3.52) to our sample of firms is shown in Table 3.13.

Data is observed quarterly, over the sample period, to matchthe release of COMPUSTAT

balance sheet debt figures. The rate of mean-reversion is found, on average, to be 0.79

per quarter across all firms, with estimates ranging from -0.54 to 3.56, with a median

of 0.70. In most cases the estimate of mean reversion is not significantly different from

zero. The average mean-reversion rate is much higher than the capital structure empirical

literature has found for the debt-ratio dynamics in recent years. For example, Roberts

(2002, Table 3) reports 0.16 using a similar definition of leverage. In comparison, CDG

and HH assume the average firm mean-reversion rate to be 0.18.

Table 3.13 also shows that the observed sensitivity of the firm’s log-solvency to the

slope of the yield curve is negative as often as it is positive. This observation contradicts

the debt market timing hypothesis of CDG, which assumes thatchanges in the firm’s sol-

vency are positively related to the slope of the risk-free yield curve slope. However, in

no case is the estimated parameter,φ̂ , significant at the 5 percent level. The across-firm

mean value of̂φ is -12.67 with a very high standard deviation of 60.8 and a median of

0.64. EHH do not report their regression estimate. HH adopted an implicit assumption

that φ is zero by omitting the parameter as evident in their specification of the CDG

model (Huang & Huang 2003, Appendix A, equations (23) and (24)). For illustrative

purposes CDG assumeφ to be 2.8. We initialiseφ at the firm-wide median regression

estimate of 0.64 and restrict its value to be positive consistent with the theoretical re-

striction in the CDG model. However, given these results, itis not expected thatφ will

be significant in the filtered model estimates.

Faced with limited results from the regression model we havelittle choice but to

consider alternatives to the standard empirical estimation methods for the other asset pa-

8Estimate is based on HH assumptions of: r=8 percent,δv = 6 percent,κv = 0.18, σv = 26.5 percent,
and an asset risk premium of 4.9 percent.
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Table 3.12: This table shows the average target log-solvency levels assumed in the CDG model imple-
mentations. Data is sourced from Roberts (2002) and is matched to firms by second level SIC. The target
log-solvency level is denotedν and the initial starting value of log-solvency is denotedx(0) and is the first
observed log-solvency ratio in the sample period. Observedlog-solvency is the sum of total book debt
(COMPUSTAT items 45 and 51) and market equity capital (from CRSP), divided by total book debt.

Sector No. of Firms ν x(0)

Industrial 21 1.42 1.12
Finance 6 0.46 0.48
Utility 4 0.19 0.90

Total 31 1.36 0.94

rameters. Two alternatives were considered. The first uses the property that the LS model

is nested in the CDG model. The mean filtered estimate ofx(t) from the LS2 model may

be used as a reliable estimate of the average level of latent log-solvency, which we know

will match the CDG model, as mean-reversion rate approacheszero. The advantage of

this method is that the target log-solvency level is treatedas a latent firm-specific vari-

able. The disadvantage is that it is a measure of the sample firm-specific mean only,

and not necessarily a target that is pursued by management. Only over a longer sample

period, and across more firms, can we abstract sufficiently from idiosyncratic factors.

The second method, which we adopt, uses an estimate ofν under the mild assumption

that debt timing is not material; an assumption well supported by our earlier regression

of the observed changes in log-solvency as shown in Table 3.13. From equation (3.54) it

can be seen thatν has a directly observable physical interpretation. Ignoring debt-timing

behaviour for simplicity, CDG posits that management changes the level of debt so that

the log-solvency ratio mean-reverts toν whereν is a target level of log-solvency. To

see this consider the dynamics of the default boundary in theabsence of debt timing

behaviour. The natural log of the default boundary then follows the process

d lnK(t) = κv(x(t)−ν)dt + σdW P
t . (3.54)

To use the sample specific mean level ofx(t) from the LS model would, for example,

underestimate the ex-ante target level of solvency of a firm that ex-post suffered a dete-

rioration in value. Rather, an industry-level observed log-solvency level is a better proxy

for management’s desired target. The industry mean is preferred over the firm-specific

sample averages since it is less influenced by idiosyncraticshocks from target, and when

averaged over many firms and time, is more likely to representa long-run equilibrium

level. The use of industry is a natural conditioning variable since Opler & Titman (1994)

find that target debt-ratio levels vary systematically withindustry-specific business con-

ditions. Each firm’s physical target level is set equal to theindustry-specific 1980 to

1998 average of the observed log-solvency ratio as reportedby Roberts (2002, Table
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1). His study of debt-ratio dynamics is useful for our purposes because it draws on a

similar sample of firms over the same time period. Firms are mapped to industries by

their second level SIC codes. The rate of mean-reversion is then included in the hyper-

parameter set using the Roberts’s (2002) industry-wide average to initialise, and fixingν
to the industry average observed log-solvency ratio. Attempts at searching implicitly for

both parameters was found to be infeasible due to multicollinearity. Our sample average

value ofν is 1.36 implying a mean target debt-ratio of 0.27. In Table 3.12 the variation

by industry sector is shown along with the initial values of log-solvency. For industrial

firms, our initial parameterisation suggests a decrease in leverage over time, little change

for finance companies, and an increase over time for utilities.

Conditional on the treatment of the non-credit component ofthe credit spread, the

three hyperparameter sets are as follows after suppressingdependence on the firm for

notational clarity:

No liquidity:

ψh(1) = {lnσ2
v , lnσ2

m, lnκv,φ},
Constant liquidity:

ψh(2) = {lnσ2
v , lnσ2

m, lnκv,φ , lndi},
Time-varying liquidity:

ψh(3) = {lnσ2
v , lnσ2

m, lnκv,φ , lnβR, lndi}.

(3.55)

Further parameters are:δv = 0, ρv,r = 0.

3.2.7 An Example of the Method Applied to Northrop

We now provide an example of the outcomes from applying the estimation method.

An example of the observed, and step-ahead predicted, credit spreads is plotted for

Northrop in Figure 3.4 using predictions obtained from the EM model fitted without

liquidity premiums. The predicted credit spread is the optimal prediction based upon

the Taylor series projection of the latent log-solvency ratio, given all information about

the underlying state process up to that point in time including its variance. Our start-

ing valuex(0) was initially the observed log-solvency ratio, but as new predictive error

information is added, the forecast for the latent log-solvency ratio is updated incorporat-

ing the direction of the past predictive error and the degreeof confidence that the new

observation contains information in excess of the expectedlevel of variation in the state

variable. As new information is received from the subsequent observation, expectations

are updated for the next step-ahead prediction. The EKF procedure therefore reflects

the behaviour of market participants who rationally updatetheir knowledge of the credit

worthiness of the firm using all available trade data across the term structure of credit

spreads. The path followed by the latent log-solvency ratioprocess is shown in Fig-
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Table 3.13: This table shows the results of estimating the CDG firm process by ordinary least squares

regression of∆S(t)
∆t = a + bS(t − 1) + cr(t − 1) + ε(t), where a, b, and c are constants,∆t is 0.25 years,

S(t −1) is the observed log-solvency lagged one-quarter, andr(t −1) is the 3 month CMT rate lagged one-
quarter. Standard errors are shown in parenthesis. The estimate of the log-solvency mean-reversion rate
is given byκ̂v = −b, and the estimate of the sensitivity of changes in log-solvency with the term structure
slope isφ̂ =−c/b. Data is sourced from CRSP and COMPUSTAT for the period from 1994:Q2 to 2000:Q4.
Observed log-solvency is the sum of total book debt (COMPUSTAT items 45 and 51) and market equity
capital divided by total book debt.

Issuer a b c κ̂ φ̂

Aetna Inc -0.60 (1.93) -0.87 (0.51) 37.76 (31.85) 0.87 43.31
Associates Corp 0.08 (0.79) -1.17 (0.61) 7.01 (15.43) 1.17 6.02
Atlantic Richfield Co 0.72 (0.93) -0.51 (0.38) 1.04 (16.24) 0.51 2.05
A T & T Corp -0.20 (0.38) 0.54 (0.56) 2.95 (7.96) -0.54 -5.46
Bear Stearns Comp Inc 0.17 (0.09) -3.56 (0.81) -0.15 (1.26) 3.56 -0.04
Black & Decker Corp -0.07 (1.19) -0.70 (0.38) 17.66 (22.19) 0.70 25.22
Boeing Co 0.31 (1.18) -0.68 (0.41) 22.23 (20.08) 0.68 32.63
Dayton Hudson Corp 2.18 (1.07) -0.21 (0.23) -35.06 (20.29) 0.21 -163.63
Comm Edison Co -0.04 (0.52) -0.72 (0.50) 9.09 (8.36) 0.72 12.58
Enron Corp 0.04 (1.20) -0.70 (0.67) 19.25 (23.81) 0.70 27.47
Fed Dept Stores 0.67 (1.12) -0.59 (0.43) -3.59 (18.45) 0.59 -6.13
Ford Mtr Co 0.21 (0.39) -0.72 (0.46) -0.30 (6.68) 0.72 -0.42
General Mtrs 0.54 (0.55) -0.92 (0.63) -4.83 (7.79) 0.92 -5.25
Georgia Pacific Corp 1.59 (0.99) -0.68 (0.67) -21.49 (14.61)0.68 -31.47
Columbia / Hca Corp 0.12 (1.11) -0.83 (0.48) 18.99 (17.02) 0.83 22.77
IBM Corp 1.72 (0.90) -0.32 (0.23) -20.86 (17.82) 0.32 -64.65
Int Paper Co 3.09 (1.28) -1.84 (0.65) -29.38 (18.73) 1.84 -15.98
Lehman Bros Hldgs Inc -0.23 (0.12) -0.14 (0.77) 4.65 (2.25) 0.14 33.76
Merrill Lynch & Co -0.05 (0.15) -0.12 (0.40) 1.56 (3.11) 0.12 13.25
Motorola Inc 5.97 (2.32) -1.20 (0.70) -63.14 (34.34) 1.20 -52.76
Nabisco Grp Hldgs Corp -0.43 (1.04) -1.32 (0.82) 26.17 (22.42) 1.32 19.85
Niagara Mohawk Corp 0.38 (0.42) -1.33 (0.48) 1.77 (6.53) 1.33 1.33
Northrop Grumman Corp -0.76 (1.26) -1.41 (0.65) 43.61 (27.08) 1.41 31.03
Paine Webber Grp Inc -0.18 (0.17) 0.17 (0.41) 3.68 (3.33) -0.17 -21.88
Penney J C Co Inc 0.42 (1.27) -0.44 (0.46) -2.80 (19.64) 0.44 -6.36
Philip Morris Comp Inc 1.17 (1.38) -0.83 (0.43) 6.42 (22.34) 0.83 7.75
Seagram Co Ltd 0.35 (1.59) -1.72 (0.67) 38.05 (25.28) 1.72 22.13
Sears Roebuck Acc Corp 0.65 (0.78) -1.34 (0.65) 3.87 (11.17)1.34 2.88
Service Corp Intl -2.23 (1.48) 0.14 (0.33) 37.62 (25.92) -0.14 -268.43
Union Pacific Corp 0.45 (0.91) -0.50 (0.38) -0.26 (14.43) 0.50 -0.52
Viacom Inc 1.60 (1.64) -0.32 (0.33) -19.40 (33.01) 0.32 -61.24
Wal-Mart Stores Inc 1.12 (1.85) -0.45 (0.38) -2.33 (29.98) 0.45 -5.23

Mean 0.59 -0.79 3.12 0.79 -12.67
SD 1.37 0.74 22.53 0.74 60.80
Median 0.33 -0.70 2.36 0.70 0.64
Min -2.23 -3.56 -63.14 -0.54 -268.43
Max 5.97 0.54 43.61 3.56 43.31
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Table 3.14: Shown is the firm-specific within sample correlation coefficient between the first differences
in the observed log-solvency ratio, S(t), and the first differences in the 3-month constant maturity Treasury
risk-free rate. Observed log-solvency is the sum of the quarterly total book debt (COMPUSTAT items 45
and 51) and daily market equity capital (from CRSP) divided by total book debt.

Issuer Correlation Coefficient

Aetna Inc. 0.0021
Associates Corp. -0.0294
Atlantic Richfield Co. -0.0179
A T & T Corp. -0.0009
Bear Stearns Companies Inc. 0.0406
Black & Decker Corp. -0.0180
Boeing Co. 0.0190
Dayton Hudson Corp. 0.0673
Commonwealth Edison Co. -0.0103
Enron Corp. -0.0225
Federated Department Stores 0.0508
Ford Motor Co. 0.0068
General Motors -0.0008
Georgia Pacific Corp. -0.0229
HCA Healthcare Corp. 0.0342
IBM Corp. 0.0184
International Paper Co. -0.0063
Lehman Brothers Holdings Inc. 0.0068
Merrill Lynch & Co. -0.0122
Motorola Inc. 0.0775
Nabisco Group Holdings Corp. 0.0671
Niagara Mohawk Power Corp. -0.0519
Northrop Grumman Corp. 0.0047
Paine Webber Group Inc. 0.0150
Penney J C Co. Inc. -0.0056
Philip Morris Companies Inc. 0.0039
Seagram Co. Ltd. 0.0101
Sears Roebuck Acceptance Corp. -0.0006
Service Corp. International 0.0166
Union Pacific Corp. -0.0029
Viacom Inc. -0.1143
Wal-Mart Stores Inc. -0.0020

Mean 0.0038
SD 0.0359
Median 0.0008
Min -0.1143
Max 0.0775
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Figure 3.4: Predicted and observed credit spreads for Northrop Grumman Corporation. The model imple-
mented is the EM model with time-varying non-default components of the credit spread. Each panel shows
the path of predicted and observed credit spreads by bond on issue.

ure 3.5. We compare this with the observed log-solvency ratio. Evident is the decline in

both ratios midway through the sample period. However, while the observed solvency

ratio corrected towards the end of the sample period, the latent solvency ratio contin-

ued to decline suggesting the market was pricing in more default risk than the observed

capital structure changes of the firm would have predicted.

3.3 Fitting the Vasicek Risk-Free Model

In this section we describe the method used to estimate the Vasicek model using a linear

Kalman filter. Our method follows James & Webber (2001) and Babbs & Nowman

(1999).

Under the physical measure of actuarial probability densities, the risk-free rate is

assumed to follow the stochastic differential process

dr(t) = αr(θ − r(t))dt + σrdW P
r,t . (3.56)

The equivalent martingale process under risk-neutrality is

dr(t) = (αr(θ − r(t))−λrσr)dt + σrdW Q
r,t , (3.57)
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Figure 3.5: This shows the estimated latent versus observedratios of solvency. for Northrop Grumman
Corporation. The top panel shows the smoothed estimate of the latent log-solvency ratiox = ln(V/K),
implied from the EM model, assuming time-varying non-default components of the credit spread. The
lower panel shows the observed log-solvency ratio,S = ln(D+E)/D, whereD is the book value of debt
andE is the market value of equity.
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Table 3.15: This table shows the summary statistics of the zero-coupon Treasury yields. Data is boot-
strapped CMT Treasury yields, extracted on each Wednesday,from the U.S. Federal Reserve H15 data
series for the period 3 January 1994 to 29 December 2000.

Maturity
(yrs) Mean Std Dev Min Max Skewness Kurtosis

0.25 0.0516 0.00611 0.0301 0.0636 - 0.797 1.585
0.5 0.0526 0.00609 0.0317 0.0648 - 0.630 1.144
1 0.0545 0.00624 0.0347 0.0715 - 0.303 0.969
2 0.0570 0.00664 0.0397 0.0748 - 0.106 0.559
3 0.0585 0.00691 0.0402 0.0759 - 0.084 0.325
5 0.0604 0.00715 0.0414 0.0770 - 0.042 0.164
7 0.0615 0.00719 0.0426 0.0781 0.022 0.052
10 0.0625 0.00714 0.0446 0.0791 0.114 - 0.129
20 0.0641 0.00703 0.0492 0.0808 0.263 - 0.549
30 0.0648 0.00710 0.0511 0.0816 0.305 - 0.718

whereλr is a constant market price of interest rate risk,σr > 0 is the volatility of the

interest rate,θ ≥ 0 is the long-run risk-free rate level, andαr > 0 is the speed of mean-

reversion towardsθ . The market price of risk represents the equilibrium compensation

required by risk-averse investors to hold interest rate risk.

Term structure data is sourced from the Federal Reserve Bankof New York Con-

stant Maturity Treasury (CMT) H15 data series.9 These yields are interpolated by the

U.S. Treasury from the daily yield curve based on the closingmarket bid yields on ac-

tively traded Treasury securities in the over-the-countermarket. We select weekly data

(Wednesdays) to avoid weekend effects and observed 10 yields with maturities of: 3,

6 months, and; 1, 2, 3, 5, 7, 10, 20, and 30 years. The sample period is 3 January

1994 to 29 December 2000 giving 361 observed yield curves. The 3 and 6 month rates

represent zero-coupon bond yields, and the longer rates areexpressed in terms of semi-

annual coupon-paying Treasury bonds. The latter are bootstrapped and then added to the

risk-free rates to produce an equivalent riskless term structure of spot rates. Summary

statistics are reported in Table 3.15. The term structure isplotted in the first panel of

Figure 3.6 and the term-spread, defined as the difference between the 30 year yield and

the 3 month yield, is plotted in the second panel. From the second panel, and table 3.15,

it can be seen that the term structure has been very flat, with the term-spread gradually

decreasing before turning negative. The term-spread compensating investors for 30 year

risk has averaged only 132 bp for the sample period.

In the estimation of the credit risk model parameters, it is feasible within the state

space framework to estimate the parameters of the risk-freemodel and the credit model

jointly. This can be achieved by expanding the measurement equation to include the

observed credit spread and risk-free rate term structures.

9CMT yields are sourced from the Federal Reserve and are available at
http://www.federalreserve.gov/releases/h15/data.htm



3.3. FITTING THE VASICEK RISK-FREE MODEL 113

However, as noted by Duffee (1999), this unfortunately leads to the problem of hav-

ing as many different estimates of the risk-free rate as there are firms in the sample.

We therefore follow Duffee (1999) and Duffie et al. (2000) andestimate the risk-free

rate independently from the credit model. Having obtained the underlying smoothed

estimates of the unobserved risk-free rate,r(t), and the optimal interest rate parameter

set ψ̂r, we treat the risk-free rate process as known and true in the filter of the credit

process. All discounting is performed using the Vasicek model, discounting to time-t,

cash flows promised after time-t. As per EHH, we also relax thetheoretical constraint

of the constant interest rate models that the risk-free rateis time-invariant, and allow

the discounting to be dependent on the predicted term structure at time-t, and letr(t) be

updated at each trade date, however, the other model parameters are held constant. The

same risk-free rates are used in all models, and consistent Vasicek model parameters are

applied in the two-factor models. Since our main focus is theperformance of the credit

models, allowing some ad hoc updating reduces error introduced by the performance of

the risk-free model and enables a more even comparison between the one and two-factor

credit models.

Our estimation method follows recent convention with maximum likelihood estima-

tion of parameters obtained from linear Kalman filtering on panel data (Pennacchi 1991).

It has the advantages that: the risk-free rate and other factors are treated as truly unob-

servable without proxy error, all bonds in the term structure can be assumed to have mea-

surement error, serial and cross-sectional constraints implied by the theoretical model are

enforced, many more bonds than underlying factors can be fitted. The Kalman filtering

method has shown to be particularly robust for term structure estimation. Duan & Si-

monato (1999) perform Monte Carlo simulation of the Vasicekand CIR models and find

the method to be reasonably reliable for sample sizes as small as 150.

At time t, we observe the vector of CMT Treasury yields,Yt = y(t,τ) for τ =

(0.25,0.5,1,2,3,5,7,10,20,30) whereτ = T − t is the maturity of the bond. The 3 and

6 month yields are expressed as annualised Treasury bills and the longer dated yields

represent par coupon paying Treasury notes and bonds. The longer dated CMT yields

can be compactly expressed in terms of discount functions, as follows;

y(t,τ) = 2

[

1−D(t,τ)

∑2T
i=1D(t, i/2)

]

, (3.58)

whereD(t,τ) is the timet value of a riskless zero-coupon bond maturing at timet + τ .

To find the timet term structure, Treasury yields are bootstrapped beginning with the

first period (6 month) discount rate,

D(t,0.5) =
1

1+ 1
2y(t,0.5)

. (3.59)
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Subsequent semi-annual yields are interpolated from the yield curve using the polyno-

mial function of Nelson & Siegel (1985) fitted onYt by ordinary least squares regression.

We then solve recursively for the semi-annual discount rates by,

D(t,τ) =
1− 1

2y(t,τ)∑2τ−1
i=1 D(t, i/2)

1+ 1
2y(t,τ)

. (3.60)

The term structure at timet is then described by the vectorRt whereR(t,τ)=− 1
τ lnD(t,τ).

The Vasicek model endogenously predicts the term structurebased upon a set of

parameter values,Ψr = (σr,θ ,α ,λr), and the stochastic path followed byrt . Since we

do not observe continuous trading it is necessary to approximate the transition process

in discrete time which we do by simple Euler approximation,10

rt+∆t = αr(θr −λrσr)∆t +(1−αr∆t)rt + σr

√
∆t ηt , ηt ∼ N(0,1). (3.61)

The measurement equation is linear with respect to the transition equation, making

Kalman filtering of the time series straightforward, and with Guassian errors, the Kalman

filter yields an exact maximum likelihood estimation of the model parameters (Harvey

1989, page 104)

Duffie & Kan (1996) show that the Vasicek model belongs to the class of one-factor

exponential affine models in which the value of a zero-couponbond is conveniently

given by the following linear function,

D(t,τ) = exp(A(τ)+ B(τ)rt), (3.62)

where

A(τ) = −R(∞)
(

τ + B(τ)
)

− σ2

4αr
B(τ)2

B(τ) =
e−αrτ −1

αr

R(∞) = θ − λrσr

αr
− 1

2

(

σr

αr

)2

(3.63)

The spot rate at timet for a zero-coupon bond with maturityτ is then,

R(t,τ) = −1
τ
[A(τ)+ B(τ)rt]. (3.64)

10Because the state variable transition equation is linear Gaussian, an exact transition density is known
(refer (Lund 1997) and (Babbs & Nowman 1999)). The exact transition equation isdrt = θ (1−
exp(−α∆t))+ exp(−α∆t)rt−∆t +

√

σ2

2α (1−exp(−2α∆t))ηt . Testing (unreported) provided no material
difference from the Euler approximation results presentedin tables 3.16 and 3.17.
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At time t, the term structure of spot yields is observed with measurement error,

R(t,τ) = −1
τ

A(τ)− 1
τ

B(τ)rt + εt(τ), εt(τ) ∼ N(0,H),

R(t,τ) =
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(3.65)

We follow accepted convention and assume that the measurement errors are cross-sectionally

independent so thatH is a 10 x 10 diagonal matrix with elementshi (i = 1. . .10) that

vary by maturity to account for potential differences in trading activity and associated

bid-ask spread (Duffee 1999, Duan & Simonato 1999, Geyer & Pichler 1999).11

A further necessary assumption for the Kalman filter is that the measurement er-

rors are serially uncorrelated,ε(t,τ)ε(t + i,τ) = 0, ∇i = 1. . .n− 1. We also assume

homoskedasticity.

Starting values for the filtering process are estimated fromfitting equation (3.61) on

the 3 month rate as a proxy for the risk-free rate using a naivemethod suggested by

James & Webber (2001, page 122). Estimates ofa, b, and the variance of the prediction

error, Var(et), are estimated by ordinary least squares regression of the AR(1) model,

R(t + ∆t,0.25) = a+ bR(t,0.25)+ et ,

α̂r =
1−b

∆t
, θ̂ =

a
1−b

+ λrσr, σ̂r =

√

Var(et)

∆t

(3.66)

The parametersa = 0.001390 andb = 0.9744 are significant with standard errors of

0.0004075 and 0.007849 respectively. The estimate ofb is indicative of the 3 month

rate being close to a random walk and impliesα̂r = 1.33. The error variance is low,

Var(et) = 8.230·10−7 giving σ̂r = 0.0065. The long-run risk-free rate level is obtained

by assuming the initial market price of risk to be zero so that, θ̂ = a/(1−b) = 0.0544.

The measurement error is usually found to be small in other studies applying Kalman

filtering (for example, Duan & Simonato 1999, Babbs & Nowman 1999, De-Jong 2000),

11As discussed in Geyer & Pichler (1999), the alternative assumption of a single measurement error
is convenient when the number of observed bonds and their maturities vary over time. We utilize this
alternative specification in the estimation of the default-risky model parameters due to missing data resulting
from unequal trading dates.
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and the starting assumption is 10 bp for all maturities.

These estimates serve only as a starting point for maximum likelihood estimation.

Limitations of the orindary least squares procedure for unbiased and consistent estima-

tion include: lack of theoretical cross-sectional restrictions onα andθ and a potential

upward bias in the estimate ofα when equation (3.66) is close to having a unit root

(Ball & Torous 1996); and the failure of orindary least squares regression to ensureet

is standard normal and independent and identically distributed (James & Webber 2001,

p.122).

Parameter estimates for the filtered Vasicek model are shownin Table 3.16 and the

latent path followed by the smoothed estimate of the risk-free rate, during the sample pe-

riod, is plotted in Figure 3.7. All parameters exceptλr andθr are found to be significant.

The speed of mean-reversion is low at 0.02324, implying a half-life of 29.8 years, de-

fined as the expected time for the risk-free rate to return halfway from its long-run mean.

The mean reversion rate is similar to extant studies; 0.0222in De-Jong (2000, table 2C),

0.1908 in Babbs & Nowman (1999, table 2), and 0.0463 in Duan & Simonato (1999).

The Vasicek model predicts the risk-free rate to converge toθr, but it is evident from

Table 3.15 that the sample standard deviation of weekly rates is similar across all matu-

rities. Thus, a smallα(t) is necessary to match the observed variance in 30 year yields.

The estimated half-life for the risk-free rate of 29.8 yearsis much longer compared to

the high degree of persistence observed in the serial data for the 3 month rate.

The insignificant value forλr is a consequence of the very flat, and partly inverted

yield curves, observed during our sample period. The marketprice of risk can only

be identified from bond prices measured across the yield curve, but at an average term

spread of only 132 basis points for a 30 year investment period, the implied price of risk

is necessarily small. Finally,λr andθr strongly interact via their influence on the risk-

neutral drift of the risk-free rate, and without greater cross-sectional restriction, neither

is found to be significant.

Table 3.17 shows the step-ahead prediction errors of the zero-coupon spot rates for

each maturity. The prediction errors exhibit a U-shaped pattern; highest at 3 months at

75.5 basis points, decreasing to 14.3 basis points at 3 years, then increasing to 51.8 basis

points at 30 years. A similar pattern and magnitude of errorsis reported by (Babbs &

Nowman 1999, Table 1).
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Table 3.16: This table reports estimated parameters from the one-factor Vasicek term-structure model. The
instantaneous risk-free rate is assumed to follow the risk-neutral process:dr(t) = αr(θ − r(t)−λrσr)dt +

σrdW Q
r,t . Estimation method is linear Kalman filter applied to weeklypanel data over the period 5 January

1994 to 27 December 2000. Data is zero-coupon yields bootstrapped from US Treasury constant maturities
from U.S. Federal Reserve H15 data series.H(r(t)) is the half-life of the risk-free rate whereH(r(t)) =
ln(2)/αr. The entry (*) signifies that a standard error could not be calculated.

Parameters Estimate Standard Error

αr 0.0232 6.6x10−4

θ 0.1605 0.1347
λr 0.0043 0.3885
σr 0.0147 9.3x10−5

σε(0.25) 6.0x10−5 4.6x10−7

σε(0.5) 4.0x10−5 3.0x10−7

σε(1) 1.6x10−5 1.1x10−7

σε(2) 2.1x10−6 1.2x10−8

σε(3) 0 *
σε(5) 2.4x10−6 1.4x10−8

σε(7) 5.8x10−6 3.6x10−8

σε(10) 1.1x10−5 7.1x10−8

σε(20) 2.1x10−5 1.5x10−8

σε(30) 2.4x10−5 1.7x10−7

Log-likelihood 18,821.7
n 361
H(rt ) years 29.82

Table 3.17: This table reports the weekly step-ahead yield prediction errors from fitting the one-factor
Vasicek model. Errors are the predicted yields from a linearKalman filter less the actual zero-coupon spot
yields. RMSE is the root-mean-squared error and MAE is the mean-absolute error. All figures are reported
in basis points. Yields are estimated from zero-coupon yields bootstrapped using US Treasury constant
maturity data sourced from H15 data series, for the period 5 January 1994 to 27 December 2000.

Maturity (yrs) Mean RMSE MAE

0.25 -40.48 75.34 58.13
0.5 -33.42 61.48 47.40
1 -19.99 39.58 29.94
2 -5.718 17.74 13.32
3 6.4x10−6 14.30 10.38
5 1.238 23.13 16.92
7 -2.156 30.20 22.28
10 -8.392 37.68 37.68
20 -13.89 48.65 48.65
30 6.712 51.83 51.83
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Figure 3.6: Plotted is the zero coupon risk-free term structures over time of U.S. Treasuries for the period 5
January 1994 to 27 December 2000. Source data is author’s calculations derived from zero-coupon yields
bootstrapped from US Treasury constant maturity rates, in turn sourced from the Federal Reserve H15 data
report. Sample period is 5 January 1994 to 27 December 2000.
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Figure 3.7: Plotted is the daily smoothed estimate of the risk-free rate (Vasicek Smoothed), computed
from a linear Kalman filtering of the Vasicek model. Also plotted is the observed constant maturity 3
month Treasury rate (3 Month CMT). Source data is author’s calculations derived from zero-coupon yields
bootstrapped from US Treasury constant maturity rates, in turn sourced from the Federal Reserve H15 data
report. Sample period is 5 January 1994 to 27 December 2000.



Chapter 4

Results

In this chapter we review and discuss our findings. The aims ofour research is to firstly

establish whether, through latent estimation of capital structure dynamics, we can reduce

the high variability in prediction errors noted by EHH, thusproviding a clearer picture

of the systematic biases present in structural model specifications. Secondly, we test our

hypothesis that the prediction errors evident in structural models are related to omitted

factors identifiable from stylised facts selected from the extant capital structure literature.

Finally, we examine the estimated form asset parameters foreconomic reasonableness

using benchmarks for the firm asset volatility, the implied default boundary, and the rate

of solvency mean-reversion.

In Section 4.1, the average credit spread prediction errorsof the competing struc-

tural models are compared with each other, and with the priorempirical literature of

LYS, EHH, and HH. To aid comparison with these studies, we report goodness of fit

statistics; Mean Percentage Error (MPE) and Mean Absolute Percentage Error (MAPE).

Further, to assess the relative impact of controlling for liquidity, and to provide a direct

comparison with the findings of EHH, we report model performance separately for the

three alternative measurement equations.

Our testing of model performance is guided firstly by EHH. Given the similarity

of our study, but competing estimation method, it is important to show our results in a

comparative manner. However, due to our state-space estimation method we are able

to apply additional specification tests not available to EHH. In Section 4.2 we follow

diagnostic methods described in Harvey (1989, p.256), Durbin & Koopman (2001, p.33),

and as applied to interest rate term structure modelling by Geyer & Pichler (1999), to test

the standardised residual prediction errors for consistency with the cross-sectional and

time-series assumptions of the competing credit models. Inother words, we test whether

the credit spread prediction errors, including the standardised error as recommended by

Harvey (1989), are unbiased with respect to firm and bond characteristics, are serially

uncorrelated, and are normally distributed. We are not aware that similar performance

test have been applied to structural credit models previously.

120
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Lastly, because we are inferring model parameters from credit spreads, we may find

that we achieve a high level of fit but with parameter values that are economically unre-

alistic. To confirm whether this is the case, the implied model parameters are checked

against observable benchmarks in Section 4.3. Using our fitted measurement equations,

in Section 4.4 we estimate the extent to which the observed level of credit spread is ex-

plained by the various structural models and estimate how much is due to non-default

related liquidity premiums.

4.1 Credit Spread Prediction Accuracy

In this section, we consider the ability of the models to predict step-ahead market credit

spreads is discussed controlling for: no liquidity premium(Section 4.1.1), constant liq-

uidity premium (Section 4.1.2), and time-varying liquidity premium (Section 4.1.3).

Step-ahead prediction errors are reported in Table 4.3, percentage spread step-ahead

prediction errors in Table 4.4, absolute percentage prediction errors in Table 4.5, and

standardised prediction errors in Table 4.6.

4.1.1 With No Liquidity Premium

In this section we report the overall credit spread prediction accuracy of the tested mod-

els, with no control for a liquidity premium, so that we can directly compare our results

with the results of extant studies. Our method of implicit parameter estimation involves

optimisation of model parameters to maximise model fit to observed credit spreads. It

is therefore expected that the average prediction error will be close to zero. We are

therefore interested in determining, whether as a consequence of our implicit estimation

method, whether we find a lower level of error than the extant studies of EHH and HH.

Our results are shown in Panel A of Tables 4.3, 4.4, 4.5, and 4.6. A comparison of

our results with EHH and HH is shown in Table 4.1.

In Panel A of Table 4.3 we report the unstandardised prediction error, measured in

basis points, calculated simply as the predicted credit spread less the observed credit

spread. Standard deviations of the prediction errors are shown in parentheses and are

also reported in basis points. Pooled mean prediction errors are shown by model, ex-

ternal rating, and remaining maturity of the bond at the timeof the trade. From the

second column, it is evident that, as expected, the average prediction error for all mod-

els is small. The extended Merton model exhibits the smallest error of only -0.29 basis

points, and the CEV model the most at 4.02 basis points. In comparison, LYS report

an average spread prediction error for the Merton model of -61.15 basis points, and -

8.78 basis points for a single-factor LS model with constantrisk-free rate (equivalent

in specification to our LS1 model), and -25.37 basis points for the two-factor LS model

with stochastic interest rates (equivalent in specification to our LS2 model). HH also
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report underprediction of credit spreads for the one-factor LS model with an estimated

error of -100 basis points for an A-rated bond with a 10 year maturity, and -108.5 basis

points with a stochastic interest rate. HH show the LT model to have a spread prediction

error of -84.5 basis points. For the CDG mean-reverting leverage model, HH report a

spread prediction error of -100.5 basis points. Ericsson, Reneby & Wang (2005) apply a

maximum-likelihood approach using rm-specic balance sheet and market data on stock

prices to fit the Leland (1994), Fan & Sundaresan (2000), and LT models. They find

average credit spread prediction errors of -108, -91, and -56 basis points respectively. It

therefore appears that our approach of estimating structural models directly from firm-

specific credit spread term structures achieves a less biased fitting of the models, on

average, than achieved by: estimation of the firm process from equity prices alone (Eric-

sson et al. (2005)), proxy variables with no optimisation (LYS and EHH), or firm process

parameters calibrated to match predicted with observed historical default rates (HH).

An alternative measure of the prediction accuracy is the mean percentage prediction

error (MPE), which we calculate by deducting the observed credit spread from the pre-

dicted, and then scaling by the observed credit spread. The MPE has the property of

being invariant to the size of the observed credit spread andis therefore a comparable

measure of error across different levels of observed creditspread.

