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The Prisoner‘s Dilemma, a simple two-person game invented by Merrill Flood & Melvin Dresher 
in the 1950s, has been studied extensively in Game Theory, Economics, and Political Science 

because it can be seen as an idealized model for real-world phenomena such as arms races (Axelrod 

1984). In this paper, I describe a GA to search for strategies to play the Iterated Prisoner‘s 

Dilemma, in which the fitness of a strategy is its average score in playing 100 games with itself and 

with every other member of the population. Each strategy remembers the three previous turns with 
a given player, by using a population of 20 strategies, fitness-proportional selection, single-point 

crossover with Pc=0.7, and mutation with Pm=0.001. 

JEL Classifications: C63, C72 

Keywords: GA, Crossover, Mutation and Fitness-proportional. 

1.   Introduction 

 
The Prisoner's Dilemma, can be formulated as follows: Two individuals (call them Mr. X 
and Mr. Y) are arrested for committing a crime together and are held in separate cells, 
with no communication possible between them. Mr. X is offered the following deal: If he 
confesses and agrees to testify against Mr. Y, he will receive a suspended sentence with 
probation, and Mr. Y will be put away for 5 years. However, if at the same time Mr. Y 
confesses and agrees to testify against Mr. X, his testimony will be discredited, and each 
will receive 4 years for pleading guilty. Mr. X is told that Mr. Y is being offered precisely 
the same deal. Both Mr. X and Mr. Y know that if neither testifies against the other they 
can be convicted only on a lesser charge for which they will each get 2 years in jail. 
Should Mr. X "defect" against Mr. Y and hope for the suspended sentence, risking, a 4-
year sentence if Mr. Y defects? Or should he "cooperate" with Mr. Y (even though they 
cannot communicate), in the hope that he will also cooperate so each will get only 2 
years, thereby risking a defection by Mr. Y that will send him away for 5 years?  
The game can be described more abstractly. Each player independently decides which 
move to make— i.e., whether to cooperate or defect. A "game" consists of each player's 
making a decision (a "move"). The possible results of a single game are summarized in a 
payoff matrix like the one shown in table 1.1. Here the goal is to get as many points (as 
opposed to as few years in prison) as possible. (In table 1.1, the payoff in each case can 
be interpreted as 5 minus the number of years in prison.) If both players cooperate, each 
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gets 3 points. If player A defects and player B cooperates, then player A gets 5 points and 
player B gets 0 points, and vice versa if the situation is reversed. If both players defect, 
each gets 1 point. What is the best strategy to use in order to maximize one's own payoff? 
If you suspect that your opponent is going to cooperate, then you should surely defect. If 
you suspect that your opponent is going to defect, then you should defect too. No matter 
what the other player does, it is always better to defect. The dilemma is that if both 
players defect each gets a worse score than if they cooperate. If the game is iterated (that 
is, if the two players play several games in a row), both players always defecting will lead 
to a much lower total payoff than the players would get if they cooperated. 

  Table 1. The Payoff Matrix 

                    Player A  

  Cooperate Defect 

                           

Player B 

Cooperate 3, 3 0, 5 

Defect 5, 0 1, 1 

 
Assume a rational player is faced with playing a single game (known as one-shot) of the 
Prisoner's Dilemma described above and that the player is trying to maximize their 
reward. If the player thinks his/her opponent will cooperate, the player will defect to 
receive a reward of 5 as opposed to cooperation, which would have earned him/her only 3 
points. However if the player thinks his/her opponent will defect, the rational choice is to 
also defect and receive 1 point rather than cooperate and receive the sucker‘s payoff of 0 
points. Therefore the rational decision is to always defect. 

      

     But assuming the other player is also rational he/she will come to the same conclusion 

as the first player. Thus both players will always defect; earning rewards of 1 point rather 

than the 3 points that mutual cooperation could have yielded. Therein lays the dilemma. 

In game theory the Prisoner's Dilemma can be viewed as a two players, non zero-sum and 

simultaneous game. Game theory has proved that always defecting is the dominant 

strategy for this game (the Nash Equilibrium). This holds true as long as the payoffs 

follow the relationship T > R > P > S, and the gain from mutual cooperation is greater 

than the average score for defecting and cooperating, R > (S + T)/ 2. While this game 

may seem simple it can be applied to a multitude of real world scenarios. Problems 

ranging from businesses interacting in a market, personal relationships, super power 

negotiations and the trench warfare ―live and let live‖ system of World War I have all 

been studied using some form of the Prisoner's Dilemma. 

