
MPRA
Munich Personal RePEc Archive

Using Genetic Algorithms to Develop
Strategies for the Prisoners Dilemma

Haider, Adnan

Department of Economics, Pakistan Institute of

Development Economics, Islamabad

12. November 2005

Online at http://mpra.ub.uni-muenchen.de/28574/

MPRA Paper No. 28574, posted 03. February 2011 / 16:48

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6717435?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://mpra.ub.uni-muenchen.de/
http://mpra.ub.uni-muenchen.de/28574/

1

USING GENETIC ALGORITHMS TO DEVELOP STRATEGIES

FOR THE PRISONER’S DILEMMA

ADNAN HAIDER

PhD Fellow
Department of Economics

Pakistan Institute of Development Economics

Islamabad, Pakistan.

The Prisoner‘s Dilemma, a simple two-person game invented by Merrill Flood & Melvin Dresher
in the 1950s, has been studied extensively in Game Theory, Economics, and Political Science

because it can be seen as an idealized model for real-world phenomena such as arms races (Axelrod

1984). In this paper, I describe a GA to search for strategies to play the Iterated Prisoner‘s

Dilemma, in which the fitness of a strategy is its average score in playing 100 games with itself and

with every other member of the population. Each strategy remembers the three previous turns with
a given player, by using a population of 20 strategies, fitness-proportional selection, single-point

crossover with Pc=0.7, and mutation with Pm=0.001.

JEL Classifications: C63, C72

Keywords: GA, Crossover, Mutation and Fitness-proportional.

1. Introduction

The Prisoner's Dilemma, can be formulated as follows: Two individuals (call them Mr. X
and Mr. Y) are arrested for committing a crime together and are held in separate cells,
with no communication possible between them. Mr. X is offered the following deal: If he
confesses and agrees to testify against Mr. Y, he will receive a suspended sentence with
probation, and Mr. Y will be put away for 5 years. However, if at the same time Mr. Y
confesses and agrees to testify against Mr. X, his testimony will be discredited, and each
will receive 4 years for pleading guilty. Mr. X is told that Mr. Y is being offered precisely
the same deal. Both Mr. X and Mr. Y know that if neither testifies against the other they
can be convicted only on a lesser charge for which they will each get 2 years in jail.
Should Mr. X "defect" against Mr. Y and hope for the suspended sentence, risking, a 4-
year sentence if Mr. Y defects? Or should he "cooperate" with Mr. Y (even though they
cannot communicate), in the hope that he will also cooperate so each will get only 2
years, thereby risking a defection by Mr. Y that will send him away for 5 years?
The game can be described more abstractly. Each player independently decides which
move to make— i.e., whether to cooperate or defect. A "game" consists of each player's
making a decision (a "move"). The possible results of a single game are summarized in a
payoff matrix like the one shown in table 1.1. Here the goal is to get as many points (as
opposed to as few years in prison) as possible. (In table 1.1, the payoff in each case can
be interpreted as 5 minus the number of years in prison.) If both players cooperate, each

__

The author wishes to thank to an anonymous referee for providing useful comments.

2

gets 3 points. If player A defects and player B cooperates, then player A gets 5 points and
player B gets 0 points, and vice versa if the situation is reversed. If both players defect,
each gets 1 point. What is the best strategy to use in order to maximize one's own payoff?
If you suspect that your opponent is going to cooperate, then you should surely defect. If
you suspect that your opponent is going to defect, then you should defect too. No matter
what the other player does, it is always better to defect. The dilemma is that if both
players defect each gets a worse score than if they cooperate. If the game is iterated (that
is, if the two players play several games in a row), both players always defecting will lead
to a much lower total payoff than the players would get if they cooperated.

 Table 1. The Payoff Matrix

 Player A

 Cooperate Defect

Player B

Cooperate 3, 3 0, 5

Defect 5, 0 1, 1

Assume a rational player is faced with playing a single game (known as one-shot) of the
Prisoner's Dilemma described above and that the player is trying to maximize their
reward. If the player thinks his/her opponent will cooperate, the player will defect to
receive a reward of 5 as opposed to cooperation, which would have earned him/her only 3
points. However if the player thinks his/her opponent will defect, the rational choice is to
also defect and receive 1 point rather than cooperate and receive the sucker‘s payoff of 0
points. Therefore the rational decision is to always defect.

