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Abstract

In this paper we investigate the dependence structure for Ornsteintiditlen
processes with totally skewed tempered stable structure. They are natural
extension of Ornstein-Uhlenbeck processes withstable (and Gaussian)
distribution. However for then-stable models the covariance is not de-
fined therefore in order to compare the structure of dependence sfedrn
Uhlenbeck with tempered stable and stable structure we analyze another
measures of dependence defined for infinitely divisible processésasuc
Lévy correlation cascade and codifference. We show that for anafped
cesses thedvy correlation cascade goes faster to zero as in the stable case,
while the codifference of the-stable Ornstein-Uhlenbeck process has the
same form as in the tempered case.

Key words: truncated &vy flight, tempered stable, Ornstein-Uhlenbeck pro-
cess, structure of dependence
PACS: 05.40.Fb, 05.40.-a

1 Introduction

In modern mathematical finance continuous time models plepeaal role be-
cause they allow handling unequally spaced data and evénfteguency data,
which are realistic for liquid data. The probably most fama@xample is the

*Partially supported by European Union within European &daiind.



Ornstein-Uhlenbeck process that was introduced in 1930Higreck and Orn-
stein [1] as a suitable model in the physical phenomenasst@mand Uhlenbeck
proposed this new model as an alternative to the classicaliam motion in
case when some kind of mean reverting tendency is observdteineal data.
The Ornstein-Uhlenbeck process have found many applitagspecially to the
real financial data such as interest rates, currency exetrangs, and commodity
prices. In finance it is best known in connection with the ¥akiinterest rate
model, [2].

Many asset pricing models (such as classical Vasicek mads)me that the
analyzed data have normal distribution. Unfortunately assumption of nor-
mality is unsatisfactory for many observed data. One ampré@ato replace the
Brownian motion in the Ornstein-Uhlenbeck process by a legdailed Lévy pro-
cess. Many studies have shown that heavy-tailed distabsitallow for modelling
different kinds of phenomena when the assumption of notynfar the observa-
tions does not seem not to be reasonable. Especiatable (stable) distributions
have found many practical applications, for instance inmfoeg 3], physics [4] and
electrical engineering [5]. The Ornstein-Uhlenbeck pesceith a-stable struc-
ture was analyzed in [6] as a suitable model to descriptiaealffinancial data.

However the stable processes have infinite moments of tfendewr higher
orders therefore there appear many problems especiallpphcations. In or-
der to overcome this drawback, the processes with temp&ablk structure (and
their modifications) have been introduced. There are mapgstyof such pro-
cesses, for example classical tempered stable and modifigoeted stable mod-
els, see [7, 8, 9]. The classical tempered stable modelsremerkas Truncated
Lévy Flight (see for instance [11, 12, 13, 14]), KoBol [15] and C&rocesses
[16, 17]. They found many applications especially in fingrs=e [18, 19], biol-
ogy [20], physics to description of diffusion and relaxati@1] and turbulence
[22] as well as in plasma physics [23], see also [24, 25].

In this paper we consider the Ornstein-Uhlenbeck procegbdempered sta-
ble structure that is a natural extensions of Ornstein-tligek with Brownian or
stable Lévy motion. One of the important steps towards constructmg@propri-
ate mathematical model for the real-life data is covariahtmvever for the stable
models the covariance is not defined therefore in order tqpemethe structure of
dependence of the tempered andstable Ornstein-Uhlenbeck process we ana-
lyze another measure of dependence defined for infinitelgitle processes such
as Lévy correlation cascade [28] that is a useful tool for stugdytime ergodic prop-
erties, [29]. We examine the asymptotic behaviour of therafentioned measure
for considered processes and compare it tocthestable case. As a main result
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we show that the &vy correlation cascade in the considered case goes faster to
zero as in stable models. Moreover for the tempered stable-atable Ornstein-
Uhlenbeck process we compare also the another measurelynemdéference
[30, 31, 32, 33], measure based on the characteristic amcte prove that for
this two analyzed processes this measure indicates thessymmgptotic behaviour.