2.   Iterated Prisoner’s Dilemma  

 
The Iterated Prisoner's Dilemma (IPD) is an interesting variant of the above game in 
which two players play repeated games of the Prisoner's Dilemma against each other. In 
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the above discussion of the Prisoner's Dilemma the dominant mutual defection strategy 
relies on the fact that it is a one-shot game, with no future. The key to the IPD is that the 
two players may play each other again; this allows the players to develop strategies based 
on previous game interactions. Therefore a player‘s move now may affect how his/her 
opponent behaves in the future and thus affect the player‘s future payoffs. This removes 
the single dominant strategy of mutual defection as players use more complex strategies 
dependant on game histories in order to maximize the payoffs they receive. In fact, under 
the correct circumstances mutual cooperation can emerge. The length of the IPD (i.e. the 
number of repetitions of the Prisoner's Dilemma played) must not be known to either 
player, if it was the last iteration would become a one-shot play of the Prisoner's 
Dilemma and as the players know they would not play each other again, both players 
would defect. Thus the second to last game would be a one-shot game (not influencing 
any future) and incur mutual defection, and so on till all games are one-shot plays of the 
Prisoner's Dilemma.  

 
This paper is concerned with modeling the IPD described above and devising 

strategies to play it. The fundamental Prisoner's Dilemma will be used without alteration. 
This assumes a player may interact with many others but is assumed to be interacting 
with them one at a time. The players will have a memory of the previous three games 
only (memory-3 IPD). 

3.   Genetic Algorithms 

Genetic Algorithms are search algorithms based on the mechanics of natural selection 

and natural genetics. John Holland at the University of Michigan originally developed 

them. They usually work by beginning with an initial population of random solutions to a 

given problem. The success of these solutions is then evaluated according to a specially 

designed fitness function. A form of ‗natural selection‘ is then performed whereby 

solutions with higher fitness scores have a greater probability of being selected. The 

selected solutions are then ‗mated‘ using genetic operators such as crossover and 

mutation. The children produced from this mating go on to form the next generation. The 

theory is that as fitter genetic material is propagated from generation to generation the 

solutions will converge towards an optimal solution. This research utilizes Genetic 

Algorithms to develop successful strategies for the Prisoner's Dilemma. 

 

A simple GA works on the basis of the following steps: 

 

 Step 1.  

Start with a randomly generated population of n l-bit chromosomes (Candidate 

solution to a problem).  

 

 Step 2. 

Calculate the fitness f(x) of each chromosome x in the population. 

 

 Step 3. 

 

Repeat the following steps until n offspring have been created: 
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o Select a pair of parent chromosomes from the current population, the 

probability of selection being an increasing function of fitness. Selection 

is done ―with replacement‖ meaning that, the same chromosome can be 

selected more than once to become a parent. 

o With probability Pc (the ―crossover probability‖), crossover the pair at a 

randomly chosen point to form two offspring. If no crossover takes 

place, form two offspring that are exact copies of their respective 

parents. (Note: crossover may be in ―single point‖ or ―multi-point‖ 

version of the GA.) 

o Mutate the two offspring at each locus with probability Pm (the mutation 

probability or mutation rate), and place the resulting chromosomes in the 

new population. (Note: if n is odd, one new population member can be 

described at random.) 

 

 Step 4.  

 

Replace the current population with the new population.  

 

 Step 5. 

Go to step 2. 

4.   Experimental Setup 

Genetic Algorithms provide the means by which strategies for the Prisoner's Dilemma are 

developed in this paper. As this is the principal objective of the research, naturally the 

genetic algorithm used is one of the systems major components. The other system 

components have been designed to suit the Genetic Algorithm. As such, in describing the 

genetic algorithms implementation most of the other components will also be described. 

What follows is a description of how a genetic algorithm was implemented to evolve 

strategies to play the Iterated Prisoner's Dilemma. 

4.1.   Figuring out Strategies 

 
The first issue is figuring out how to encode a strategy as a string. Suppose the 

memory of each player is one previous game. There are four possibilities for the previous 
game: 

Case 1:  CC 
Case 2:  CD 
Case 3:  DC  
Case 4:  DD   

 

Where C denotes ―cooperate‖ and D denotes ―defect‖. Case I is when both players 

cooperated in the previous game, case II is when player A cooperated and player B 

defected, and so on.  