Turning to column two of Panel A of Table 4.4, we show that the EM model under-

predicts credit spreads, with a mean percentage error of -6.66 percent. The LS1 and LT

models show slightly less average bias at -6.25 percent and -6.09 percent respectively,

the CEV model shows very slight average underprediction at -2.23 percent, followed by

the LS2 model at -1.71 percent. The most biased model, on average, is found to be the

CDG model, which overpredicts with a MPE of 11.46 percent. However, the standard

deviations of the MPE, which are shown in parentheses, indicate that our MPE estimates

are not significantly different from zero.

In Table 4.1 we compare our MPE results against the extant literature of EHH and

HH. The EM model is reported by EH to have a MPE of -50.42 percent. EHH find

that the LT model overpredicts with a MPE of 115.69 percent, however, HH report the

model to underpredict with a MPE of -68.70 percent. Directionally, we agree with HH,

with our absolute level of error is less than either study. A similar result is obtained

for the two factor LS2 model. EHH report overprediction witha MPE of 42.93 percent

and HH a MPE of -88.21 percent. We find little difference in prediction bias between

the one factor (LS1) and two factor (LS2) versions of the LS model. Finally, we see

overprediction in the CDG model but less than HH at 71.11 percent and an order of

magnitude less than EHH who report a MPE of 269.78 percent An important feature of

Table 4.1 is the relative consistency in MPE that we find between models. The mean and

standard deviation of the MPEs show a much higher degree of similarity than reported

by EHH. Our standard deviations of the MPE range between the lowest for the CDG
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model at 63.95 percent to the highest being the LS2 model at 82.80 percent. In contrast,

EHH report standard deviations of MPE ranging between a low of 71.84 percent for

the EM model, and a high of 490.19 percent for the LT model. In terms of the mean

spread prediction error, HH report errors in the range of -68percent to -88 percent for

the models comparable to our LT, LS1, and LS2 model implementations. Our percentage

errors are approximately ten times lower than HH, but otherwise show a similar level of

relative error between models. The improved accuracy is most likely due to our more

direct method of fitting the models to credit spreads whereasHH fit a representative

average rated company to historical default rates.

The similarity in error levels between models is also evident in the mean absolute

percentage errors (MAPE) of the credit spreads shown in Panel A, column two of Ta-

ble 4.5. The MAPE is defined as the absolute value of the difference between the pre-

dicted and observed credit spread, divided by the observed credit spread. Compared

to the MPE, the MAPE penalises variance in the prediction error. A smaller value of

MAPE indicates a more consistently accurate prediction independent of the level of the

observed credit spread. The lowest MAPE belongs to the EM model at 25.51 percent

and the highest MAPE is shown by the CDG model at 34.88 percent. Once again, EHH

report considerably greater MAPE for the same models as shown in Table 4.1. For the

extended Merton model, EHH report MAPE of 78.02 percent and 319.31 percent for the

CDG model; approximately nine times greater than our result.

Given our results, the variance in prediction errors shown by EHH are surprising.

Since we have calibrated to market spreads, and HH calibrated to their models to his-

torical average default rates, it is likely that we should achieve similar consistency in

results to HH notwithstanding our higher level of prediction accuracy. In contrast, EHH

do not attempt to calibrate model parameters and rely upon the adequacy of their proxy

variables to match firm-specific model parameters. Our result suggests that in failing

to optimise model fit to either default rates or credit spreads, additional error may have

been introduced into their spread predictions. On the otherhand, we are able to demon-

strate from Tables 4.3 to 4.1 that our estimation method provides the least biased, and

most consistently estimated set of structural models achieved to date. The advantage of

achieving consistently low average prediction biases, is that the remaining biases are not

obscured by the excessive levels of error, seen for example by the CDG and LT results

in the EHH study. We have therefore provided each model with its best opportunity to

perform accurately with as little average error as possible.

We now turn to the MPE related to the issuer’s rating. As shownin Panel A of

Table 4.4, a negative relationship between MPE and rating isevident amongst the single-

factor models; higher ratings are associated with relatively greater underprediction of the

yield spread. The EM model exhibits underprediction for BB trades of -3.07 percent, but

-10.55 percent for AA rated trades. The LS1, LT, and CEV models also have a negative
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Table 4.1: This table shows a comparison of model accuracy between the no-liquidity premium model
implementation, with the results of Eom et al. (2004) (EHH) and Huang & Huang (2003) (HH) for equiva-
lently specified models. MAPE is the mean absolute percentage credit spread preedcition error. MPE is the
mean percentage credit spread prediction error. All numbers are in percentages.

Comparative Studies

Comparative No Liquidity EHH HH

Model Model MPE MAPE MPE MAPE MPE

EM EM -6.66 25.51 -50.42 78.02 -
(69.12) (64.58) (71.84) (39.96) -

LT LT -6.09 31.38 115.69 146.05 -68.70
(80.52) (74.40) (490.19) (481.97) -

LS1 LS (Base Case) -6.25 28.36 - - -81.06
(74.97) (69.68) - - -

LS2 LS (1-day CMT) -1.71 31.24 42.93 124.83 -88.21
(82.80) (76.70) (171.63) (125.07) -

CDG CDG (Baseline) 11.46 34.88 269.78 319.31 71.11
(63.95) (54.81) (370.41) (328.42) -

Table 4.2: This table shows the mean percentage spread prediction errors by rating reported by (Huang
& Huang 2003, Tables 2, 3, 4, and 6) for a 10 year maturity bond.Calculations are the author’s and all
numbers are in percent. LS Base refers to a non-stochastic interest rate LS model and LS (CMT 1-day)
refers to a two-factor LS model with daily updating of the risk-free rate.

Rating LS Base LS (CMT 1-day) LT CDG

AA -84.40 -90.55 -62.13 -83.63
A -81.06 -88.21 -68.70 -81.71
BBB -70.88 -80.10 -69.35 -73.04
BB -39.91 -51.91 -48.22 -42.91

rating bias, although less pronounced. The CEV model has theleast rating bias amongst

the single factor models, varying from -8.55 percent for AA bonds to 1.06 percent for BB

bonds. Compared to the one-factor models, the two-factor models exhibit an opposite

rating bias. The LS2 mostly underpredicts the BB rated trades with -5.04 percent error,

and underpredicts the AA rated trades by -0.36 percent. An examination of the prediction

errors shows that the model did not converge as well as the LS models in the absence of

a liquidity premium in the measurement equation. The ratingbias of the LS2 model is

similar to the LS1 model when a liquidity premium is included(refer Panels B and C),

therefore, the n Panel A result for the LS2 model should be viewed with caution. The

CDG model is found to overpredict for all ratings, but mostlyfor the AA rated trades

where MPE is 15.83 percent and by 5.10 percent for the BB trades.

The MPE rating bias is also present in the estimates by HH, although the level of our

error is lower. For ease of reference, HH’s spread prediction MPE by rating is shown

in Table 4.2. It is generally acknowledged that structural models underpredict credit
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spreads on bonds with short maturities. In Panel A of Table 4.4 we show the MPE by

remaining maturity, as measured from the date of the trade, to the contractual maturity,

for the respective bond being priced. For the shortest tenorrange of less than 7 years, the

CEV model exhibits the least bias with a small mean percentage underprediction of -1.13

percent. The CDG model has the largest short tenor percentage error of 31.31 percent,

which shows that much of the model’s average overpredictionis due to excessively high

predictions of short-term credit spreads. All models exhibit a common pattern of pre-

diction error in which the mid-maturity bonds, with 7 to 15 years of remaining maturity,

exhibit the largest relative underprediction of credit spreads. The LT and LS1 models at

-11.46 and -11.29 percent respectively are the most biased in this respect, showing the

greatest levels of underprediction for this maturity. For the longer maturity bonds, with

remaining maturities in excess of 15 years, most models report relatively small abso-

lute mean percentage errors. The exception is the LT model, which has a tendency for

relatively large overprediction with an average mean percentage error of 12.56 percent.

Finally, in Panel A of Table 4.5 we show the absolute percentage spread prediction

errors (MAPE) by rating and remaining maturity. The most accurate model is also the

simplest EM model with a MPE of 25.51 percent, and the least accurate is the CDG

model with a MAPE of 34.88 percent. By rating, it is evident that prediction accuracy

is best for the lowest rating; at the BB rating the lowest MAPEis 15.04 percent for the

EM model and the highest MAPE is the LS2 model 22.38 percent. Prediction accuracy

is therefore greatest when default risk is highest and the credit spread levels are the

greatest. In the maturity dimension, it is clear that accuracy is greatest for the long-dated

maturities for all models; when remaining maturity exceeds15 years,the most accurate

model is the EM model with a MAPE of 14.95 percent, and the least accurate is the

LT model with a MAPE of 24.18 percent. Consequently, we find that structural models

all share the characteristic that their greatest accuracy occurs at low ratings and long

maturities, i.e., when it can be expected that default risk is at its greatest.

An important view put forward by EHH is that the introductionof stochastic interest

rates into the structural modelling literature has decreased prediction bias (by raising the

level of the predicted credit spread), but in doing so, has substantially reduced prediction

accuracy. In Table 4.1 we compare the MAPE from Panel A of Table 4.5 with the

EHH results for the models where direct comparison is possible. While we do find

the EM model has the most, and the CDG model the least accuracyas represented by

their relative values of MAPE, we do not find the same degree ofsubstantial inaccuracy

found by EHH. Our observed deterioration in MAPE between theEM and CDG models

is 25.51 percent to 34.88 percent, compared with EHH who report 78.02 percent to

319.31 percent respectively. Consequently, we are unable to conclude that the two-factor

stochastic interest rate models aresubstantially less accurate, but we can state that they

do not improve accuracy relative to the EM model, and therefore have failed to achieve
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their aim of improving structural model prediction accuracy.

In the next section we review whether these results hold whena liquidity premium

is introduced into the measurement equation.

4.1.2 With Constant Liquidity Premium

In this section we examine the prediction errors with a constant liquidity premium in-

cluded in the measurement equation. By doing so, the averagelevel of credit spread is

explained by the liquidity premium variable and not by the structural model. Thus, the

structural model parameters are optimised to explain the changes in the level, and the

slope of the firm’s credit spread term structure over time.

In Panel B of Table 4.3, the step-ahead credit spread prediction errors, reported in

basis points, are shown per model by rating and remaining bond maturity. The EM model

has the smallest error of 0.26 basis points, and the CDG modelhas the largest average

error equal to 13.30 basis points. Given the levels of standard deviation, as shown in

parentheses, the errors are not significantly different from zero.

A better measure of relative prediction bias is given by the MPE as shown in Panel

B of Table 4.4. Compared to the no-liquidity premium case shown in Panel A, the

MPE is found to be negative for every model with an average underprediction bias that

varies from -6.09 percent for the CDG model to -8.78 percent for the LS1 model. The

overprediction bias of the CDG model as reported above for the no-liquidity premium

case is no longer evident suggesting that it was caused by themodel parameters over-

emphasising short term term default risk in order to compensate for the lack of a liquidity

premium. Similarly, including a liquidity premium changesthe pattern of the maturity

bias so that it is generally monotonically increasing in underprediction as the maturity

shortens. The pattern is consistent for all models except the CDG model where the 1 to

15 year maturity band is the least biased. Thus, compared to Panel A, we can see that

including a liquidity premium results in greater consistency in the levels and directions of

underprediction biases between the models. This result shows the importance of fitting

the structural models to only that part of the credit spread that is likely to be related to

firm default risk.

Finally, in Panel B of Table 4.5 we show the MAPE errors. Compared with Panel A it

is evident that by including a liquidity premium in the measurement equation, prediction

accuracy improves in all cases, and that the lowest ratings and longest maturities have

the greatest prediction accuracy. On average, the most accurate model is the EM model

with a MAPE of 21.74 percent, and the least accurate is the CDGmodel with a MAPE

of 26.61 percent.
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4.1.3 With Time-Varying Liquidity Premium

Panel C of Table 4.4 shows the MPE for the third empirical equation that includes the

time-varying Refcorp spread in addition to a constant premium. Compared to Panel B of

Table 4.4, we find the level of underprediction to be less, on average, for most models.

The improvement in prediction bias is not large, being in theorder of less than half of

one percent. The exception is the CEV model, which is little improved by the addition

of the Refcorp spread within the measurement equation, and the CDG model, which in

contrast to the other models, increases its tendency to underpredict.

The lack of improved fit for the CEV model suggests that the model is already able to

explain much of the time variation in the average level of credit spreads without the need

for an additional time dependent explanatory variable. Themodel’s ability to better cap-

ture average spread variation over time, relative to the other models, is most likely due

to its specification that allows the local volatility to varywith the level of log-solvency.

The pattern of relative error across ratings and term-to-maturity dimensions follows

closely the pattern reported in Panel B for the constant liquidity empirical equation

demonstrating that the omission of time-variation in the liquidity premium is not the

likely cause for the maturity and rating biases present in the structural models tested.

Panel C of Table 4.5 summarises the MAPE by model. The absolute errors are found

to be very similar between models and reduced slightly by theinclusion of the Refcorp

spread relative to the constant liquidity premium models. The model with greatest pre-

diction accuracy is the EM model with a MAPE of 21.42 percent,and the highest MAPE

is the CDG model at 25.86 percent. Thus, the simplest model, with the lowest number of

parameters, is found to have the highest relative prediction accuracy, and the model with

the highest number of parameters, exhibits the lowest relative prediction accuracy. Un-

like EHH, the variation between model accuracy, is nonetheless, relatively low. Given

the standard deviations of MAPE (shown in parentheses), we find no significant dif-

ference in prediction accuracy between structural models despite wide differences in

underlying theory and specification. The relatively large standard deviation in MAPE

demonstrates that improvement in forecast accuracy remains to be achieved, and the the-

oretical developments, embodied in the structural models tested in this paper, have not

yet been able to realise the potential gains in accuracy.

Shown in Figures 4.1 to 4.6 are plots of predicted versus actual credit spreads by

rating and term-to-maturity. These figures are presented inthe same style as EHH to

facilitate comparison. The vertical axis is a log scale of the credit spread shown in basis

points, and the horizontal scale is the remaining term to maturity of the bond. The top

panels show predicted and actual spreads for combined A and AA issuer rated bonds

measured at the time of the trade. The middle panels show predicted and actual credit

spreads for BBB rated bond results, and the bottom panels show the same for BB rated

bonds.
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Table 4.3: This table shows themean credit spread prediction error in basis pointsby model. Error is
defined as the predicted credit spread less the observed spread. Means are reported on the pooled sample,
categorised by the issuer’s rating and remaining term-to-maturity, measured coincident with the observed
trade. Standard deviations are shown in parentheses.

Model All AA A BBB BB ≤ 7 yrs 7−15 yrs > 15 yrs

A: No Liquidity Premium

EM -0.29 0.46 -0.08 0.68 -17.84 -1.33 -1.49 5.52
(67.66) (22.38) (30.08) (43.84) (321.67) (95.23) (28.12) (26.26)

LS1 -1.75 1.60 -0.09 -0.33 -57.49 -4.80 -2.57 8.89
(131.45) (26.50) (49.85) (53.16) (675.41) (186.92) (51.57) (36.85)

LT 0.94 1.00 1.96 1.90 -22.95 -3.02 -1.85 18.83
(68.24) (25.74) (45.10) (54.24) (281.27) (91.37) (37.53) (37.84)

CEV 4.02 1.81 3.01 6.32 4.03 3.75 2.13 9.29
(63.30) (26.91) (40.74) (59.23) (240.70) (86.62) (32.69) (30.87)

LS2 3.08 4.36 3.30 1.60 9.35 6.93 -1.69 3.37
(57.76) (27.91) (38.43) (62.79) (186.24) (69.86) (45.89) (41.83)

CDG 3.72 4.36 2.87 3.97 8.10 5.35 2.93 0.95
(1.76) (2.51) (1.58) (1.66) -(0.55) (0.95) (3.59) -(0.66)

B: Constant Liquidity Premium

EM 0.26 0.40 -0.38 -0.02 10.55 -0.20 0.95 -0.09
(38.61) (18.70) (26.42) (43.66) (115.46) (49.81) (26.30) (23.55)

LS1 -2.32 0.59 -1.65 0.07 -53.79 -6.06 0.89 0.78
(113.56) (20.72) (51.46) (41.33) (578.88) (161.41) (45.52) (30.15)

LT -1.34 0.44 -1.05 -0.48 -24.86 -4.41 1.66 0.28
(63.43) (19.52) (38.40) (45.75) (279.17) (87.70) (30.52) (28.78)

CEV 1.35 1.50 0.82 2.15 -1.74 -0.99 3.52 2.87
(68.70) (21.75) (27.61) (98.32) (155.24) (94.57) (32.95) (35.26)

LS2 -0.91 1.59 1.05 0.87 -59.66 -2.79 0.13 1.98
(199.09) (21.62) (31.92) (52.60) (1075.7) (291.59) (36.60) (27.93)

CDG 13.30 13.65 13.16 12.83 18.47 26.90 2.42 0.26
(51.83) (29.45) (37.36) (51.16) (173.65) (64.05) (33.87) (36.24)

C: Time-Varying Liquidity Premium

EM -0.59 0.73 -0.22 -0.08 -18.52 -1.82 0.62 0.03
(62.36) (18.21) (25.43) (38.16) (303.08) (88.13) (25.57) (21.72)

LS1 -1.59 0.81 -0.97 0.00 -40.62 -4.11 0.47 0.73
(101.77) (19.09) (39.35) (37.52) (525.86) (145.53) (37.85) (23.86)

LT -1.10 0.61 -0.82 -0.22 -24.05 -3.78 1.53 0.35
(61.45) (18.88) (34.86) (41.22) (279.67) (85.00) (29.88) (26.91)

CEV 1.27 1.08 0.69 2.56 -4.47 -0.17 2.73 1.95
(57.75) (21.45) (26.55) (51.57) (245.91) (80.53) (27.07) (22.38)

LS2 1.37 1.18 1.17 0.93 9.89 1.24 1.39 1.72
(42.99) (20.25) (27.41) (38.66) (166.75) (55.95) (28.14) (26.32)

CDG 4.22 4.62 4.08 3.80 8.30 5.58 3.82 1.30
(46.76) (21.84) (32.06) (42.08) (176.64) (59.92) (31.99) (30.32)

n 8,953 1,691 3,704 3,263 295 4,107 3,407 1,439
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Table 4.4: This table shows themean percentage credit spread prediction errorby model. Error is
defined as the predicted credit spread less the observed spread, divided by the observed spread. Means are
reported on the pooled sample, categorised by the issuer’s rating and remaining term-to-maturity, measured
coincident with the observed trade. All numbers are in percentages and standard deviations are shown in
parentheses.

Model All AA A BBB BB ≤ 7 yrs 7−15 yrs > 15 yrs

A: No Liquidity Premium

EM -6.66 -10.55 -6.18 -5.53 -3.07 -7.38 -9.59 2.32
(69.12) (77.49) (62.83) (73.82) (25.30) (87.59) (55.08) (23.35)

LS1 -6.25 -8.29 -5.68 -5.89 -5.74 -5.96 -11.29 4.84
(74.97) (80.24) (73.32) (76.28) (42.96) (88.36) (70.05) (29.94)

LT -6.09 -10.71 -5.16 -4.90 -4.49 -8.18 -11.46 12.56
(80.52) (75.44) (87.41) (77.78) (34.16) (103.56) (59.30) (31.29)

CEV -2.23 -8.55 -1.74 0.18 1.06 -1.13 -6.27 4.19
(77.18) (79.54) (81.10) (74.29) (25.27) (99.56) (58.46) (24.63)

LS2 -1.71 -0.36 -0.11 -3.93 -5.04 2.92 -8.86 1.99
(82.80) (98.09) (60.26) (96.10) (71.49) (95.12) (81.08) (32.83)

CDG 11.46 15.83 13.39 7.57 5.10 31.31 -5.43 -5.24
(63.95) (88.93) (54.00) (61.08) (24.19) (64.74) (66.37) (31.24)

B: Constant Liquidity Premium

EM -7.96 -10.23 -7.45 -7.81 -3.14 -11.28 -5.92 -3.35
(62.29) (68.59) (60.25) (63.67) (18.39) (77.85) (51.26) (23.74)

LS1 -8.78 -11.26 -9.24 -7.22 -5.89 -12.65 -6.50 -3.11
(68.50) (71.45) (73.16) (63.58) (34.38) (82.81) (61.33) (25.15)

LT -8.30 -10.37 -8.37 -7.36 -6.10 -11.81 -5.48 -5.01
(70.94) (70.37) (79.71) (62.47) (37.56) (91.44) (52.87) (27.76)

CEV -7.04 -8.12 -6.23 -7.79 -2.70 -11.82 -3.57 -1.62
(67.38) (72.81) (60.86) (73.88) (22.15) (84.71) (54.48) (24.89)

LS2 -8.89 -11.98 -8.36 -8.08 -6.62 -14.79 -5.94 0.98
(67.81) (73.46) (67.56) (64.63) (71.34) (86.30) (52.77) (23.42)

CDG -6.09 -7.98 -5.80 -5.88 -1.20 -9.88 -2.75 -3.17
(65.37) (75.74) (67.51) (59.46) (21.74) (79.24) (57.77) (26.37)

C: Time-Varying Liquidity Premium

EM -7.58 -10.00 -6.88 -7.44 -4.02 -10.51 -6.13 -2.65
(62.93) (72.80) (58.97) (64.15) (24.48) (77.97) (53.51) (21.40)

LS1 -8.26 -10.36 -8.09 -7.72 -4.23 -11.15 -7.35 -2.14
(67.85) (75.44) (69.39) (64.16) (32.75) (82.94) (59.76) (22.20)

LT -7.97 -10.15 -7.91 -7.16 -5.03 -11.15 -5.72 -4.18
(70.36) (74.80) (74.45) (65.23) (39.00) (89.18) (55.71) (26.52)

CEV -7.05 -10.49 -7.11 -5.72 -1.29 -11.52 -4.45 -0.47
(67.73) (77.98) (66.75) (65.79) (21.59) (84.52) (56.50) (21.95)

LS2 -8.65 -12.28 -8.09 -8.10 -0.91 -13.38 -6.70 0.24
(69.86) (83.22) (64.72) (70.74) (19.05) (86.44) (59.28) (23.93)

CDG -6.22 -8.13 -6.38 -5.52 -1.00 -8.83 -4.34 -3.24
(68.99) (85.66) (66.54) (64.70) (21.33) (80.81) (65.32) (28.97)

n 8,953 1,691 3,704 3,263 295 4,107 3,407 1,439
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Table 4.5: This table shows themean absolute percentage credit spread prediction errorby model. Error
is defined as the absolute of the predicted credit spread lessthe observed spread, divided by the observed
spread. Means are reported on the pooled sample, categorised by the issuer’s rating and remaining term-
to-maturity, measured coincident with the observed trade.All numbers are in percentages and standard
deviations are shown in parentheses.

Model All AA A BBB BB ≤ 7 yrs 7−15 yrs > 15 yrs

A: No Liquidity Premium

EM 25.51 32.60 24.57 23.84 15.04 30.89 23.47 14.95
(64.58) (71.07) (58.16) (70.08) (20.56) (82.29) (50.75) (18.08)

LS1 28.36 35.49 28.03 25.78 20.09 34.01 26.47 16.70
(69.68) (72.44) (67.99) (72.03) (38.38) (81.76) (65.83) (25.31)

LT 31.38 34.95 31.92 29.76 22.05 36.97 27.68 24.18
(74.40) (67.70) (81.54) (72.03) (26.44) (97.08) (53.68) (23.49)

CEV 28.62 34.72 28.23 26.97 17.00 36.56 24.20 16.42
(71.72) (72.06) (76.05) (69.23) (18.71) (92.61) (53.58) (18.83)

LS2 31.24 39.91 28.96 30.14 22.38 35.70 29.72 22.08
(76.70) (89.60) (52.85) (91.34) (68.07) (88.21) (75.95) (24.37)

CDG 34.88 48.35 32.41 32.25 17.68 44.86 28.78 20.80
(54.81) (76.30) (45.22) (52.41) (17.25) (56.21) (60.05) (23.89)

B: Constant Liquidity Premium

EM 21.74 27.28 20.92 20.64 12.59 26.13 20.36 12.49
(58.91) (63.76) (56.99) (60.74) (13.75) (74.20) (47.41) (20.46)

LS1 24.13 29.57 24.42 21.64 16.89 29.19 22.52 13.53
(64.70) (66.00) (69.58) (60.22) (30.51) (78.52) (57.41) (21.43)

LT 23.05 27.83 22.69 21.57 16.69 27.44 21.22 14.89
(67.60) (65.46) (76.87) (59.09) (34.18) (88.02) (48.73) (23.96)

CEV 23.37 28.51 21.53 23.71 13.16 28.60 21.49 12.88
(63.59) (67.48) (57.27) (70.41) (18.00) (80.60) (74.00) (21.35)

LS2 26.00 33.06 25.47 23.72 17.33 32.04 23.27 15.21
(63.26) (66.68) (63.13) (60.67) (69.51) (81.48) (75.00) (17.83)

CDG 26.61 33.20 27.39 23.42 14.34 31.78 24.82 16.10
(60.02) (68.54) (61.97) (54.97) (16.36) (73.25) (52.24) (21.12)

C: Time-Varying Liquidity Premium

EM 21.42 27.69 20.49 19.97 13.23 25.70 20.34 11.78
(59.65) (68.07) (55.72) (61.42) (20.98) (74.36) (49.88) (18.06)

LS1 22.89 28.54 22.33 21.33 14.76 27.17 22.29 12.08
(64.40) (70.60) (66.19) (61.00) (29.52) (79.15) (55.93) (18.74)

LT 22.69 27.90 22.43 20.87 16.24 27.05 21.23 13.69
(67.08) (70.14) (71.43) (62.21) (35.80) (85.71) (51.82) (23.09)

CEV 22.99 29.75 22.15 21.35 12.76 28.00 21.70 11.70
(64.10) (72.84) (63.36) (62.50) (17.45) (80.58) (52.35) (18.57)

LS2 25.18 32.25 24.41 23.50 12.78 30.11 23.66 14.69
(65.73) (77.70) (60.48) (67.21) (14.14) (82.12) (54.76) (18.89)

CDG 25.86 32.90 26.10 22.99 14.25 29.84 25.63 15.03
(64.26) (79.50) (61.54) (60.73) (15.89) (75.61) (60.24) (24.98)

n 8,953 1,691 3,704 3,263 295 4,107 3,407 1,439
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Comparing between models, it can be seen that there is a generally close match

between predicted and actual spreads, with a similar pattern of observations exhibited

by all models. Like EHH, we find that there is greater dispersion of predicted spreads

at shorter maturities, and likewise, there is a much wider dispersion of actual spreads at

shorter tenors too.

Turning to the EM model, EHH find evidence of extreme underprediction and ex-

treme overprediction of spreads with the underprediction cases more prevalent (EHH,

Fig. 1). Their frequency of underprediction is greatest at the short maturities where rat-

ings are BBB or better. Referring to the top panel of Figure 4.1, we also find that there

is a higher occurrence of underprediction when the rating ishigh and the maturity less

than 10 years. In such cases, the firm’s leverage is likely to be low and with a short term

to maturity, it is apparent that the assumption of geometricBrownian motion of the asset

process specified under the EM model, fails to predict a sufficiently large probability of

default when the time to diffuse is small. Our result adds weight to EHH’s finding of

prediction bias since we have controlled for liquidity premiums and allowed the model

to fit the data by quasi maximum likelihood, thereby removinga potential source of

contributory bias to EHH’s results.

Our results, however, differ from EHH in the degree of under and over prediction

found. Unlike EHH, there is no evidence of systematic extreme prediction errors. Refer-

ring to the middle and lower panels of Figure 4.1, we can see that actual credit spreads

increase, as is to be expected due to the lower ratings, but the predicted spreads generally

align well, whereas EHH report high levels of underprediction for BBB rated bonds, and

extensive over and underprediction for BBB and lower rated bonds. At lower ratings,

the EM model is able to match market spreads well even at shortmaturities. Thus, our

estimation method provides a clearer view of the inherent bias in the structural models

compared to the proxy empirical fitting method. By fitting theimplied default boundary

and asset volatility from panel data, we impose time-seriesrestrictions on the change

in credit spreads implied from the underlying asset process, which limits the extent to

which the asset volatility can be increased to match cross-sectional short-term spreads.

Interestingly, for higher default risk firms, the closer match of predicted to actual, as

shown in Figure 4.1, suggests that the EM model is able to match both cross-sectional

and time-series predictions of credit spreads with little bias.

A similar pattern of spread prediction dispersion is evident in the other structural

models as shown in Figures 4.2 to 4.6. There is a common tendency for underprediction

of spreads at short maturities for well rated bonds, with thebias disappearing as the

rating worsens, or maturity lengthens.

The prediction biases we have identified, related to rating and maturity, confirm

EHH and suggest a specification problem common to structuralmodels. The models

commonly assume that default risk arises from a continuous stochastic diffusion of firm
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asset value to a default boundary, and it appears that in the absence of asset value jumps

to default, or excessive asset volatility, that not all cross-sectional short term market

spreads can be explained fully. When the firm is well rated andthe distance to default is

high, there is insufficient asset volatility necessary to bridge the gap between predicted

and actual. The result is underprediction of the credit spread even though we have con-

trolled for a potential liquidity premium in the spread. Ourfinding is potentially more

robust than prior studies since we have allowed the models tofit the data to the best of

their abilities in accordance with model specifications.
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Figure 4.1: EM predicted versus actual credit spreads by remaining term-to-maturity and rating. Predicted
credit spreads are estimated with a time-varying liquiditypremium using the Refcorp spread as a control.
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Figure 4.2: LS1 predicted versus actual credit spreads by remaining term-to-maturity and rating. Predicted
credit spreads are estimated with a time-varying liquiditypremium using the Refcorp spread as a control.
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Figure 4.3: CEV predicted versus actual credit spreads by remaining term-to-maturity and rating. Predicted
credit spreads are estimated with a time-varying liquiditypremium using the Refcorp spread as a control.
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Figure 4.4: LT predicted versus actual credit spreads by remaining term-to-maturity and rating. Predicted
credit spreads are estimated with a time-varying liquiditypremium using the Refcorp spread as a control.
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Figure 4.5: LS2 predicted versus actual credit spreads by remaining term-to-maturity and rating. Predicted
credit spreads are estimated with a time-varying liquiditypremium using the Refcorp spread as a control.
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Figure 4.6: CDG predicted versus actual credit spreads by remaining term-to-maturity and rating. Predicted
credit spreads are estimated with a time-varying liquiditypremium using the Refcorp spread as a control.
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4.2 Credit Model Specification Tests

In this section we discuss formal tests for model miss-specification. If the structural

models are properly specified, then the prediction errors from the EKF should be in-

dependent and normally distributed. To examine this property, Harvey (1989, p.257)

recommends construction of the standardised prediction error defined as

ṽ(t) = F (t)−1/2v(t), t = 1, . . .n. (4.1)

The size of the prediction error is potentially influenced bythe presence of measurement

errors in the observed data, and by the mean level of the credit spread since higher credit

spread errors are associated with higher credit spreads. For these reasons, diagnostic

testing of model specification is preferable using the standardised prediction error. The

average standardised prediction errors are reported in Table 4.6.

If the models are correctly specified, the standardised prediction error should be

normally distributed, with mean zero and standard deviation of one, and be serially in-

dependent with constant variance. In Table 4.7 descriptivestatistics are reported along

with the Bowman & Shenton (1975) omnibus test for normality given by

BS = n

(

Sk2

6
+

(Ku−3)2

24

)

, (4.2)

wheren is the number of observations,Sk denotes the sample skewness, andKu denotes

the sample kurtosis. The BS statistic is asymptoticallyχ2 distributed with two degrees of

freedom with a null hypothesis that the distribution is normal (Durbin & Koopman 2001,

p.34).

Table 4.7 shows that all BS tests exceed a one percent critical level confirming that

the standardised errors are not normally distributed. The means and standard deviations

of the standardised errors are close to expected values, butthere is a positive bias and

skewness in the errors.

The skewness of the standardised error distribution is expected to be zero, however,

in all models tested, and in all forms of measurement equation, the standardised errors

exhibit positive skewness; there is a tendency for larger overprediction on a standardised

basis than there is underprediction, resulting in a longer tailed distribution to the right.

The tendency for positive skewness is also revealed in Figure 4.7 in which the histograms

of the standardised prediction errors by model are plotted with a comparison against an

equivalent normal density plot with the same sample mean andstandard deviation.

The skewness levels for the models ranges from 0.56 for the LTmodel with no liq-

uidity (Panel A), to 1.09 for the CEV model with constant liquidity (Panel B). There

appears to be no systematic influence as to whether the model includes a liquidity pre-

mium or not, with the LT model generally exhibiting the leastskewness.
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Table 4.6: This table shows themean standardised credit spread prediction errorby model. Error
is defined as the predicted credit spread, divided by the filtered standard deviation of the prediction error.
Means are reported on the pooled sample, categorised by the issuer’s rating and remaining term-to-maturity,
measured coincident with the observed trade. Sample standard deviations are shown in parentheses.

Model All AA A BBB BB ≤ 7 yrs 7−15 yrs > 15 yrs

A: No Liquidity Premium

EM 0.04 0.07 0.04 0.03 0.08 0.04 -0.02 0.23
(0.98) (0.98) (0.99) (0.97) (1.16) (1.05) (0.90) (0.96)

LS1 0.09 0.13 0.09 0.07 0.14 0.10 -0.01 0.30
(0.97) (0.96) (0.96) (0.96) (1.19) (1.07) (0.84) (0.90)

LT 0.10 0.10 0.11 0.09 0.14 0.03 0.01 0.51
(0.99) (0.99) (0.98) (0.98) (1.09) (1.02) (0.89) (1.02)

CEV 0.14 0.12 0.14 0.14 0.30 0.13 0.09 0.31
(0.95) (0.96) (0.94) (0.93) (1.10) (1.03) (0.84) (0.93)

LS2 0.17 0.22 0.17 0.13 0.21 0.28 0.03 0.18
(0.94) (0.93) (0.93) (0.95) (1.06) (1.00) (0.81) (1.04)

CDG 0.38 0.47 0.42 0.30 0.41 0.74 0.11 0.03
(1.02) (0.98) (1.00) (1.05) (1.11) (1.07) (0.82) (0.97)

B: Constant Liquidity Premium

EM 0.03 0.05 0.02 0.01 0.09 0.01 0.06 -0.01
(1.03) (1.01) (1.02) (1.03) (1.20) (1.07) (0.97) (1.02)

LS1 0.05 0.07 0.05 0.04 0.07 0.02 0.09 0.04
(1.02) (1.01) (1.00) (1.01) (1.31) (1.08) (0.93) (1.03)

LT 0.03 0.06 0.03 0.02 0.04 0.00 0.09 -0.01
(1.02) (1.01) (1.02) (1.01) (1.16) (1.03) (0.96) (1.11)

CEV 0.09 0.13 0.07 0.08 0.09 0.04 0.15 0.09
(1.00) (0.99) (0.98) (1.03) (0.98) (1.03) (0.94) (1.01)

LS2 0.08 0.11 0.08 0.06 0.02 0.06 0.08 0.13
(1.02) (1.02) (1.00) (1.03) (1.09) (1.11) (0.91) (1.00)

CDG 0.16 0.21 0.18 0.11 0.21 0.19 0.17 0.06
(1.06) (1.04) (1.05) (1.07) (1.28) (1.17) (0.91) (1.07)

C: Time-Varying Liquidity Premium

EM 0.03 0.07 0.03 0.00 0.04 0.01 0.05 0.00
(1.03) (1.01) (1.01) (1.03) (1.29) (1.09) (0.97) (0.99)

LS1 0.05 0.08 0.04 0.03 0.09 0.03 0.06 0.04
(1.02) (1.00) (1.00) (1.03) (1.29) (1.09) (0.96) (0.97)

LT 0.03 0.07 0.02 0.02 0.08 0.00 0.08 0.00
(1.02) (1.02) (1.02) (1.02) (1.13) (1.04) (0.97) (1.08)

CEV 0.08 0.10 0.07 0.08 0.16 0.05 0.11 0.10
(1.00) (1.00) (0.98) (1.01) (1.14) (1.08) (0.92) (0.95)

LS2 0.07 0.08 0.07 0.04 0.14 0.05 0.06 0.11
(1.03) (1.01) (1.02) (1.04) (1.12) (1.11) (0.92) (1.00)

CDG 0.14 0.20 0.14 0.11 0.21 0.19 0.13 0.05
(1.08) (1.04) (1.06) (1.09) (1.30) (1.17) (0.95) (1.07)

n 8,953 1,691 3,704 3,263 295 4,107 3,407 1,439
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From Figure 4.7 we can see that the standardised prediction errors have an empirical

density that is more peaked than the normal distribution. The prediction errors exhibit

fatter tails than expected under the normal distribution. Table 4.7 confirms the tendency

to fat tailed errors with an excess kurtosis that is very pronounced for each model. The

excess kurtosis ranges from a low of 4.08 for the CDG model without a liquidity pre-

mium (Panel A), to 8.26 for the CEV model with constant liquidity (Panel B), relative to

an expected value of zero.