The rest of the paper is organized as follows: In Section 2 me tfpe defini-
tion of considered Ornstein-Uhlenbeck process with teegbstable structure. In
order to present the motivation of the paper in Section 3 veerilee the real data
of turbulence in earth’s plasma by using the tempered stabistein-Uhlenbeck
process. Then, in Section 4, we review the measures of depeador infinitely
divisible processes: the codifference and the alternatieasure called theédvy
correlation cascade. The measures of dependence for ecedigrocesses are
studied in Section 5 and their asymptotic behaviour is eranhi

2 Ornstein-Uhlenbeck process with tempered stable
structure

The classical Ornstein-Uhlenbeck process is one of seapm@ioaches used to
model (with modifications) the real financial data such asregt rates, currency
exchange rates, and commodity prices. It is also known asndemn-reverting
process, and it is given by the following stochastic difféi@ equation:

dY (t) = a(p — Y (t))dt + odB(t), (2.1)

where{B(t) }:>o denotes the Brownian motion, the parametet R represents
the equilibrium or mean value supported by fundamentals; 0- the degree of
volatility around it caused by shocks, afd> 0 - the rate by which these shocks
dissipate and the variable reverts towards the mean. If wendxthe Brownian
motion for the sef—oo, 0) according to the procedure presented in [34, 35], then
we can write the unique solution of equation (2.1):

t
Yt)=p+o / e~V dB* (u), (2.2)
where{B*(t) }+cr is the Brownian motion extended to the setx, 0).
An extension of the process (2.2) is ar stable Ornstein-Uhlenbeck system de-
fined as follows (see [6, 34]):

t

Yt)=p+o / e~ AL, (u), (2.3)

—0o0
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where{L,(t)} is a Lévy process witha-stable increments extended to the set
(—o0,0). Stable Ornstein-Uhlenbeck processes were analyzeddtamice in [6,
36] as a models describing real financial data.

In this paper we propose an extension of the aftermentiomast&n-Uhlenbeck
processes and substitute thé/i process withy-stable (or Gaussian) increments
extended to the sét-oo,0) by the Lévy process with totally skewed tempered
stable structure. In this cases the Ornstein-Uhlenbeakegsgocan be represented
by the following stochastic integral:

t
Yt)=p+o / e~V AT (u), (2.4)
where{T(u)} is a Lévy process with totally skewed tempered stable increments
extended to the s¢t-oo, 0).
An infinitely divisible distribution is called a totally skeed tempered stable (TS)
with parameters, A andC' if it has no Gaussian component and i/l measure
is given by, [10]

Ce—)\a:

$l+a

v(dr) = ly~odz, (2.5)
wherel > 0,0 < o < 2andC > 0fora > 1 andC < 0fora < 1. The
Fourier transformps of the totally sewed tempered stable distribution is given
by the following formula, [10]

¢rs(u) = Eexp (iul) = exp (C((A — iu)* — A* + iuar*™ 1)) . (2.6)

When A = 0, then the random variabl€ with the Fourier transform given in
(2.6) has a totally skewed—stable distribution with the following values of the
parameters

a, B=1, 0 = (|C|cos(m * a/2))"/*, 1= 0.

By using the connection between the TS and correspondirgjable distribution
it is easy to find the relation between the probability dmttion functions (pdf).
Let prs(z) andps(z) be pdf in pointz of 7°'S random variable with parameters
a, \, C'anda—stable with appriopriate values of the parameters, resjedgithen
for a # 1 we have

_ _ «
): e Az+(a—1)cA

prs(x ps(x — coz)\a_l).

Fora = 1 this relationship takes the form:
prs(r) = e M P ps(x — (1 + InN)).