 But assuming the other player is also rational he/she will come to the same conclusion

as the first player. Thus both players will always defect; earning rewards of 1 point rather

than the 3 points that mutual cooperation could have yielded. Therein lays the dilemma.

In game theory the Prisoner's Dilemma can be viewed as a two players, non zero-sum and

simultaneous game. Game theory has proved that always defecting is the dominant

strategy for this game (the Nash Equilibrium). This holds true as long as the payoffs

follow the relationship T > R > P > S, and the gain from mutual cooperation is greater

than the average score for defecting and cooperating, R > (S + T)/ 2. While this game

may seem simple it can be applied to a multitude of real world scenarios. Problems

ranging from businesses interacting in a market, personal relationships, super power

negotiations and the trench warfare ―live and let live‖ system of World War I have all

been studied using some form of the Prisoner's Dilemma.

2. Iterated Prisoner’s Dilemma

The Iterated Prisoner's Dilemma (IPD) is an interesting variant of the above game in
which two players play repeated games of the Prisoner's Dilemma against each other. In

3

the above discussion of the Prisoner's Dilemma the dominant mutual defection strategy
relies on the fact that it is a one-shot game, with no future. The key to the IPD is that the
two players may play each other again; this allows the players to develop strategies based
on previous game interactions. Therefore a player‘s move now may affect how his/her
opponent behaves in the future and thus affect the player‘s future payoffs. This removes
the single dominant strategy of mutual defection as players use more complex strategies
dependant on game histories in order to maximize the payoffs they receive. In fact, under
the correct circumstances mutual cooperation can emerge. The length of the IPD (i.e. the
number of repetitions of the Prisoner's Dilemma played) must not be known to either
player, if it was the last iteration would become a one-shot play of the Prisoner's
Dilemma and as the players know they would not play each other again, both players
would defect. Thus the second to last game would be a one-shot game (not influencing
any future) and incur mutual defection, and so on till all games are one-shot plays of the
Prisoner's Dilemma.

This paper is concerned with modeling the IPD described above and devising

strategies to play it. The fundamental Prisoner's Dilemma will be used without alteration.
This assumes a player may interact with many others but is assumed to be interacting
with them one at a time. The players will have a memory of the previous three games
only (memory-3 IPD).

3. Genetic Algorithms

Genetic Algorithms are search algorithms based on the mechanics of natural selection

and natural genetics. John Holland at the University of Michigan originally developed

them. They usually work by beginning with an initial population of random solutions to a

given problem. The success of these solutions is then evaluated according to a specially

designed fitness function. A form of ‗natural selection‘ is then performed whereby

solutions with higher fitness scores have a greater probability of being selected. The

selected solutions are then ‗mated‘ using genetic operators such as crossover and

mutation. The children produced from this mating go on to form the next generation. The

theory is that as fitter genetic material is propagated from generation to generation the

solutions will converge towards an optimal solution. This research utilizes Genetic

Algorithms to develop successful strategies for the Prisoner's Dilemma.

A simple GA works on the basis of the following steps:

 Step 1.

Start with a randomly generated population of n l-bit chromosomes (Candidate

solution to a problem).

 Step 2.

Calculate the fitness f(x) of each chromosome x in the population.

 Step 3.

Repeat the following steps until n offspring have been created:

4

o Select a pair of parent chromosomes from the current population, the

probability of selection being an increasing function of fitness. Selection

is done ―with replacement‖ meaning that, the same chromosome can be

selected more than once to become a parent.

o With probability Pc (the ―crossover probability‖), crossover the pair at a

randomly chosen point to form two offspring. If no crossover takes

place, form two offspring that are exact copies of their respective

parents. (Note: crossover may be in ―single point‖ or ―multi-point‖

version of the GA.)

o Mutate the two offspring at each locus with probability Pm (the mutation

probability or mutation rate), and place the resulting chromosomes in the

new population. (Note: if n is odd, one new population member can be

described at random.)