 

A strategy is simply a rule that specifies an action in each of these cases. 
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If  CC (Case 1) Then  C 

If  CD (Case 2) Then  D 

If  DC (Case 3) Then  C 

If  DD (Case 4) Then  D 

 

If the cases are ordered in this canonical way, this strategy can be expressed compactly as 

the string CDCD. To use the string as a strategy, the player records the moves made in 

the previous game (e.g., CD), finds the case number i by looking up that case in a table of 

ordered cases like that given above (for CD, i = 2), and selects the letter in the ith   

position of the string as its move in the next game (for i = 2, the move is D). Consider the 

tournament involved strategies that remembered three previous games, then there are 64 

possibilities for the previous three games: 

 

 CC CC CC (Case 1), 

 CC CC CD (Case 2), 

 CC CC DC (Case 3), 

 … … … … 

 … … … … 

 … … … … 

  

          i 

 … … … … 

 … … … … 

 … … … … 

 DD DD DC (Case 63) 

 DD DD DD (Case 64) 

 

Thus, a 64-letter string, e.g., CCDCDCDCDCDC… can encode a strategy. Since using 

the strategy requires the results of the three previous games, we can use a 70-letter string, 

where the six extra letters encoded three hypothetical previous games used by the 

strategy to decide how to move in the first actual game. Since each locus in the string has 

two possible alleles (C and D), the number of possible strategies is 270. The search space 

is thus far too big to be searched exhaustively.  
The history in table 2 is stated in the order Your first move, Opponents first Move, 

Your second move, Opponents second Move, Your third move, Opponents third Move. 
The move column indicates what move to play for the given history. Table 2 also shows 
how the TFT strategy is encoded using this scheme. The resulting TFT chromosome is: 

 

CCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD

CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDC

DCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD 

 

This is actually stored as a Bit-Set in computer memory as follow: 
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110101010101010101010101010101010101010101010101010101010101010101010101

010101010101010101010101010101010101010101010101010101010101010 

Table 1.  Encoding Strategies.  

Bit History Move  Bit History Move  

0 First Move C 36 C D D D C D D 

1 Opponent C C 37 C D D D D C C 

2 Opponent D D 38 C D D D D D D 

3 Opponent CC C 39 D C C C C C C 

4 Opponent CD D 40 D C C C C D D 

5 Opponent DC C 41 D C C C D C C 

6 Opponent DD D 42 D C C C D D D 

7 C C C C C C C 43 D C C D C C C 

8 C C C C C D D 44 D C C D C D D 

9 C C C C D C C 45 D C C D D C C 

10 C C C C D D D 46 D C C D D D D 

11 C C C D C C C 47 D C D C C C C 

12 C C C D C D D 48 D C D C C D D 

13 C C C D D C C 49 D C D C D C C 

14 C C C D D D D 50 D C D C D D D 

15 C C D C C C C 51 D C D D C C  C 

16 C C D C C D D 52 D C D D C D D 

17 C C D C D C C 53 D C D D D C C 

18 C C D C D D D 54 D C D D D D D 

19 C C D D C C C 55 D D C C C C C 

20 C C D D C D D 56 D D C C C D D 

21 C C D D D C C 57 D D C C D C C 

22 C C D D D D D 58 D D C C D D D 

23 C D C C C C C 59 D D C D C C  C 

24 C D C C C D D 60 D D C D C D D 

25 C D C C D C C 61 D D C D D C C 

26 C D C C D D D 62 D D C D D D D 

27 C D C D C C C 63 D D D C C C C 

28 C D C D C D D 64 D D D C C D D 

29 C D C D D C C 65 D D D C D C C 

30 C D C D D D D 66 D D D C D D D 

31 C D D C C C C 67 D D D D C C C 

32 C D D C C D D 68 D D D D C D D 

33 C D D C D C C 69 D D D D D C C 

34 C D D C D D D 70 D D D D D D D 

35 C D D C C C C    

      

 

4.2.   Fitness Function  

 

The next problem faced when designing a Genetic Algorithm is how to evaluate the 

success of each candidate solution. The Prisoner's Dilemma provides a natural means of 

evaluating the success, or fitness, of each solution – the game payoffs. These payoffs are 

stored in Rules objects within the system. We can state that the strategy, which earns the 

highest payoff score according to the rules of the IPD, is the fittest, while the lowest 

scoring strategy is the weakest. Thus fitness can be evaluated by playing the Prisoner 
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objects in some form of IPD. The Game object was implemented to play a game of IPD 

for a specified number of rounds between two players. This object simply keeps track of 

two Prisoner‘s scores and game histories while asking them for new moves until the 

rounds limit is met. The tournament object uses this class to organize a round robin IPD 

tournament, akin to Axelrod‘s [1] computer tournaments. In such a tournament an array 

of Prisoner‘s is supplied as the population and every Prisoner plays an IPD Game against 

every other Prisoner and themselves. Each player‘s payoff after these interactions have 

completed is deemed to be the player‘s fitness score. 