Thus, we find that the standardised prediction errors exhibit fatter, more positive

tails, than expected. This result suggests that, even afterlimiting the effect of noisy

data via the standardisation of prediction errors, the structural models tested tend to

under and overestimate spreads to a higher degree than expected under their theoretical

specification.

The relative effectiveness of controlling for liquidity inmodel specification can be

judged by comparing results across the panels of Table 4.7. The highest mean error bias

is associated with Panel A. Introducing a control for liquidity premiums in Panels B and

C result in lower mean errors providing support for their inclusion. However, skewness

and kurtosis levels are of similar magnitude regardless of liquidity premium treatment,

with all models evidencing non-normality.

The skewness evident in the standardised error is opposite in sign to the unstandard-

ised error. As shown in Table 4.8, the prediction errors exhibit a negative skew consistent

with our finding of underprediction of spreads at short maturities and high ratings. The

positive skewness of the standardised errors is most likelya result of our sample data.

Where there are sudden rises in market credit spreads, the step-ahead prediction error

is negative, but because we find that these movements are associated with periods of

high volatility in spreads, the prediction errors are scaled relatively more when standard-

ised compared to sudden falls in market spreads. Quantile-Quantile (QQ) plots of the

standardised errors are shown in Figure 4.8. The straight line in the QQ plot maps the

expected standardised data under the normal cumulative frequency distribution against

the observed cumulative distribution of errors. The upwardcurvature of the observed

data in the upper right of the plots shows that positive prediction errors that would be ex-

pected to be three standard deviations from the mean are, forall models, approximately

five standard deviations from the mean. However, other than the tails being fatter than

expected, Figure 4.8 shows that the errors for all models arereasonably similar to the ex-

pected normal distribution. The behavior of the standardised prediction errors across

maturity and rating dimensions is illustrated in Figures 4.9 to 4.14. In the top panels

the standardised prediction errors are plotted against theremaining maturity at the date

of trade for bonds rated AA and A. The middle panels includes BBB rated bonds, and

the bottom panels comprise BB rated bonds. The vertical axesare measured in standard

deviations. The pattern exhibited by all models is remarkably similar with all bonds
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Table 4.7: This table shows the descriptive statistics of the standardised step-ahead prediction errors pooled
across all trades by model. Sample means, standard deviations (SD), minimums, and maximums are re-
ported in basis points. BS refers to the Bowman & Shenton (1975) sample test statistic for normality.

EM LS1 LT CEV LS2 CDG

Panel A: No Liquidity

Mean 0.04 0.09 0.10 0.14 0.17 0.38
SD 0.98 0.97 0.99 0.95 0.94 1.02
Skewness 0.86 0.99 0.56 0.90 0.98 0.85
Exc. Kurtosis 5.33 5.99 4.57 6.87 5.26 4.08
Min -5.69 -5.48 -6.83 -9.82 -4.36 -4.48
Max 7.78 7.48 7.35 8.22 8.54 8.61
BS 11,703 14,866 8,252 18,806 11,749 7,287

Panel B: Constant Liquidity

Mean 0.03 0.05 0.03 0.09 0.08 0.16
SD 1.03 1.02 1.02 1.00 1.02 1.06
Skewness 0.94 1.05 0.88 1.09 0.98 1.02
Exc. Kurtosis 6.08 5.79 5.62 8.26 5.21 4.96
Min -5.53 -4.83 -6.82 -7.16 -5.07 -5.21
Max 8.58 8.46 8.23 11.24 9.18 8.89
BS 15,118 14,164 12,923 27,215 11,568 10,727

Panel C: Time-Varying Liquidity

Mean 0.03 0.05 0.03 0.08 0.07 0.14
SD 1.03 1.02 1.02 1.00 1.03 1.08
Skewness 0.89 0.94 0.79 0.95 0.96 0.87
Exc. Kurtosis 6.09 6.05 5.43 6.40 5.60 5.17
Min -5.68 -5.02 -5.94 -5.22 -5.41 -5.55
Max 8.69 8.62 8.44 8.43 9.23 8.87
BS 15,029 14,978 11,933 16,631 13,057 11,090

n 8,953 8,953 8,953 8,953 8,953 8,953
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Table 4.8: This table shows the descriptive statistics of the step-ahead prediction errors pooled across all
trades by model. Sample means, standard deviations (SD), minimums, and maximums are reported in basis
points. BS refers to the Bowman & Shenton (1975) sample test statistic for normality.

EM LS1 LT CEV LS2 CDG

Panel A: No liquidity

Mean -0.20 -1.08 1.50 4.47 3.01 13.65
SD 67.54 129.31 65.79 61.21 57.24 50.95
Skewness -39.83 -47.51 -19.74 -20.14 -8.47 -7.21
Exc. Kurt. 2,526.40 2,674.10 752.32 1,326.50 274.08 426.40
Min -4,566.30 -7,849.30 -2871.10 -3,521.50 -1,996.90 -2,182.60
Max 709.47 904.44 628.09 1,408.60 867.59 830.47
BS 2·109 3·109 2·108 7·108 3·107 7·107

Panel B: Constant Liquidity

Mean 0.50 -1.83 -0.90 1.67 -0.84 4.64
SD 37.85 111.84 60.61 68.35 199.43 45.67
Skewness -0.51 -41.96 -26.01 -23.32 -87.38 -12.47
Exc. Kurt. 313.07 2,085.80 1,110.40 1,694.60 8,040.60 746.74
Min -1,378.60 -6,101.40 -3,037.80 -4,051.30 -1,8354.00 -2,266.50
Max 1,062.40 773.19 557.18 2,182.70 1390.00 734.81
BS 4·107 2·109 5·108 1·109 2·1010 2·108

Panel C: Time-Varying Liquidity

Mean -0.38 -1.25 -0.70 1.48 1.39 4.09
SD 62.14 100.75 59.07 57.57 42.99 45.32
Skewness -43.50 -48.92 -27.35 -28.19 -11.00 -12.75
Exc. Kurt. 2,890.10 2,925.70 1,217.40 1,938.20 680.30 768.93
Min -4,358.20 -6,753.90 -3,037.70 -3,654.20 -2,085.30 -2,266.20
Max 728.87 785.09 557.17 1,396.10 817.35 733.92
BS 3·109 3·109 6·108 1·109 2·108 2·108

n 8,953 8,953 8,953 8,953 8,953 8,953
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Figure 4.7: Histogram of the pooled sample standardised step-ahead spread prediction error by model with
time-varying liquidity premium. Comparative density is normal with the same mean and variance.
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Figure 4.8: Shown is a Normal Quantile-Quantile plot of the pooled sample standardised step-ahead spread
prediction error by model with time-varying liquidity premium. Horizontal axis is the expected sample
quantile assuming a normal distribution and vertical axis is the quantiles of the observed sample.



144 CHAPTER 4. RESULTS

5 10 15 20 25 30
−10

−5

0

5

10 AA, A

S
ta

nd
ar

d 
D

ev
ia

tio
n

5 10 15 20 25 30
−10

−5

0

5

10 BBB

S
ta

nd
ar

d 
D

ev
ia

tio
n

5 10 15 20 25 30
−10

−5

0

5

10 BB

Maturity

S
ta

nd
ar

d 
D

ev
ia

tio
n

Figure 4.9: EM standardised spread prediction errors by rating and remaining term-to-maturity with time-
varying liquidity premium. Prediction error is shown in standard deviations of basis points and maturity is
in years.
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Figure 4.10: LS1 standardised spread prediction errors by rating and remaining term-to-maturity with time-
varying liquidity premium. Prediction error is shown in standard deviations of basis points and maturity is
in years.
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Figure 4.11: CEV standardised spread prediction errors by rating and remaining term-to-maturity with time-
varying liquidity premium. Prediction error is shown in standard deviations of basis points and maturity is
in years.
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Figure 4.12: LT standardised spread prediction errors by rating and remaining term-to-maturity with time-
varying liquidity premium. Prediction error is shown in standard deviations of basis points and maturity is
in years.
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Figure 4.13: LS2 standardised spread prediction errors by rating and remaining term-to-maturity with time-
varying liquidity premium. Prediction error is shown in standard deviations of basis points and maturity is
in years.
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Figure 4.14: CDG standardised spread prediction errors by rating and remaining term-to-maturity with
time-varying liquidity premium. Prediction error is shownin standard deviations of basis points and matu-
rity is in years.
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Table 4.9: This table shows the mean autocorrelation function of the standardised prediction errors for lags
one to three, averaged across two hundred bonds in the sample.

Lags EM LS1 LT CEV LS2 CDG

Panel A: No liquidity

1 0.158 0.195 0.270 0.216 0.231 0.230
2 0.084 0.106 0.161 0.113 0.147 0.126
3 0.081 0.090 0.133 0.099 0.119 0.107

Panel B: Constant Liquidity

1 0.144 0.216 0.210 0.176 0.278 0.270
2 0.065 0.116 0.115 0.090 0.185 0.162
3 0.054 0.081 0.090 0.068 0.142 0.136

Panel C: Time-varying Liquidity

1 0.137 0.164 0.181 0.156 0.264 0.159
2 0.062 0.084 0.094 0.079 0.175 0.078
3 0.045 0.058 0.066 0.059 0.131 0.056

showing a wide dispersion centered around zero. The errors reach approximately plus or

minus five standard deviations consistent with the finding ofexcess kurtosis, and is only

slightly greater for short maturities.

Next we consider whether the longitudinal specification of the structural models

is correct by examining whether the standardised errors areserially independent. Se-

rial correlation in the standardised errors would indicatethat a systematic movement

in the observed credit spreads remains unexplained by the model’s dynamic specifica-

tion implying the presence of a missing factor influencing credit spread inter-temporal

behaviour. There are 200 separate bonds in the sample on which the autocorrelation

functions (ACFs) are computed for the first, second, and third lags. To summarise the

results across the large number of bonds, the bond specific sample ACF values for one

to three lags are compared with their respective 95 percent confidence levels computed

as 2/
√

n for n trades per bond. The number of bonds with significant ACFs arethen

counted. Because the time steps between trades are unequally spaced, the ACF signifi-

cance tests are approximate only. However, since each modelis fitted to the same data,

counting the number of issues with significant ACFs is suitable for comparing therela-

tive extent of autocorrelation between models and measurement equation specifications.

The mean ACFs are reported in Table 4.9 and the counts of significant ACFs is shown

in Table 4.10. Table 4.9 shows that all models exhibit some degree of serial correlation

in their standardised errors. The highest levels are associated with models fitted without

liquidity premiums, as shown in Panel A. The LT model has the largest mean first lag

correlation at 27.0 percent, and the lowest is the EM model at15.8 percent. The level

of ACFs drop as the lags are increased demonstrating that, onaverage, the errors are

stationary and likely to be an AR(1) process. Turning to Panel A of Table 4.10, the cor-
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Table 4.10: This table shows the count of bonds with autocorrelation functions of the standardised predic-
tion errors that exceed 95 percent confidence. The relative sample frequency of bonds with significant lags
is shown in parentheses. Total number of sample issues is twohundred.

Lags EM LS1 LT CEV LS2 CDG

Panel A: No liquidity

1 48 56 84 67 74 67
(24.0) (28.0) (42.0) (33.5) (37.0) (33.5)

2 30 36 48 40 43 36
(15.0) (18.0) (24.0) (20.0) (21.5) (18.0)

3 27 28 38 27 34 29
(13.5) (14.0) (19.0) (13.5) (17.0) (14.5)

Panel B: Constant Liquidity

1 38 59 57 47 85 80
(19.0) (29.5) (28.5) (23.5) (42.5) (40.0)

2 28 35 37 22 53 47
(14.0) (17.5) (18.5) (11.0) (26.5) (23.5)

3 12 23 21 16 37 36
(6.0) (11.5) (10.5) (8.0) (18.5) (18.0)

Panel C: Time-varying Liquidity

1 36 44 46 41 85 41
(18.0) (22.0) (23.0) (20.5) (42.5) (20.5)

2 22 30 28 21 45 19
(11.0) (15.0) (14.0) (10.5) (22.5) (9.5)

3 10 15 15 16 31 12
(5.0) (7.5) (7.5) (8.0) (15.5) (6.0)
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responding counts of significant ACFs shows that the LT modelhas 84 from 200 bonds

where the first lag ACF is significant at 95 percent confidence.This count represents

42 percent of the sample of bonds and is displayed in parentheses. In contrast the EM

model has only 48 bonds that have significant ACFs, which represents 24 percent of the

sample. By the third lag, the EM model mean ACF declines to 8.1percent and the LT

model mean ACF to 13.3 percent. In terms of counts, the EM model has 13.5 percent of

the sample with significant ACFs, and the LT model 19.0 percent.

With the introduction of a constant liquidity premium, the overall average level of

ACFs drops as show in Panel B of Table 4.9, indicating that structural models fit the

time-series of observed credit spreads better when the allowance is made for a liquidity

premium in the credit spread. At first order lags, the EM modeland CEV models have

the lowest ACFs at 14.4 percent and 17.6 percent respectively. The LS2 model has the

highest ACF at 27.8 percent.

The introduction of a time-varying liquidity premium is expected to further decrease

serial correlation since it should control for common firm-level time variation in credit

spreads caused by exogenous flight-to-liquidity events such as the Russian bond-LTCM

crises. Panel C of Table 4.9 confirms a further reduction in serial correlation is achieved

as expected, indicating a further improvement in model fit. However, some autocorre-

lation remains. The best fitting model is the EM model with a first lag ACF of 13.7

percent, which corresponds to 36 bonds with significant ACFsrepresenting 18 percent

of the sample. By the third lag the EM model’s mean ACF has fallen to 4.5 percent,

or 10 bonds representing 5 percent of the sample. Thus, the EMmodel exhibits modest

autocorrelation in errors. The next best fitting model is theCEV model, followed closely

by the CDG model. The worst performing model is the LS2 model suggesting that the

introduction of stochastic interest rates has not improvedmodel performance relative to

a single factor LS1 model.

The relatively good time-series behaviour of the EM model’serrors is surprising.

The model is in all respects the same as the LS1 model, except that the recovery rate

is endogenous, being a function of the firm’s distance from the default boundary, asset

volatility, and term. Furthermore, by applying the sum of zeros method of valuation, we

allow the recovery rate to vary across the term structure with each coupon valued, and

with time as the latent solvency of the firm changes. This additional flexibility appears

to be the main reason for the Merton model’s relatively better time-series behaviour of

its prediction errors.

4.2.1 Goodness of Fit

In this section we consider which model fits the data best. Because we have models with

different numbers of parameters it is important when comparing the relative goodness

of fit between models that we control for the different numberof parameters used in
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each model. Simple measures of fit, such as the mean percentage error (MPE) and root

mean squared error (RMSE), tend to overstate the goodness offit of models that have

the largest number of parameters. For this reason we also quote the widely used Akaike

Information Criterion (AIC) to give a better relative comparison of fit between models.

The AIC is defined as

AIC = 2(LogLikelihood)+2K,

where K is the number of estimated parameters included in themodel. A lower value

represents a better fit.

In Table 4.11 we show the mean RMSE and mean AIC per model, measured across

the 32 sample firms, assuming no liquidity premium. We find that the EM model is

the best fitting having both the smallest RMSE of 33.97 basis points and lowest AIC of

-10.51. The next best fitting model is the LS1 model with a RMSEof 43.66 basis points

and AIC of -10.08. The worst performing model is the CDG modelwhich achieves a

reasonable RMSE of 40.98 basis points, but does so using moreparameters, therefore

increasing its AIC to -9.52.

In Table 4.12 we show the mean RMSE and mean AIC where the measurement

equation includes a constant liquidity premium. Compared to the no liquidity case,

overall fit is found to improve. The EM model remains the best fitting with a RMSE of

28.76 basis points and AIC of -10.76. The second best model isnow the LT model with

an RMSE of 38.66 basis points and AIC of -10.50. The worst performing model remains

the CDG model despite having the second lowest RMSE with an AIC of -10.15, showing

that the range of disparity between models has decreased with the addition of controls

for non-default related components of the spread. Lastly, Table 4.13 shows results for

the models estimated with both a constant term and Refcorp-Treaury spread as controls

for time varying liquidity. Across the board, all models improve in fit, in particular the

CDG model improves to be third ranked behind the EM and LS1 models based on AIC.

The EM model remains the best fitting mode with a RMSE of 28.76 basis points and

AIC of -10.76. The worst fitting model is the LS2 model with a RMSE of 31.57 basis

points and an AIC of -10.43.

A criticism raised against structural models is that they cannot match real world

spreads. For example, Lyden & Saraniti (2000, Table III) report a mean RMSE of 107.44

basis points for the Merton model, 199.34 basis points for anLS1 equivalent model, and

200.64 basis points for an LS2 equivalent model. It is therefore important to compare

our results against another study that fits the alternative reduced-form model approach

with a similar implicit estimation. Duffee (1999), also usean EKF on similar data and

reports a median RMSE of 9.38 basis points for a two-factor square-root reduced-form

model. In comparison, the median RMSE we achieve for the EM model ranges from

14.06 basis points (constant liquidity) to 20.13 basis points (time-varying liquidity) (re-

fer Tables 4.12 and 4.13). Obviously, direct comparisons are not possible due to different
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samples and periods, in particular, our data set includes additional spread volatility as-

sociated with the credit downturn of 2000 which may bias our model error upwards. On

balance, our results therefore appear reasonable with respect to Duffee (1999), thereby

confirming that, at least, some of the criticism of structural models is a consequence of

the difficulty in fitting these models.
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Table 4.11: This table presents the cross-sectional means and medians of the estimated model parameters, fitted with no liquidity premium. All parameters are implicit estimations
from application of quasi-maximum likelihood via EKF (i.e.hyperparameters). Mean RMSE refers to cross-sectional average root mean squared error of the credit spread
prediction. Mean Log-Lik. is the cross-sectional average of the maximised log-likelihood function value under the hyperparameter set. Mean AIC is the cross-sectional average of
the firm-specific Akaike Information Criterion.

EM LS1 LT CEV LS2 CDG

Parameter Med. Mean Med. Mean Med. Mean Med. Mean Med. Mean Med. Mean

σv 0.2305 0.2668 0.2393 0.2505 0.1774 0.2079 - - 0.1386 0.1411 0.1161 0.1326
σm 0.0018 0.0020 0.0022 0.0022 0.0026 0.0028 0.0024 0.0028 0.0024 0.0026 0.0029 0.0032
δ 0.0502 0.0425 0.0000 0.0173 0.0587 0.0558 0.0399 0.0341 0.0000 0.0006 - -
α - - - - 0.4804 0.4236 - - - - - -
ρ - - - - - - - 0.8866 - 1.2727 - - - -
κv - - - - - - - - - - 0.1004 0.1221
φ - - - - - - - - - - 0.0000 0.0000

Mean RMSE 17.68 33.97 20.21 43.66 22.28 44.83 20.30 37.22 36.56 45.37 35.47 40.98
Mean Log-Lik. 1,108.6 1,267.1 1,079.2 1,228.4 1,037.3 1,202.5 1,053.7 1,212.4 1,043.1 1,200.0 1,005.2 1,164.2
Mean AIC -10.57 -10.51 -10.16 -10.08 -9.95 -9.74 -10.19 -9.90 -9.84 -9.77 -9.47 -9.52
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Table 4.12: This table presents the cross-sectional means and medians of the estimated model parameters, fitted with constant liquidity premium. All parameters are implicit
estimations from application of quasi-maximum likelihoodvia EKF (i.e. hyperparameters). Mean RMSE refers to cross-sectional average root mean squared error of the credit
spread prediction. Mean Log-Lik. is the cross-sectional average of the maximised log-likelihood function value underthe hyperparameter set. Mean AIC is the cross-sectional
average of the firm-specific Akaike Information Criterion.

EM LS1 LT CEV LS2 CDG

Parameter Med. Mean Med. Mean Med. Mean Med. Mean Med. Mean Med. Mean

σv 0.2477 0.2807 0.1711 0.1773 0.1449 0.1672 - - 0.1541 0.1538 0.1480 0.1641
σm 0.0015 0.0018 0.0017 0.0020 0.0017 0.0019 0.0016 0.0023 0.0018 0.0023 0.0021 0.0024
δ 0.0154 0.0238 0.0000 0.0201 0.0276 0.0251 0.0135 0.0181 0.0000 0.0016 - -
α - - - - 0.5014 0.5010 - - - - - -
σ̄v - - - - - - 0.3443 1389.1906 - - - -
ρ - - - - - - -1.4361 -1.9605 - - - -
κv - - - - - - - - - - 0.1375 0.1318
φ - - - - - - - - - - 0.0000 0.0000
c(1) 0.0045 0.0044 0.0052 0.0053 0.0048 0.0050 0.0055 0.0054 0.0061 0.0059 0.0039 0.0039
c(2) 0.0041 0.0040 0.0050 0.0050 0.0046 0.0049 0.0051 0.0053 0.0061 0.0058 0.0031 0.0036
c(3) 0.0043 0.0046 0.0055 0.0060 0.0052 0.0061 0.0057 0.0062 0.0055 0.0054 0.0034 0.0030
c(4) 0.0040 0.0046 0.0057 0.0057 0.0058 0.0058 0.0052 0.0064 0.0055 0.0060 0.0030 0.0035
c(5) 0.0037 0.0039 0.0045 0.0049 0.0042 0.0046 0.0052 0.0052 0.0054 0.0057 0.0041 0.0036
c(6) 0.0040 0.0039 0.0050 0.0051 0.0048 0.0050 0.0050 0.0053 0.0044 0.0054 0.0013 0.0022
c(7) 0.0039 0.0043 0.0052 0.0059 0.0050 0.0058 0.0056 0.0058 0.0049 0.0054 0.0029 0.0037
c(8) 0.0034 0.0040 0.0043 0.0053 0.0046 0.0051 0.0045 0.0052 0.0046 0.0057 0.0033 0.0038
c(9) 0.0049 0.0050 0.0060 0.0063 0.0060 0.0065 0.0061 0.0061 0.0049 0.0050 0.0030 0.0031
c(10) 0.0037 0.0037 0.0040 0.0042 0.0049 0.0046 0.0054 0.0048 0.0050 0.0050 0.0000 0.0005

Mean RMSE 14.06 27.10 16.36 38.66 15.97 35.77 15.21 32.73 27.59 44.48 26.93 32.29
Mean Log-Lik. 1,151.4 1,318.9 1,125.4 1,293.8 1,132.6 1,309.1 1,133.0 1,296.5 1,160.8 1,280.7 1,065.9 1,252.1
Mean AIC -10.84 -10.73 -10.64 -10.50 -10.79 -10.57 -10.80 -10.52 -10.48 -10.36 -10.28 -10.15
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Table 4.13: This table presents the cross-sectional means and medians of the estimated model parameters, fitted with time-varying liquidity premium. All parameters are implicit
estimations from application of quasi-maximum likelihoodvia EKF (i.e. hyperparameters). Mean RMSE refers to cross-sectional average root mean squared error of the credit
spread prediction. Mean Log-Lik. is the cross-sectional average of the maximised log-likelihood function value underthe hyperparameter set. Mean AIC is the cross-sectional
average of the firm-specific Akaike Information Criterion.

EM LS1 LT CEV LS2 CDG

Parameter Med. Mean Med. Mean Med. Mean Med. Mean Med. Mean Med. Mean

σv 0.2657 0.2827 0.1886 0.1830 0.1386 0.1662 - - 0.1559 0.1418 0.1375 0.1498
σm 0.0015 0.0017 0.0016 0.0018 0.0017 0.0019 0.0016 0.0020 0.0020 0.0022 0.0020 0.0023
δ 0.0063 0.0212 0.0000 0.0161 0.0254 0.0240 0.0000 0.0142 0.0000 0.0028 - -
α - - - - 0.5628 0.4905 - - - - - -
σ̄v - - - - - - 0.3073 9.5517 - - - -
ρ - - - - - - -1.0333 -1.6268 - - - -
κv - - - - - - - - - - 0.1457 0.1422
φ - - - - - - - - - - 0.0000 0.0031
Ref 0.3875 0.4450 0.4672 0.5818 0.5822 0.7607 0.6119 0.6397 1.0911 1.1175 0.8529 0.8061
c(1) 0.0042 0.0038 0.0043 0.0041 0.0036 0.0038 0.0040 0.0043 0.0043 0.0041 0.0024 0.0026
c(2) 0.0037 0.0035 0.0038 0.0040 0.0034 0.0037 0.0041 0.0043 0.0037 0.0041 0.0021 0.0026
c(3) 0.0039 0.0041 0.0045 0.0047 0.0044 0.0049 0.0045 0.0050 0.0043 0.0039 0.0024 0.0026
c(4) 0.0036 0.0038 0.0044 0.0045 0.0049 0.0046 0.0041 0.0051 0.0037 0.0043 0.0026 0.0030
c(5) 0.0032 0.0034 0.0035 0.0041 0.0035 0.0035 0.0037 0.0039 0.0040 0.0041 0.0024 0.0027
c(6) 0.0037 0.0034 0.0045 0.0043 0.0037 0.0040 0.0040 0.0043 0.0029 0.0034 0.0009 0.0019
c(7) 0.0036 0.0038 0.0049 0.0053 0.0045 0.0049 0.0046 0.0049 0.0038 0.0041 0.0017 0.0027
c(8) 0.0032 0.0034 0.0040 0.0047 0.0037 0.0041 0.0032 0.0043 0.0033 0.0038 0.0026 0.0032
c(9) 0.0044 0.0044 0.0051 0.0051 0.0051 0.0052 0.0057 0.0051 0.0031 0.0036 0.0024 0.0033
c(10) 0.0034 0.0034 0.0038 0.0040 0.0046 0.0041 0.0047 0.0041 0.0039 0.0038 0.0047 0.0041

Mean RMSE 20.13 28.76 21.61 34.40 23.18 33.80 22.07 29.49 24.85 30.90 26.52 31.57
Mean Log-Lik. 1,157.3 1,323.5 1,159.7 1,313.7 1,140.7 1,317.8 1,142.8 1,306.5 1,165.9 1,288.3 1,067.9 1,266.1
Mean AIC -10.86 -10.76 -10.76 -10.67 -10.79 -10.64 -10.77 -10.61 -10.43 -10.43 -10.80 -10.66
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4.2.2 Regression of Prediction Errors

In the preceding section it was noted that the models exhibitcross-sectional prediction

biases related to rating and maturity, and autocorrelationin the time-series of predic-

tion errors. In this section we use multivariate regressionanalysis on the pooled spread

prediction errors to identify what plausible factors are related to the biases.

Our analysis considers three measures of error as the dependent variable: the unstan-

dardised prediction error, the percentage prediction error, and the standardised prediction

error. The unstandardised error is the simplest measure of prediction error, however, it is

dependent on the size of the predicted spread, since the samerelative error when spreads

are large gives rise to larger errors. Within the sample, it is therefore weighted to the

high default-risk bonds and periods of financial stress. Thepercentage spread predic-

tion error scales for the relative size of the error, and is therefore more representative

of all bonds in the sample, however, it is also strongly influenced by extreme jumps in

observed spreads. The standardised prediction error is themost robust test of model

specification within the Kalman filter framework, since eacherror is scaled by its stan-

dard deviation, which dampens the influence of measurement error and extreme outlier

observations in the data.

The behaviour of the different error measures can be seen from Fig. 4.15 where the

errors from the EM model are plotted across time. Shown in Fig. 4.15(a) is the full

sample of observed credit spreads in sequential order of thetrade date. The maximum

sample credit spread observed within a year, increased during 1995-1996, at the end of

1998, and finally in late 2000. These dates coincide with a period of economic slowing

in 1995-1996 (as seen in the fall in GDP growth in Fig. 4.16(a)), the LTCM and Russian

bond crises of 1998, and the lead up to the recession of 2001.1 The sample variance of

prediction errors also increase in these periods as shown bythe increased scatter of ob-

servations around zero in Fig. 4.15(b), but was reasonably symmetrical with under and

overpredictions occurring. The percentage error, on the other hand, falls significantly

in 1995-1996 and again in 2000 (refer Fig. 4.15(c)). This highlights that the greatest

relative errors occurred during periods of economic downturn and were not influenced

by the liquidity crises of late 1998. The large negative percentage error observations are

associated with firm-specific downgrading and rise in default risk, and is more prevalent,

in our data set, during contractionary periods. The distribution of the percentage error

is not symmetric; there are no sudden relative decreases in our sample to balance the

sudden increases. Finally, the standardised error shown inFig. 4.15(d), has a similar in-

tertemporal behaviour to the unstandardised error, and shows that the range of observed

errors is outside that expected if the prediction errors were normal. The sample vari-

ance of the standardised error increases in the stress periods, responding to liquidity and

1U.S. recessions as dated by the NBER occurred from July 1990 to March 1991 and from March 2001
to November 2001.



4.2. CREDIT MODEL SPECIFICATION TESTS 159

economic conditions indicating heteroskedasticity in thepooled sample.

From an economic perspective, financial market participants are most concerned

with a model’s percentage prediction error, however, if themodels are well specified,

no exogenous factors or bond characteristics should be systematically related to any of

the three dependent variables. In total, we perform 18 separate regressions, comprising
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Figure 4.15: Shown in panel (a) is the actual credit spread byyear for the pooled sample of all bonds fitted
with time-varying liquidity parameterisation of the EM model. Panels (b) through to (d) are measures of
error by year. Prediction error is the observed credit spread, less the step-ahead prediction, expressed in
basis points. Percentage prediction error is prediction error scaled by the observed spread. Standardised
prediction error is the prediction error scaled by the standard deviation of the error, expressed in standard
deviations.

the three dependent variables and six structural models. For brevity, we restrict the

analysis to the errors arising from the time-varying liquidity premium parameterisation

of the models. Each regression is performed on pooled data of8,953 prediction error

observations, comprising 200 bonds issued by 32 firms.

Our choice of explanatory variables is informed from several sources. Firstly, we

include bond characteristic and variables that are observable proxies for the firm asset

process. It is not expected that these variables will be significant because their latent
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counterparts are included in the model specifications, however, previous research has

identified related biases (JMR, EHH). We are observing whether these biases persist

after the change from observable proxy to implicit estimation method. These variables

are:

TENOR The remaining term to contractual maturity of the bond measured in years

from the date of the trade. JMR, LS, and EHH report underprediction of credit

spreads at short tenors, indicating a likely positive correlation with spread predic-

tion error.

TEN5YR A dummy variable that takes the value one if the tenor is less than five years,

or zero otherwise. As observed previously, spread underprediction is most preva-

lent in the very short maturity bonds where we also observe a number of extreme

percentage errors. The absence of a jump component limits the ability for a struc-

tural model to match severe real-world changes in spreads atshort maturities. We

therefore control for this known weakness to separately quantify the very short

term from any longer term tenor bias. It is expected that the coefficient on regres-

sions against either spread levels or spread prediction errors will be negative, in

other words, spreads will be lower and errors will be more negative, than average,

when the variable takes the value of one.

SOLV The observed log-solvency ratio is defined previously in equation (3.27), and is

calculated as the log of the sum of book debt (sourced from COMPUSTAT), plus

stock market capitalisation (sourced from CRSP), divided by book debt. Book

debt is updated quarterly and the stock data is the daily value as at the trade date.

Based on the structural model arguments, the higher the solvency the lower the

default risk and credit spread, implying a negative relationship with spread levels.

JMR and EHH find greater underprediction is associated with very safe bonds

issued by firms with low leverage. If consistent with prior findings, prediction

errors will be negatively related to solvency.

COUPON The annualised coupon rate of the bond as sourced from the FISD database.

Elton et al. (2001) note that bonds with higher coupons are taxed more through

their life than bonds with lower coupons, thus increasing their required market

spread in compensation. A negative relationship with prediction error is therefore

implied. EHH confirm a negative relationship with percentage spread error in all

models except their implementation of the LT model.

VOL This variable is the firm-specific, 150-day moving average annualised equity re-

turn standard deviation. Data is obtained from CRSP. Campbell & Taksler (2002)

show that idiosyncratic firm equity volatility explains as much cross-sectional

variation in corporate bond yields as ratings; the higher the firm’s equity volatility
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the higher the required spread due to associated higher firm asset volatility and

increased default risk. JMR and EHH find underprediction of credit spreads with

firms of low equity volatility. All models, except the CEV model, assume asset re-

turn volatility to be time-invariant and this may also be a source of additional error.

Higher firm-specific asset volatility, and the presence of stochastic asset volatility,

is likely to be associated with increased asset risk, higherdefault risk and credit

spreads, implying a negative relationship with spread prediction errors. Similarly,

firms with high historical equity volatility are likely to find the equity markets

expensive and delay issuing equity, thereby increasing leverage and default risk.

CMT3 The daily constant maturity 3 month Treasury spot rate sourced from the Federal

Reserve H15 report. Consistent with structural models, a higher risk-free rate

increases firm asset growth and decreases leverage, therebyreducing expected

default risk and credit spreads, implying a negative relationship with spread levels

and a positive relationship with prediction errors if omitted from a structural credit

model.

VOLR The moving average standard deviation, measured over the prior 150 days, of

the CMT 3 month spot rate. The single factor models assume no interest rate

volatility, and the two-factor models (LS2 and CDG) assume aconstant volatil-

ity. As shown by (Longstaff & Schwartz 1995), interest rate volatility is likely to

increase the level of credit spreads. Insufficient control for this effect, or its com-

plete absence in the case of the single-factor models, is likely to cause a negative

relationship with prediction error. Any prediction error should be less negative, or

insignificant, in the LS2 and CDG models.