 Step 4.

Replace the current population with the new population.

 Step 5.

Go to step 2.

4. Experimental Setup

Genetic Algorithms provide the means by which strategies for the Prisoner's Dilemma are

developed in this paper. As this is the principal objective of the research, naturally the

genetic algorithm used is one of the systems major components. The other system

components have been designed to suit the Genetic Algorithm. As such, in describing the

genetic algorithms implementation most of the other components will also be described.

What follows is a description of how a genetic algorithm was implemented to evolve

strategies to play the Iterated Prisoner's Dilemma.

4.1. Figuring out Strategies

The first issue is figuring out how to encode a strategy as a string. Suppose the

memory of each player is one previous game. There are four possibilities for the previous
game:

Case 1: CC
Case 2: CD
Case 3: DC
Case 4: DD

Where C denotes ―cooperate‖ and D denotes ―defect‖. Case I is when both players

cooperated in the previous game, case II is when player A cooperated and player B

defected, and so on.

A strategy is simply a rule that specifies an action in each of these cases.

5

If CC (Case 1) Then C

If CD (Case 2) Then D

If DC (Case 3) Then C

If DD (Case 4) Then D

If the cases are ordered in this canonical way, this strategy can be expressed compactly as

the string CDCD. To use the string as a strategy, the player records the moves made in

the previous game (e.g., CD), finds the case number i by looking up that case in a table of

ordered cases like that given above (for CD, i = 2), and selects the letter in the ith

position of the string as its move in the next game (for i = 2, the move is D). Consider the

tournament involved strategies that remembered three previous games, then there are 64

possibilities for the previous three games:

 CC CC CC (Case 1),

 CC CC CD (Case 2),

 CC CC DC (Case 3),

 … … … …

 … … … …

 … … … …

 i

 … … … …

 … … … …

 … … … …

 DD DD DC (Case 63)

 DD DD DD (Case 64)

Thus, a 64-letter string, e.g., CCDCDCDCDCDC… can encode a strategy. Since using

the strategy requires the results of the three previous games, we can use a 70-letter string,

where the six extra letters encoded three hypothetical previous games used by the

strategy to decide how to move in the first actual game. Since each locus in the string has

two possible alleles (C and D), the number of possible strategies is 270. The search space

is thus far too big to be searched exhaustively.
The history in table 2 is stated in the order Your first move, Opponents first Move,

Your second move, Opponents second Move, Your third move, Opponents third Move.
The move column indicates what move to play for the given history. Table 2 also shows
how the TFT strategy is encoded using this scheme. The resulting TFT chromosome is:

CCD

CDC

DCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD

This is actually stored as a Bit-Set in computer memory as follow:

6

1101

010

Table 1. Encoding Strategies.

