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Abstract. We model a long-run relationship as an infinitely repeated game played by two equally

patient agents. In each period, the agents play an extensive-form stage-game of perfect information

with either locally nonconflicting interests or strictly conflicting interests. There is incomplete

information about the type of player 1, while player 2’s type is commonly known. We show that a

sufficiently patient player 1 can leverage player 2’s uncertainty about his type to secure his highest

payoff, compatible with player 2’s individual rationality, in any perfect Bayesian equilibrium of the

repeated game.
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1. Introduction

Maintaining a reputation can benefit economic agents since it lends credibility to their future

commitments, threats or promises. A reputation can help a firm commit to fight potential entrants

(Kreps and Wilson (1982), Milgrom and Roberts (1982)) or it can lend credibility to a government’s

monetary and fiscal policies (Barro (1986), Phelan (2006)). So a patient agent may forego short-run

profit in order to cultivate a reputation in anticipation of long-run benefits.

Reputation effects are pronounced if an agent is patient, that is, if the short-run cost of building

a reputation is less important to the agent than the long-run benefit (Fudenberg and Levine (1989,

1992)). There is a tension, however, if the agent trying to build a reputation faces an opponent who

is equally patient: the opponent may also sacrifice payoff in the short-run in order to extensively

test the agent’s resolve to go through with his commitments, threats, or promises. This can make it

prohibitively expensive to build a reputation in a certain class of repeated games where players move

simultaneously (Cripps and Thomas (1997)). To highlight this tension, we focus in this paper on

equally patient agents and show that in repeated games where players move sequentially reputation

effects are nevertheless prominent.

We consider an infinitely repeated game played by two equally patient agents. We assume that

player 2 is uncertain about the type of player 1, while player 1 is perfectly informed about the

type of player 2. In each period, the agents play an extensive-form game of perfect information.

There are either locally nonconflicting interests (LNCI) or strictly conflicting interests (SCI) in

the stage game.1 Within this framework we prove a reputation result : a sufficiently patient player

1 can guarantee his highest payoff compatible with player 2’s individual rationality, in any perfect

Bayesian equilibrium of the repeated game.

To make the discussion more concrete, consider the following strategic situation faced by a hus-

band and wife, two legislators, or two countries: In each period of a long-run relationship, the two

players must decide whether to undertake player 1’s preferred policy A, player 2’s preferred policy

B, or neither of the two policies. Unanimity is required for any policy to be chosen. These policies

can represent competing treaties in a pollution abatement negotiation between two countries, bud-

get alternatives under consideration by two political rivals, or even weekend plans being bargained

1There are LNCI in a game if the unique payoff profile where player 1 receives his highest payoff is strictly individually
rational for player 2. Intuitively, there are SCI in a game if the action which is the best for player 1 is the worst for
his opponent. See Assumption 1 for precise statements.
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over by a married couple. The repeated game where figure 1 is played in each period is a simple

representation of this strategic situation.2

BA

Player 2

B

(0, 0)

A

(2, 1)

P1

B

(1, 2)

A

(0, 0)

P1

Note: The first component of the payoff vector is player 1’s payoff.

Figure 1. The battle-of-the-sexes game.

Suppose that player 2 (she) believes that player 1 (he) is either fully rational or a Stackelberg

type who is committed to choosing A in each period. A rational player 1, cognizant of player 2’s

uncertainty, has an incentive to mimic the Stackelberg type, i.e., to build a reputation. If player

2 is convinced that player 1 is the Stackelberg type, then she will have no choice but to play A,

and policy A will be the outcome in each period. Therefore, a patient player 1 may play A for

many periods, even if player 2 plays B (i.e., at the expense of reaching an agreement), in order to

convince player 2 that he is indeed the Stackelberg type. However, player 2 knows that player 1

has an incentive to mimic the Stackelberg type. Consequently, an equally patient player 2 may play

B (i.e., resist playing A) for many periods, thereby making reputation building particularly costly,

especially if she deems it sufficient likely that player 1 is rational and will eventually start playing

B.