Secondly, we include possible missing explanatory variables not included in the

models.

TERM The 3 month less the 30 year constant maturity Treasury spot rates, measured

on the trade date. Data is sourced from the Federal Reserve H15 report. Estrella

& Mishkin (1998) demonstrate that the yield curve slope is predictive of future

recessions when looking more than one-quarter into the future. They find a fall in

long-term yields, relative to short-term yields, is an accurate predictor of slowing

economic growth. Thus, we expect that credit spreads willrise in association with

the yield curve flattening and the TERM variable increasing.The only model we

test that includes a Treasury yield curve slope variable is the CDG model. For

the other models, we expect the prediction error to be negatively correlated with

TERM to the extent that the bond market uses the slope of the yield curve to

condition their expectation of future default risk, and hence their pricing of bonds.

However, Jalilvand & Harris (1984) report that firms adjust their capital structure
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in response to the interest rate outlook. They propose that expectations of lower

long term interest rates in the future (a rise in TERM) causespostponement of

the issuance of long term debt, with firms increasing short term debt and equity

financing, thereby decreasing leverage. Therefore, if debttiming is a significant

influencing factor on management, and the bond market anticipates this behaviour,

then credit spreads shouldfall as TERM increases because the bond market an-

ticipates future decreasing leverage, thereby implying a positive correlation with

prediction errors for all models except the CDG model. The CDG model em-

bodies the stylised debt-timing behaviour of Jalilvand & Harris (1984) with the

assumption that TERM and credit spreads are negatively correlated. We do not

expect TERM to be related to CDG prediction errors if debt timing behaviour is

factored into bond market expectations.

Thus, we are faced with two contradictory relationships between TERM and pre-

diction errors. If the business cycle information content of the yield curve domi-

nates bond market prices, the spread prediction errors are likely to be negatively

related to TERM on all models. On the other hand, if the debt-timing hypothesis

dominates, then positive coefficients against TERM can be expected on all models,

except the CDG model, where the coefficient should be insignificant from zero.

RATING A variable that takes a numeric value depending upon the external rating of

the issuer. For example, our sample is over the set AA+=1, AA=2, AA-=3, A+=4,

..., BB-=13. A rating represents an independent view of the creditworthiness of

the issuer and is a major determinant of observed credit spreads. Clearly, credit

spreads levels are expected to be positively related. We include it in the error

regressions for any default-risk related influences not explained by the models.

JMR and EHH find that underprediction of credit spreads is more common with

well rated firms implying a positive error correlation.

MTB The market-to-book ratio at the trade date calculated as thedaily equity capital-

isation (sourced from CRSP) divided by the most recent quarterly reported to-

tal assets (sourced from COMPUSTAT). There are two possiblemechanisms by

which MTB influences credit spreads. Firstly, Hovakimian etal. (2001) find that

firms with high MTB tend to issue more equity and decrease leverage. Firms with

high MTB ratios may therefore be expected to decrease futureleverage implying

a reduction in future default risk and lower long-term credit spreads. The absence

of MTB in structural models implies that the prediction error is expected to be

positively related to MTB.

Secondly, Varma & Cantor (2004) report a positive relationship between firm

MTB and bond recovery rates; firms with higher than average MTB one-year prior

to default were found to have higher recovery rates, perhapsbecause the market
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believed these firms had continued growth potential, or persistent franchise value

post default. If the market factors a firm’s present MTB into debt pricing, an in-

crease in MTB would be associated with a fall in market creditspreads, but if not

included in the credit model specification, a positive prediction error results.

Via both mechanisms, credit spread levels are expected to benegatively related to

MTB and prediction errors are expected to be positively related.

NYU The Altman-NYU Defaulted Bond Index return. It is the monthly 90 day cumu-

lative return interpolated within the month to the trade date. Data is source from

Altman & Pompeii (2003, Table A1). Since our models assume a constant recov-

ery rate (excluding the EM model), realised cyclical variation may be related to

systematic prediction error. A rise in the index should be associated with a fall

in credit spreads as the market anticipates higher expectedrecovery values for the

firm in default. This implies a positive spread prediction error across all models,

except possibly the Merton model, where the recovery rate isendogenously linked

to firm value.

VIX The daily value of the Chicago Board of Exchange VIX index, divided by 100.

The VIX index is the implied volatility of a synthetic at-the-money option on the

S&P 500 index.2 It is a widely used benchmark measure of the market’s expecta-

tion of risk. It is possible that the VIX index may influence credit spreads through

two channels. The first is through expected recovery values.Trück, Harpaint-

ner & Rachev (2005) find evidence that the VIX index can explain up to 80 per-

cent of future aggregate yearly recovery rates on defaultedbonds. They find that

low recoveries are historically anticipated by high implied volatility in historical

stock options. Using principal components analysis on recovery rates extracted

from credit default swap prices, Das & Hanouna (2006) give support, finding that

the level of interest rates, which we proxy by CMT3, and VIX together, explain

87 percent of variation in implied recovery rates as estimated from credit default

swap prices. The second channel is via changes in market-wide expectations of

contagious defaults in response to unexpected market-widecredit events. Bierens,

Huang & Kong (2003) determine that jumps play an important role in explain-

ing the dynamics of Merrill Lynch daily series of option-adjusted credit spreads,

and that the jump intensity depends on the lagged level of theVIX index. Collin-

Dufresne et al. (2001) show changes in VIX to be highly significant in explaining

the changes in firm-specific credit spreads, particularly atshort tenors. A pos-

sible reason for the importance of the VIX index in explaining credit spreads is

provided by Collin-Dufresne, Goldstein & Helwege (2003) who find evidence of

2Refer http://www.cboe.com/micro/vix/vixwhite.pdf
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a jump-to-default risk component in the credit spread that varies over time in re-

sponse to unexpected credit events. Therefore, an increasein credit event risk may

reasonably be expected to be associated with a rise in the VIX, thereby causing the

index to be positively related to credit spreads, and negatively related to prediction

errors due to the absence of a time-varying measure of event risk in the structural

models. We expecte that firms that attempt to time the equity market will not do

so when the VIX is high due to the expense of raising equity.

CGDP The seasonally adjusted quarterly time series of real GrossDomestic Product

(GDP), expressed in chained 2000 dollars, sourced from the Federal Reserve.3

The change in GDP is a measure of concurrent and recent past business condi-

tions. We measure the quarterly change in GDP by calculatingthe percentage

change in quarter by quarter GDP. Linear interpolation is used to fit the data to

each trade date between quarters. Expansionary economic conditions can be ex-

pected to increase firm asset worth and recovery rates leading to reduced credit

spreads. For example, Frye (2000) shows that in a recession,aggregate recov-

ery is approximately one-third lower than during an expansion, however, Altman,

Brady, Resti & Sironi (2005) find GDP growth to be only significant in explain-

ing aggregate defaulted bond recovery rates when annual GDPgrowth was less

than 1.5 percent p.a. Acharya, Bharath & Srinivasan (2003) confirm GDP growth

effects are quite small, but default rates and equity returns are economically mate-

rially associated with average recovery. Models that omit CGDP can be expected

to carry positive spread prediction errors.

REF The 10 year constant maturity spread between Refcorp bonds and Treasury yields.

It is a measure of time-varying market premium for liquidityrisk. A rise in the

Refcorp spread can be expected to directly increase corporate credit spreads, since

credit spreads are calculated using Treasury yields as the reference rate. The ab-

sence of market liquidity premiums implies a negative correlation with corporate

credit spread prediction errors.

Descriptive statistics of the independent variables are shown in Table 4.14 and sample

correlations in Table 4.15.

Reasonably, firm-specific historical equity volatility andthe VIX are positively cor-

related at 47.5 percent. However, the VIX is -33.5 percent correlated with interest rate

volatility. The cause is evident to different behaviour at the beginning of the sample

period. In Figure 4.17(d), volatility in the 3-month rate shows a spike in 1994-1995,

when Figure 4.16(c) shows that the VIX was at its lowest. In late 1998, both time series

evidence an increase in response to the LTCM crises.

3The chained dollar measure is an average of the prices of goods and services in successive pairs of year,
and is therefore subject to less distortion over time than a single year constant dollar measure.
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Table 4.14: Shown is the sample descriptive statistics of the independent variables used in the regressions
of the prediction errors.

Variable Mean SD Median Min Max

TENOR 9.348 6.830 7.470 1.000 29.990
TEN5YR 0.270 0.444 0.000 0.000 1.000
SOLV 0.922 0.690 0.775 0.015 3.110
COUPON 0.073 0.009 0.072 0.053 0.109
VOL 0.340 0.123 0.311 0.076 0.997
CMT3 0.051 0.005 0.052 0.030 0.064
TERM -0.012 0.007 -0.012 -0.038 0.008
VOLR 0.002 0.001 0.001 0.001 0.005
RATING 6.808 2.286 6.000 2.000 13.000
PTB 2.561 1.771 2.059 0.163 13.061
NYU -0.008 0.096 0.011 -0.386 0.201
VIX 0.208 0.062 0.205 0.099 0.457
CGDP 0.010 0.003 0.010 -0.001 0.018
REF 0.002 0.001 0.002 0.000 0.007

The firm-specific market-to-book ratio and log-solvency ratio are found to be highly

positively correlated at 68.9 percent due to covariation infirm capital values. Higher

values of both are associated with firms with higher net worthand better debt ratings.

We find a small negative relationship of -6.9 percent betweendefaulted bond return

and economic growth, with the two series only showing a parallel decline from late 1999

onwards (refer Figures 4.16(a) and 4.16(b)). Expected recovery rates are more strongly

influenced by market risk aversion as shown by the negative correlation of−45.9 percent

between NYU and VIX. Both time series show a strong reaction to the LTCM liquidity

crises.
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Table 4.15: Shown is the sample correlations between independent variables used in the prediction error regressions.

TENOR SOLV COUPON VOL CMT3 TERM VOLR RATING MTB NYU VIX CGDP REF

TENOR 1.000 -0.028 0.093 -0.160 -0.059 -0.089 0.006 0.043 -0.098 0.015 -0.043 0.036 -0.047
SOLV 1.000 0.100 -0.192 0.025 -0.005 -0.017 -0.272 0.689 0.016 -0.030 -0.022 -0.021
COUPON 1.000 -0.180 0.068 -0.129 0.033 0.103 -0.012 0.057 -0.139 -0.007 -0.070
VOL 1.000 -0.103 0.399 0.197 -0.060 0.005 -0.198 0.475 -0.053 0.464
CMT3 1.000 0.454 -0.004 0.025 -0.058 0.062 -0.335 -0.529 0.087
TERM 1.000 -0.098 0.032 0.071 -0.272 0.408 -0.323 0.334
VOLR 1.000 -0.025 -0.025 -0.098 -0.027 -0.325 0.317
RATING 1.000 -0.436 -0.022 0.009 0.011 0.020
MTB 1.000 0.014 0.090 0.003 0.027
NYU 1.000 -0.459 -0.069 -0.231
VIX 1.000 0.294 0.253
CGDP 1.000 -0.067
REF 1.000
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Figure 4.16: Shown are the time series plots of firm structurerelated independent variables used in regress-
ing prediction errors. CGDP refers to the linearly interpolated, quarterly, seasonally adjusted, real change
in Gross Domestic Product. NYU refers to the linearly interpolated, 3-month cumulative return on the
Altman-NYU defaulted bond index. VIX refers to the daily Chicago Board of Exchange volatility index
divided by 100. VOL is the 150-day historical firm-specific equity return volatility, using stock return data
sourced from the Center for Research in Security Prices.

To confirm that the candidate independent variables are related to credit risk as ex-

pected, we conduct univariate regressions in which the dependent variable is the ob-

served credit spread, pooled across firms and over time, and the independent variables as

defined above. Two types of relationship are shown in Tables 4.16 and 4.17. The first is

the coefficient ‘Beta’ defined as the percentage change in theregression prediction for a

one standard deviation increase from the mean of the independent variable. It measures

the sensitivity of the credit spread to change in the independent variable. The second

measure is the R-squared of the regression, which is the percentage of the variation in

the sample of credit spreads explained by variation in the independent variable.

Table 4.16 presents results for firm specific and bond characteristic variables. As

shown by the Beta of the VOL variable, a one standard deviation increase in firm-specific

equity volatility is, on average, associated with a 51 percent increase in credit spread. In
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Figure 4.17: Shown are the time series plots of yield relatedindependent variables used in regressing
prediction errors. REF is the daily spread between 10-year constant maturity bonds issued by Refcorp and
Treasury 10-year constant maturity rates. Refcorp data is sourced from Bloomberg. TERM is the daily
annualised 3-month constant maturity yield less the 30 years constant maturity yield. CMT3 is the daily
constant maturity annualised 3-month yield. VOLCMT is the average 150-day historical standard deviation
of the 3-month constant maturity yield. All constant maturity Treasury yields are sourced from the Federal
Reserve H15 report.
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comparison, credit rating (RATING) has a lower Beta of 34 percent. In confirmation

of the importance of leverage and firm volatility in the structural model theory, firm

solvency (SOLV) is also strongly related with a Beta of -20 percent. The firm’s market-

to-book ratio (MTB) is similar in direction with a Beta of -23percent. Apart from

remaining tenor (TENOR) and COUPON, which show little explanatory power, all co-

efficient signs are as expected. The remaining tenor of the bond is significant only when

the bond is less than 5 years (TEN5YR).

Regression results of market-wide factors are shown in Table 4.17. All variables are

significant. The coefficient on the slope of the yield curve, TERM, is positive supporting

the argument that it is viewed by market participants as a leading indicator of future eco-

nomic activity. An increase in TERM is a consequence of the term structure flattening,

accompanied by an increase in credit spreads. Note that thisis directly opposite to the

CDG model’s specification which assumes a negative relationship between credit spread

levels and TERM via the assumption of reduced debt issuance and decreasing leverage

when the short rate rises relative to the long term interest rate. Thus, within our sam-

ple period, the debt-timing hypothesis of the yield curve isdominated by expectations

of future economic conditions contained within the yield curve slope. We find that the

Refcorp spread (REF) is the most closely related to observedcredit spreads with a Beta

of 41 percent, followed by TERM as the next most explanatory variable with a Beta of

28 percent. The least explanatory variables is the change inGDP (CGDP) and the level

of the 3-month constant maturity interest rate (CMT3). All market-wide variables carry

correct expected signs except the interest rate (CMT3). Figure 4.17(c) illustrates that,

on average over the sample period, credit spreads increasedas interest rates increased.

In particular, the rapid rise in spreads at the end of the sample period, was accompanied

by an increase in the short rate and a flattening of the yield curve. Next we perform

multivariate regressions on the prediction errors. The results are discussed as follows by

model.

4.2.3 Multivariate Error Regression

In the previous section we confirmed that the candidate independent variables are gener-

ally related to the sample levels of credit spreads as expected. In this section we examine

whether the same variables are related to the residual step-ahead prediction errors. If the

structural models have fully explained credit spreads, we do not expect that the variables

will be related to the prediction errors. To test this hypothesis, we construct three multi-

variate equations using the same independent explanatory variables, and three different

specifications of the prediction error as the dependent variable. The dependent variables

are: the step-ahead credit spread prediction error (refer equation (3.19)), the step-ahead

credit spread prediction percentage error, which is the prediction error expressed as a

fraction of the observed credit spread, and the standardised step-ahead credit spread pre-
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Table 4.16: Shown is the estimated coefficients from univariate OLS regressions of firm-specific and bond
characteristic. The dependent variable is the observed credit spread, and t-stats are shown in parentheses.
Results are from sample data pooled across 32 firms, 200 bonds, and 8,953 observations. Coefficient Beta
is the change in credit spread associated with a one standarddeviation change in the independent variable.

Coefficient Coefficient
Expected Beta R2

Variable Sign Constant Coefficient (%) (%)

TENOR + 0.0099 0.0000 2.56 0.03
(38.98) (1.75)

TEN5YR - 0.0100 0.0008 3.49 0.06
(57.27) (2.39)

SOLV - 0.0130 -0.0030 -20.05 2.10
(52.56) (-13.87)

COUPON + 0.0110 -0.0112 -1.02 0.01
(9.45) (-0.70)

VOL + -0.0042 0.0423 50.91 13.57
(-10.21) (37.49)

RATING + -0.0004 0.0016 34.84 6.36
(-0.84) (24.65)

MTB - 0.0136 -0.0013 -22.7 2.70
(52.44) (-15.76)

Table 4.17: Shown is the estimated coefficients of univariate OLS regressions of financial market and
economic independent variables. The dependent variable isthe observed credit spread, and t-stats are shown
in parentheses. Results are from sample data is pooled across 32 firms, 200 bonds, and 8,953 observations.
Coefficient Beta is the change in credit spread associated with a one standard deviation change in the
independent variable.

Coefficient Coefficient
Expected Beta R2

Variable Sign Constant Coefficient (%) (%)

TERM +/- 0.0153 0.4272 28.07 4.13
(51.57) (19.63)

CMT3 - 0.0004 0.1916 8.77 0.40
(0.22) (6.02)

VOLR + 0.0069 1.871 19.77 2.05
(24.66) (13.67)

NYU - 0.0101 -0.0189 -17.73 1.65
(67.76) (-12.24)

VIX + 0.0032 0.0336 20.22 2.14
(6.19) (14.00)

CGDP - 0.0126 -0.2471 -8.46 0.38
(28.94) (-5.80)

REF + 0.0018 3.601 40.54 8.61
(5.41) (29.03)
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diction error (refer equation (4.1)). We discuss the prediction errors for the regressions

by independent variable in turn, and for the sake of brevity,limit the discussion to the

case where all models include a time-varying Refcorp liquidity premium in the measure-

ment equation.

4.2.3.1 Simple Spread Prediction Error

The coefficients and t-stats (in parentheses) obtained fromperforming multivariate OLS

of the credit spread prediction error are displayed in columns two and three in Tables 4.18

to 4.23. The credit spread prediction error is defined as the model estimate less the

observed credit spread.

For the single factor models that ignore stochastic interest rates, the prediction errors

are commonly related to the Refcorp spread (REF) and impliedequity market volatility

(VIX). The significant negative coefficient on the REF variable indicates that despite the

inclusion of a the 10 year Refcorp spread into the measurement equation we have not

managed to fully control for the influence of time-varying liquidity on credit spreads.

Examination of the time series of Refcorp spreads in Figure 4.17(a) shows that the liq-

uidity premium jumped strongly in the first half of 2000, coinciding with a market-wide

rise in credit spreads, and associated with underprediction of market credit spreads by

the EM model. Our specification places a time-invariant coefficient against the 10 year

Refcorp spread that appears to have underestimated the sensitivity of credit spreads to

the rise in the market liquidity premium observed during this period.

On the other hand, the rise in market spreads in 2000 was also associated with a

decline in the VIX index from its post-LTCM high in late 1998.Our expectation under

a structural credit model is that a rise in credit spreads would be associated with a rise in

equity volatility, since the firm’s equity volatility is directly a result of the firm’s underly-

ing asset value volatility, however, our sample includes a period of sharply rising credit

spreads as the recession of 2001 neared, but occurring commensurate with declining

equity market volatility. The result is an unexpected positive coefficient on the VIX in-

dex caused by the opposite movements in market pricing seen between the bullish equity

markets and the more bearish view of average firm value held bythe credit markets. This

effect is present in all our regression results for all structural models. In addition to the

above systematic errors, the single-factor LT and LS1 models also exhibit a significant

negative prediction bias related to remaining maturity (TEN5YR).

The two-factor structural models of LS2 and CDG exhibit additional sytematic errors

that are related to the risk-free interest rate process. Theerrors of the CDG model are

positively related to the level of the 3-month constant maturity interest rate (CMT3), and

its volatility (VOLR), and to the slope of the yield curve (TERM). Further, the LS2 and

CDG models prediction errors exhibit a positive relationship with asset volatility that

was not present in the single-factor models.
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4.2.3.2 Percentage Spread Prediction Error

Results of the regression of independent variables againstthe percentage spread predic-

tion error of the EM model is shown in columns four and five of Table 4.18. Unlike

the simple spread prediction error, the percentage error isinvariant to the size of the

observed spread, however, it is more sensitive to any commoncomponent jump in credit

spreads, such as a liquidity premium, when the observed credit spread is low.

Like the spread prediction regression, we find the Refcorp spread is significant, how-

ever, the VIX is not. A wider range of variables now enter the regression significantly.

For the single-factor models we find that generally across all single-factor models that

the prediction error is positively related to remaining maturity (TENOR), positively re-

lated to the slope of the yield curve (TERM), and positively related to the firm’s proxied

asset volatility (VOL). For the two-factor models of LS2 andCDG, additional systematic

errors are found to be positively related to the market-to-book ratio (MTB), positively to

the rating (RATING), and positively to interest rate volatility (VOLR).

The first interesting observation from this finding is that the contention of JMR that

the Merton model’s accuracy can be improved by the inclusionof a stochastic interest

rate process is not strongly supported. Rather, we find the models that include a sec-

ond stochastic interest rate process result in additional systematic errors on the factors

that they were meant to correct. Secondly, we expected that the CDG model’s predic-

tion errors would not be related to the yield curve slope, yetcolumn five of Table 4.23

shows that the TERM has the most significant t-stat of all independent variables tested.

Thus, we find that the CDG model does not fully control for the influence of the yield

curve slope on credit spreads, despite its specific inclusion in the firm’s solvency process

specification. Finally, it is useful to compare our results with EHH, who also conduct

multivariate analysis on the percentage prediction error (refer Table 5, EHH). Across

models, we agree with EHH that percentage prediction errorsare positively related to

proxied asset volatility, but only find a negative relationship with solvency for the two-

factor models and not for the single-factor models. In contrast, EHH find leverage to be

a strong explanatory variable of prediction error. Unlike EHH we find no relationship

with coupon, but do find a significant positive relationship with remaining tenor for all

models except the LT and CDG models. The additional parameter controlling mean-

reversion in the CDG model appears to be corrected this error. In both our results and

EHH’s results, the LT model has the lowest number of systematic errors identified by

regression of the percentage prediction errors. EHH did nottest for liquidity or slope

of the term structure, however, we find the Refcorp spread to be significantly negatively

related to prediction error in all models. Likewise, the slope of the term structure is very

strongly positively related to prediction error in all our models. Both effects appear to

a result of our sample period that includes a credit cycle downturn coinciding with an

inversion of the yield curve.



4.2. CREDIT MODEL SPECIFICATION TESTS 173

From our review of the capital structure literature, the firm’s market-to-book ratio

is hypothesised to be positively related to the spread predication error. We find some

supportive evidence with the MTB variable significantly positively related to prediction

error in the prediction error regressions for the LS1, CEV, LS2, and CDG models, but

not significant for the EM or LT models.

4.2.3.3 Standardised Spread Prediction Error

In this section analyse the standardised error to test our hypothesis that missing factors

identified from the capital structure literturte are related to model misspecification.

The standardised prediction error scales the prediction error relative to the size of

the observed spread and standard deviation of the predictedcredit spread. It is therefore

less sensitive to large changes in the observed credit spread, since large increases in

prediction errors results in higher estimates of the standard deviation of the step-ahead

predicted credit spread. Results of regressing the standardised spread prediction error

against our independent variables are shown in columns six and seven of Tables 4.18 to

4.23. The standardised prediction error regressions show that the models are well fitted

for the firm and bond parameters that are specified in the models. For example, firm

solvency, firm asset volatility, firm rating, and bond couponrate are mostly unrelated to

the standardised error. Only the LS1 model shows some mild positive relationship with

asset volatility.

For all one-factor models, except the LT model, the remaining maturity is unrelated

to the standardised error. This suggests that much of the earlier documented prediction

bias is related to the structural model’s inability to predict suddenrelative increases

in credit spreads at short maturities. The standardisationof the prediction estimates,

within the EKF, places lower confidence on these estimates, which decreases the size

of the standardised error relative to the percentage prediction error. Visually we can

see the greater variance of observed credit spreads at shortmaturities displayed in the

plots of sample credit spreads by remaining maturity as shown in Figures 4.1 to 4.6. We

are not able to identify why there are large changes in relative credit spreads at short

maturities, however, changes in a fixed component of the credit spread, related to the

Refcorp spread, is a possible cause. Our regression resultsindicate that an increase in the

Refcorp spread is associated with periods of underprediction as shown by the negative

relationship of REF with the standardised prediction error.

We identifed that market timing behaviour as important features of capital structure

management. We expect that the omission of debt market timing from a structural model

would result in a positive coefficient against TERM, which weconfirm to be the case

across all models. The CDG model also shows this error despite including debt timing

in its specification. For equity market timing we expect thatthe coefficient against VOL

and VIX are negative since an increase in either would tend toincrease the cost of equity
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issuance and delay equity raising. In contradiction to equity timing behaviour, we find

the opposite signs. The firm’s market-to-book ratio is also found to be unrelated to

standardised errors despite the theoretical support that management of the firm’s capital

structure is influenced by the firm’s relative equity value. The significance of VOL, VIX,

and TERM is our multivariate regressions suggests that the signs our results are possibly

influenced by multicollinearity.

We also find that the one and two-factor model standardised errors are related to the

interest rate process, whereas this is not evident in our percentage error regressions of

the one-factor models. Thus, the standardised error reveals that the structural models

are miss-specified without inclusion of a stochastic interest rate process, yet the LS2 and

CDG models that include a stochastic short-rate model, failto remove the systematic

error bias.

The positive and significant coefficient on the CGDP variableacross all models

shows that positive pricing errors occur when both values are high as expected when

the variables are interpreted as decreasing future defaultrisk or increasing expected fu-

ture recovery in default. The present market value of recovery in default is proxied by

the secondary market recovery rate on defaulted bonds measured by the NYU variable.

Unlike CGDP, there is weaker role for defaulted bond return with only the LS1 and EM

models showing significance. The general lack of relationship with secondary market

bond prices, but strong positive relationship with the change in CGDP, suggests that

the market is placing greater informational value on the general business climate when

assessing firm asset value.

4.2.3.4 Model Error Regressions Compared to Merton

As measured by the simple and percentage prediction errors regressions, the EM model

exhibits the lowest level of systematic error. When standardised errors are regressed,

the CEV, LT, and LS1 models perform equally as well. We find that the structural mod-

els share many of the same prediction biases despite being derived from fundamentally

different theoretical underpinnings. The original Mertonmodel in its extended form per-

forms remarkably well in comparison to newer structural models designed to overcome

its theoretical shortcomings.

Compared to the EM model, the LS1 model exhibits a very similar pattern of regres-

sion errors (refer Table 4.19). Therefore, the relaxation of default at maturity to early

default in the LS1 model appears to add little to specification improvement in practice

over the Merton model. We find that the LT model has no tendencyto overpredict longer

maturities, but it does consistently underpredict short-term maturity debt spreads (refer

Table 4.20). EHH report that the LT model percentage errors increase with market lever-

age, but find no evidence of a leverage related prediction bias. The CEV model exhibits

greater percentage errors related to firm leverage than the EM model (refer Table 4.21).



4.2. CREDIT MODEL SPECIFICATION TESTS 175

Table 4.18: Shown are the results of three multivariate regressions on the prediction errors for the extended
Merton (1974) (EM) model fitted with a time-varying liquidity premium. Resultsare from multivariate
OLS on sample data pooled across 32 firms and 200 bonds. Equation (i) has the dependent variable Error,
which is the step-ahead yield prediction error; equation (ii) has the dependent variable Percentage Error,
which is the prediction error expressed as a fraction of the observed credit spread; equation (iii) has the
Standardised Error, which is the step-ahead standardised prediction error calculated by scaling the predic-
tion error by the standard deviation of the prediction. Independent variables are shown in the first column
and the regressions include a constant term. Coeff. is the estimated regression coefficient on the indepen-
dent variables. T-stats on the coefficients are shown in parentheses and are White (1980) adjusted robust
estimates. Significance at the 5% level is denoted by ‘*’, andsignificance at the 1% level by ‘**’.

Dependent Variable

(i) (ii) (iii)
Error x 100 Percentage Error Standardised Error

Independent
Variable Coeff. t-stat Coeff. t-stat Coeff. t-stat

const -0.077 (-0.203) 0.113 (0.592) -1.125 (-3.824) **
TENOR 0.000 (0.534) 0.002 (3.876) ** -0.001 (-0.585)
TEN5YR -0.035 (-1.803) -0.065 (-3.104) ** -0.038 (-1.272)
SOLV 0.003 (0.347) -0.008 (-0.579) 0.027 (1.200)
COUPON 0.488 (1.098) -0.073 (-0.091) -0.240 (-0.189)
VOL -0.005 (-0.023) 0.140 (2.789) ** 0.215 (1.530)
CMT3 1.424 (0.317) -3.576 (-1.348) 17.201 (4.283) **
TERM 1.927 (1.673) 9.041 (6.545) ** 11.035 (3.857) **
VOLR -2.156 (-0.169) 14.593 (1.513) 39.516 (2.892) **
RATING -0.007 (-1.297) 0.006 (1.891) -0.009 (-1.736)
MTB -0.002 (-0.503) 0.005 (1.031) -0.005 (-0.532)
NYU 0.050 (0.843) 0.040 (0.525) 0.277 (1.994) *
VIX 0.509 (4.360) ** 0.206 (1.477) 1.831 (6.088) **
CGDP -0.367 (-0.053) 6.314 (1.445) 14.082 (2.756) **
REF -23.598 (-4.837) ** -48.126 (-5.097) ** -71.863 (-5.471) **

Adj R2 (%) 0.301 1.308 4.405
F(14, 8,938) 10.255 13.486 12.338
n 8,953 8,953 8,953
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Table 4.19: Shown are the results of three multivariate regressions on the prediction errors for the extended
Longstaff & Schwartz (1995) (LS1)model fitted with a time-varying liquidity premium. Resultsare from
multivariate OLS on sample data pooled across 32 firms and 200bonds. Equation (i) has the dependent
variable Error, which is the step-ahead yield prediction error; equation (ii) has the dependent variable Per-
centage Error, which is the prediction error expressed as a fraction of the observed credit spread; equation
(iii) has the Standardised Error, which is the step-ahead standardised prediction error calculated by scaling
the prediction error by the standard deviation of the prediction. Independent variables are shown in the first
column and the regressions include a constant term. Coeff. is the estimated regression coefficient on the
independent variables. T-stats on the coefficients are shown in parentheses and are White (1980) adjusted
robust estimates. Significance at the 5% level is denoted by ‘*’, and significance at the 1% level by ‘**’.

Dependent Variable

(i) (ii) (iii)
Error x 100 Percentage Error Standardised Error

Independent
Variable Coeff. t-stat Coeff. t-stat Coeff. t-stat

const 0.463 (0.722) 0.214 (1.070) -0.732 (-2.523) *
TENOR 0.001 (0.911) 0.003 (4.545) ** -0.001 (-0.332)
TEN5YR -0.074 (-2.321) * -0.069 (-3.074) ** -0.043 (-1.443)
SOLV -0.006 (-0.343) -0.021 (-1.407) -0.002 (-0.089)
COUPON 1.065 (1.495) 0.267 (0.305) 0.590 (0.466)
VOL -0.239 (-0.713) 0.155 (3.127) ** 0.340 (2.456) *
CMT3 -5.756 (-0.752) -5.524 (-1.957) 9.201 (2.340) *
TERM 5.395 (2.880) ** 12.579 (7.891) ** 16.565 (5.794) **
VOLR -9.965 (-0.483) 20.173 (2.011) * 58.396 (4.301) **
RATING -0.012 (-1.2900 0.007 (2.301) * -0.003 (-0.637)
MTB 0.005 (0.933) 0.009 (2.042) * 0.010 (1.009)
NYU 0.056 (0.619) 0.085 (1.038) 0.368 (2.651) **
VIX 0.505 (2.898) ** 0.122 (0.824) 1.485 (4.952) **
CGDP -5.096 (-0.452) 7.180 (1.538) 14.890 (2.961) **
REF -28.147 (-3.822) ** -52.949 (-5.461) ** -81.593 (-6.299) **

Adj R2 (%) 0.365 1.624 2.554
F(14, 8,938) 9.658 16.086 15.128
n 8,953 8,953 8,953
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Table 4.20: Shown are the results of three multivariate regressions on the prediction errors for the extended
Leland & Toft (1996) (LT) model fitted with a time-varying liquidity premium. Resultsare from multi-
variate OLS on sample data pooled across 32 firms and 200 bonds. Equation (i) has the dependent variable
Error, which is the step-ahead yield prediction error; equation (ii) has the dependent variable Percentage
Error, which is the prediction error expressed as a fractionof the observed credit spread; equation (iii)
has the Standardised Error, which is the step-ahead standardised prediction error calculated by scaling the
prediction error by the standard deviation of the prediction. Independent variables are shown in the first
column and the regressions include a constant term. Coeff. is the estimated regression coefficient on the
independent variables. T-stats on the coefficients are shown in parentheses and are White (1980) adjusted
robust estimates. Significance at the 5% level is denoted by ‘*’, and significance at the 1% level by ‘**’.

Dependent Variable

(i) (ii) (iii)
Error x 100 Percentage Error Standardised Error

Independent
Variable Coeff. t-stat Coeff. t-stat Coeff. t-stat

const -0.068 (-0.189) -0.108 (-0.297) -0.836 (-2.790) **
TENOR 0.000 (-0.409) 0.001 (0.932) -0.004 (-1.888)
TEN5YR -0.076 (-3.635) ** -0.095 (-3.614) ** -0.111 (-3.799) **
SOLV -0.004 (-0.390) -0.019 (-1.106) 0.030 (1.375)
COUPON 0.510 (0.846) 0.428 (0.414) 0.236 (0.192)
VOL -0.112 (-0.544) 0.087 (1.574) 0.248 (1.885)
CMT3 2.180 (0.498) 0.505 (0.104) 15.021 (3.615) **
TERM 4.871 (3.511) ** 11.952 (6.601) ** 17.445 (6.088) **
VOLR 9.293 (0.776) 25.739 (1.945) 58.139 (4.225) **
RATING -0.009 (-1.732) 0.005 (1.638) -0.010 (-1.927)
MTB 0.000 (0.040) 0.005 (0.887) -0.019 (-1.905)
NYU 0.086 (1.381) 0.060 (0.672) 0.078 (0.564)
VIX 0.611 (3.925) ** 0.334 (1.571) 1.674 (5.547) **
CGDP 2.925 (0.488) 10.398 (1.868) 14.136 (2.770) **
REF -33.120 (-5.609) ** -60.468 (-6.096) ** -98.676 (-7.603) **

Adj R2 (%) 0.882 1.639 3.217
F(14, 8,938) 8.938 11.696 15.914
n 8,953 8,953 8,935
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Table 4.21: Shown are the results of three multivariate regressions on the prediction errors for the extended
constant elasticity of variance (CEV)model fitted with a time-varying liquidity premium. Resultsare
from multivariate OLS on sample data pooled across 32 firms and 200 bonds. Equation (i) has the depen-
dent variable Error, which is the step-ahead yield prediction error; equation (ii) has the dependent variable
Percentage Error, which is the prediction error expressed as a fraction of the observed credit spread; equa-
tion (iii) has the Standardised Error, which is the step-ahead standardised prediction error calculated by
scaling the prediction error by the standard deviation of the prediction. Independent variables are shown in
the first column and the regressions include a constant term.Coeff. is the estimated regression coefficient
on the independent variables. T-stats on the coefficients are shown in parentheses and are White (1980)
adjusted robust estimates. Significance at the 5% level is denoted by ‘*’, and significance at the 1% level
by ‘**’.