Bit History Move Bit History Move

0 First Move C 36 C D D D C D D

1 Opponent C C 37 C D D D D C C

2 Opponent D D 38 C D D D D D D

3 Opponent CC C 39 D C C C C C C

4 Opponent CD D 40 D C C C C D D

5 Opponent DC C 41 D C C C D C C

6 Opponent DD D 42 D C C C D D D

7 C C C C C C C 43 D C C D C C C

8 C C C C C D D 44 D C C D C D D

9 C C C C D C C 45 D C C D D C C

10 C C C C D D D 46 D C C D D D D

11 C C C D C C C 47 D C D C C C C

12 C C C D C D D 48 D C D C C D D

13 C C C D D C C 49 D C D C D C C

14 C C C D D D D 50 D C D C D D D

15 C C D C C C C 51 D C D D C C C

16 C C D C C D D 52 D C D D C D D

17 C C D C D C C 53 D C D D D C C

18 C C D C D D D 54 D C D D D D D

19 C C D D C C C 55 D D C C C C C

20 C C D D C D D 56 D D C C C D D

21 C C D D D C C 57 D D C C D C C

22 C C D D D D D 58 D D C C D D D

23 C D C C C C C 59 D D C D C C C

24 C D C C C D D 60 D D C D C D D

25 C D C C D C C 61 D D C D D C C

26 C D C C D D D 62 D D C D D D D

27 C D C D C C C 63 D D D C C C C

28 C D C D C D D 64 D D D C C D D

29 C D C D D C C 65 D D D C D C C

30 C D C D D D D 66 D D D C D D D

31 C D D C C C C 67 D D D D C C C

32 C D D C C D D 68 D D D D C D D

33 C D D C D C C 69 D D D D D C C

34 C D D C D D D 70 D D D D D D D

35 C D D C C C C

4.2. Fitness Function

The next problem faced when designing a Genetic Algorithm is how to evaluate the

success of each candidate solution. The Prisoner's Dilemma provides a natural means of

evaluating the success, or fitness, of each solution – the game payoffs. These payoffs are

stored in Rules objects within the system. We can state that the strategy, which earns the

highest payoff score according to the rules of the IPD, is the fittest, while the lowest

scoring strategy is the weakest. Thus fitness can be evaluated by playing the Prisoner

7

avg

avgavg

avg
ff

fcf
fb

max

*

*))((

avg

avg

ff

f
ca

max

*)1(

objects in some form of IPD. The Game object was implemented to play a game of IPD

for a specified number of rounds between two players. This object simply keeps track of

two Prisoner‘s scores and game histories while asking them for new moves until the

rounds limit is met. The tournament object uses this class to organize a round robin IPD

tournament, akin to Axelrod‘s [1] computer tournaments. In such a tournament an array

of Prisoner‘s is supplied as the population and every Prisoner plays an IPD Game against

every other Prisoner and themselves. Each player‘s payoff after these interactions have

completed is deemed to be the player‘s fitness score.

4.3. Fitness Scaling

 The fitness scores calculated above will serve to determine which players go on to
reproduce and which players ‗die off‘. However these ‗raw‘ fitness values present some
problems. The initial populations are likely to have a small number of very high scoring
individuals in a population of ordinary colleagues. If using fitness proportional selection,
these high scorers will take over the population rapidly and cause the population to
converge on one strategy. This strategy will be a mixture of the high scorers‘ strategies,
however as the population did not get time to develop these strategies may be sub-
optimal, and the population will have converged prematurely. In the later generations of
evolution the individuals should have begun to converge on a strategy. Thus they will all
share very similar chromosomes and the population‘s average fitness will likely be very
close to the population‘s best fitness. In this situation average members and above
average members will have a similar probability of reproduction. In this situation the
natural selection process has ended and the algorithm is merely performing a random
search among the strategies.

It is useful to scale the ‗raw‘ fitness scores to help avoid the above situations. This

algorithm uses linear scaling as described by Goldberg, Linear scaling produces a linear

relationship between raw fitness, f, and scaled fitness, f’, as follows:

 f’ = a f + b (1)

Coefficients a and b may be calculated as follows:

 (2)

 (3)

Where c is the number of times the fittest individual should be allowed to reproduce. A

value of 2 was found to produce accurate scaling in this method. The effect of this fitness

scaling is shown in the fig. 1.

8

minff

f
a

avg

avg

min

*

min
ff

f
fb

avg

avg

Fig. 1. Linear Fitness Scaling

This scaling works fine for most situations, however in the later stages of evolution when

there are relatively few ‗low‘ scoring strategies problems may arise. The average and best

scoring strategies have very close raw fitness and extreme scaling is required to separate

them. Applying this scaling to the few low scorers may result in them becoming negative.

[Fig. 2]

Fig. 2. Linear Fitness Scaling Negative Values

This can be overcome by adjusting the scaling coefficients to scale the weak strategies to
zero and scale the other strategies as much as is possible. In the case of negative scaled
fitness values the coefficients may be calculated as follows:

 (4)

 (5)

This scaling helps prevent the early dominance of high scorers, while later on
distinguishes between mediocre and above average strategies. It is implemented in the

9

Genetic object and applied to all raw fitness scores (i.e. the IPD payoffs) before
performing genetic algorithm selection.