The main properties as well as the procedures of simulaticheoconsidered
tempered stable distribution one can find for instance iraft] [10].
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3 Motivation

In order to present the motivation of using the Ornsteinddbkck process with
tempered stable structure we analyse the real data for plpBgsics. The data set
describes the floating potential fluctuations of earth’sipla expressed in volts.
The signal was registered on 15.06.2006 (the time unit - 1&econds) with
movable probe in Scrape-Off Layer (SOL) plasma. The smalistoadial posi-
tion was r=11.25 cm. On Fig. 1 we present the analysed real date statistical
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Figure 1. The real data from plasma physics.

tests based on the empirical distribution function, [2&]ect the hypothesis that
the data can be described by using Gaussian as well as-th&ble distribution.
Therefore as an alternative we propose to use the tempexalé slistribution de-
scribed in previous Section. The autocorrelation func{®@F) and partial auto-
correlation function (PACF) indicate the data can be desdritly autoregressive
model of order 1 (AR(1)), that is a discrete version of the @imsUhlenbeck
process. By using the maximum likelihood method we estinfsgepairametef

of the process given in (2.4). For the simplicity we assume 0 ando = 1. The
estimation results givé = 0.2351. Moreover by using the method of moments
we estimate also the parameters of TS distribution:

& =1.8399, \ = 0.1928, C' = 2.1970.
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On Fig. 2 we present the empirical probability distributfonction based on the
kernel estimation method of the model’s residua that arerdesd by the totally
skewned tempered stable distribution as well as the theale&tensity function
calculated by using the estimated parameters.
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Figure 2: The comparison of the empirical pdf of the restsh& Ornstein-
Uhlenbeck model and the theoretical pdf calculated on tlseskud the estimated
parameters from the TS distribution.

4 Measures of dependence for infinitely divisible pro-
cesses

One of the important tool providing to construction of an Eggpiate mathemat-
ical model for the real-life data is covariance. However tloe large class of
infinitely divisible processes, namely the strictly-stable, the covariance is not
defined. Therefore there appears problem: how in this cas&ite the depen-
dence structure? One of the answer for this question gagedtland Klafter in
[28]. They introduced a new measure of dependence that isedefor infinitely
divisible stochastic processé€¥ (t), ¢t € R} with the following integral represen-



tation:
Y(t):/XK(tw)M(dx),

whereM is an independly scattered infinitely divisible random nuea®n some
measurable spacewith control measure, see also [29].

The new measure was introduced as a concept of correlatsmadeas, which is a
promising tool for exploiting the properties of the Poissorpart ofY (¢) and the
dependence structure of this stochastic process. € torrelation cascade is
defined as follows [28, 29]:

Ci(ty,ta, ... ty) =

/XA (miH{K(tl,x),l. N K(tn,x)}> m(dz),  (4.7)

where the tail function\ is given by
A1) :/ v(dx) (4.8)
|z|>1

andw is a Lévy measure of the the proce§s (¢)}.

Many significant properties and results connected with theylcorrelation cas-
cade for infinitely divisible processes are presented i) {281 [29]. We only
mention here the functiot(t, ., ..., t,) tells us, how dependent the coordi-
nates of the vectofY (¢1),Y (¢2),...,Y (t,)) are. Therefore((t1,ta,...,1t,)
can be considered as an appropriate measure of dependeribe f@oissonian
part of the infinitely divisible process, [29]. The ergodioperty, such as ergod-
icity, weak mixing and mixing, of a stationary infinitely dsble processes can be
described in the language of théuy correlation cascade therefore this measure
is a promising tool for studying the dependence structuréhis large class of
processes.

When the considered process is a moving-average with regpdw Lévy pro-
cess{Z(t)}, i.e. it takes the following form

t
v = [ -z
then the lévy correlation cascade is defined as follows:

Ci0,1) = /tooA (ﬁ) dy.