Dependent Variable

(i) (ii) (iii)
Error x 100 Percentage Error Standardised Error

Independent
Variable Coeff. t-stat Coeff. t-stat Coeff. t-stat

const -0.244 (-0.743) 0.217 (1.111) -0.915 (-3.236) **
TENOR 0.001 (1.333) 0.003 (4.9230 ** 0.002 (0.902)
TEN5YR -0.032 (-1.737) -0.087 (-3.772) ** -0.039 (-1.338)
SOLV -0.002 (-0.191) -0.040 (-2.528) * -0.014 (-0.655)
COUPON 0.794 (1.832) 1.054 (1.215) 1.422 (1.142)
VOL 0.240 (1.329) 0.174 (3.480) ** 0.252 (1.835)
CMT3 2.457 (0.626) -6.672 (-2.432) * 11.738 (3.043) **
TERM 1.919 (1.435) 10.594 (7.143) ** 13.176 (4.664) **
VOLR 3.060 (0.279) 17.311 (1.665) 70.236 (5.258) **
RATING 0.001 (0.313) 0.010 (3.282) ** 0.001 (0.110)
MTB 0.000 (-0.014) 0.014 (3.106) ** 0.012 (1.198)
NYU 0.006 (0.097) 0.013 (0.157) 0.099 (0.712)
VIX 0.313 (2.594) ** 0.086 (0.587) 1.642 (5.650) **
CGDP -0.158 (-0.027) 3.879 (0.846) 8.858 (1.796)
REF -25.816 (-5.394) ** -48.229 (-4.805) ** -91.326 (-7.131) **

Adj R2 (%) 0.438 1.649 2.543
F(14, 8,938) 9.361 14.528 13.967
n 8,953 8,953 8,953



4.2. CREDIT MODEL SPECIFICATION TESTS 179

Table 4.22: Shown are the results of three multivariate regressions on the prediction errors for the extended
Longstaff & Schwartz (1995) (LS2)model fitted with a time-varying liquidity premium. Resultsare from
multivariate OLS on sample data pooled across 32 firms and 200bonds. Equation (i) has the dependent
variable Error, which is the step-ahead yield prediction error; equation (ii) has the dependent variable Per-
centage Error, which is the prediction error expressed as a fraction of the observed credit spread; equation
(iii) has the Standardised Error, which is the step-ahead standardised prediction error calculated by scaling
the prediction error by the standard deviation of the prediction. Independent variables are shown in the first
column and the regressions include a constant term. Coeff. is the estimated regression coefficient on the
independent variables. T-stats on the coefficients are shown in parentheses and are White (1980) adjusted
robust estimates. Significance at the 5% level is denoted by ‘*’, and significance at the 1% level by ‘**’.

Dependent Variable

(i) (ii) (iii)
Error x 100 Percentage Error Standardised Error

Independent
Variable Coeff. t-stat Coeff. t-stat Coeff. t-stat

const -0.197 (-0.892) 0.612 (2.92) ** 0.379 (1.319)
TENOR 0.002 (3.282) ** 0.005 (8.77) ** 0.006 (2.986) **
TEN5YR 0.016 (1.165) -0.057 (-2.43) * 0.060 (2.054) *
SOLV 0.008 (1.093) -0.036 (-2.24) * -0.003 (-0.117)
COUPON 0.678 (1.889) 1.262 (1.46) 1.305 (1.053)
VOL 0.380 (3.162) ** 0.201 (3.93) ** 0.552 (4.117) **
CMT3 -0.239 (-0.090) -14.061 (-4.85) ** -13.158 (-3.300) **
TERM 4.210 (4.590) ** 15.834 (10.23) ** 25.126 (8.901) **
VOLR 34.410 (4.481) ** 48.349 (4.85) ** 148.504 (10.716) **
RATING 0.005 (1.419) 0.011 (3.18) ** 0.004 (0.690)
MTB 0.001 (0.437) 0.019 (3.60) ** 0.017 (1.813)
NYU 0.053 (1.031) -0.003 (-0.04) 0.283 (1.949)
VIX 0.113 (1.121) -0.160 (-1.03) 0.677 (2.292) *
CGDP 4.436 (1.135) 2.643 (0.61) 12.798 (2.632) **
REF -39.908 (-8.558) ** -62.625 (-7.00) ** -119.123 (-9.452) **

Adj R2 (%) 1.955 2.592 4.544
F(14, 8,938) 16.544 32.047 24.912
n 8,953 8,953 8,953



180 CHAPTER 4. RESULTS

Table 4.23: Shown are the results of three multivariate regressions on the prediction errors for the extended
Collin-Dufresne & Goldstein (2001) (CDG)model fitted with a time-varying liquidity premium. Results
are from multivariate OLS on sample data pooled across 32 firms and 200 bonds. Equation (i) has the
dependent variable Error, which is the step-ahead yield prediction error; equation (ii) has the dependent
variable Percentage Error, which is the prediction error expressed as a fraction of the observed credit spread;
equation (iii) has the Standardised Error, which is the step-ahead standardised prediction error calculated by
scaling the prediction error by the standard deviation of the prediction. Independent variables are shown in
the first column and the regressions include a constant term.Coeff. is the estimated regression coefficient
on the independent variables. T-stats on the coefficients are shown in parentheses and are White (1980)
adjusted robust estimates. Significance at the 5% level is denoted by ‘*’, and significance at the 1% level
by ‘**’.

Dependent Variable

(i) (ii) (iii)
Error x 100 Percentage Error Standardised Error

Independent
Variable Coeff. t-stat Coeff. t-stat Coeff. t-stat

const -0.639 (-2.687) ** -0.014 (-0.066) -1.360 (-4.526) **
TENOR -0.001 (-2.092) * 0.000 (0.735) -0.006 (-3.030) **
TEN5YR 0.003 (0.201) -0.093 (-4.170) ** 0.006 (0.216)
SOLV -0.003 (-0.312) -0.060 (-3.913) ** -0.064 (-2.848) **
COUPON 0.586 (1.422) 1.256 (1.452) 1.450 (1.167)
VOL 0.357 (2.831) ** 0.203 (3.983) ** 0.583 (4.103) **
CMT3 8.343 (2.882) ** -2.346 (-0.829) 18.138 (4.367) **
TERM 6.827 (6.394) ** 18.250 (11.253) ** 27.748 (9.623) **
VOLR 19.490 (2.374) * 29.803 (3.086) ** 98.122 (6.978) **
RATING 0.001 (0.403) 0.007 (2.119) * -0.010 (-1.729)
MTB -0.003 (-0.873) 0.019 (3.828) ** 0.012 (1.183)
NYU -0.050 (-0.985) -0.026 (-0.306) -0.152 (-1.054)
VIX 0.565 (5.540) ** 0.391 (2.571) * 2.417 (8.094) **
CGDP 8.642 (2.057) * 10.850 (2.567) * 28.777 (5.644) **
REF -25.896 (-5.473) ** -56.482 (-6.574) ** -89.710 (-6.856) **

Adj R2 (%) 4.139 3.547 8.823
F(14, 8,938) 28.347 33.505 45.499
n 8,953 8,953 8,953
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It tends to underpredict spreads on well rated firms, and on firms with high solvency.

The market-to-book ratio is also significant due to high correlation with firm solvency

and rating.

The percentage prediction error performance of the two-factor models is relatively

poor compared to the EM model. The LS2 model, with stochasticinterest rate, exhibits

additional errors related to the level and volatility of the3-month CMT rate (refer Ta-

ble 4.22). The CDG model also suffers from additional errorsrelated to the interest-rate

process (refer Table 4.23). The differences between one andtwo-factor models is less

evident when we consider the standardised errors. An innovation of the CDG model is

the linkage of longer-term default risk with the slope of theyield curve. All measures

of prediction error are found to be strongly positively related to the slope; implying that

overprediction of spreads is greatest when the risk-free rate is low relative to the long-

rate. The CDG model imposes a positive coefficient on the yield curve slope implying

higher credit spreads when short-term rate is low, which we find in our data set to be

counterfactual, as shown by regression results in Table 4.17 and time series plots in Fig-

ures 4.15(a) and 4.17(b). Part of the poor relative performance of the CDG model may

therefore be due to the absence of debt-timing behaviour evident in our sample of data.

4.3 Estimated Model Parameters

In this section we discuss the parameters implied from our estimation procedure. Our

maximum likelihood estimates of the latent firm process parameters are compared with

independently estimated parameter values using observable proxies in the manner of

JMR, LYS, HH, and EHH. If the observable proxy for the firm process is similar in

level and dynamics, then the observable proxies may serve asuseful means of deriving

model estimates. If not, then debt pricing cannot be accurately performed without latent

estimation of the structural model’s parameters.

4.3.1 Firm Asset Volatility

In this section we compare the average firm implied asset volatility with an approxima-

tion of firm asset volatility. To construct an observable proxy for the asset volatility,

we collect the daily equity capitalisation for each firm sourced from CRSP, and add the

total book debt sourced from COMPUSTAT, which is updated quarterly. From the con-

structed time series of approximate firm market value, we calculate the daily log-return

for each firm over the full sample period. The observed standard deviation per firm is

then the annualised sample standard deviation of the daily log-returns. Shown in the

last row of Table 4.24 is the descriptive statistics of the firm-specific volatility estimates

pooled cross-sectionally over the sample of 32 firms. The average annualised firm asset

return volatility, estimated from the observed proxy valueof the firm, is 26.62 percent,
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Table 4.24: This table shows the descriptive statistics of implied asset volatility and firm solvency ratio com-
pared with a market value proxy for the firm. The implied assetvolatility and sample average smoothed
filtered estimate of the solvency ratio (V (t)/K(t)) are obtained from application of an EKF to the term
structure of credit spreads. For comparison, descriptive statistics for the daily time series of an indepen-
dently estimated proxy for the firm value is shown in ‘Observed’. The observed time series of firm value is
calculated as the sum of the firm’s market capitalisation andtotal book debt, and the firm’s solvency is the
observed firm value divided by total book debt. Data for book debt is quarterly sourced from COMPUSTAT,
and firm equity capital is daily frequency sourced from CRSP.The observed firm volatility is the sample
standard deviation of daily log returns of observed firm value. SD is standard deviation. Correl refers to
the correlation coefficent between the firm-specific sample average observed and implied estimates of asset
volatility, and firm solvency. All numbers are in percent.

Firm Asset Volatilityσv Mean Solvency Level(V (t)/K(t))

Implied Implied

Model Mean SD Median Correl Mean SD Median Correl

Panel A: No Liquidity

EM 26.68 11.13 23.05 17.19 2.82 2.53 1.71 34.78
LS1 25.05 8.05 23.93 19.30 3.06 1.87 2.42 65.41
LT 20.79 10.14 17.74 1.34 2.53 0.89 2.23 41.18
CEV 1,278.84 7,042.15 20.57 9.32 5.29 9.06 2.39 51.72
LS2 14.11 4.10 13.86 -12.44 1.51 0.41 1.40 30.25
CDG 13.26 4.60 11.61 -1.33 3.80 3.35 2.75 45.41

Panel B: Constant Liquidity

EM 28.07 12.73 24.77 10.29 4.66 6.91 2.49 18.24
LS1 17.73 6.11 17.11 27.10 3.02 2.09 2.45 78.14
LT 16.72 8.03 14.49 7.89 2.21 0.97 1.84 31.78
CEV 15.24 7.50 14.62 -16.40 4.21 6.64 2.48 71.04
LS2 15.38 4.80 15.41 23.03 2.29 1.20 1.93 56.79
CDG 16.41 5.45 14.80 -7.16 4.72 3.63 3.67 50.55

Panel C: Time-Varying Liquidity

EM 28.27 10.48 26.57 22.21 3.72 3.23 2.82 47.53
LS1 18.30 6.75 18.86 27.18 2.88 1.99 2.31 76.70
LT 16.62 9.62 13.86 1.29 2.27 1.48 1.91 24.84
CEV 15.03 6.56 15.35 -23.26 4.16 6.65 2.49 72.05
LS2 14.18 5.89 15.59 33.21 2.47 1.41 1.94 64.94
CDG 14.98 5.53 13.75 -4.58 5.07 3.83 3.58 39.95

Observed 26.62 9.29 25.61 100.00 3.15 2.43 2.30 100.00
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with a standard deviation of 9.21 percent, and a median of 25.61 percent. The descrip-

tive statistics of the maximum likelihood estimates of the latent firm value volatility are

shown in Panels A to C in Table 4.24. In Panel A results are shown excluding a liquidity

premium in the measurement equation, Panel B includes a constant liquidity premium,

and Panel C assumes a constant and a time-varying liquidity component of the credit

spread that is directly proportional to the 10 year Refcorp spread.

Because of the influence of outlier observations associatedwith the local rise in

asset volatility under the CEV model, we use the median as themost appropriate central

tendency measure to compare volatilities across models. With no liquidity premium as

shown in Panel A of Table 4.24, the EM model at 23.05 percent, and LS1 model at 23.93

percent, are quite close in value to the observed median proxy volatility of 25.61 percent.

The medians of the LT and CEV models are lower at 17.74 percentand 20.57 percent

respectively. The two-factor models are noticeably lower due to the additional spread

volatility that is contributed by their stochastic interest rate process. The medians of the

LS2 and CDG models are only 13.86 percent and 11.61 percent respectively. In Panel B

of Table 4.24 we can see that the median of the EM model’s volatility remains close to

the observed proxy, but all the other models reduce the implied level of asset volatility.

With the addition of time-varying liquidity premium in Panel C of Table 4.24 the EM

model median asset volatility is clearly higher than the other models at 26.57 percent,

with the next highest the LS1 model at 18.86 percent. From this result it is evident

that using an observed proxy for the implied firm asset volatility is reasonably robust

on average for pricing under an extended Merton model, but isexcessive on average for

other structural models, particularly for two-factor models.

Next we compare the sample firm-wise correlation between theimplied asset volatil-

ity estimates obtained from our EKF, with estimates from theobserved proxy method.

Correlations are shown in column five of Table 4.24 where we can see that the correla-

tions vary widely between models. With no liquidity premium, the LS1 model has the

highest degree of across firm correlation at only 19.30 percent. The LS2 model records

a negative correlation at -12.44 percent. The situation shows little improvement with

the introduction of controls for liquidity premiums in the measurement equation. For

example, with time-varying liquidity in Panel C of Table 4.24 the correlations vary from

-23.26 percent for the CEV model to 33.21 percent for the LS2 model. Consequently,

there is little consistent correlation evident between thelatent estimated asset volatility

and the observed proxy volatility, so that even though on average the measures appear

similar, the proxy variable will give rise to significant errors when used to price individ-

ual firm bonds.

As a further check on the reasonableness of the level of the implied asset volatilities,

we compare the firm-wise implied asset volatility estimateswith the firm’s historical

equity volatility. As Merton (1974) demonstrated, a firm’s equity value is equivalent
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to a call option on the firm’s underlying assets, therefore its equity volatility should be

strictly greater than the firm’s asset volatility when the firm is leveraged. We therefore

expect that our implied asset volatility estimates are lessthan the sample equity volatil-

ity. Table 4.25 presents results for sample of 32 firms for each of the six models tested.

In the final two rows we show the number of times that a firm estimate of asset volatility

exceeds its equity volatility and the relative frequency that this occurs in the sample. The

first point to note is that the means and medians of the impliedasset volatilities are below

the corresponding central tendencies of the equity volatility as expected. However, if we

consider how many times that the firm level estimate of asset volatility exceeds the firm’s

equity volatility, clear differences between models become evident. The EM model on

eight occasions, or 25 percent of the sample, has implied firmasset volatilities that are

excessive relative to the firm’s observed equity volatility. In contrast, the LS1 and LS2

model firm estimates are never excessive. The LT model also shows three breaches, or

9.38 percent of the sample. The EM and LT models have much greater variability in firm

estimates as evidenced by higher sample standard deviations than the other models. It is

therefore evident that the EM model, and to a lesser extent the LT model, achieve calibra-

tion to market observed credit spreads by implying excessive asset volatility necessary

generate sufficiently high credit spreads. A similar conclusion was reached by EHH,

but they did not control for liquidity premiums that might have otherwise encouraged

reliance on excessive asset volatility to match market credit spreads. We reach the same

conclusion in respect of the EM model, in particular, even after controlling for market

liquidity. Importantly, we do not find strong evidence that the implied asset volatilities

of the LS, CEV, or CDG are excessive.

4.3.2 Level of the Firm’s Default Boundary

Our estimation method provides an estimate of the path takenby the firm’s state variable,

which identifies implicitly when the firm is expected to default under different structural

model specifications. In this section we consider whether the estimated average levels of

firm solvency are well approximated by an observable proxy for market solvency. Fur-

ther, we compare the reasonableness of our implied default boundary with the directly

observed empirical estimates by Davydenko (2005).

The implied solvency ratio per firm, is the across time average of the transformed

smoothed estimate of the state variable. For all models, except the CEV model, the

state variable is defined asx(t) = ln(V (t)/K(t)) for all trades fromt = 1 to t = T .

From the EKF we obtain a smoothed estimate of the state variable, a(t|T ) = x(t), as

described in equation (3.21). Transforming the state estimate by exp(a(t|T )) gives our

best estimate of the path taken by the firm’s solvency ratio,V (t)/K(t), that underpins

the predicted term structure of credit spreads. For the CEV model, the state variable is

X(t) = ln(V (t)−K(t))/K(t), so we transform the smoothed state variables to an equiv-
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Table 4.25: This table shows the implied asset volatility, per model, for the sample of 32 firms fitted with
a time-varying liquidity premium. The final column shows thesample average historical annualised daily
equity return volatility for the issuing firm. Summary descriptive statistics per model are shown in the
second panel. The lower panel shows the count of firms where the asset volatility estimate exceeds the
sample average equity volatility, and the associated relative frequency that this occurs in the sample. All
numbers other than the counts are shown in percentage.

Implied Asset Volatility Obs

Issuer EM LS1 LT CEV LS2 CDG Eq Vol

Aetna Inc 33.55 23.03 11.07 11.15 27.01 18.74 35.16
Associates Corp 21.81 9.37 18.10 7.72 11.69 10.10 37.08
Atlantic Richfield Co 24.09 20.26 11.74 13.96 17.02 21.28 24.21
A T & T Corp 31.03 23.77 15.32 7.17 19.98 16.53 35.69
Bear Stearns Comp Inc 8.92 8.84 13.79 14.09 0.71 11.55 41.05
Black & Decker Corp 28.14 13.46 31.01 10.35 2.51 14.42 30.96
Dayton Hudson Corp 17.86 14.64 2.30 6.22 12.13 1.91 36.67
Comm Edison Co 25.39 20.74 24.74 16.74 14.47 15.35 23.00
Enron Corp 17.96 19.35 5.52 6.87 17.79 12.27 32.36
Fed Dept Stores 43.28 26.26 22.41 18.45 16.80 12.13 37.56
Ford Mtr Co 22.82 8.37 10.47 15.90 11.80 11.95 30.98
General Mtrs 26.43 14.44 12.11 16.44 12.95 11.00 31.91
Georgia Pacific Corp 35.27 25.05 28.74 16.94 16.88 14.82 34.04
Hca Healthcare Corp 26.72 18.35 12.65 13.01 19.39 13.38 36.86
IBM Corp 15.68 20.88 53.42 8.08 13.16 14.69 35.04
Int Paper Co 12.11 11.08 10.69 14.80 14.37 14.11 33.60
Lehman Bros Hldgs Inc 23.33 11.22 19.53 17.89 7.31 12.71 49.24
Merrill Lynch & Co 21.81 8.45 13.53 9.59 6.27 9.87 42.39
Motorola Inc 48.45 36.76 16.02 18.65 21.12 21.82 40.20
Nabisco Group Hldgs Corp 37.00 18.32 10.95 21.02 15.52 12.8837.85
Niagara Mohawk Corp 17.63 25.77 13.93 36.27 13.94 31.41 29.75
Northrop Grumman Corp 36.22 23.66 7.78 19.26 18.19 18.89 32.36
Paine Webber Grp Inc 19.47 6.94 9.27 10.88 0.00 13.10 45.72
Penney J C Co Inc 29.39 19.43 20.72 23.85 19.90 21.95 34.17
Philip Morris Comp Inc 31.69 16.82 25.12 16.08 17.61 13.10 33.91
Seagram Co Ltd 25.50 18.38 7.72 17.18 11.97 18.59 32.37
Sears Roebuck Acc Corp 32.15 16.91 19.38 16.60 10.61 9.07 38.50
Service Corp Intl 59.03 12.56 15.30 29.49 16.01 27.50 55.53
Union Pacific Corp 32.60 19.35 12.85 13.21 15.95 12.81 29.44
Viacom Inc 37.90 22.28 18.65 16.07 15.70 15.11 38.32
Wal-Mart Stores Inc 24.46 24.59 27.58 7.07 19.46 11.97 35.06

Mean 28.27 18.30 16.62 15.03 14.18 14.98 35.74
Std Dev 10.48 6.75 9.62 6.56 5.89 5.53 6.43
Median 26.57 18.86 13.86 15.35 15.59 13.75 35.05

Count Asset Vol> Equity Vol 8 0 3 1 0 1
Rel Frequency 25.00 0.00 9.38 3.13 0.00 3.13
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alent firm solvency ratio by exp(a(t|T ))+1 for t = 1 to t = T .

For comparative purposes an observable proxy of the firm solvency is constructed

using the approximate market value of the firm divided by the book value of debt. The

firm value is calculated as above for the estimation of the observed asset volatility, by

the sum of the firm’s market capitalisation and total book debt. The firm’s observed

solvency ratio is the observed firm value divided by total book debt. Book values of debt

are quarterly values reported by COMPUSTAT (items 45 and 51), and the market value

of equity is obtained from CRSP for the day of the trade.

For each firm we average the implied and observed estimates offirm solvency for

across the trade dates. Descriptive statistics for the firm averages, measured across 32

firms, is shown in Table 4.24. For illustration, plots of the paths taken byx(t) andS(t) are

shown in Appendix D for the EM model fitted with a time-varyingliquidity premium.

Panels A to C of Table 4.24 show the descriptive statistics for the smoothed estimate

of the average implied firm solvency, controlling for different liquidity treatment, and

the last row of Table 4.24 shows the descriptive statistics of the observed proxy of the

average firm solvency. The cross-sectional observed solvency mean is 3.15 with a stan-

dard deviation of 2.43 and median of 2.30. Therefore, on average, our sample of firms

have asset values 3.15 times greater than the book value of debt, or conversely, book

debt is on average 1/3.15, or 31.7 percent, of firm value.

In comparison, Panel A shows the descriptive statistics of the average firm implied

level of solvency in th absence of a liquidity premium. The median solvency ratios vary

from 1.40 for the LS2 model to 2.42 for the LS1 model. The across firm correlation

with the observed solvency ratio ranges from 30.25 percent for the LS2 model to 65.41

percent for the LS1 model. Unlike asset volatility, there isgreater consistency between

observable and implied levels of solvency. Panels B and C introduce liquidity premiums

into the measurement equation. From Panel C we can see that the correlation with the

observed solvency ratio improves to range between 39.95 percent for the CDG model

to 76.60 percent for the LS2 model. The additional liquiditycomponent in the credit

spread also increases the average implied solvency level since less of the observed credit

spread must be explained by default risk. Implied solvency levels now range from 2.27

percent for the LT model to 5.07 percent for the CDG model. From these results we

can conclude that the use of an observable proxy, and assumption that the default barrier

is well approximated by the book value of debt, is reasonableon average for pricing

purposes, if no liquidity premium is included in the predicted credit spread. However,

firm specific differences remain, and the use of a proxy solvency ratio will not be an

accurate measure of the default boundary for any individualfirm’s bond pricing.

A further question we address is whether the implied solvency levels appear to be

economically reasonable. The observed solvency ratio is a direct proxy for the firm’s

solvency ratio if default occurs when firm assets equal the face value of debt, i.e.K = D.
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However, evidence suggests that firms do not default when theasset reach the book

value of debt. For example, in order to match observed historical recovery rates and

bankruptcy costs, Huang & Huang (2003) set the default boundary to be 60 percent of

the face value of debt. Davydenko (2005) find that firms, on average, default when

the market value of assets, measured using the same proxy measure of firm value we

have employed, is 65 percent of the face value of debt. Our observed solvency ratio

in Table 4.24 is therefore likely to be biased downward relative to the empirical de-

fault boundary. To adjust to a more appropriate benchmark weassume that on average

K = 0.65D and multiply our observed solvency ratios by 1/0.65 or 1.54. The adjusted

observed mean solvency ratio benchmark becomes 4.85 with a median of 3.54.

In Panel A of Table 4.24 we can see that the mean implied solvency ratio varies by

model and are well below the adjusted benchmark. However, when a constant liquidity

premium is introduced as shown in Panel B, the resultant average implied solvency levels

are much closer to the adjusted benchmark. The closest implied levels to the benchmark

of 4.85 are the EM and CDG models with means of 4.66 and 4.72 respectively. With a

time-varying liquidity premium, the CDG model average increases to 5.07 with a me-

dian of 3.58. Thus, the implied level of the default boundaryappears to be the most

economically reasonable when a liquidity premium is included into the predicted credit

spread. The models that most closely match a reasonable empirical benchmark are CDG

model followed by thee CEV model. Other models such as the LS1, LS2, EM, and LT

models, imply default boundary levels that are too large, onaverage, relative to empirical

evidence.

4.3.3 Solvency mean-reversion Rate

In Section 2.5 we provided theoretical and empirical support for the stylised fact that

firms debt-ratios can be expected to mean revert. This is supported under both the trade-

off theory, which emphasises the role of management targeting a preferred debt-ratio,

and the dynamic version of the pecking order theory, in whichauto correlated net financ-

ing deficits result in mean-reversion in the level of debt without management specifically

targeting a debt-ratio. The CDG model explicitly includes an assumption of capital struc-

ture mean-reversion. In this section we compare the impliedCDG mean-reversion rate,

obtained from fitting the CDG model to credit spread term structures, with the capital

structure empirical evidence. For brevity, we restrict ourdiscussion of results to the

measurement equation that includes a time-varying liquifity premium.

As reported in Table 4.28, we find significant levels of log-solvency mean-reversion

rates in the CDG model. The firm-specific parameter estimatesof the mean-reversion

rates, and equivalent half-life statistics, are shown withasymptotic t-stats reported in

parentheses. In 31 out of 32 firms we find that the mean-reversion rate is highly sig-

nificant. The average mean-reversion rate is 0.142 per annumwith a half life of 5.392
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Table 4.26: This table shows the descriptive statistics of the estimated firm-specific log-solvency mean-
reversion rates by industry sector of the issuing firm. PanelA summarises the mean-reversion rate parameter
(κv) of the log-solvency ratio,x(t) = ln(V (t)/K(t)), estimated by fitting the CDG model to the credit
spread term structures ofn = 32 firms, assuming a time-varying liquidity premium. Panel Bsummarises
the equivalent half life of the log-solvency ratio mean-reversion expressed in years. Half life is calculated
as ln(2)/κv.

Finance Industrial Utility All

Panel A: Implied Mean-Reversion Rate (κv)

Mean 0.179 0.135 0.126 0.142
Std Dev 0.033 0.042 0.036 0.043
Median 0.175 0.142 0.114 0.146
Min 0.132 0.055 0.099 0.055
Max 0.215 0.230 0.178 0.230

Panel B: Half Life of Mean-Reversion (H(κv))(yrs)

Mean 3.996 5.701 5.785 5.392
Std Dev 0.771 2.135 1.408 1.960
Median 3.965 4.881 6.138 4.756
Min 3.219 3.007 3.890 3.007
Max 5.259 12.691 6.976 12.691

n 6 22 4 32

years. The minimum reversion rate found is 0.055 per annum and the maximum is 0.230

per annum. Our results are very close, on average, to the results of Fama & French

(2002) who find firm-specific debt-ratios to be mean-reverting at a rate of between 0.07

and 0.18 per annum. Similarly, Frank & Goyal (2003) report anaverage firm debt-ratio

mean-reversion rate of 0.124 per annum with small firms averaging 0.115 and larger

firms 0.104 per annum. It appears therefore, that the market implies levels of mean-

reversion in firm solvency similar to levels that are historically observed by debt-ratio

movements.

In Table 4.28 we also show that the log-solvency mean-reversion rates vary by firm,

and in Table 4.26 we show that the average mean-reversion rates vary by industry.

Faster mean-reversion, ceteris paribus, implies a flatter term structure of the firm’s credit

spreads. It is clear that financial firms have the fastest rateof implied mean-reversion

with an average estimated half life of 4.0 years, followed byIndustrial with an average

half life of 5.7 years, with utilities showing the slowest mean-reversion rate with a half

life of 5.8 years. To better understand the causes of the cross-sectional differences in the

average mean-reversion rate between firms, we conduct a multivariate regression of the

estimated mean-reversion rate with firm and bond characteristics. As discussed previ-

ously in Section 2.5.5, the capital structure theory suggests that firms that are more debt

constrained have a greater concern with targeting a debt-ratio. Therefore, we consider

whether the expected mean-reversion rate of the firm’s solvency, as implied from the

CDG model, is consistent with the capital structure literature.
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We apply a linear multivariate regression across the pool of32 firms. The inde-

pendent variable is the natural log of the firm-specific estimated mean-reversion rate

parameter,κv, and the independent variables are defined as follows:

1. The firm’s average debt rating. The firm’s rating is assigned a numeric score that

takes the values AA+=1, AA=2, AA-=3, A+=4, ..., BB-=13. Because the firm’s

rating may change over time, a sample weighted average rating is calculated by

averaging the numeric score coincident with each observed trade date. Firms with

low (high) average rating scores are likely to be less (more)debt constrained and

therefore can be expected to have lower (higher) implied mean-reversion rates.

2. The sample average annualised daily equity return volatility for the firm. Firms

with higher (lower) in sample equity volatility may carry higher (lower) default

risk and therefore be more (less) debt constrained and exhibit faster (slower) im-

plied mean-reversion rates.

3. The sample average of the daily ratio of the firm’s observedsolvency ratio. This

is calculated as the sum of the firm’s equity capital (sourcedfrom CRSP daily)

and the firm’s book debt (sourced from COMPUSTAT quarterly),divided by book

debt. Firms with higher (lower) average solvency are expected to be less (more)

debt constrained therefore exhibit lower (higher) impliedmean-reversion rates.

4. The sample average of the firm’s daily market-to-book ratio. Firms with a high

(low) average MTB tend to target debt-ratios less (more). Ifthe bond market fac-

tors this into debt valuation we can expect lower (higher) implied mean-reversion

rates.

5. The natural log of the sample average of the firm’s daily market capitalisation as

sourced from CRSP. Larger (smaller) firms can be expected to have greater (less)

access to capital markets and are therefore may be less (more) concerned with debt

targeting and exhibit lower (higher) implied mean-reversion rates.

6. The sample average of the firm’s remaining tenor of its bonds. Included as a

control variable to test whether the implied rate of mean-reversion is robust to the

firm’s average length of bond maturity. It is not expected be significant if the CDG

model is fitted without bias by our selection of bonds.

7. A dummy variable that takes the value of one if the issuer isa financial firm, oth-

erwise zero. A control variable included to test whether industry related factors,

in addition to firm solvency, are significant.

8. A dummy variable that takes the value of one if the issuer isa utility firm, other-

wise zero.
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Table 4.27: This table shows the results of multivariate linear regression. The dependent variable is the
natural log of the implied mean-reversion rate,κv, obtained by fitting the CDG model by EKF to the credit
spread term structures on a sample of 32 firms. Parameter estimation was performed assuming that the
credit spread includes a time-varying liquidity premium related to the Refcorp spread. t-stats are shown in
parentheses. Significance of the mean-reversion rate at the5 percent level is signified by ‘*’.

Independent Variable Coefficient t-stat

constant -2.547 (-1.981)
Weighted Average Debt Rating -0.001 (-0.010 )
Average Daily Equity Volatility 0.035 (0.074)
Average Daily Observed Solvency Ratio (V/K) -0.065 (-2.076) *
Average Daily MTB ratio 0.077 (1.110)
Natural Log of the Average Daily Market Capital 0.040 (0.544)
Average Remaining Bond Tenor -0.009 ( -0.504)
Finance Industry Dummy 0.241 ( 1.457)
Utility Industry Dummy -0.006 (-0.034)

Adj R2 (%) 10.939
F(8, 23) 4.344
n 32

As reported in Table 4.27 we find that the only significant independent variable is

the firm’s average solvency level. The negative coefficient suggests that as expected,

less solvent firms are priced by the bond market with greater expected levels of mean-

reversion in the firm’s capital structure. The dummy variables for industry are not sig-

nificant suggesting that the apparent difference in mean-reversion rates by industry, as

shown in Table 4.26, is due to the average differences in firm solvency across industries.

Therefore, our exogenous setting of the firm’s target solvency level, made necessary for

estimation purposes, using industry average debt-ratios,does not appear to have sys-

tematically biased our estimates of mean-reversion. Importantly, other measures of debt

constraint, such as the firm’s rating, are not significant. This suggests that allowing firm-

specific estimation of solvency levels and mean-reversion rates, is sufficient to capture

the effects of debt constraint as priced by the bond market. Importantly, we find that the

expected mean-reversion rate of the firm’s solvency is a significant factor in the market’s

pricing of debt across the term structure. Unlike the extantcapital structure literature

our estimates of capital structure mean-reversion represent a new insight into the debt

market’s expectation of firm behaviour. Our estimates are obtained by inverting the mar-

ket’s expected reversion rate implied in the credit spread term structure shape, and not by

direct observation of the firm’s debt-ratio. We find that the debt market, on average, an-

ticipates and prices into a firm’s term structure of credit spreads, anticipated changes in

leverage in manner comparable with observed debt-ratio mean-reversion rates. The rate

of mean-reversion is found to be greater for firms with lower solvency levels consistent

with these firms behaving with more concern for debt-targeting. We cannot conclude

that these firms are more capital constrained since other proxy measures of capital con-
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straint were not found to be significant explanatory variables. The negative relationship

between solvency and implied solvency mean-reversion rateis found to be robust to

other measures of firm capital constraint and industry membership.

4.4 Composition of the Credit Spread

In this section we use the results of the time-varying model specification to address the

question of how much of the observed credit spread is explained by structural credit

models. In predicting credit spreads, we have introduced additional control parameters

for liquidity premium components of the spread. A question therefore arises as to how

much of the credit spread is explained by the firms capital structure and asset risk, and

how much is not. A better fitting model can be expected to explain more of the credit

spread in terms of default risk related parameters.

Using a method of calibrating to real default probabilities, HH concluded that credit

risk only explained a small proportion of the observed spread; typically around 20 per-

cent to 30 percent for investment grade bonds, and decreasing as maturity shortens. For

sub-investment grade bonds, the proportion explained by structural credit models in-

creases. The HH method has some shortcomings. The models were fitted to average

realised default rates, reported by rating, however for investment grade debt the under-

lying default rate level will be downwardly biased due to thelow-frequency of observed

defaults. The second problem is that some of the model parameters are proxied by ob-

servable variables, and any poor fit that results from the choice of proxy, can lead to the

mistaken conclusion that structural models do not sufficiently explain the credit spreads.