Given these two opposing forces, can player 1 build a reputation and ensure that policy A is

implemented? Or alternatively, will screening by player 2 keep a rational player 1 from building

a reputation? These questions are addressed in our main finding: if the players are equally and

arbitrarily patient, then policy A is implemented in each period and player 1 receives a payoff equal

to two in any perfect Bayesian equilibrium of the repeated game. This outcome is independent of

which player moves first and independent of how small the initial uncertainty about player 1’s type

is.3

2The battle-of-the-sexes game is used to model product compatibility in Farrell and Saloner (1988), network externali-
ties in Katz and Shapiro (1985), communication and mediation in Banks and Calvert (1992), and repeated bargaining
in Schelling (1960). For the battle-of-the-sexes game applied to pollution abatement negotiations between nations,
see Harstad (2007); for an application to negotiations between political rivals, see Alesina and Drazen (1991); and for
an application to marital bargaining, see Lundberg and Pollak (1994).
3See figure 2d for the battle-of-the-sexes game where player 1 moves first.
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In the previous example, player 1’s reputation allowed him to credibly commit to always choosing

the same action. However, we can conceive of other strategic situations where player 1 may want to

commit to a more complex strategy that rewards or punishes his opponent in a history-dependent

way. For example, player 1 may want to be known for playing tit-for-tat, or for punishing bad

behavior consistently. To capture reputation effects more generally, we assume that player 1 is

either fully rational or one of many commitment types. Each commitment type is programmed to

play a certain repeated game strategy. The commitment type central to our analysis is a dynamic

Stackelberg type. This type plays the repeated game strategy that player 1 would choose if player

1 could publicly commit to any repeated game strategy. Ideally, player 1 would like to convince

his opponent that his future actions will fully conform to the behavior of the Stackelberg type. We

show that a sufficiently patient player 1 can use his ability to mimic the Stackelberg type and his

opponent’s uncertainty about his type to secure his most preferred outcome for the repeated game.

1.1. Related literature. This paper is closely related to the literature on reputation effects in

repeated games. Much of the previous literature on reputation considers a patient player 1 who

faces a myopic opponent. Most prominently, Fudenberg and Levine (1989, 1992) show that if there

is positive probability that player 1 is a type committed to playing the Stackelberg action in every

period, then player 1 gets at least his static Stackelberg payoff in any equilibrium of the repeated

game.4 Reputation results have also been established for repeated games where player 1 faces

a nonmyopic opponent, but one who is sufficiently less patient than player 1 (see Schmidt (1993),

Celentani et al. (1996), Aoyagi (1996), or Evans and Thomas (1997)). However, the repeated games

that these papers consider are genuinely long-run only for player 1 and this feature is crucial for

the reputation results.

In a game with a nonmyopic opponent, player 1 may achieve a payoff that exceeds his static

Stackelberg payoff by using a history-dependent strategy that rewards or punishes player 2. Con-

versely, future punishments or rewards can induce player 2 to not best respond to a Stackelberg

action and thereby force player 1 below his static Stackelberg payoff.5 These complications render

reputation effects fragile in repeated games with equally patient players: A reputation result obtains

4The static Stackelberg payoff for player 1 is the highest payoff he can guarantee in the stage game through public
commitment to a stage game action (a Stackelberg action). See Mailath and Samuelson (2006, page 465), for a formal
definition.
5Player 2 may expect punishments or rewards either from the rational type of player 1 after he chooses a move that
would not be chosen by the Stackelberg type (Celentani et al. (1996, Section 5) or Cripps and Thomas (1997)), or
from a commitment type other than the Stackelberg type (Schmidt (1993) or Celentani et al. (1996)).
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in a repeated simultaneous-move game only if the stage game is a strictly dominant action game

(Chan (2000)), or if there are SCI in the stage game (Cripps et al. (2005)).6 For other repeated

simultaneous-move games, any individually rational payoff can be sustained in a perfect equilibrium

if the players are sufficiently patient (see the folk theorem of Cripps and Thomas (1997)).7

1.2. Contribution to the literature. We make three main contributions to the literature on

reputation effects in repeated games with equally patient players. First, we provide a reputation

result for a new class of games: repeated extensive-form games of perfect information. Second, we

highlight the distinct role that perfect information plays for a reputation result with equally patient

agents. Third, we introduce novel methods, inspired by the bargaining literature (Myerson, 1991,

Chapter 8.8), to analyze reputation effects in repeated games.

Previous reputation results for equally patient agents are for certain repeated simultaneous-move

games (i.e., Chan (2000) for strictly dominant action stage-games and Cripps et al. (2005) for stage-

games with SCI). In contrast, we focus on repeated extensive-form games of perfect information,

and as our first main contribution, we establish a reputation result for stage-games with LNCI or

SCI.8 Games that are commonly used in economic applications, such as the examples depicted in

figures 1 and 2, are included in the class of games that we cover in our reputation result.9,10