The another measure, that is often considered as a tool défrendence structure
description, is the codifference (see for instance [30,32]). For the stationary



infinitely divisible procesqY ()} this measure of dependence is defined as fol-
lows:
CD(t,0) =CD(Y(t),Y(0)) =

log Eexp{i(Y(t) — Y (0))} — logE exp{iY ()} — logE exp{—iY (0)}. (4.9)

Codifference carries enough information to detect ergodipgrties of the pro-
cess{Y (t)}. Itis also closely related to the dynamical functional usef®8, 39]

to investigate the chaotic behaviour of the consideredga®c Properties of the
measure on can find in [30]. Let us mention here that theréatoaship between
the asymptotic behaviour ofdvy correlation cascade and codifference, namely
for the stationary infinitely divisible proceds’(¢)} with the Lévy measurey,

of Y'(0) without atoms ir2w 7, the following two conditions are equivalent (see
Theorem 2 in [29]):

11_1)1% Ci(t,0) =0 forevery [ >0

lim C'D(t,0) = 0.
t—0

In the next section we consider the Ornstein-Uhlenbeckgsses with tem-
pered stable structures. As a main result we show the asyimehaviour
of this processes in the language ofvl correlation cascade and compare it
with a—stable case. Moreover we show that the codifference of tmst@n-
Uhlenbeck process with—stable and tempered stable structure has the same
asymptotic properties.

5 Structure of dependence of Ornstein-Uhlenbeck
process witha— and tempered stable structure

5.1 The totally skewneda-stable case

Let us consider the Ornstein-Uhlenbeck process wittable structure given in
(2.3). For the simplification we take = 0 ando = 1. In this case the évy
measure of the-stable lévy process L, (u)} in (2.3) is given by (see [30]):

1 1
v(dx) = 0.5 ( 220 4 =<0 ) dx,

ZL‘H_O‘ |x|1+a

Therefore the Evy correlation cascade of the Ornstein-Uhlenbeck profEss) }
given in (2.3) has the following form [29]:

2
a2l

e—aat

Ci(0,t) =
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Moreover the correlation-like measuredefined in £?) depends on on param-
eter (according to the fact that the considered processi®iary) and has the
following form

r(t) =r(r,7+1t) =e "
The codifferenc€'D(t, 0) of the Ornstein-Uhlenbeck process witkstable Lévy
motion is given by [40]:

1 —aat __ 1 — —atl|a
CD(t,0) = —° L=
ac

that for largef anda > 1 gives

CD(t,0) ~ const - e~ ™.

5.2 Totally skewed tempered stable case

In this case we consider the Ornstein-Uhlenbeck pro¢¥ss),t € R} with to-
tally skewed tempered stable structure. Tli&t¢)} process in representation (2.4)

it is a process with Evy measure given in (2.5). In the considered case the talil
function A given in (4.8) takes the following form

A(l) = CA°T(=a, Al),

whereI'(s, t) is a incomplete gamma function defined as follows
[(s,t) = / ¥ e d. (5.10)
t

Using the form of the\ function we obtain the following form of thedvy corre-
lation cascade for the tempered stable O-U process defin@#in

Ci(t,0) = / CXT (—a, Ale™)du.
t
Let us consider the asymptotic behaviour of such functiort fe> co. Because

the incomplete gamma function has the following property

[(s,x)

— 1 for x — o0
xsflefx

then we obtain for large

Cy(t,0) ~ C’)\O‘/ (Me™) =L exp{—Ale™}du = CA / w™ " %e Y dw
¢ A

a leat
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o 2%

[(—a—1,le") ~ (M)~ 2 exp{—Ale™}
a

a
In this case the codifference defined in (4.9) is given by

CD(t,0) =

0
C’/ (A —ide®(e™™ —1))* — (A — i)™ + 2ia\* e (e — 1)ds

—0o0

0
—C / (A 4 de~et=) _ \ogs,

—00

By using the following formula

. [(a+1) “kk
a+b)* = a®""b
( kZZ()F(k+1)F(a—k+1)
we obtain
CD(t,0) =
- [(a+1) a—kk —at\k k
C; T o — ke | (=)= (=1 dst
2iCa > (e7@ — 1) = ['(a+1) a—kk_—atk
+ a _C;F(k—i—l)f‘(a—k:—l—l)ak e
B ~ (a+1) a—k -k —at\k k__—atk
_CZF(k+1)F(a—k+1)ak)\ F =) = (7= e,