4.4. Reproduction

Having selected two strategies from the populat ion the Genetic Algorithm proceeds to

mate these two parents and produce their two children. This reproduction is a mirror of

sexual reproduction in which the genetic material of the parents is combined to produce

the children. In this research reproduction allows exploration of the search space and

provides a means of reaching new and hopefully better strategies. Reproduction is

accomplished using two simple yet effective genetic operators–crossover and mutation.

Crossover is an artificial implementation of the exchange of genetic information

that occurs in real-life reproduction. This algorithm, breaking both the parent
chromosomes at the same randomly chosen point and then rejoining the parts, can
implement it. [Fig. 3]

Fig. 3. Crossover

This crossover action, when applied to strategies selected proportional to their fitness,
constructs new ideas from high scoring building blocks. The genetic algorithm
implemented in this research performs crossover a large percentage of the time, however
occasionally (5% of the time by default) crossover will not be performed and simple
natural selection will occur. In nature small mutations of the genetic material exchanged
during reproduction occurs a very small percentage of the time. However if these
mutations produce an advantageous result they will be propagated throughout the
population by means of natural selection. The possibility of small mutations occurring
was included in this system. A very small percentage of the time (0.1% of the time by

10

default) a bit copied between the parent and the child will be flipped, representing a
mutation. These mutations provide a means of exploration to the search.

4.5. Replacement

 The genetic algorithm is run across the population until it has produced enough

children to build a new generation. The children then replace all of the original

population. More complicated replacement techniques such as fit-weak and child parent

replaced were researched but they were unsuitable for the round robin tournament nature

of the system.

4.6. Search Termination

The only termination criteria implemented is a limit to the maximum number of
generations that will run; the user may set this. Other termination criteria were
investigated, for example detecting when a population has converged and strategies are
receiving equal payoffs, however these criteria resulted in many false positives and it was
decided better to allow the user to judge when the algorithm had reached the end of
useful evolution.

5. Conclusion

GA often found strategies that scored substantially higher than any other algorithm. But it
would be wrong to conclude that the GA discovered strategies that are ―batter‖ than any
human designed strategy. The performance of a strategy depends very much on its
environment- that is, on the strategies with which it is playing. Here the environment was
fixed- that did not change over the course of a run. Therefore it may conclude that the
above-mentioned environment is static (Unchanged).

11

Appendix:

The following flowchart describes the completed genetic algorithm of the

Prisoner‘s Dilemma Problem.

Fig. 4. Flow Chart of Prisoner‘s Dilemma Problem

12

References:

Axelrod R, (1990). The Evolution of Cooperation, Penguin Books

B. Routledge, (1993). Co-Evolution and Spatial Interaction, mimeo, University of British

Columbia

Chambers (ed.), (1995). Pract ical Handbook of Genetic A lgorithms Applications, Volume II, CRC

Press

Conor Ryan, Niche Species, (1995). Formation in Genetic A lgorithms, In L. Chambers (ed.),

Practical Handbook of Genetic A lgorithms Applications Volume I, CRC Press

David E. Goldberg, (1989). Genetic Algorithms in search, optimization, and machine learn ing,

Addison-Wesley Publishing

Frank Schweitzer, Laxmidhar Behera, Heinz Mühlenbein, (2002). Evolution of Cooperation in a

Spatial Prisoner's Dilemma, Advances in Complex Systems, vol. 5, no. 2-3, pp. 269-299

John R. Koza, (1992). Genet ic Programming On the programming of computers by means of

natural selection, MIT Press

Peter J.B. Hancock, (1995). Selection Methods for Evolutionary Algorithms, In L. Geoff Bart lett,

Genie: A First GA, In L. Chambers (ed.), Practical Handbook of Genetic Algorithms

Applications, Volume I, CRC Press

Shaun P. Hargreaves Heap and Yanis Varoufakis, (1995). Game Theory a Crit ical Introduction,

McGraw Hill Press