Games with LNCI have a common-value component whereas games with SCI entail conflict

between the two players. A game has LNCI if the unique payoff profile where player 1 receives his

highest stage-game payoff is strictly individually rational for player 2. The battle-of-the-sexes game

where player 2 moves first (figure 1), the common interest game (figure 2a), and the principal-agent

game (figure 2b) have LNCI. These games have LNCI because player 1 receives his highest payoff in

the payoff profile (2, 1), (1, 1), and (1, 1), in figures 1, 2a, and 2b, respectively. Moreover, in each of

6A stage-game is a strictly dominant action game if player 1’s static Stackelberg payoff is equal to his highest
payoff compatible with player 2’s individual rationality, and if the Stackelberg action is strictly dominant, see
Mailath and Samuelson (2006, Page 540) for a formal definition.
7Also, see Cripps and Thomas (1995) for a model of equally patient agents which uses the limit of means criteria
instead of equal discounting.
8If a game in the class that we consider (i.e., a game with LNCI or SCI) is played under complete information, then
the folk theorem of Fudenberg and Maskin (1986) applies under a full dimensionality condition (see Wen (2002)).
9Examples of common interest games include the coordination game and the hawk-dove game (for applications, see
Morris and Shin (1998) and Baliga and Sjöström (2004)). For an application of the repeated principal-agent game,
see Laffont and Martimort (2002, Chapter 9). For an application of the chain-store game in industrial organization,
see Tirole (1988, Chapter 9).
10A game falls outside of the class of games with LNCI or SCI if the profile where player 1 receives his highest payoff
is not strictly individually rational for player 2, and the game does not have SCI. Examples of such games include
the prisoner’s dilemma game and the principal-agent game in figure 2b if player 2 is the player that is building a
reputation instead of player 1. See section 4.2 for a more extensive discussion.
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DU

Player 2

R

(0, 1/4)

L

(1, 1)

P1

R

(x, x)

L

(0, 0)

P1

(a) Common-interest game (x < 1).

N

(0, 0)

B

Player 1

L

(−1, 2)

H

(1, 1)

P2

(b) Principal-agent game (or the
product choice game).

Out

(4, 0)

In

Player 2

A

(2, 1)

F

(−1,−2)

P1

(c) Chain-store game.

BA

Player 1

B

(0, 0)

A

(2, 1)

P2

B

(1, 2)

A

(0, 0)

P2

(d) The battle-of-the-sexes game.

Figure 2. Sequential-move games with LNCI (2a and 2b) or SCI (2c and 2d).

these profiles, player 2’s payoff strictly exceeds her minimax, which is equal to zero, 1/4, and zero,

in figures 1, 2a, and 2b, respectively.

A game has SCI if player 1 has an action (a Stackelberg action) such that any best reply to this

action yields player 1 his highest payoff compatible with player 2’s individual rationality and yields

player 2 her minimax payoff. The chain-store game (figure 2c) and the battle-of-the-sexes game

where player 2 moves second (figure 2d) have SCI. The chain-store game has SCI because, if player

1 commits to action F and player 2 best responds to F , then player 1 receives a payoff equal to

four, his highest payoff; and player 2 receives a payoff equal to zero, her minimax payoff. Similarly

in the battle-of-the-sexes game where player 2 moves second, if player 1 plays action A and player 2

best responds, then player 1 receives a payoff equal to two, his highest payoff; and player 2 receives

a payoff equal to one, her minimax payoff.

Our second main contribution pinpoints why reputation effects are particularly salient in repeated

games with LNCI and perfect information, whereas reputation effects are absent in certain repeated

simultaneous-move games with LNCI. For example, our reputation result implies that there is a

unique equilibrium payoff profile in the repeated sequential-move battle-of-the-sexes game (figure

1 or figure 2d). In contrast, if a simultaneous move game with LNCI, such as the battle-of-the-

sexes game (figure 3b), is played in each period, then a folk theorem obtains. For a more striking

example, consider the repeated simultaneous-move common interest game (figure 3a), where player

1 is potentially a Stackelberg type who always plays U . This game appears to be a strong candidate
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for reputation effects to arise. It is costless for player 1 to mimic the Stackelberg type and build

a reputation. Also, player 2 unambiguously benefits if player 1 is able to build a reputation and

concentrate play on (U,L). Surprisingly, any individually rational payoff profile can be sustained

in a perfect Bayesian equilibrium if the players are arbitrarily patient (Cripps and Thomas (1997)).

In contrast, we show that in the repeated sequential-move game, the players receive a payoff equal

to one, in any perfect Bayesian equilibrium.11

DU

Player 2

Player 1

R

(0, 1/4)

L

(1, 1)

R

(x, x)

L

(0, 0)

(a) Common-interest game (x < 1).