A particularly difficult aspect of their method is the need toestimate the unobserved

market price of risk. Since we calibrate to observed bond prices and not to historical

average default rates, we avoid the empirical difficulties of having to estimate the market

price of credit risk.

In contrast to HH, our estimation method ensures that the structural models are fitted

in with minimal credit spread prediction bias. Thus, we are able to present an alterna-

tive method for decomposing credit spreads: a component that is related to a liquidity

premium, which is exogenous to the firm’s default risk; the amount that is related to the

firm’s default risk, as predicted by the structural models; and, the residual component

that is not predicted by way of liquidity premium nor predicted default risk.

Recall the measurement equation with time-varying liquidity is

yi, j(t) = di, j + β R
j Re f (t)+ g(α j(t);ψi, j)+ εi, j(t). (3.10)

From equation (3.10) the following components of predictedspread are estimated at
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Table 4.28: This table shows the estimated firm-specific log-solvency mean-reversion rates.κv is the esti-
mated mean-reversion rate parameter of the log-solvency ratio, x(t) = ln(V (t)/K(t)), estimated by fitting
the CDG model to the credit spread term structures of n=32 firms, assuming a time-varying liquidity pre-
mium. H(κ) is the equivalent half life of the log-solvency ratio mean-reversion expressed in years. Half life
is calculated as ln(2)/κ . Asymptotic t-stats of the mean-reversion rate are shown inparentheses.

Issuer κ t-stat H(κ) (yrs)

Aetna Inc 0.132 (7.467) 5.259
Associates Corp 0.215 (0.320) 3.219
Atlantic Richfield Co 0.055 (21.790) 12.691
A T & T Corp 0.125 (11.554) 5.550
Bear Stearns Companies Inc 0.186 (21.410) 3.733
Black & Decker Corp 0.139 (22.800) 4.983
Boeing Co 0.155 (10.930) 4.466
Dayton Hudson Corp 0.178 (15.627) 3.890
Commonwealth Edison Co 0.103 (17.016) 6.725
Enron Corp 0.123 (10.892) 5.630
Federated Dept Stores 0.183 (12.564) 3.795
Ford Mtr Co 0.168 (25.780) 4.135
General Mtrs 0.161 (22.607) 4.316
Georgia Pacific Corp 0.152 (13.061) 4.554
Hca Healthcare Corp 0.160 (13.698) 4.339
IBM Corp 0.186 (9.555) 3.719
International Paper Co 0.113 (16.970) 6.150
Lehman Brothers Holdings Inc 0.165 (29.105) 4.197
Merrill Lynch & Co 0.213 (28.720) 3.249
Motorola Inc 0.091 (20.526) 7.646
Nabisco Group Hldgs Corp 0.145 (21.946) 4.779
Niagara Mohawk Pwr Corp 0.099 (16.191) 6.976
Northrop Grumman Corp 0.095 (16.578) 7.290
Paine Webber Group Inc 0.160 (18.917) 4.320
Penney J C Co Inc 0.087 (32.836) 7.941
Philip Morris Companies Inc 0.146 (13.015) 4.733
Seagram Co Ltd 0.093 (33.324) 7.479
Sears Roebuck Accep Corp 0.230 (14.997) 3.007
Service Corp Intl 0.100 (30.394) 6.954
Union Pacific Corp 0.178 (17.039) 3.890
Viacom Inc 0.107 (29.959) 6.465
Wal-Mart Stores Inc 0.107 (13.911) 6.464

Mean 0.142 5.392
Std Dev 0.043 1.960
Median 0.146 4.756
Min 0.055 3.007
Max 0.230 12.691
n 32 32
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each trade date,t, for bond,i, and firm, j, scaling by the observed credit spread:

(i) Constant Liquidity Premium= di, j/yi, j(t),

(ii) Time-Varying Liquidity Premium= β R
j Re f (t)/yi, j(t),

(iii) Model = g(α j(t);ψi, j)/yi, j(t),

(iv) Prediction Error= εi, j(t)/yi, j(t).

(4.3)

The sum of components (i) and (ii) is our estimate of the proportion of the observed

credit spread at time-t attributable to a liquidity premium, component (ii) is the propor-

tion of the observed credit spread attributed to default risk, and component (iii) is the

unexplained proportion of the observed credit spread.

The time-t estimates of the four components described abovein equation (4.3) are

pooled across time, bonds, and firms. The mean and standard deviations (shown in

parentheses) of the components are reported in Table 4.29.

Panel A shows the results for the total pooled sample, Panel Bthe results for bonds

with remaining maturities of less than 7 years, Panel C the results for remaining ma-

turities between 7 and 15, and Panel D the results for bonds with remaining maturities

greater than 15 years. Table 4.31 compares our results with HH for the models where a

direct comparison can be made.

The average proportion of credit spread explained by a structural model is found to

vary by model. Beginning with Panel A of Table 4.29, the lowest proportion of the credit

spread explained by a model is by the CEV model at only 17.85 percent, which increases

to a maximum of 43.72 percent for the EM model. Across models,the average credit

spread explained by structural models is 31.95 percent. Ourestimates, therefore, are at

the upper end of HH’s estimates of 20 to 30 percent but gives support to their view that

the only a small proportion is attributable to default risk.The amount of credit spread

explained by the structural models increases as the remaining tenor is lengthened. For

trades with remaining maturity of greater than 15 years, theaverage across all models

is 36.10 percent with the lowest being the LT model at 22.48 percent and the highest

being the CDG model at 53.59 percent. HH report that the default risk component of the

spread decreases as remaining maturity decreases.

The proportion of the credit spread explained by structuralmodels also increases as

the rating declines. In Table 4.30, the means and standard deviations (shown in paren-

theses) of the credit spread components of equation (4.3) are reported by the issue rating

attributed to the bond at the date of trade. Results for AA rated trades are shown in Panel

A, A rated trades in Panel B, BBB rated trades in Panel C, and BBrated trades in Panel

D. For AA rated trades, the across model average proportion of the credit spread ex-

plained by the models is 26.71 percent, with the LS2 model thelowest at 15.77 percent,

and the EM model the highest at 33.03 percent. For BB rated trades, the across model

average increases to 50.56 percent, with the CEV model the lowest at 40.20 percent, and
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the CDG model the highest at 59.63 percent.

Thus, the proportion of the observed credit spread that structural models explain to

be related to default risk is on average 31.95 percent, but improves with lengthening

maturity or declining rating. Both results are characteristic of the models unable to

generate sufficiently high probabilities of default when the firm’s assets have only short

time to diffuse to the default boundary, or the firm is sufficiently solvent for firm assets

to be distant from the default boundary. For higher default risky BB rated issues, the

structural models performed noticeably better explainingon average 50.56 percent of

the credit spread.

The time-varying spread component measures the percentageof observable spread

that varies in proportion with the Refcorp spread, and is found to be, on average, nearly

of similar magnitude as the model component, varying between 19.25 percent for the

LS1 model, to 33.26 percent for the CEV model. Thus, we find that time-varying liquid-

ity, is of almost equal magnitude to that explainable by firm default risk. The constant

liquidity component ranges from the smallest average at 36.11 percent for the CDG

model to the highest at 58.61 percent for the CEV model.

The amount of spread attributable to the constant term includes effects not suffi-

ciently specified in the structural model. The fact that we see some variation between

models shows that we cannot conclude that the model component is all due to default

risk, rather it is the amount of spread explained by the model. HH, on the other hand, at-

tribute the modelled component all to default risk, thus assuming that structural models

fully explains default risk.

The LS1 and LT models show similar average explanatory behaviour, which is not

surprising given their similarity in specification. The CEVmodel is particularly poor

in comparison to the other models. The marginal effect on explanatory power from the

added complexity of a stochastic interest rate process can be made by comparing the

model component of the LS1 model and LS2 model. Panel A of Table 4.29 shows that

the LS1 model, on average, predicts that default risk comprises 10 percent less of the

spread than the LS1 model that has deterministic interest rates. HH report a similar

result as shown in Table 4.31. We therefore, find that the introduction of stochastic

interest rates into the LS model reduces the estimated default risk component. Rather

than predicting more of the observed spread, the additionalcomplexity of the model only

lessens the proportion of the credit spread predicted by themodel. In Table 4.30 we show

the average spread components reported by the issuer ratingextant at the date of trade.

For the highest rating of AA, the model component ranges between 15.77 percent for

the LS2 model up to 33.03 percent for the EM model. Our model component estimates

compare with HH who report 15.6 percent for AA rated 10 year debt for their LS Base

case model, 16.4 percent for the CDG model, and 37.9 percent for the LT model. Unlike

HH, we find that, with the exception of the LS2 model, most of our models explain 25-30
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Table 4.29: This table shows the average composition of the observed credit spreads by remaining contrac-
tual maturity. Component (i) is the mean predicted constantliquidity premium expressed as a percentage of
the observed credit spread. Component (ii) is the mean predicted time-varying liquidity premium expressed
as a percentage of the observed credit spread. Component (iii) is the mean structural model predicted credit
spread (excluding liquidity premiums) expressed as a percentage of the observed credit spread. Component
(iv) is the mean credit spread prediction error, measured aspredicted less actual yield to maturity credit
spreads, expressed as a percentage of the observed credit spread. Descriptive statistics are based on pooling
across all firms, trades, and time. Remaining tenor is the difference in the contractual maturity of bond and
the date of the trade. Sample standard deviations are shown in parentheses.

(i) (ii) (iii) (iv)
Constant Time-varying Model Prediction Error

Panel A: All

EM 49.80 (35.49) 14.06 (25.71) 43.72 (43.92) -7.58 (62.93)
LS1 56.69 (37.26) 19.25 (41.30) 32.32 (40.73) -8.26 (67.85)
LT 53.80 (36.10) 21.53 (36.30) 32.65 (45.84) -7.97 (70.36)
CEV 58.61 (46.75) 30.59 (84.55) 17.85 (88.63) -7.05 (67.73)
LS2 53.11 (37.71) 33.26 (47.12) 22.29 (30.90) -8.65 (69.86)
CDG 36.11 (39.73) 27.27 (47.57) 42.84 (44.06) -6.22 (68.99)

Panel B: Remaining Maturity≤ 7 years

EM 52.31 (38.55) 16.51 (29.47) 41.69 (53.19) -10.51 (77.97)
LS1 54.74 (39.89) 22.70 (52.97) 33.71 (46.90) -11.15 (82.94)
LT 50.23 (39.36) 23.31 (45.95) 37.62 (60.54) -11.15 (89.18)
CEV 59.47 (58.98) 32.66 (79.86) 19.40 (97.05) -11.52 (84.52)
LS2 56.62 (42.38) 38.51 (57.02) 18.26 (31.86) -13.38 (86.44)
CDG 49.43 (44.84) 32.87 (58.95) 26.53 (38.55) -8.83 (80.81)

Panel C: Remaining Maturity 7−15 years

EM 48.62 (35.41) 12.62 (25.33) 44.89 (36.73) -6.13 (53.51)
LS1 59.51 (39.13) 17.44 (31.78) 30.41 (38.62) -7.35 (59.76)
LT 54.56 (35.87) 20.22 (28.95) 30.95 (28.99) -5.72 (55.71)
CEV 56.72 (36.89) 34.48 (104.56) 13.25 (95.09) -4.45 (56.50)
LS2 54.02 (34.98) 31.57 (41.79) 21.12 (29.73) -6.70 (59.28)
CDG 23.23 (32.33) 23.13 (39.84) 57.98 (45.10) -4.34 (65.32)

Panel D: Remaining Maturity> 15 years

EM 45.43 (24.27) 10.47 (9.05) 46.75 (26.64) -2.65 (21.40)
LS1 55.55 (21.01) 13.69 (11.80) 32.90 (22.33) -2.14 (22.20)
LT 62.16 (23.10) 19.54 (13.03) 22.48 (21.04) -4.18 (26.52)
CEV 60.66 (20.82) 15.46 (11.12) 24.34 (22.16) -0.47 (21.95)
LS2 40.93 (25.35) 22.27 (14.09) 36.56 (26.44) 0.24 (23.93)
CDG 28.56 (25.54) 21.10 (15.38) 53.59 (40.08) -3.24 (28.97)
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percent of the AA spread, with the LT model proving similar inperformance to the LS1

model. At the other end of the rating spectrum, we find the models explain relatively

more of the credit spread. As seen in Table 4.31,we find that our estimates of the model

component of the credit spread are very similar to HH for the lowest BB rating. HH

estimate the default risk component on a 10 year maturity BB rated issuer for an LS1

equivalent model to be 60 percent, 51.8 percent for the LT model, and 57.1 percent for

the CDG model. We find that the CDG model explains the most of the observed BB

rated spreads with 59.63 percent, and the CEV the least at 40.20 percent. The LS1 and

LT models explain approximately 50 percent of the observed BB rated spread. Thus,

we are able to affirm the findings of HH, with the exception thatwe find the one and

two factor LS models, and the CDG model, explain more of the spread at higher ratings.

In summary we find less variation between models and ratings than estimated by HH,

but agree with the relatively lower explanatory power of theLS models and with the

presence of a positive relationship between percentage of spread explained and rating.

Structural models vary in their ability to explain credit spreads, but for the best fitting

EM and CDG models, between 30 percent to 60 percent of the spread is explained by

firm-specic default risk.
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Table 4.30: This table shows the composition of the observedcredit spreads by issuer rating. Component (i)
is the mean predicted constant liquidity premium expressedas a percentage of the observed credit spread.
Component (ii) is the mean predicted time-varying liquidity premium expressed as a percentage of the
observed credit spread. Component (iii) is the mean structural model predicted credit spread (excluding
liquidity premiums) expressed as a percentage of the observed credit spread. Component (iv) is the mean
credit spread prediction error, measured as predicted lessactual yield to maturity credit spreads, expressed
as a percentage of the observed credit spread. Descriptive statistics are based on pooling across all firms,
trades, and time. Rating refers to the issuer’s rating for the bond recorded on the date of the trade. Sample
standard deviations are shown in parentheses.

(i) (ii) (iii) (iv)
Constant Time-varying Model Error

Panel A: AA

EM 59.67 (45.12) 17.30 (37.65) 33.03 (33.07) -10.00 (72.80)
LS1 61.72 (45.84) 23.30 (45.83) 25.33 (31.41) -10.36 (75.44)
LT 59.28 (44.91) 19.51 (34.97) 31.36 (30.47) -10.15 (74.80)
CEV 63.29 (46.02) 23.55 (42.32) 23.66 (38.20) -10.49 (77.98)
LS2 51.25 (40.84) 45.26 (57.65) 15.77 (26.82) -12.28 (83.22)
CDG 32.20 (40.06) 44.81 (63.30) 31.12 (46.76) -8.13 (85.66)

Panel B: A

EM 48.36 (30.71) 14.94 (22.96) 43.58 (43.53) -6.88 (58.97)
LS1 56.13 (31.47) 19.38 (35.67) 32.58 (48.60) -8.09 (69.39)
LT 52.31 (34.47) 22.21 (28.28) 33.39 (60.04) -7.91 (74.45)
CEV 58.90 (31.57) 22.49 (37.27) 25.73 (41.68) -7.11 (66.75)
LS2 54.04 (35.53) 32.69 (43.98) 21.37 (30.68) -8.09 (64.72)
CDG 38.07 (40.61) 24.90 (41.40) 43.41 (45.19) -6.38 (66.54)

Panel C: BBB

EM 47.18 (34.73) 11.87 (21.42) 48.39 (48.79) -7.44 (64.15)
LS1 55.82 (38.86) 17.94 (46.03) 33.96 (33.83) -7.72 (64.16)
LT 53.52 (33.02) 22.78 (45.25) 30.86 (31.01) -7.16 (65.23)
CEV 57.04 (60.54) 44.79 (129.49) 3.89 (3.89) -5.72 (65.79)
LS2 53.95 (39.12) 29.66 (45.13) 24.49 (31.95) -8.10 (70.74)
CDG 36.23 (39.31) 22.53 (44.21) 46.76 (41.05) -5.52 (64.70)

Panel D: BB

EM 40.13 (25.29) 8.76 (10.11) 55.13 (33.50) -4.02 (24.48)
LS1 44.37 (25.58) 8.82 (9.88) 51.04 (41.43) -4.23 (32.75)
LT 43.99 (26.84) 10.51 (10.70) 50.53 (46.76) -5.03 (39.00)
CEV 45.68 (28.77) 15.42 (16.14) 40.20 (28.99) -1.29 (21.59)
LS2 42.77 (26.31) 11.29 (10.01) 46.85 (29.24) -0.91 (19.05)
CDG 32.50 (27.71) 8.87 (12.94) 59.63 (29.51) -1.00 (21.33)
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Table 4.31: This table compares the percentage of the creditspread explained by structural models, by
issuer rating, against comparable findings reproduced fromHuang & Huang (2003)(HH). All numbers are
in percentage.

Model Component (%)

Model HH Model AA A BBB BB

LT 31.4 33.4 30.9 50.5
LT 37.9 31.3 30.6 51.8

LS1 25.3 32.6 34.0 51.0
LS (Base Case) 15.6 19.0 29.1 60.0

LS2 15.8 21.4 24.5 46.9
LS (1-day CMT) 9.4 11.8 19.9 48.1

CDG 31.1 43.4 46.8 59.6
CDG (Baseline) 16.4 18.3 26.9 57.1



Chapter 5

Conclusion

Structural models of credit risk are well known to perform poorly at predicting observed

credit spreads. In a series of studies by JMR, LYS, and recently, EHH, the Merton model

has been found to generally underpredict credit spreads; more so for short tenor bonds

and for default risk remote bonds issued by highly rated firms. The structural credit

modelling literature has subsequently developed along thepath of theoretical extensions

to address these biases and to relax the strong assumptions made by Merton. The result

is a plethora of theoretical models but relatively little empirical work to verify the contri-

bution made by these developments. In an important recent study by EHH they conclude

that newer structural credit models improve on the average credit spread underprediction

problem, but do so at the cost of losing considerable predictive accuracy. The common

view, therefore remains, that structural credit models cannot adequately explain mar-

ket bond yield spreads and that recent theoretical developments have not improved their

performance at predicting credit spreads.

In this study we tested the hypothesis that the apparent poorpredictive accuracy ap-

parent across a wide range of structural credit models is dueto the assumption made

in extant empirical models that the firm’s log-solvency process can be adequately ap-

proximated by the use of observable proxy variables. In other words, the assumption is

commonly made that the firm’s solvency level is fully, or in part, observable. Secondly,

we test the hypothesis that having fitted a range of structural models assuming more cor-

rectly that firm solvency is truly unobserved, that the remaining biases will be related

to missing factors identifiable from the extant capital structure theory and empirical evi-

dence of dynamic management behaviour.

We make several contributions to the extant literature of JMR, LYS, EHH, and HH.

Firstly, this is the first study to apply a quasi maximum likelihood estimation technique

to fit a broad range of structural credit models on actual corporate bond trade data where

the firm’s log-solvency is properly treated as truly unobservable. We improve on prior

studies by avoiding potential errors and biases introducedby the ad hoc choice of proxy

variables. Our improved method ensures that the cross-sectional and time-series restric-

199



200 CHAPTER 5. CONCLUSION

tions implied by the models is fully included in the estimation of the models, and thus,

provide the most extensive and robust test of structural credit models to date. We there-

fore provide new insight into the relative performance of the models. We also present,

for the first time, model error specification tests in addition to the usual discussion of

prediction error biases. We also introduce controls for liquidity and are able to show

their impact on model miss-specification.

Secondly, as a consequence of our model fitting method, we present a new insight

into the decomposition of the credit spread into explained and unexplained components.

Our method differs from HH in that we decompose the credit spread using firm-specific

information from the credit spread term structures and avoid the empirical difficulty that

HH have of converting risk-neutral probabilities of default to physical probabilities. We

thus avoid an important source of calibration error inherent in HH.

Finally, we demonstrate how the implied default boundary ofthe firm can be ex-

tracted from market information thus providing new insightinto the implied default point

for non-defaulted firms.

In the remainder of this chapter we presents our main findingsof model accuracy in

Section 5.0.1, specification robustness in Section 5.0.2, and potential missing factors in

Section 5.0.3. Related findings and a suggested direction for future research is discussed

in Section 5.0.5.

5.0.1 Predictive Accuracy

We asked the question as to whether the implicit estimation of firm solvency and model

parameters improves the predictive accuracy, relative to the extant literature, across a

range of structural credit models. We confirm this to be true using a number of measures.

We find that by using EKF we can achieve mean levels of prediction error that are

comparable with the reduced-form literature as evidenced by a comparison with the re-

sults of Duffee (1999). We find that, after inclusion of a time-varying liquidity premium,

the average level of prediction error across models is essentially zero, ranging from be-

tween -0.59 basis points and 4.22 basis points across models. The RMSE is likewise

similarly small across models, ranging between 28.76 percent and 34.4 percent across

models. Some evidence of average underprediction is confirmed with negative MPE re-

ported for all models ranging between -6.22 percent to -8.65percent. In general, these

errors are very small with little variation between the models, unlike the findings of EHH

and HH.

A concern raised by EHH is the apparent wide variance in modelerror for structural

models generally. By using implicit estimation of firm-specific model parameters we

have reduced the variance in prediction errors dramatically. We observe an across firm

mean MAPE per model of around 22 percent with no significant difference between

models. In contrast, EHH report a mean MAPE ranging from 78 percent to 319 percent
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across different models.

5.0.2 Specification Problems

The improved accuracy of our fitting enables us to examine more carefully the struc-

ture of prediction errors across models. Beginning with theMPE, we confirm that two

generic biases are evident in all models tested, as has been previously noted in the extant

literature. The models tend to underpredict credit spreadsmore on short-term debt than

on long-term debt. Similarly, the models generally underpredict credit spreads more

on bonds from well rated issuers than they do on lower rated issuers. Default under

a structural model only occurs with the passage of the firm’s asset values to a default

boundary, and it appears that the assumption of a smooth diffusive process tends to un-

derstate the probability of default when the distance of thefirm from default is great or

the passage of time allowed for diffusion is small. Our result is robust for two important

reasons. Firstly, asset volatility is estimated using jointly the level implicit in the model’s

debt valuation, across the full term structure, and in the time-series behaviour of credit

spreads. Thus, we do not allow the asset volatility to artificially inflate to match short

term market spreads. Secondly, the biases are evident aftercontrolling for a liquidity

premium in the credit spread.

In a novel examination of specification errors, we examined the standardised predic-

tion errors for consistency with the usual assumption of normal errors in the theoretical

models and state-space framework. We find that all the modelsexhibit non-normal pre-

diction errors. Standardised errors are fatter tailed thanexpected under normality, and

exhibit positive skewness. It appears that the models are unable to explain large positive

deviations in credit spreads that occur rapidly, but are nonetheless prevalent in the data.

The problem is evident even after controlling for a time-varying liquidity premium. An

investigation of autocorrelation in the standardised errors reveals that all models exhibit

significant autocorrelation that rapidly decays with time lags. Inclusion of a time-varying

liquidity premium, based on the 10 year Refcorp spread, reduced the level of autocor-

relation confirming its usefulness in improving model specification. The presence of

autocorrelated prediction errors suggests that there is a missing factor related to time-

variation in spreads yet to be properly specified in the models.

The evidence of excess-kurtosis in the standardised errors, when taken together with

evidence of percentage prediction biases at short bond maturities and high credit ratings,

suggests that the diffusive asset process should be augmented with a firm asset value

jump necessary to explain sudden changes in credit spreads.
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5.0.3 Potential Missing Factors

We asked whether structural credit model prediction errorsare related to missing factors

identifiable from the capital structure literature. From our review of the theory and

evidence, important stylised facts concerning the expected evolution of firm solvency

are mean-reverting debt behaviour and market timing. Most structural models ignore

these behaviours, with only the CDG model including debt targeting and debt market

timing behaviour.

To test our hypothesis we chose a set of independent variables to represent potentially

missing variables, together with other factors that prior studies had found important,

and regressed these against the prediction errors of the models. For the standardised

prediction error, we found that the models are well fitted forthe firm and bond parameters

that are specified in the models. For example, firm solvency, firm asset volatility, firm

rating, and bond coupon rate are mostly unrelated to the standardised error. Only the

LS1 model shows some mild positive relationship with asset volatility.

Our hypothesis was that debt market timing is important was confirmed by a gen-

erally significant relationship with the risk-free term structure. Unexpectedly, the CDG

model also carried this relationship. The equity market timing variables, VIX and firm

equity volatility, were less conclusive. Whilst generallysignificant, they carried the

wrong signs as we would have expected that an increase in bothwould have decreased

equity issuance and resulted in higher credit spreads and underprediction. We find the

opposite. However, we cannot dismiss equity timing as an important omitted feature.

During our sample period, equity volatility increased but the equity market had a bull

run. Perhaps the use of volatility is not a sufficient measureof equity value. As an alter-

native measure of relative equity value, we expected that the MTB would be significant

but in most cases it was not.

We also test for explanatory values that may affect the speedof mean-reversion in

log-solvency under the CDG model. We find that the implied speed of mean-reversion

is related to debt constraint to the extent that more highly leveraged firms have faster

implied levels of mean-reversion implied into their terms structures of credit spreads.

Other measures of capital constraint were not found to be significant. We find the levels

of mean-reversion to be on average comparable with those reported from direct mea-

surement of capital structure by by Fama & French (2002).

A strong relationship was found with the change in GDP and spread errors across

all models. The result suggests that the market anticipatesan improvement in firm asset

value with improved business conditions. A less reliable relationship was found with the

secondary market return on defaulted assets. It is possiblethat the return in this market

is also influenced by current supply and demand conditions which are less relevant for

non-defaulted firm valuation.

Finally, we find that errors are related to the risk-free ratelevel and volatility. How-
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ever, the two-factor models do not adequately address the specification problem and the

errors prevail in the two-factor LS2 model and CDG model. It appears that stochastic in-

terest rates are yet to be adequately addressed by structural credit models and is possibly

due to the simplistic nature of the single-factor Vasicek model.

5.0.4 Related Findings

As an extension to HH we report a decomposition of the observed credit spread and

ask how much of the credit spread is explained by structural models. We find that,

on average, the component of the observed credit spread explained by structural credit

models is 31.95 percent. The percentage explained varies bymodel, with the highest

achieved by the EM model at 43.72 percent and the lowest from the CEV model at

17.85 percent. The amount of the spread explained is relatedto the predictive accuracy

of the models, and improves with lower credit ratings and longer remaining maturities.

For the lowest BB rating, our estimates of the default risk component are very similar

to HH, but we find that the LS1, LS2 and CDG models explain considerably more of

the credit spread for AA rated firms than previously reportedby HH. Also of additional

interest is our finding that time-varying liquidity, is of almost equal magnitude to that

explainable by firm default risk. Taking the modelled time-varying liquidity premium

and model estimate suggests that we can account for approximately half of the credit

spread through time variation in firm default risk and time-varying liquidity premiums.

As a consequence of estimating the models by EKF we are able toestimate the most

likely path taken by the firm’s latent log-solvency ratio. This provides a measure of the

firm value relative to the default boundary through time. Theaverage across models of

the ratio of firm value to default boundary is found to be 2.51 compared to the average

ratio of observed market value (using market equity capitalisation and book debt) of

2.30. Thus, we can infer that the default boundary is impliedto be below the level of

book debt. There is considerable variation across firms and models with the correlation

between the implied solvency level and the market-accounting proxy sufficiently low

that by using a proxy variable for leverage, to input into a structural credit model, would

result in estimation error.

Finally, we compared the firm’s implied asset volatility with the firm’s observed

equity volatility. A simple test for an upper bound is that the firm’s asset volatility

should be below its equity volatility on average. The Mertonmodel requires an asset

volatility, sufficient to match market spreads, that is excessive under this test. While

the EM model performs with lowest prediction errors, we find that the CDG model has

perhaps the most realistic description of the firm’s solvency dynamics, as evidenced by

reasonable levels of implied asset volatility, level of thedefault boundary, and speed of

mean reversion.
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5.0.5 Summary

In performing our testing we selected a representative range of models that have been

subject to prior empirical analysis and are tractable. Which model performed best? The

answer depends on the intended use of the model with no singlemodel dominating under

all criteria.

Unexpectedly, the EM model has best prediction accuracy as evidenced by the lowest

MPE, lowest MAPE, lowest RMSE, and has the best overall goodness of fit as measured

by the AIC. It also has the lowest autocorrelation in prediction errors. This is an im-

portant finding since the only difference between our EM and LS1 implementations is

that the EM model includes an endogenous writedown rate thatis allowed some time

variation. Thus, the reduction in autocorrelation of errors appears to be attributable to

this feature of the model. Thus, for simple debt valuation purposes, we find that the EM

model performs the best amonst the sample of structural models. However, to match

bond spreads, the implied level of asset volatility is excessive relative to the firm’s eq-

uity volatility. We therefore, do not consider that the EM model is the most realistic

description of the firm.

The LS1 model is a simple extension of the Merton model but performs worse than

the EM model in all specification tests. Our finding lends support to similar results by

LYS and EHH. It has the highest RMSE of all models. It would therefore appear that

assuming the write-off rate to be time-invariant, and exogenous to the firm asset process,

has reduced the model’s performance relative to the EM model. What appeared to be a

simple and elegant extension to permit a more realistic description of firm default has

decreased model performance.

The LS2 model introduces a stochastic interest rate to the LS1 model but it offers

only a modest improvement in prediction accuracy over the LS1 model. We find the

LT model has the worst RMSE but a relatively low MAPE. Its goodness of fit is quite

similar to the LS1 model, which is not surprising given theircommon roots. The LT

model does improve on the LS1 model in specification tests with errors that are more

normally distributed. The CEV model introduces local assetvolatility but proves to

offer little advantage over the extant model time-homogenous asset volatility models.

Finally, we find that the CDG model, which is the most complex model, suffers from

relatively low accuracy and has the worst AIC score of all themodels tested. However,

the implied asset parameters appear reasonable, with mean-reversion rates and implied

default boundary close to expected values. Therefore, it appears that the CDG model

achieves its aim of describing a more realistic capital structure process than the Merton

model, but suffers from a large number of parameters that aredifficult to estimate. Along

with the LS2 model, it is not apparent that a stochastic interest rate process has added

much improvement. However, the mean-reversion of the firm’ssolvency does enable

realistic levels of the default boundary to be achieved.
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Overall, we conclude that the more advanced theoretical extensions to the Merton

model have not been able to improve model performance significantly beyond an ad hoc

implementation of the original Merton model. The most promising extension is the CDG

model, however, its improvements in performance are attributable to the mean-reversion

of the firm’s underlying solvency ratio. However, the assumption of exogenously fixed

writedown rate and stochastic interest rate volatility do not appear in their own rights,

to enhance the specification of the models despite being common features of the newer

structural models.

All the models demonstrate non-normality and autocorrelation in errors, and a pos-

itive correlation in error with the business cycle. Relationships between market equity

timing variables and prediction errors did not hold as expected although prediction errors

are found to be related to market sentiment (VIX, Refcorp spread, and yield curve term

structure) and change in GDP. We therefore conclude that thefirst part of our hypothe-

sis is supported; structural credit models provide similarlevels of performance and bias,

when estimated implicitly, with significantly higher accuracy than achieved in prior stud-

ies that relied on proxy variables for model fitting. The second part of our hypothesis is

not supported as we are unable to conclusively determine that behaviours identified from

the capital structure theory and evidence, can satisfactorily explain our credit spread pre-

diction errors. Much work therefore remains to be done in order to better understand the

relationships found between the market and business variables and prediction errors.

This study can be extended in two further directions. Firstly, our data covers a pe-

riod of time when credit spreads began to rise sharply, but together with a rising eq-

uity market. Before drawing conclusions on the importance of market timing on bond

prices, it would be informative to lengthen the time series to more recent periods so

that a fuller credit and equity market cycle is included. Further, since commencing this

study, the credit default swap market has continued to deepen. A more recent sample

of data could use name specific credit default swap prices as amore refined measure

of the name-specific liquidity premium. Secondly, in terms of guiding theoretical de-

velopment of future structural credit models, it is apparent that market and business

conditions are important missing factors. Possibly, changes in GDP can be used to con-

dition the firm’s asset value and a time-varying conditionalwrite-off rate. The additional

complexity of stochastic interest rates does not appear to warrant further work without

introducing additional interest factors, which would result in an impractical model to fit

with maximum-likelihood methods. Rather, the computational burden of an additional

stochastic factor is potentially better utilised in modelling external market asset value or

business cycle conditions. Finally, the use of mean-reversion in firm solvency appears

to be useful, resulting in realistic levels of the implied default boundary and additional

control over longer term credit spreads. The challenge remains however, to improve

goodness of fit relative to the simplest model of them all.



Appendix A

Derivation of Exogenous-Boundary

Dynamics

In this appendix we derive the stochastic differential process for the continuous latent

solvency of the firm. We definex(t) to be the log-solvency ratio,x(t) = lnV (t)− lnK

whereV (t) is the market value of the firm’s assets andK is the firm’s re-organisation

boundary. Default occurs at the first instancex(t) = 0. The boundary may be time-

varying or constant depending on the model’s assumptions.

A.1 Longstaff-Schwartz (1995)

The risk-neutral return on the firm follows the same process assumed by Merton (1974)

dV (t)
V (t)

= (r(t)−δ )dt + σvdW Q
v,t . (A.1)

Since the default boundary is constant, we know that the s.d.e. forx(t) is the same as for

lnV (t). From Ito’s Lemma we can express the latter as

d(lnV (t)) =
1

V (t)
dV (t)− 1

2V (t)2 (dV (t))2 . (A.2)

Substituting (A.1) into (A.2) and simplifying gives

dx(t) = (r(t)−δ − σ2
v

2
)dt + σvdW Q

v,t . (A.3)

A.2 Collin-Dufresne and Goldstein (2001)

The firm’s assets are assumed to evolve under the risk neutralmeasure in the same man-

ner as Merton and LS (refer (A.1)). Default occurs if the firm’s asset value equals the
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default boundary,K(t). The key assumption of CDG is that the boundary is actively

adjusted by management so that it evolves with a time-varying drift given by

d lnK(t) = κv
(

lnV (t)− lnK(t)−ν −φ(r(t)−θ)
)

dt

= κv
(

x(t)−ν −φ(r(t)−θ)
)

dt , (A.4)

where,θ is the long-run risk-free rate as per (Vasicek 1977),φ is a parameter controlling

sensitivity of the drift to the current risk-free rate andκ is the speed of management’s

adjustment of the boundary level, andν is a fixed parameter representing the target level

of the boundary.

The stochastic differential equation for the instantaneous log distance to default is

then,1

dx(t) = d lnV (t)−d lnK(t)

= (r(t)−δ − σ2
v

2
)dt + σvdW Q

v,t −κ(x(t)−ν −φ(r(t)−θ))dt

= κv

[(

r(t)−δ −σ2
v /2

κv
+ ν + φ(r(t)−θ)

)

− x(t)

]

dt + σvdW Q
v,t ,

(A.5)

whereκv ≥ 0, ν ≥ 0, φ ≥ 0 andθ ≥ 0.