4.3.   Fitness Scaling 

   The fitness scores calculated above will serve to determine which players go on to 
reproduce and which players ‗die off‘. However these ‗raw‘ fitness values present some 
problems. The initial populations are likely to have a small number of very high scoring 
individuals in a population of ordinary colleagues. If using fitness proportional selection, 
these high scorers will take over the population rapidly and cause the population to 
converge on one strategy. This strategy will be a mixture of the high scorers‘ strategies, 
however as the population did not get time to develop these strategies may be sub-
optimal, and the population will have converged prematurely. In the later generations of 
evolution the individuals should have begun to converge on a strategy. Thus they will all 
share very similar chromosomes and the population‘s average fitness will likely be very 
close to the population‘s best fitness. In this situation average members and above 
average members will have a similar probability of reproduction. In this situation the 
natural selection process has ended and the algorithm is merely performing a random 
search among the strategies. 

 

It is useful to scale the ‗raw‘ fitness scores to help avoid the above situations. This 

algorithm uses linear scaling as described by Goldberg, Linear scaling produces a linear 

relationship between raw fitness, f, and scaled fitness, f’, as follows: 

  

    f’ = a f + b               (1) 

 

Coefficients a and b may be calculated as follows: 

 

         (2) 

 

 

 

          (3)  

 

 

Where c is the number of times the fittest individual should be allowed to reproduce. A 

value of 2 was found to produce accurate scaling in this method. The effect of this fitness 

scaling is shown in the fig. 1. 
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Fig. 1. Linear Fitness Scaling 

 

This scaling works fine for most situations, however in the later stages of evolution when 

there are relatively few ‗low‘ scoring strategies problems may arise. The average and best 

scoring strategies have very close raw fitness and extreme scaling is required to separate 

them. Applying this scaling to the few low scorers may result in them becoming negative. 

[Fig. 2] 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Linear Fitness Scaling Negative Values 

 
This can be overcome by adjusting the scaling coefficients to scale the weak strategies to 
zero and scale the other strategies as much as is possible. In the case of negative scaled 
fitness values the coefficients may be calculated as follows: 

 

          (4)  

 

          (5)   
 
 
 
This scaling helps prevent the early dominance of high scorers, while later on 
distinguishes between mediocre and above average strategies. It is implemented in the 
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Genetic object and applied to all raw fitness scores (i.e. the IPD payoffs) before 
performing genetic algorithm selection. 

4.4.   Reproduction 

 

Having selected two strategies from the populat ion the Genetic Algorithm proceeds to 

mate these two parents and produce their two children. This reproduction is a mirror of 

sexual reproduction in which the genetic material of the parents is combined to produce 

the children. In this research reproduction allows exploration of the search space and 

provides a means of reaching new and hopefully better strategies. Reproduction is 

accomplished using two simple yet effective genetic operators–crossover and mutation. 
 
Crossover is an artificial implementation of the exchange of genetic information 

that occurs in real-life reproduction. This algorithm, breaking both the parent 
chromosomes at the same randomly chosen point and then rejoining the parts, can 
implement it. [Fig. 3] 

 

 
Fig. 3. Crossover 

 

This crossover action, when applied to strategies selected proportional to their fitness, 
constructs new ideas from high scoring building blocks. The genetic algorithm 
implemented in this research performs crossover a large percentage of the time, however 
occasionally (5% of the time by default) crossover will not be performed and simple 
natural selection will occur. In nature small mutations of the genetic material exchanged 
during reproduction occurs a very small percentage of the time. However if these 
mutations produce an advantageous result they will be propagated throughout the 
population by means of natural selection. The possibility of small mutations occurring 
was included in this system. A very small percentage of the time (0.1% of the time by 
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default) a bit copied between the parent and the child will be flipped, representing a 
mutation. These mutations provide a means of exploration to the search. 

4.5.   Replacement 

 The genetic algorithm is run across the population until it has produced enough 

children to build a new generation. The children then replace all of the original 

population. More complicated replacement techniques such as fit-weak and child parent 

replaced were researched but they were unsuitable for the round robin tournament nature 

of the system. 

4.6.   Search Termination 

The only termination criteria implemented is a limit to the maximum number of 
generations that will run; the user may set this. Other termination criteria were 
investigated, for example detecting when a population has converged and strategies are 
receiving equal payoffs, however these criteria resulted in many false positives and it was 
decided better to allow the user to judge when the algorithm had reached the end of 
useful evolution.  

5.   Conclusion 

GA often found strategies that scored substantially higher than any other algorithm. But it 
would be wrong to conclude that the GA discovered strategies that are ―batter‖ than any 
human designed strategy. The performance of a strategy depends very much on its 
environment- that is, on the strategies with which it is playing. Here the environment was 
fixed- that did not change over the course of a run. Therefore it may conclude that the 
above-mentioned environment is static (Unchanged).      
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Appendix: 

 
The following flowchart describes the completed genetic algorithm of the 

Prisoner‘s Dilemma Problem.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Flow Chart of Prisoner‘s Dilemma Problem 
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