k=2
Whenk is even, then the function

(1 _ efat)k o (_1)k o efatk
for larget behaves like.e=*. Whenk is odd, then
. _—at\k _ ([ 1\k _ fatk:
tliglo(l e —(=1)"—e 2.
therefore finally we obtain

CD(t,0) ~ const - e~ + R,

whereR is constant.
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5.3 Classical tempered stable case

Let us consider the proceé¥ (t),t € R} defined in (2.4) with classical tempered
stable structure. For simplification let us tgke- 0, 0 = 1 in representation (2.4)
and consider the CGMY process, i.e. in the definition éfy.measure in7?) we
takeC, = Cy = C > 0. In this case the tail functionh takes the following form

A(l) = CXST(=a, A D) + CXOT(—a, A1),

wherel'(s, t) is a incomplete gamma function defined as follows
[(s,t) = / ¥ e dx. (5.11)
t

Using the form of the\ function we obtain the following form of the Levy corre-
lation cascade for the tempered stable O-U process defin@#in

Gi(t,0) = / CAIT(—a, Aple™) + CXT (=, A_le™)du.
t
Let us consider the asymptotic behaviour of such functiort fe> co. Because

the incomplete gamma function has the following property

(s, x)

— 1 for z —
xsflefx

then we obtain for large

Ci(t,0) NCAi/ (/\+le““)_o‘_1exp{—/\+lea“}du—|—0/\i/ (A_le™) * Lexp{—A_le"™}du
t t

C)\a o0 C)\oz o0
= + / w o 2e Ydw + - / w o 2e Y dw
A A

a a

+leat _leat
C\¢ C
= a+F(—a — 1L, A le™) + —T(—a—1,A_le™)
a
C\¢ OPNS
~ —E (A le™) T 2 exp{ =M le™} + ——=(\_le") " exp{—A_le"}

a

_ Cem et fexp{—\ le} N exp{—X\_le"}
T aler %) N2 '

In the simple case whefi = A\, = \_ = 1 we have

e—a(a+2)t

Ci(t,0) ~ Salatz

exp{—le™}.
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In his case the correlation-like measure defined?i’) lepends only on one pa-
rameter. Moreover

r(t) = r(r, 7 +t) ~ exp{—a(a+2)t —I(e” —1)}.
In this case the codifference defined in (4.9) is given by

CD(t,0) =

0
I'(—a) / (1—ie™ %) i) 4 (14ie % — ™) —2((14ie™)* —1+(1—ie™)*)du

o

t
+F(—a)/ ((1 — e at=w)> (1 4 et — 2)du.
0

Therefore we obtain

0
CD(t,0) ~ F(—a)eati/ e™[(14+ie™)* ! — (1 —ie™)* ')du = const-e~*.

—0o0

6 Conclusion

In this paper we analyzed structure of dependence of thigestpf Ornstein-
Uhlenbeck processes related to the stable law: classiogleeed stable, modified
tempered stable and Lamperti stable Ornstein-Uhlenbemtegses. This struc-
ture of dependence we described in the language?wy kcorrelation cascade as
well as the codifference. As a main result we showed that thasure of depen-
dence based on the®lty measure in the three considered cases goes faster to zero
as in stable models. As the conclusion on FigefPeve present behaviour of the
correlation-like measure for the a—stable, classical tempered stable, modified
tempered stable and Lamperti stable Ornstein-Uhlenbemtegs.
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