More simply, we can express the log-solvency ratio as a mean reverting process to a

time-varying target level

dx(t) = κv
[

x̄(t)− x(t)
]

dt + σvdW Q
v,t , (A.6)

where the target solvency level is positively related to thelevel of the short-rate, implying

that a rise in interest rates, results in a reduction of the firm’s target debt ratio

x̄(t) =
−δ −σ2

v /2
κv

+ ν −φθ + r(t)

(

1
κ

+ φ
)

. (A.7)

1CDG define the state process as the inverse ofx(t).
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Solutions to the First-Passage

Crossing Times

B.1 Collins-Dufresene-Goldstein Model

In this section we reproduce the solution for the first-passage crossing time for the two-

factor CDG model from (Collin-Dufresne & Goldstein 2001) Appendices C2 and C4.

The CDG model is described by a bivariate stochastic differential process

dx(t) = κv

[(

r(t)−δ −σ2
v /2

κv
+ ν + φ(r(t)−θ)

)

− x(t)

]

dt + σvdW Q
v,t

dr(t) = κr(θ − r(t))dt + σrdW Q
r,t .

Time is discretised intonT equal intervals of∆t, and datet( j) = jT
nT

≡ j∆t for j ∈
(1,2, . . . ,nT ). Similarly, the short rate space is discretised intonr equal intervals of∆r

bounded between an upper value ofr and lower bound ofr. Definer(i) = r + i ·∆r for

i ∈ (1,2, . . . ,nr) and∆r = r−r
nr

.

The probability that default occurs at any time between timezero and timeT is given

by the probability of first passage ofx to zero, approximated by CDG as

Q(0,T ;r(0), l(0)) =
nT

∑
v=1

nr

∑
i=1

q(r(i), t( j)), (B.1)

wherer(t) is the short-rate and the log-leverage ratio isl(t) = ln(K(t)/V (t)) ≡ −x(t)

and the target log-leverage ratiōl(t) = −x̄(t).

Given the values of the functionsψ andΨ, q(r(i), t( j)) is found recursively by the

scheme

q(r(i), t(1)) = ∆rΨ(r(i), t(1)) ∀i ∈ (1,2, . . . ,nr), (B.2)
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and

q(r(i), t( j)) =

∆r

[

Ψ(r(i), t( j))−
j−1

∑
v=1

nr

∑
u=1

q(r(u), t(v))ψ(r(i), t( j)|r(u), t(v))

]

∀i ∈ (1,2, . . . ,nr),∀ j ∈ (2,3, . . . ,nT ).

(B.3)

Under the T-forward measure, the means, variances and covariance of the transition of

the log-leverage and short-rate between timeu andt are:

ET (u)[l(t)] = l(u)e−κv(t−u)− (1+ κvφ)

(

r(u)+
σ2

r

κ2
r
−θ

)

e−κr(t−u)B(t−u)
(κv−κr)

−
(

σrρr,vσ
κr

+(1+ κvφ)
σ2

r

2κ2
r

)

e−κr(T−t)B(t−u)
(κv+κr)

+(1+ κvφ)
σ2

r

2κ2
r

e−κr(T−t)e−2κr(t−u)B(t−u)
(κv−κr)

+

(

σrρr,vσ
κr

+ κvl − (1+ κvφ)(θ − σ2
r

κ2
r
)

)

B(t−u)
κv ,

(B.4)

ET (u)[r(t)] = r(u)e−κr(t−u) +

(

φκr −
σ2

r

κr

)

B(t−u)
κr +

(

σ2
r

κr

)

e−κr(T−t)B(t−u)
2κr

, (B.5)

VarT (u)[l(t)] =

(

(1+ κvφ)σr

κv −κr

)2

B(t−u)
2κr

+

[

σ2 +

(

(1+ κvφ)σr

κv −κr

)2

−
(

2
ρr,vσ(1+ κvφ)σr

κv −κr

)]

B(t−u)
2κv

+2

[(

ρr,vσ(1+ κvφ)σr

κv −κr

)

−
(

(1+ κvφ)σr

κv −κr

)2]

B(t−u)
(κv+κr)

,

(B.6)

VarT (u)[r(t)] = σ2
r B(t−u)

2κr
, (B.7)

CovT (u)[l(t),r(t)] =−(1+ κvφ)σ2
r

κv −κr
B(t−u)

2κr
−

(

σσrρr,v−
(1+ κvφ)σ2

r

κv −κr

)

B(t−u)
(κv+κr)

, (B.8)

whereB(t−u)
z = 1

z (1− e−z(t−u)).

The functionsΨ andψ are given by

Ψ(r(t), t) ≡ π(r(t), t|r(0),0)N

(

µ(r(t), t|l(0),r(0),0)

∑(r(t), t|l(0),r(0),0))

)

, (B.9)

ψ(r(t)|r(s),s) ≡ π(r(t), t|r(s),s)N
(

µ(r(t), t|l(s) = l,r(s),s)

∑(r(t), t|l(s) = l,r(s),s)

)

, (B.10)

whereN(·) is the cumulative normal distribution function andπ(r(t), t|r(s),s) is the
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transition density function for the one-factor Markov Gaussian short-rate process

π(r(t), t|r(s),s) = N

(

r(t)− (θ +(r(s)−θ))e−κr(t−s)
√

σ2
r

2κr
(1− e−2κr(t−s)

)

, (B.11)

, and

µ(r(t), l(s),r(s)) ≡ ET (s)[l(t)|r(t)]

= ET (s)[l(t)]+
CovT (s)[l(t),r(t)]

VarT (s)[r(t)]
(r(t)−ET (s)[r(t)]),

(B.12)

and

∑(r(t), l(s),r(s))2 ≡VarT (s)[l(t)|r(t)]

= VarT (s)[l(t)]− CovT (s)[l(t),r(t)]2

VarT (s)[r(t)]
.

(B.13)

In the interest rate dimension, the minimum rate is set to three standard deviations

below the long run level, ofθ = 16.05%, and the maximum rate equal to three times

above the long run level. The number of intervals in the shortrate is six, resulting in

∆r = 2.68%. Disretisation in the time dimension depends upon the remaining maturity

of the bond,(T − t). If the term is less than two years, the number of equal intervals

is 8(T − t), and if the remaining maturity is greater than 2 years, the numbers of equal

intervals is 4(T − t).

B.2 Longstaff-Schwartz Model

In this section we reproduce the solution for the first-passage crossing time for the two-

factor LS model as corrected and reported in (Collin-Dufresne & Goldstein 2001) Ap-

pendices C2 and C3.

The LS model has the bivariate form

dx(t) = (r(t)−δ −σ2
v /2)dt + σvdW Q

v,t

dr(t) = κr(θ − r(t))dt + σrdW Q
r,t .

The solution for the expected first-crossing time follows the above solution for the

CDG model with the moments of the forward leverage process given by:

ET (u)[l(t)] = l(u)−
(

θ − σ2
r

κ2
r
−δv−

σ2
v

2
− ρr,vσvσr

κr

)

(t −u)

−
(

σr −θ +
σ2

r

κ2
r

+
ρr,vσvσr

κr
e−κr(T−t)(B(t−u)

κr )2,

(B.14)
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VarT (u)[l(t)] =

(

σ2
v +2

ρr,vσvσr

κr
+

σ2
r

κ2
r

)

(t −u)

−2

(

ρr,vσvσr

κr
+

σ2
r

κ2
r

)

B(t−u)
κr +

σ2
r

κ2
r

B(t−u)
2κr

,

(B.15)

and

CovT (u)[l(t),r(t)] =
σ2
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Table C.1: This table shows the bonds sampled. FISD ID refersto the unique identifier attached to each bond by LJS Global Information Services, as reported in the Fixed

Investments Securities Database (FISD). Coupon is the annualised semi-annual coupon rate, Mean(T − t) is the average remaining maturity measured in years, and Rank is the

ranking of the debt in the capital structure of the firm. The priority ranking of the bonds are: senior unsecured (SEN), senior secured (SENS), and senior subordinated (SS). The

number of observed trade prices is shown byn, and the sample period is the date between the First Trade andLast Trade. Mean∆t is the average time between observed trades

measured in years. The mean, median, minimum and maximum credit spread observed over the sample period is reported in basis points. SD refers to the sample standard deviation

of credit spreads and SD d(1) is the sample standard deviation of the first differences.

Bond Characteristics Sample Characteristics Credit Spread Descriptive Statistics (basis points)

FISD Coupon Mean First Last Mean

ID (%) (T − t) Rank n Trade Trade ∆t (yrs) Mean Median SD SD d(1) Min Max

Aetna Inc

42328 6.750 3.64 SEN 26 19-Aug-96 29-Sep-99 0.17 73.59 37.84 63.76 59.09 3.88 265.42

42329 7.125 8.66 SEN 32 15-Aug-96 01-Dec-99 0.15 85.90 70.19 39.17 23.67 40.59 178.11

42330 7.625 28.54 SEN 30 15-Aug-96 12-Nov-99 0.16 132.51 124.82 50.14 25.19 74.04 236.21

Associates Corp

1555 7.500 2.80 SEN 30 02-Feb-95 01-Apr-98 0.15 48.44 47.50 14.42 14.34 9.34 76.15

1563 6.000 3.17 SEN 27 28-Feb-95 11-Feb-99 0.21 54.09 48.66 25.76 27.36 21.15 136.86

1568 5.250 2.87 SEN 26 17-Oct-94 04-Mar-99 0.25 60.63 49.78 39.27 33.57 25.05 180.87

1569 5.750 6.46 SEN 27 22-Feb-95 30-Aug-99 0.24 62.96 54.25 37.58 34.22 11.58 184.69

1575 7.875 4.78 SEN 44 29-Sep-94 03-Jan-00 0.17 55.70 49.73 24.60 19.85 17.44 118.96

26127 6.625 8.69 SEN 38 05-Jun-95 18-Aug-99 0.16 57.54 49.74 24.56 21.50 21.77 134.65

31674 6.375 5.35 SEN 35 31-Oct-95 23-Nov-99 0.17 57.87 49.85 29.57 30.15 22.59 140.44

32803 6.000 5.52 SEN 32 04-Dec-95 16-Aug-99 0.17 58.85 52.48 25.66 15.50 31.17 127.65

45820 6.875 10.99 SENS 30 12-Nov-96 26-Feb-99 0.11 71.02 60.88 28.62 16.77 30.76 154.28

91982 5.800 4.73 SEN 27 14-Apr-99 17-Dec-99 0.04 83.91 80.91 17.98 14.80 54.37 134.29

(continued on next page)
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Bond Characteristics Sample Characteristics Credit Spread Descriptive Statistics (basis points)

FISD Coupon Mean First Last Mean

ID (%) (T − t) Rank n Trade Trade ∆t (yrs) Mean Median SD SD d(1) Min Max

Atlantic Richfield Co

1719 10.875 8.88 SEN 45 02-Mar-94 14-Mar-00 0.20 59.29 54.40 25.12 14.94 20.66 123.78

1724 9.875 19.58 SEN 37 25-Jan-94 12-Apr-00 0.25 71.55 69.65 16.77 15.88 43.20 130.62

1726 9.000 24.49 SEN 40 06-May-94 12-Apr-00 0.22 79.28 75.30 18.48 16.60 44.43 131.28

A T & T Corp

94 7.500 8.47 SEN 54 28-Feb-95 19-Dec-00 0.16 64.48 48.01 41.86 19.85 13.85 194.58

96 7.750 9.71 SEN 70 28-Feb-95 18-Dec-00 0.12 57.35 43.40 33.30 22.09 20.67 205.04

25597 7.000 8.13 SEN 36 08-May-95 04-Oct-00 0.22 50.94 39.55 32.81 25.11 14.83 177.86

Bear Stearns Companies Inc

2297 6.750 6.13 SEN 36 03-May-95 19-Jul-99 0.17 81.87 72.92 39.57 29.56 44.40 235.42

2300 6.625 6.75 SEN 55 24-May-95 13-Dec-99 0.12 82.78 73.78 32.30 28.40 36.52 213.95

28017 6.750 3.61 SEN 36 01-Aug-95 04-Jun-99 0.16 71.51 61.21 46.88 38.43 21.36 247.54

31069 6.875 8.04 SEN 33 02-Oct-95 09-Nov-00 0.23 92.01 73.23 41.24 24.35 43.49 217.31

36450 5.750 3.41 SEN 28 09-Feb-96 01-Oct-99 0.19 78.83 53.42 56.03 59.88 32.40 269.82

44710 7.250 8.86 SEN 38 08-Oct-96 03-Jul-00 0.14 93.37 64.81 54.92 31.75 49.90 261.38

50334 7.000 8.78 SEN 35 24-Feb-97 15-Dec-99 0.12 111.36 91.75 55.13 31.90 39.10 239.60

62272 6.625 6.14 SEN 36 14-Oct-97 01-Jun-00 0.11 92.86 80.04 34.62 21.12 35.03 174.26

68479 6.125 4.47 SEN 28 04-Feb-98 24-Nov-99 0.09 88.94 67.54 38.66 27.53 53.97 167.52

71515 6.200 4.35 SEN 24 24-Mar-98 10-Nov-00 0.16 107.59 113.65 43.80 33.42 42.95 197.99

Black & Decker Corp

2532 7.500 6.48 SEN 76 19-Jan-94 07-Jun-99 0.10 80.99 68.08 38.62 21.14 25.28 236.18

2533 6.625 4.04 SEN 48 01-Feb-94 30-Apr-99 0.16 74.32 63.75 37.97 24.64 14.51 226.38

2534 7.000 9.66 SEN 56 25-Jan-94 20-May-99 0.14 88.25 79.41 27.47 16.48 48.67 164.87

(continued on next page)
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Bond Characteristics Sample Characteristics Credit Spread Descriptive Statistics (basis points)

FISD Coupon Mean First Last Mean

ID (%) (T − t) Rank n Trade Trade ∆t (yrs) Mean Median SD SD d(1) Min Max

Boeing Co

2559 8.750 24.22 SEN 38 22-Mar-94 26-Dec-00 0.26 91.40 72.32 41.48 31.01 36.19 200.54

2561 8.100 9.32 SEN 55 02-Jun-94 06-Nov-00 0.17 58.02 44.92 32.78 20.65 11.23 137.95

2565 6.350 6.20 SEN 58 28-Feb-94 21-Dec-00 0.17 45.72 38.11 26.59 20.85 5.32 123.03

Dayton Hudson Corp

5613 9.750 5.75 SEN 32 22-Feb-94 03-Mar-00 0.28 68.42 64.41 22.56 18.10 37.86 126.51

5615 10.000 4.12 SEN 36 31-Mar-94 27-Oct-99 0.23 73.72 63.46 28.35 22.78 38.33 149.43

5621 8.600 15.24 SEN 38 24-May-94 26-Aug-99 0.20 99.63 96.30 25.54 26.58 57.24 206.99

5626 6.625 5.60 SEN 40 09-Jun-95 04-Jan-00 0.17 65.47 57.14 24.30 19.43 24.06 129.59

36560 6.400 5.32 SEN 52 09-Feb-96 05-Dec-00 0.14 82.04 66.03 41.23 24.56 36.93 234.59

41534 7.500 8.84 SEN 43 19-Jul-96 09-Aug-00 0.14 72.86 67.25 20.94 17.84 47.21 153.56

44611 6.800 3.65 SEN 33 04-Oct-96 04-Aug-99 0.13 66.80 60.19 24.39 14.78 35.22 121.34

66437 6.750 29.02 SEN 27 06-Jan-98 10-Nov-00 0.15 122.11 121.27 28.27 25.68 93.12 217.48

78300 6.650 29.47 SEN 16 06-Aug-98 06-Aug-99 0.09 133.96 131.22 18.75 20.92 105.56 173.95

83731 5.875 9.50 SEN 11 29-Oct-98 11-Oct-00 0.26 106.42 111.37 29.33 26.34 74.46 151.25

Commonwealth Edison Co

4989 8.000 11.74 SS 39 23-Feb-94 10-Apr-00 0.23 89.01 80.58 22.17 19.88 56.44 146.47

4994 7.375 5.49 SS 37 24-Aug-94 15-Nov-99 0.21 73.97 67.73 22.35 20.50 44.73 137.07

4998 6.500 3.75 SS 38 26-Jan-94 26-Feb-99 0.20 74.10 70.47 23.84 22.65 35.67 162.21

5002 7.000 8.72 SS 54 19-Jan-94 19-Nov-99 0.16 81.61 75.74 20.82 15.85 50.64 140.67

5003 7.500 16.47 SS 41 21-Jul-94 03-Feb-00 0.20 101.57 95.42 18.83 13.65 71.83 147.01

5004 6.375 4.09 SS 32 27-Jul-94 29-Jun-99 0.22 69.26 66.26 20.32 17.09 42.27 142.24

5007 6.400 8.94 SEN 38 03-Feb-94 11-Aug-99 0.21 108.03 105.75 18.71 19.59 82.03 171.56

48196 7.625 8.62 SEN 27 06-Feb-97 29-Nov-99 0.15 109.43 106.71 25.97 22.83 65.53 155.44

(continued on next page)
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Bond Characteristics Sample Characteristics Credit Spread Descriptive Statistics (basis points)

FISD Coupon Mean First Last Mean

ID (%) (T − t) Rank n Trade Trade ∆t (yrs) Mean Median SD SD d(1) Min Max

Enron Corp

6408 9.125 5.48 SEN 39 08-Mar-94 04-Oct-00 0.25 96.43 78.19 38.94 23.42 37.88 169.36

6409 7.625 7.49 SEN 45 16-Feb-94 12-Jun-00 0.21 83.86 65.28 41.36 26.83 39.49 182.57

25750 7.125 10.31 SEN 40 17-May-95 12-Jun-00 0.19 61.12 57.42 27.19 19.58 18.54 162.91

59681 6.750 6.04 SEN 17 04-Dec-97 21-Dec-99 0.18 101.30 89.87 37.80 35.02 65.57 199.53

63932 6.450 2.88 SEN 23 13-Nov-97 08-Sep-00 0.18 101.24 98.59 42.70 43.04 51.70 205.00

64197 6.625 6.94 SEN 22 19-Nov-97 12-Apr-00 0.16 106.15 106.94 33.09 25.42 56.36 164.61

Federated Dept Stores

9573 10.000 3.34 SEN 30 14-Aug-95 11-Jan-00 0.21 107.35 100.25 65.55 33.58 27.81 249.72

31136 8.125 4.40 SEN 70 03-Oct-95 25-Oct-00 0.11 118.68 108.63 51.93 25.79 37.90 258.23

39610 8.500 4.53 SEN 44 16-May-96 30-Nov-00 0.15 135.24 130.88 56.59 21.91 40.33 251.24

57170 7.450 18.70 SEN 38 09-Jul-97 29-Dec-00 0.13 151.98 135.16 64.41 22.47 76.48 318.35

Ford Mtr Co

10164 9.500 14.55 SEN 40 13-Oct-94 25-May-99 0.17 88.35 75.65 34.88 25.26 54.68 216.46

10168 7.500 2.66 SEN 31 08-Dec-94 05-Nov-98 0.18 50.67 47.43 17.33 14.98 22.79 92.13

32037 7.125 28.46 SEN 35 20-Nov-95 05-Nov-99 0.17 94.14 83.78 26.02 13.61 57.61 162.93

41993 7.500 28.40 SEN 38 06-Aug-96 08-Nov-99 0.13 110.30 99.27 31.26 17.26 74.57 171.45

44330 7.250 10.69 SEN 73 27-Sep-96 09-Dec-99 0.06 71.94 68.54 23.01 14.44 38.04 126.39

69523 6.625 29.55 SEN 30 18-Feb-98 04-Nov-99 0.08 111.55 105.26 22.06 9.78 82.23 156.31

78374 6.500 19.48 SEN 25 22-Jul-98 03-Jul-00 0.11 118.25 116.20 25.07 19.83 80.36 176.09

81320 6.625 29.49 SEN 46 06-Oct-98 05-Apr-00 0.05 130.14 126.75 22.31 20.58 100.97 232.28

87654 6.375 29.57 SEN 47 02-Feb-99 02-Aug-00 0.05 128.43 120.50 25.82 14.71 90.40 236.85

(continued on next page)
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Bond Characteristics Sample Characteristics Credit Spread Descriptive Statistics (basis points)

FISD Coupon Mean First Last Mean

ID (%) (T − t) Rank n Trade Trade ∆t (yrs) Mean Median SD SD d(1) Min Max

General Mtrs

11135 9.625 3.77 SEN 82 29-Sep-94 29-Nov-99 0.09 65.08 56.48 35.35 39.36 20.27 277.03

11138 9.125 4.38 SEN 69 07-Feb-94 01-May-00 0.13 72.38 64.92 41.23 52.86 21.73 280.37

11141 7.000 6.16 SEN 39 14-Mar-94 16-Nov-00 0.25 70.70 65.65 27.96 20.20 18.68 131.75

29100 7.400 28.12 SEN 73 06-Sep-95 01-Dec-00 0.10 104.61 90.55 32.05 22.90 67.09 243.93

37881 7.100 8.59 SEN 46 15-Mar-96 16-Aug-00 0.14 81.58 68.93 44.51 34.18 31.90 244.10

38580 7.700 17.91 SEN 64 10-Apr-96 05-Dec-00 0.11 111.40 108.48 37.33 24.73 56.37 243.36

72797 6.250 6.27 SEN 35 22-Apr-98 30-Oct-00 0.11 75.59 68.06 32.96 36.22 23.57 153.49

72798 6.375 9.13 SEN 40 22-Apr-98 18-Dec-00 0.10 100.19 96.80 35.84 18.58 43.27 184.52

72800 6.750 29.00 SEN 53 06-May-98 19-Dec-00 0.07 133.03 125.65 36.49 34.33 45.47 241.63

Georgia Pacific Corp

11321 9.500 14.85 SEN 42 18-May-95 30-Nov-99 0.16 107.37 100.83 33.29 20.34 73.46 203.46

26145 7.700 18.53 SEN 47 05-Jun-95 22-Dec-99 0.14 124.23 121.16 26.22 17.13 82.07 202.67

32843 7.375 28.41 SEN 31 05-Dec-95 03-Feb-00 0.20 132.07 128.63 25.19 15.53 94.19 186.20

Columbia Hca Healthcare Corp

4718 6.500 2.92 SEN 30 16-Mar-94 27-Feb-98 0.19 63.67 50.14 49.49 25.18 23.94 244.47

4719 7.150 7.40 SEN 45 17-Mar-94 11-Feb-00 0.19 144.31 84.94 102.16 41.20 39.64 375.97

39572 7.250 10.56 SEN 44 15-May-96 01-Nov-00 0.15 133.33 62.09 109.14 45.85 39.04 389.20

40885 6.875 4.06 SEN 16 02-Jul-96 28-Sep-98 0.20 114.40 60.31 95.94 37.36 33.10 293.55

IBM Corp

13191 7.250 5.72 SEN 97 04-Mar-94 18-Jul-00 0.10 44.02 41.46 22.41 15.19 6.19 104.87

13192 6.375 3.67 SEN 107 13-Jan-94 10-Jun-99 0.07 43.30 39.62 21.93 17.61 2.11 119.62

13193 7.500 16.29 SEN 81 07-Jan-94 01-Nov-00 0.12 74.99 71.47 19.84 19.00 35.45 137.18

(continued on next page)
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Bond Characteristics Sample Characteristics Credit Spread Descriptive Statistics (basis points)

FISD Coupon Mean First Last Mean

ID (%) (T − t) Rank n Trade Trade ∆t (yrs) Mean Median SD SD d(1) Min Max

International Paper Co

13295 7.625 8.95 SEN 44 17-May-94 14-Sep-00 0.21 94.50 98.18 41.56 22.08 31.84 168.71

13298 7.500 7.50 SEN 40 19-May-94 20-Mar-00 0.21 72.04 59.99 33.46 30.23 21.78 160.86

13299 6.125 5.90 SEN 42 28-Feb-94 13-Dec-00 0.24 84.56 65.06 45.04 20.87 28.71 178.68

13302 7.625 7.50 SEN 38 04-Aug-94 20-Nov-00 0.24 79.91 66.66 45.26 36.21 18.99 177.72

40082 7.000 3.82 SEN 45 31-May-96 05-Apr-00 0.12 62.48 43.81 43.68 28.51 11.43 181.51

Lehman Brothers Holdings Inc

14210 8.750 7.64 SEN 45 10-Mar-95 22-Nov-99 0.15 131.21 105.76 62.62 31.61 63.41 301.67

20228 8.875 5.21 SEN 43 10-Jun-94 03-Mar-00 0.19 106.03 98.53 47.61 41.29 40.69 264.88

20230 8.750 5.64 SEN 41 14-Jul-94 30-Jul-99 0.18 114.67 96.02 68.29 57.22 28.06 416.68

25524 8.500 9.63 SEN 48 02-May-95 11-Oct-00 0.17 135.22 103.54 71.38 64.11 49.85 423.05

44745 7.250 5.76 SEN 38 09-Oct-96 09-Nov-00 0.16 96.96 78.32 59.01 45.59 36.95 342.87

54022 7.375 5.66 SEN 42 08-May-97 04-Apr-00 0.10 130.97 113.98 79.29 46.31 39.69 414.48

59238 7.200 10.87 SEN 35 14-Aug-97 08-Oct-99 0.09 151.37 149.10 75.16 44.45 75.57 393.93

61527 6.500 4.02 SEN 35 01-Oct-97 09-Aug-00 0.12 134.27 114.27 87.53 52.05 44.67 437.92

72049 6.250 4.37 SEN 37 02-Apr-98 02-Aug-00 0.09 149.06 161.26 82.68 52.64 56.30 439.81

87559 6.625 6.44 SEN 41 29-Jan-99 06-Dec-00 0.07 166.02 161.27 42.56 35.48 107.60 295.24

(continued on next page)
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Bond Characteristics Sample Characteristics Credit Spread Descriptive Statistics (basis points)

FISD Coupon Mean First Last Mean

ID (%) (T − t) Rank n Trade Trade ∆t (yrs) Mean Median SD SD d(1) Min Max

Merrill Lynch & Co

15207 7.000 3.36 SEN 40 01-Jul-94 29-Oct-98 0.16 57.59 49.59 30.79 27.58 6.44 201.28

15212 6.250 4.97 SEN 40 08-Jun-94 01-Aug-00 0.22 58.87 46.80 32.73 21.75 15.41 195.00

29589 6.640 5.96 SEN 40 13-Apr-94 15-Aug-00 0.23 77.11 75.75 30.53 29.83 21.00 171.28

39416 7.375 10.95 SEN 49 23-Jun-94 03-Jul-00 0.18 89.03 76.98 39.35 33.20 36.35 199.01

58248 6.550 3.32 SEN 31 27-Jul-95 21-Jul-99 0.19 65.68 53.14 35.73 21.59 27.48 175.34

68436 6.000 3.71 SEN 37 22-Feb-96 05-Jan-00 0.15 53.99 42.00 35.46 27.51 12.43 159.60

77781 6.500 8.48 SEN 45 10-May-96 22-Dec-00 0.15 73.86 61.39 34.56 20.54 31.04 152.72

83254 6.375 6.07 SEN 43 29-Jul-97 06-Dec-00 0.11 64.96 55.55 28.39 15.35 28.36 141.03

84897 6.875 4.07 SEN 86 04-Feb-98 12-Dec-00 0.05 91.13 88.06 41.22 24.18 25.71 201.56

88024 6.000 9.34 SEN 102 09-Feb-99 29-Dec-00 0.03 115.55 110.64 31.22 21.04 10.80 216.58

Motorola Inc

15835 7.600 8.55 SEN 42 02-Aug-95 06-Dec-00 0.19 69.10 64.65 41.55 27.16 22.40 201.92

15836 6.500 10.62 SEN 34 22-Mar-95 04-Aug-99 0.19 42.94 33.33 23.15 12.09 12.18 107.69

25589 7.500 27.07 SEN 33 24-May-95 04-Dec-00 0.24 98.81 92.15 47.73 21.42 49.37 224.35

82677 5.800 9.36 SEN 16 15-Oct-98 01-Nov-00 0.19 95.06 99.00 23.63 22.85 56.80 143.69

Nabisco Group Hldgs Corp

26811 6.700 4.99 SEN 76 22-Jun-95 05-Dec-00 0.10 83.42 76.38 37.90 21.26 19.94 187.80

26812 6.850 7.92 SEN 67 22-Jun-95 17-Aug-00 0.11 98.76 81.26 48.65 50.91 53.74 366.64

26813 7.550 17.69 SEN 81 22-Jun-95 01-Dec-00 0.10 145.30 118.99 59.76 37.15 82.52 335.43

26975 8.000 3.18 SEN 35 01-May-95 24-Mar-98 0.12 73.99 55.11 63.59 61.37 9.50 305.33

26977 8.300 2.55 SEN 41 16-Feb-95 08-Apr-98 0.11 70.15 54.78 59.45 47.02 16.09 297.13

27158 7.050 9.84 SEN 81 11-Jul-95 29-Sep-00 0.09 108.25 87.12 54.75 30.34 9.05 320.08

(continued on next page)
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Bond Characteristics Sample Characteristics Credit Spread Descriptive Statistics (basis points)

FISD Coupon Mean First Last Mean

ID (%) (T − t) Rank n Trade Trade ∆t (yrs) Mean Median SD SD d(1) Min Max

Niagara Mohawk Pwr Corp

16471 7.375 6.55 SS 51 09-Feb-94 10-May-00 0.18 141.37 119.87 62.69 32.51 61.12 293.52

16475 5.875 5.51 SS 55 02-Mar-94 19-Dec-00 0.18 142.24 112.39 63.89 32.14 72.20 287.91

16476 6.875 4.00 SS 53 25-Feb-94 03-Feb-00 0.16 135.29 121.02 52.84 35.14 67.93 300.55

25729 7.750 8.28 SS 47 08-Aug-95 05-Oct-00 0.16 163.11 142.33 67.86 32.09 72.82 309.86

Northrop Grumman Corp

16731 8.625 6.42 SEN 40 28-Feb-96 19-Dec-00 0.18 101.95 85.78 45.48 36.24 35.39 189.16

69804 7.000 8.24 SEN 72 27-Feb-96 22-Dec-00 0.10 96.25 77.74 44.10 24.64 18.46 198.68

69808 7.750 17.99 SEN 43 27-Feb-96 20-Sep-00 0.16 143.92 108.02 55.90 28.41 83.06 245.81

69822 7.875 27.91 SEN 59 01-Mar-96 21-Dec-00 0.12 143.50 118.15 54.31 29.71 79.44 272.94

Paine Webber Group Inc

17692 7.750 5.69 SENS 40 01-Mar-94 02-Nov-00 0.24 111.06 107.99 52.63 51.73 20.77 243.06

17694 7.000 3.51 SEN 35 25-Feb-94 12-Jan-00 0.25 97.11 78.11 55.21 53.95 30.19 287.27

17696 6.500 8.58 SEN 60 24-Feb-94 27-Oct-00 0.16 112.59 97.02 40.25 28.10 56.15 211.50

17697 7.625 16.46 SEN 60 08-Feb-94 03-Nov-00 0.16 145.52 129.58 53.13 41.28 25.23 314.00

17698 8.875 8.20 SEN 33 20-Mar-95 20-Aug-99 0.20 124.50 127.83 40.56 28.13 64.92 211.92

72702 6.550 8.97 SEN 25 20-Apr-98 03-Nov-00 0.15 119.25 123.99 45.34 61.02 32.54 222.47

85254 6.450 4.25 SEN 33 25-Nov-98 28-Aug-00 0.08 139.67 134.94 31.80 32.65 52.83 206.58

94324 6.375 4.46 SEN 20 13-May-99 30-Oct-00 0.11 121.22 122.53 34.24 46.40 3.78 161.08

102067 7.625 9.69 SEN 22 24-Nov-99 31-Oct-00 0.06 155.64 148.76 22.08 20.98 129.51 233.25

(continued on next page)
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Bond Characteristics Sample Characteristics Credit Spread Descriptive Statistics (basis points)

FISD Coupon Mean First Last Mean

ID (%) (T − t) Rank n Trade Trade ∆t (yrs) Mean Median SD SD d(1) Min Max

Penney J C Co Inc

17851 5.375 2.91 SEN 27 20-Jan-94 28-Oct-97 0.20 39.47 40.14 9.94 13.14 11.69 57.84

17852 6.125 6.04 SEN 59 02-Sep-94 04-Dec-00 0.15 181.75 64.04 337.62 174.37 15.56 1948.50

17853 7.125 26.31 SEN 41 15-Feb-94 04-Oct-00 0.24 161.18 106.42 139.21 52.52 48.04 643.71

17854 7.375 7.05 SEN 49 07-Jun-94 17-Nov-00 0.19 138.07 60.09 240.59 169.65 21.89 1617.50

42350 7.375 10.43 SEN 48 14-Aug-96 14-Dec-00 0.13 163.98 69.92 225.22 86.47 38.87 1261.10

42351 7.650 18.19 SEN 39 14-Aug-96 15-Dec-00 0.16 169.32 159.01 163.09 102.76 71.62 1055.40

Philip Morris Companies Inc

18221 8.250 6.40 SEN 73 11-Jan-94 26-Oct-00 0.14 97.31 81.71 43.96 50.59 10.77 264.90

18222 7.500 4.81 SEN 70 17-Feb-94 20-Dec-00 0.14 94.41 72.30 58.62 43.06 46.72 354.23

18226 7.625 4.71 SEN 43 04-May-94 28-Dec-00 0.23 92.98 77.39 46.23 28.40 36.89 217.93

18228 7.125 6.91 SEN 48 23-Mar-94 15-Aug-00 0.19 106.48 87.02 48.81 28.89 56.86 234.74

18231 7.250 5.80 SEN 58 10-Jan-94 19-Oct-00 0.17 89.29 73.73 40.05 28.77 42.80 213.40

40699 7.650 10.03 SEN 56 26-Jun-96 12-Dec-00 0.12 118.38 97.33 60.41 46.72 46.54 299.49

44048 7.250 3.89 SEN 35 19-Sep-96 27-Jan-00 0.14 81.03 63.42 42.37 34.29 36.10 223.21

47411 6.800 5.29 SEN 53 10-Dec-96 05-Dec-00 0.11 105.19 82.96 53.04 46.20 33.17 227.29

49572 7.200 8.61 SEN 45 07-Feb-97 19-Jul-00 0.11 114.20 98.18 54.47 32.24 52.67 315.37

57203 7.000 6.43 SEN 48 10-Jul-97 07-Dec-00 0.10 126.02 107.74 50.33 32.93 67.86 252.41

Seagram Co Ltd

20000 8.350 9.21 SEN 60 18-May-94 01-Dec-00 0.16 95.31 77.19 54.84 30.72 16.74 240.59

20002 8.350 24.88 SEN 44 20-Jan-94 01-Dec-00 0.23 120.64 101.79 50.20 29.13 78.18 272.22

20003 6.500 5.61 SEN 46 12-Jan-94 08-Dec-00 0.22 74.38 59.31 39.23 28.15 33.72 191.74

20004 6.875 25.31 SEN 38 12-Oct-94 01-Dec-00 0.24 136.45 119.24 51.31 31.86 75.53 264.99

(continued on next page)
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Bond Characteristics Sample Characteristics Credit Spread Descriptive Statistics (basis points)

FISD Coupon Mean First Last Mean

ID (%) (T − t) Rank n Trade Trade ∆t (yrs) Mean Median SD SD d(1) Min Max

Sears Roebuck Accep Corp

26308 6.500 2.77 SEN 31 05-Sep-95 10-Mar-99 0.17 66.89 52.35 38.68 38.43 31.10 205.95

29172 6.750 8.05 SEN 47 11-Sep-95 13-Dec-00 0.16 80.33 57.08 50.61 29.55 30.39 212.58

34174 6.125 8.49 SEN 28 18-Jan-96 13-Jul-00 0.23 71.60 59.32 42.96 15.62 15.89 181.52

41876 6.900 5.27 SEN 29 02-Aug-96 05-Sep-00 0.21 76.22 49.71 50.37 45.63 27.07 224.77

46444 6.700 8.66 SEN 46 19-Nov-96 10-Nov-00 0.13 80.62 63.61 48.40 21.07 28.67 217.56

56492 7.000 8.77 SEN 100 25-Jun-97 27-Dec-00 0.05 93.98 80.55 48.03 23.94 27.29 258.33

60903 6.700 9.23 SEN 23 18-Sep-97 18-Jan-00 0.15 80.07 67.57 36.73 24.62 37.02 159.54

70992 6.000 4.04 SEN 56 13-Mar-98 21-Dec-00 0.07 95.05 97.60 34.90 26.74 33.40 180.70

93083 6.250 9.30 SEN 37 29-Apr-99 20-Dec-00 0.06 154.61 146.52 43.48 22.78 74.61 261.40

Service Corp Intl

20172 8.375 7.32 SEN 22 13-Jun-95 13-Mar-00 0.32 257.15 61.96 464.25 315.51 13.48 2033.80

31194 6.875 9.90 SEN 41 05-Oct-95 26-Sep-00 0.18 157.42 69.54 281.42 135.14 43.57 1356.80

31195 6.375 3.22 SEN 33 05-Oct-95 08-Sep-99 0.17 77.48 54.80 59.69 36.67 30.81 250.88

39942 6.750 2.83 SEN 28 23-May-96 12-Apr-00 0.20 700.38 99.57 1102.70 452.91 21.74 3348.60

39943 7.200 8.24 SEN 40 23-May-96 17-Oct-00 0.16 380.06 64.11 557.91 140.78 28.85 1644.30

52596 7.375 5.43 SEN 25 15-Apr-97 20-Sep-00 0.20 508.32 133.99 715.28 287.87 43.01 2125.30

52597 7.700 10.47 SEN 32 14-Apr-97 21-Sep-00 0.16 386.30 126.24 495.74 152.86 40.96 1382.80

70887 6.500 9.19 SEN 29 11-Mar-98 14-Dec-00 0.14 298.13 119.46 384.40 92.86 72.16 1352.70

(continued on next page)
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(continued from previous page)

Bond Characteristics Sample Characteristics Credit Spread Descriptive Statistics (basis points)

FISD Coupon Mean First Last Mean

ID (%) (T − t) Rank n Trade Trade ∆t (yrs) Mean Median SD SD d(1) Min Max

Union Pacific Corp

25528 7.375 3.36 SEN 33 10-Jan-96 26-Jan-00 0.18 93.82 72.20 49.93 38.26 37.99 202.39

34274 6.400 7.77 SEN 46 23-Jan-96 27-Dec-00 0.16 94.59 80.80 43.06 25.55 31.89 201.01

34275 7.000 17.83 SEN 58 23-Jan-96 19-Dec-00 0.12 123.92 118.07 44.05 26.58 72.27 228.87

45340 7.250 10.34 SEN 53 22-Oct-96 21-Dec-00 0.11 110.90 98.31 49.69 24.61 49.23 199.45

47092 6.700 8.61 SEN 41 03-Dec-96 29-Nov-00 0.14 87.67 79.60 37.59 37.48 36.81 184.88

68031 6.625 8.84 SEN 43 29-Jan-98 19-Dec-00 0.10 127.71 106.41 35.89 23.51 77.37 198.50

68032 7.125 28.66 SEN 30 03-Feb-98 12-Dec-00 0.14 167.79 150.78 45.64 42.64 108.25 247.69

82805 5.780 2.18 SEN 17 16-Oct-98 05-Oct-00 0.17 132.72 132.36 32.34 26.32 93.51 209.17

Viacom Inc

25799 7.750 6.87 SEN 176 01-Dec-95 27-Dec-00 0.04 135.25 132.75 29.87 17.74 74.98 273.13

33080 6.750 4.22 SEN 46 12-Dec-95 28-Dec-00 0.16 120.54 115.72 24.56 23.23 81.20 174.65

33081 7.625 17.77 SEN 37 12-Dec-95 16-Aug-00 0.18 158.40 160.28 30.81 30.89 118.29 252.36

Wal-Mart Stores Inc

23421 9.100 3.83 SEN 50 26-Apr-94 09-Jul-99 0.15 41.58 34.48 21.26 14.12 17.15 107.11

23422 8.625 4.14 SEN 115 09-Mar-94 20-Mar-00 0.08 42.64 38.90 18.76 15.09 9.13 106.93

23425 6.125 3.25 SEN 37 15-Feb-94 13-Aug-98 0.18 33.36 31.25 11.17 14.05 12.92 59.10

23427 6.500 5.78 SEN 67 10-Mar-94 29-Dec-00 0.15 43.72 38.94 19.54 15.90 5.63 80.92

23429 7.250 15.38 SEN 45 28-Mar-95 27-Dec-00 0.19 65.41 59.49 23.06 13.14 33.06 135.09

23430 5.875 8.83 SEN 108 02-Mar-94 01-Dec-00 0.09 45.05 40.01 19.18 17.24 2.83 96.63

23432 7.500 7.22 SEN 84 18-May-94 06-Dec-00 0.11 48.83 42.17 24.73 20.05 5.26 163.56

23433 8.000 9.01 SEN 56 20-Sep-94 12-Dec-00 0.16 55.62 45.89 29.49 19.77 3.06 128.57

25644 6.750 5.14 SEN 31 10-May-95 08-Aug-00 0.25 37.38 36.80 15.39 13.59 4.93 71.10
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Table C.2: This table details the Refcorp strip data sourcedfrom Bloomberg. Shown are the summary
statistics of daily yields and available remaining maturities.

Maturity (yrs) Bid yields (%)

Bloomberg No. of Std.
ID Obs Mean Min Max Mean Min Max Dev.

76116EAR Govt 695 2.4 1.0 3.8 6.18 4.70 7.88 0.73
76116EAT Govt 804 3.2 1.0 4.8 6.30 4.90 7.94 0.71
76116EAV Govt 838 4.0 1.1 5.8 6.35 5.06 7.88 0.71
76116EAX Govt 871 5.0 1.0 6.8 6.47 5.12 7.90 0.67
76116EAZ Govt 857 6.0 1.8 7.8 6.56 5.02 8.00 0.66
76116EBB Govt 830 7.1 2.9 8.8 6.68 5.42 8.08 0.66
76116EBD Govt 828 8.1 3.9 9.8 6.81 5.60 8.20 0.64
76116EBF Govt 1753 7.3 3.8 10.8 6.46 4.41 8.43 0.79
76116EBH Govt 1753 8.3 4.8 11.8 6.52 4.48 8.46 0.78
76116EBK Govt 1753 9.3 5.8 12.8 6.57 4.51 8.48 0.78
76116EBM Govt 1753 10.3 6.8 13.8 6.61 4.56 8.51 0.78
76116EBP Govt 1753 11.3 7.8 14.8 6.66 4.60 8.55 0.77
76116EBR Govt 1753 12.3 8.8 15.8 6.70 4.71 8.58 0.76
76116EBT Govt 1753 13.3 9.8 16.8 6.75 4.83 8.62 0.75
76116EBV Govt 1753 14.3 10.8 17.8 6.80 4.94 8.66 0.75
76116EBX Govt 1753 15.3 11.8 18.8 6.84 5.06 8.71 0.74
76116EBZ Govt 1753 16.3 12.8 19.8 6.88 5.18 8.76 0.74
76116ECB Govt 1753 16.3 12.8 19.8 6.91 5.23 8.81 0.75
76116ECD Govt 1753 18.3 14.8 21.8 6.92 5.28 8.77 0.74
76116ECF Govt 1753 19.3 15.8 22.8 6.92 5.34 8.73 0.73
76116ECH Govt 1753 20.3 16.8 23.8 6.92 5.39 8.70 0.72
76116ECK Govt 1753 21.3 17.8 24.8 6.92 5.45 8.66 0.70
76116ECM Govt 1753 22.3 18.8 25.8 6.91 5.41 8.63 0.70
76116EGU Govt 1753 23.3 19.8 26.8 6.91 5.38 8.59 0.70
76116EGW Govt 1753 24.3 20.8 27.8 6.89 5.35 8.56 0.69
76116EGY Govt 1753 25.3 21.8 28.8 6.87 5.32 8.52 0.69
76116EHA Govt 1753 26.3 22.8 29.8 6.85 5.28 8.49 0.68
76116EHC Govt 1556 26.9 23.8 30.0 6.70 5.24 8.45 0.63
76116EHE Govt 1307 27.4 24.8 30.0 6.50 5.19 7.60 0.50
76116EHG Govt 1055 27.9 25.8 30.0 6.34 5.14 7.60 0.47
76116EHJ Govt 805 28.4 26.8 30.0 6.14 5.09 7.11 0.40
76116EHL Govt 554 28.9 27.8 30.0 6.24 5.32 7.11 0.42
76116EHN Govt 303 29.4 28.8 30.0 6.42 5.75 7.12 0.30
76116FAD Govt 53 29.9 29.8 30.0 6.19 5.91 6.45 0.17

Total 46416 16.6 1.0 30.0 6.71 4.41 8.81 0.74



Appendix D

Example of Implied Firm Solvency

Paths

The following plots show the implied time-series path for each firm’s log-solvency ratio

and the corresponding observed log-solvency ratio. The implied path of solvency is from

the obtained from the smoothed estimate of the state processfrom fitting the extended

Merton (1974) (EM) model with time-varying liquidity.
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Appendix E

Example Ox Code

The following programs are written in OX, a C-style matrix programming language

designed for econometric modelling. Further details of Ox are described in Doornick

(2002).

In the section, the extended Merton (1974) (EM) model with time-varying liquidity

is shown as an example. Other models vary in their state-space specification and bond

valuations, but in all other respects, share common code. The main routine is contained

in Appendix E.1, and the subroutine function for calculating the credit spread, given

parameters passed to it, is contained in Appendix E.2.

E.1 Extended Kalman Filter for EM model

/*-------------------------------------------------------------------------

EXTENDED KALMAN FILTER - Merton

This procedure returns the quasi-maximum likelihood estimates of

the Extended Merton model

Extended Merton’s specification. Coupon bond priced

as the sum of zeros (each valued with Merton zero-coupon model).

Spot rate is maturity matched smoothed estimate obtained from the Vasicek model.

Program returns parameter estimates, asymptotic standard errors

using Hessian method, smoothed estimates of historic latent log-solvency

ratio with upper and lower 95% confidence bounds. Includes constant risk premium

and time-varying liquidity premium.

State-space notation follows Harvey (1989):

Measurement equation: y=Z(t)+a(t)+d(t)+eps(t), Var(eps)=H(t)

Transition equation: a(t)=T(t)a(t-1)+c(t)+R.eta(t), Var(eta)=Q(t)

by Iain Maclachlan

October 2006

--------------------------------------------------------------------------*/

#include <oxstd.h>

#include <oxfloat.h>

#import <database>

#import <maximize>

#include <packages/gnudraw/gnudraw.h>

#include "SpreadFunctionMerton.ox"

242
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/*-------------------------------------------------------------------------

Declare Global Variables

--------------------------------------------------------------------------*/

static decl cm=1; //number of elements in state vector

static decl cg=1; //number of columns in R vector

static decl cN; //number of bonds issued by firm

static decl cT; //final time step indexed from zero

static decl mDt; //matrix of observed steps between trades in years

static decl my; //matrix of observed spreads

static decl mr; //array of smooth estimate short-rates

static decl mP_0; //initial log-solvency variance

static decl ma_0; //initial log-solvency value

static decl mypred; //predicted credit spread

static decl dFunc2; //storage for maximum likelihood

static decl ae; //standardised prediction errors

static decl d; //number of diffuse priors

static decl obs; //number of observations assuming no missing

static decl lag; //shifts row of data input

static decl cmethod; //optimisation method: 1=Simplex, 2=BFGS, 3=Simplex then BFGS

static decl smethod; //optimisation method used

static decl ct; //time step counter

static decl mvk; //filtered leverage ratio

static decl csumNt; //number of obs adjusted for missing values

static decl mindex; //missing observation index: 1 if missing, zero otherwise

static decl mse; //matrix of standardised prediction errors. Missing obs = .NaN

static decl mve; //matrix of prediction errors. Missing obs = .NaN

static decl mtenors; //array of remaining maturities

static decl g_a; //array of state vectors

static decl g_P; //array of state covariances

static decl g_P_prior; //array of prior state estimates (fwd filter)

static decl g_T; //array of transition matrices

static decl a_T; //array of prior state estimates (backward smoother recursion)

static decl P_T; //array of prior state covariance (backward smoother recursion)

static decl mcoupons; //array of coupon rates (p.a.)

static decl gr_sigma; //Vasicek short-rate volatility

static decl gr_theta; //Vasicek long-run short-rate

static decl gr_alpha; //Vasicek short-rate mean reversion rate

static decl gr_lambda; //Vasicek price of interest rate risk

static decl gx_0; //initial observed log-solvency

static decl mRefcorp; //array of 10 CMT Refcorp-Treasury spreads

/*-------------------------------------------------------------------------

The Extended Kalman Filter

Precedes the main function.

Returns the Log-Likelihood function value

--------------------------------------------------------------------------*/

EKF(const vLP, const adFunc, const avScore, const amHessian)

{

g_a=new array[obs]; //array of state vectors

g_P=new array[obs]; //array of state covariances

g_T=new array[obs]; //array of transition matrices

g_P_prior=new array[obs]; //array of prior state estimates

ae=new array[obs]; //array of standardised prediction errors

decl ma=zeros(cm); //state vector = implied log-solvency ratio

decl mP=zeros(cm,cm); //state covariance

decl ma_prior=(cm); //prior estimate of state vector

decl mP_prior=(cm,cm); //prior estimate of state covariance

decl mT=(cm,cm); //transition matrix

decl mc=(cm); //constant liquidity spread premium

decl mQ=(cg,cg); //transition error covariance identity

decl mR=(cm,cg); //transition error covariance scalar

decl mZ; //measurement equation matrix

decl mH; //measurement equation error

decl mF; //prediction error covariance

decl mInvF; //inverse of mF

decl mInvH; //inverse of mH

decl mK; //Kalman gain

decl cL; //log-likelihood
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decl ci; //counter

decl mv; //raw prediction error vector

decl me; //standardised prediction error vector

decl cNt; //no of time varying obs excluding missing obs, cNt<=cN

decl asign; //address of the log of the determinant of mF

decl cit; //measurement row counter excl. missing trades

decl v_delta; //asset payout rate

decl v_sigma; //asset volatility

decl m_sigma; //measurement volatility

decl v_constant; //constant spread premiums

decl refcorp; //Refcorp spread slope coefficient

/*-------------------------------------------------------------------------

Hyperparameters not in the state vector

are passed to global storage for calling

by spread function. Transformed to lie on real line.

-------------------------------------------------------------------------*/

v_sigma=exp(vLP[0]/2);

m_sigma=exp(vLP[1]/2);

v_delta=exp(vLP[2])/(1+exp(vLP[2]));

refcorp=exp(vLP[3]);

v_constant=exp(vLP[4:]);

/*-------------------------------------------------------------------------

Kalman state matrices are dimensioned before calculation

-------------------------------------------------------------------------*/

mvk=zeros(1,obs); //filtered leverage ratio

csumNt=0; //number of obs adjusted for missing values

mindex=zeros(cN,obs); //vectors of missing observation rows where element=1

mse=zeros(cN,obs); //matrix of standardised prediction errors including missing data = .NaN

mve=zeros(cN,obs); //matrix of prediction errors including missing data = .NaN

mypred=zeros(cN,obs); //predicted spreads

cL=0; //initialise log-likelihood store

/*-------------------------------------------------------------------------

Recursive filter loop in Kalman Filter: forward step through time

-------------------------------------------------------------------------*/

for (ct=0;ct<=cT;++ct)

{

/*

Index missing obs at each time step

*/ mindex[][ct]=isdotnan(my’[][ct]); //1 if missing, zero otherwise,

cNt=cN-sumc(mindex[][ct]); //Missing values are =0

csumNt=csumNt+cNt; //cumulative sum of valid observations

/*

Transition equation

*/ mc=(mr[ct]-v_delta-v_sigma^2/2)*mDt[ct];

mT=(1);

mR=v_sigma*sqrt(mDt[ct]);

mQ=1;

/*

Initialise measurement equation

*/ mH=unit(cNt,cNt)*m_sigma^2;

mZ=zeros(cNt,cm);

mF=zeros(cNt,cNt);

mv=zeros(cNt);

me=zeros(cNt);

/*

Initial prediction step

*/ if (ct==0)

{

ma_prior=mT*gx_0+mc;

mP_prior=mT*mP_0*mT’+mR*mQ*mR’;

}

/*-------------------------------------------------------------------------

Iteration loop start

Construct Z matrix with gradients of the state vector

for Extended Kalman filter. Dimensioned to remove missing

data rows. ci=original observation vector row number.
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cit=compressed vector row number excluding missing obs.

-------------------------------------------------------------------------*/

cit=0;

for (ci=0; ci<cN; ++ci) //inner loop across obs at time t

{

/*

Check if data not missing (mindex=0)

Construct Z on reduced dimension

Call predicted spread from sub-routine.

*/

if (mindex[ci][ct]==0) //mindex=0 for valid obs

{

decl spd=new SpreadFunctionMerton(ma_prior, mtenors[ct][ci],

v_sigma, v_delta, mr[ct], mcoupons[ci], gr_alpha, gr_theta, gr_sigma, gr_lambda);

decl spd2=new SpreadFunctionMerton(ma_prior+0.001, mtenors[ct][ci],

v_sigma, v_delta, mr[ct], mcoupons[ci], gr_alpha, gr_theta, gr_sigma, gr_lambda);

mypred[ci][ct]=spd.GetSpread()+refcorp*mRefcorp[ct]+v_constant[ci];

mZ[cit]=(spd2.GetSpread()-spd.GetSpread())/0.001;

cit=cit+1;

delete spd;

delete spd2;

}//end construction of Z loop

else

{

mypred[ci][ct]=.NaN;

}

} //end inner obs loop at time t

mv=deleter(my’[][ct]-mypred[][ct]); //prediction error

mF=mZ*mP_prior*mZ’+mH; //variance of prediction error

mInvF=invertgen(mF); //inverse pred error variance

me=mv./(sqrt(diagonal(mF)’)); //standardised prediction error

/*

update state vector

*/ mK=mP_prior*mZ’*mInvF; //Kalman gain

ma=ma_prior+mK*mv; //update state prediction

mP=(unit(cm)-mK*mZ)*mP_prior; //update covariance vector

/*

prior estimates of state values

*/ ma_prior=mT*ma+mc; //next period prior estimate of state mean

mP_prior=mT*mP*mT’+mR*mQ*mR’; //next period prior estimate of state covariance

mvk[ct]=exp(ma[0]); //store path of filtered leverage ratio estimate

/*

Sum likelihood excluding diffuse priors

*/ if (ct>=d)

{

cL=cL-1/2*(logdet(mF,&asign)+ mv’* mInvF * mv);

}

/*

Store for backward recursive smoothing and residual analysis

note that dimensions and therefore smoother are unaffected by missing observations

*/ g_a[ct]=ma;

g_P[ct]=mP;

g_T[ct]=mT;

g_P_prior[ct]=mP_prior;

/*

Restore dimension of prediction errors for diagnosis of errors with missing data.

mse=matrix of standardised prediction errors diagnostics on

the matrix require removal of missing .NaN entries

me=matrix of standardised residuals dimensioned to compress missing data

*/ cit=0;

for (ci=0; ci<cN; ++ci)

{

if(mindex[ci][ct]==0)

{

mse[ci][ct]=me[cit];
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mve[ci][ct]=mv[cit];

cit=cit+1;

}

else

{

mse[ci][ct]=.NaN;

mve[ci][ct]=.NaN;

}

} //end re-dimensioning loop

} //filter loop ends

/*-------------------------------------------------------------------------

Return log-likelihood

Note: log-likelihood uses valid number of obs

in numerator and number of time steps (summation) in denominator

-------------------------------------------------------------------------*/

adFunc[0]=double((cL-1/2*csumNt*log(2*M_PI))/(obs-d));

return 1; /* Kalman Filter completed */

}

/*----------------------Main Routine---------------------------------------

Performs:

Initial parameter starting values

Data input

Calls Kalman filter from within Ox maximisation routine

-------------------------------------------------------------------------*/

main()

{

/*

Local variables declared

*/

decl dbase; //temp input data storage for reading Excel

decl v_sigma_0; //initial asset volatility

decl cmeasure_0; //initial measurement error

decl v_delta_0; //initial asset payout rate

decl m_sigma_0; //initial measurement volatility

decl v_constant_0; //initial constant liquidity premium

decl refcorp_0; //initial Refcorp slope coefficient

decl ir; //result of Ox maximisation routine. 1=success

decl dFunc; //maximised value of likelihood

decl mhess; //Hessian matrix of the logliklihood with respect to hyperparameters

decl vP; //transformed hyperparameters

decl stateout; //optimised parameter estimates

decl maxit; //maximum number of iterations in the maximisation search

decl ci; //counter per bond

decl cfirm; //counter for the issuer

decl vlabels; //text identifier of bond

decl sname; //text identifier of issuer

decl tvalue; //estimated t-value of parameter estimates

decl standerrors; //estimated standard error of parameter estimates

decl mlev; //observed log-solvency S(t)

/*-------------------------------------------------------------------------

Identify firm and bonds IDs to load input data files

-------------------------------------------------------------------------*/

for (cfirm=0;cfirm<32;++cfirm)

{

if (cfirm==0){

sname="aetna";

vlabels={"42328","42329","42330"};}

else if (cfirm==1){

sname="associates2";

vlabels={"1555","1563","1568","1569","1575","26127","31674","32803","45820","91982"};}

loop repeats for each firm loading name and bond identifer

else if (cfirm==31){

sname="walmart2";

vlabels={"23421","23422","23425","23427","23429","23430","23432","23433","25644"};}
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/*-------------------------------------------------------------------------

Load data files

-------------------------------------------------------------------------*/

decl sfilein="C:\\thesis\\DataIn\\"~sname~".xls";

decl sfileparams="C:\\thesis\/media/idedisk3\\firm_assumptions.xls";

/*

Kalman Filter Settings

*/ cmethod=3;

maxit=200;

MaxControlEps(1e-4,5e-3); //Maximisation convergence criteria:(1e-4,5e-3)

/*

State vector settings

*/ d=1; //number of diffuse elements

lag=2; //due to time differencing

/*

Load bond data. Missing observation data represented by .NaN

*/ cN=columns(vlabels);

dbase=loadmat(sfilein);

mDt=dbase[lag:][1];

my=dbase[lag:][2:cN+1];

mtenors=dbase[lag:][cN+2:2*cN+1];

mcoupons=dbase[1][2*cN+2:3*cN+1]./100;

mr=dbase[1:][3*cN+2];

mlev=dbase[lag:][3*cN+5];

mRefcorp=dbase[lag:][4*cN+12];

delete dbase;

/*

load initial firm assumptions

*/ dbase=loadmat(sfileparams);

v_sigma_0=dbase[][1];

v_constant_0=dbase[][3];

m_sigma_0=dbase[][4];

delete dbase;

/*

Find time dimensions of data

*/ obs=rows(my);

cT=obs-1;

/*

Set Vasicek parameters. Exogenously estimated.

*/ gr_alpha=0.0232; //interest-rate reversion

gr_theta=0.1605; //interest-rate long-run

gr_lambda=0.0043; //price of interest rate risk

gr_sigma=0.0147; //interest-rate volatility

/*

Set initial diffuse state vector variance

*/ mP_0=v_sigma_0[cfirm]^2*mDt[0]*1000; //arbitrary increase in variance

v_delta_0=0.0483; //initial as per mean reported by EHH

gx_0=mlev[0]; //initial observed log-solvency

refcorp_0=1; //arbitrary initial

/*

Transform hyperparameters to meet economic constraints

*/ vP=

log(v_sigma_0[cfirm]^2)| //log asset variance

log(m_sigma_0[cfirm]^2)| //log measure variance

log(v_delta_0/(1-v_delta_0))| //asset payout

log(refcorp_0)| //Refcorp slope

log(ones(cN,1)*v_constant_0[cfirm]); //constant liquidity premiums

/*--------------------------------------------------------------------------

Maximise Loglikehood by calling EKF routine

Transformed hyperparameters passed through vP

Returned value for vP is at optimised estimates

Choice of method: 1=simplex, 2=BFGS, 3=simplex then BFGS

--------------------------------------------------------------------------*/

if (cmethod==1) //simplex

{

MaxControl(maxit, 1);

smethod="Simplex";
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ir=MaxSimplex(EKF, &vP, &dFunc2, 0);

}

if (cmethod==2) //BFGS

{

MaxControl(maxit, 1);

smethod="BFGS";

ir=MaxBFGS(EKF, &vP, &dFunc2, 0, TRUE);

}

if (cmethod>2) //Simplex then BFGS

{

smethod="Simplex then BFGS";

MaxControl(50, 1); // No. of simplex initial runs

MaxSimplex(EKF, &vP, &dFunc2, 0); //simplex Ox routine

MaxControl(maxit, 1); //maxit is limit on BFGS runs

ir=MaxBFGS(EKF, &vP, &dFunc2, 0, TRUE); //BFGS Ox routine

}

/*--------------------------------------------------------------------------

Fixed interval filter smoothing using whole data set

Refer Harvey (89) page 154, section 3.6.2

--------------------------------------------------------------------------*/

decl mP_star; //interim variable in recursion to get P_T. refer Harvey

decl vkvolsmooth; //stand. deviation of state estimate

decl vksmooth; //smoothed state

decl mysmooth; //smoothed predictions

a_T=new array[obs]; //array of prior state estimates

P_T=new array[obs]; //array of prior state covariance

vkvolsmooth=zeros(1,obs);

vksmooth=zeros(3,obs);

mysmooth=zeros(cN,obs);

/*

initial values at T

*/ a_T[cT]=g_a[cT];

P_T[cT]=g_P[cT];

/*

construct inital values including confidence levels

*/ vkvolsmooth[cT]=sqrt(P_T[cT][0][0]); //leverage estimate deviation

vksmooth[0][cT]=exp(a_T[cT][0][0]); //mean smoothed estimate of x(t)

vksmooth[1][cT]=exp(a_T[cT][0][0]+1.97*vkvolsmooth[cT]); //upper confidence of x(t)

vksmooth[2][cT]=exp(a_T[cT][0][0]-1.97*vkvolsmooth[cT]); //lower confidence of x(t)

/*

Backward recursion

*/ for (ct=cT-1; ct>=0; --ct)

{

mP_star=g_P[ct]*g_T[ct+1]’*invertgen(g_P_prior[ct]);

a_T[ct]=g_a[ct]+mP_star*(a_T[ct+1]-g_T[ct+1]*g_a[ct]);

P_T[ct]=g_P[ct]+mP_star*(P_T[ct+1]-g_P_prior[ct])*mP_star’;

vkvolsmooth[ct]=sqrt(P_T[ct][0][0]);

vksmooth[0][ct]=exp(a_T[ct][0][0]); //smoothed mean x(t)

vksmooth[1][ct]=exp(a_T[ct][0][0]+1.97*vkvolsmooth[ct]); //upper confidence x(t)

vksmooth[2][ct]=exp(a_T[ct][0][0]-1.97*vkvolsmooth[ct]); //lower confidence x(t)

}

/*--------------------------------------------------------------------------

Estimate standard errors by computing Hessian

--------------------------------------------------------------------------*/

Num2Derivative(EKF, vP, &mhess);

println("Hessian=",mhess);

tvalue=fabs(vP./sqrt(diagonal(-invertgen(mhess,0)/(obs-d))’));

/*--------------------------------------------------------------------------

Store untransformed parameter estimates

--------------------------------------------------------------------------*/

stateout=

exp(vP[0]/2)| //asset volatility

exp(vP[1]/2)| //measurement error volatility

exp(vP[2])/(1+exp(vP[2]))| //asset payout

exp(vP[3])| //Refcorp slope

exp(vP[4:]); //constant liquidity premium

/*--------------------------------------------------------------------------
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Compute standard errors of estimates

--------------------------------------------------------------------------*/

standerrors=stateout./tvalue;

/*--------------------------------------------------------------------------

Print Results

--------------------------------------------------------------------------*/

print("\nInputs:");

print("\nEKF estimation of Extended Merton, run on ", date());

print("\nFirm: ",sname);

print("\nFile in: ",sfilein);

print("\nStarting values: \n", vP);

print("\nNumber of time periods = ", obs);

print("\nNumber of bonds = ",cN);

print("\nNumber diffuse = ",d);

print("\nInitial state variance = ",mP_0);

print("\nr_alpha = ",gr_alpha);

print("\nr_theta = ",gr_theta);

print("\nr_lambda = ",gr_lambda);

print("\nr_sigma = ",gr_sigma);

print("\nLog-likelihood: ", dFunc2);

print("\nParameter Estimates: ",

"%r",

{"v_sigma",

"m_sigma",

"delta",

"refcorp",

"constant"},

"%c",{"Estimate","Stand. Error","t-Value"},

"%cf",{"%12.4g"," %12.4g"," %12.4g"},

stateout~standerrors~stateout./standerrors);

/*

compute prediction errors per bond expressed in basis points

*/ decl mrmsetable=zeros(3,cN);

for (ci=0;ci<cN;++ci)

{

mrmsetable[0][ci]=(meanc((deleter(vecr(mve[ci][d:]))).^2).^0.5)*10000;

mrmsetable[1][ci]=meanc(fabs(deletec(mve[ci][d:])’))*10000;

mrmsetable[2][ci]=meanc(deletec(mve[ci][d:])’)*10000;

}

/*

print average prediction errors

*/ print("\nAverage smoothed V/K =",meanr(vksmooth[0][:]));

print("\nMin smoothed V/K =",min(vksmooth[0][:]));

print("\nMax smoothed V/K =",max(vksmooth[0][:]));

print("\nAverage RMSE =",meanr(mrmsetable[0][:]));

print("\nAverage MAE =",meanr(mrmsetable[1][:]));

/*

print log-solvency smoothed estimates

*/ println("Smoothed V/K");

println("Mean, Lower @95%., Upper @95%");

println(vksmooth’);

}//end firm loop

}//end main function

E.2 Yield Spread Function for EM model

/*--------------------------------------------------------------------------

Values coupon bond under extended Merton model

Arguments in:

x_0 = firm log-solvency=ln(V/K)

T = bond maturity

v_sigma = firm asset volatility

v_delta = firm payout rate

r_0 = risk-free rate

coupon = coupon rate
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r_alpha = mean reversion rate of r

r_theta = long-term level of r

r_sigma = interest rate volatility

r_lambda = market price of interest rate risk

Returns:

Yield to maturity spread

assuming semi-annual compounding

--------------------------------------------------------------------------*/

#include <oxstd.h>

#include "cashflow.ox"

#include "vasicekfun.ox"

#include "ValueFunctionMerton.ox"

#include "ytm.ox"

class SpreadFunctionMerton

{

SpreadFunctionMerton(const x_0, const T, const v_sigma,

const v_delta, const r_0, const coupon, const r_alpha,

const r_theta, const r_sigma, const r_lambda);

decl time,payments,n,num_pmts,i,t,c,r,risky_pv,

riskless_pv,risky_ytm,riskless_ytm,spread,qsi;

GetSpread();

};

SpreadFunctionMerton::SpreadFunctionMerton(const x_0, const T, const v_sigma,

const v_delta, const r_0, const coupon, const r_alpha,

const r_theta, const r_sigma, const r_lambda)

{

payments=cashflow(T,coupon);

num_pmts=rows(payments);

risky_pv=0;

riskless_pv=0;

for (i=0;i<num_pmts;++i)

{

t=payments[i][0];

c=payments[i][1];

if(t==0)

{

r=r_0;

}

else

{

r=-log(vasicekfun(t, r_0, r_alpha, r_theta, r_sigma, r_lambda))/t;

}

riskless_pv=riskless_pv+exp(-r*t)*c;

risky_pv=risky_pv+

ValueFunctionMerton(x_0, v_delta, t, r, v_sigma, c);

}

risky_ytm=ytm(payments, risky_pv, 1);

riskless_ytm=ytm(payments,riskless_pv, 1);

spread=risky_ytm-riskless_ytm;

}

SpreadFunctionMerton::GetSpread()

{

return (spread);

}

/*--------------------------------------------------------------------------

Returns an array of bond coupons and time to receive

Arguments in:

years = years to maturity

coupon = semi-annual coupon rate

Argumensts out: T x 2 matrix [years to next cashflow][cash]

--------------------------------------------------------------------------*/

#include <oxstd.h>
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#include <oxfloat.h>

cashflow(const maturity, const coupon)

{

decl n; //number of time steps

decl c; //counter

decl mcash; //cash matrix

n=trunc((maturity*2))+1; //years by 2 then round up to find number of rows

mcash=zeros(n,2); //initialise

mcash[n-1][0]=maturity; //last node = maturity in years

mcash[n-1][1]=(coupon/2)+1; //last payment including face value

for (c=n-2;c>=0;--c) //recursively loop from last payment deducting .5 years

{

mcash[c][0]=mcash[c+1][0]-.5;

mcash[c][1]=(coupon/2);

}

if (mcash[0][0]==0)

{

mcash[0][1]=0; //exclude cum coupon

}

return mcash;

}

/*-------------------------------------------------------------------------

Returns continuous ytm using bisection search

Arguments in:

payments: array of cash flows

value: bond value

upper: maximum boundary of ytm

Argument out:

annualised ytm with semi-annual compounding

-------------------------------------------------------------------------*/

#include <oxstd.h>

/* Value to minimise to zero */

funval(const payments, const y, const value)

{

decl t,disc,cash,result;

t=payments[][0]; //time of cash in years

cash=payments[][1]; //cash

disc=exp(-y*t); //vector of discount rates

result=disc’*cash-value; //difference in calculated value from target

return result;

}

/* Bisection search to return ytm */

ytm(const payments, const value, const upper)

{

decl a, b, c, k, fc;

a=0;

b=upper;

decl result;

/* Iterations */

for (k = 0; k < 100; ++k)

{

c=(a+b)/2;

fc=funval(payments, c, value);

if(fc==0)

{

a=c;

b=c;

}

else if(fc<0)

{

b=c;

}

else

{

a=c;

}

if(fabs(b-a)<1e-20){break}
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}

//convert to annualised semi-annual compound

result=2*(exp(c/2)-1);

return result;

}
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