BA

Player 2

Player 1

B

(0, 0)

A

(2, 1)

B

(1, 2)

A

(0, 0)

(b) The battle-of-the-sexes game.

Figure 3. Simultaneous-move games with LNCI.

Our third main contribution is the novel method that we use to establish our reputation result.

A new approach is required because the technique of Fudenberg and Levine (1989, 1992), which is

commonly used to establish reputation results, is not applicable with two equally patient players.

Our method hinges on having those information sets where player 1’s normal type reveals ratio-

nality be singletons (perfect information). Sequential rationality, coupled with perfect information,

imposes tight bounds on player 1’s continuation payoffs at these nodes. Moreover, for the class of

games that we consider, if there is a tight bound on player 1’s continuation payoff, then there is also

a tight bound on player 2’s continuation payoffs. These bounds preclude the possibility of player 1

building a reputation slowly and punishing player 2 for best responding to the Stackelberg strategy.

2. The model

In the infinitely repeated game, a stage game Γ is played by players 1 and 2 in periods t ∈

{0, 1, 2, ...} and the players discount their payoffs using a common discount factor δ ∈ [0, 1). The

stage game Γ is a two-player finite game of perfect information, that is, all the information sets of

Γ are singletons (perfect information).

The set of nodes (decision nodes and terminal nodes) of the stage game Γ is denoted by D, d is

a typical element of D, Y ⊂ D is the set of terminal nodes, and y is a typical element of Y . The

payoff function of player i is gi : Y → R. The finite set of pure stage game actions for player i is

11For a more detailed discussion, see section 4.1.
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Ai, and the set of mixed stage game actions is Ai.
12 For any action profile a = (a1, a2) ∈ A1 × A2,

there is a unique terminal history y(a) ∈ Y under the path of play induced by a. Slightly abusing

notation we let gi(a) = gi(y(a)) for any a ∈ A1 × A2, and we let gi(α) denote the payoff to mixed

action profile α ∈ A1 ×A2.

The minimax payoff for player i is ĝi = minαj∈Aj
maxαi∈Ai

gi(αi, αj). For games that satisfy

perfect information, there exists ap
1 ∈ A1 such that g2(a

p
1, a2) ≤ ĝ2 for all a2 ∈ A2.

13 The set of

feasible payoffs F is the convex hull of the set {g1(a1, a2), g2(a1, a2) : (a1, a2) ∈ A1 × A2}; and

the set of feasible and individually rational payoffs is G = F ∩ {(g1, g2) : g1 ≥ ĝ1, g2 ≥ ĝ2}. Let

ḡ1 = max{g1 : (g1, g2) ∈ G} and let M = max{max{|g1|, |g2|} : (g1, g2) ∈ F}.14

In the repeated game, players have perfect recall and can observe past outcomes. The set of

period t ≥ 0 public histories is denoted Y t × D and h = (y0, y1, ..., yt−1, d) is a typical element.

The set of period t ≥ 0 public histories of terminal nodes is denoted Ht ≡ Y t, a typical element

is ht = (y0, y1, ..., yt−1), and we define h0 = ∅. At the end of a period t, player i observes neither

player j’s stage-game mixed action αt
j in period t, nor player j’s pure action at

j. Rather, player i

observes the terminal node yt and consequently the unique sequence of moves at the decision nodes

that led to the particular terminal node yt.15

2.1. Types and Strategies. Before time zero, nature selects player 1’s type ω from a countable

set of types Ω according to a common-knowledge prior µ. Player 2 is known with certainty to be

a normal type that maximizes expected discounted utility. The set of types Ω contains a normal

type for player 1 that we denote by N . Slightly abusing notation, we denote player 2’s belief over

player 1’s types after any period t public history by µ :
⋃∞

t=0 Y t × D → ∆(Ω).

A behavior strategy for player i is a function σi :
⋃∞

t=0 Ht → Ai, and Σi is the set of all behavior

strategies. A behavior strategy chooses a mixed stage game action given any period t public history

of terminal nodes.16 Each type ω ∈ Ω \ {N} is committed to playing a particular repeated game

behavior strategy σ1(ω). A strategy profile σ = ({σ1(ω)}ω∈Ω, σ2) lists the behavior strategies of all

12An action ai ∈ Ai is a contingent plan that specifies a move, from the set of feasible moves for player i, at any
decision node d where player i is called upon to move.
13Consider the zero-sum game where player 1’s payoff is equal to −g2(a1, a2). The minimax of this game is (−ĝ2, ĝ2)
by definition. Perfect information and Zermelo’s lemma imply that this game has a pure strategy Nash equilibrium
(ap

1, a2) ∈ A1 ×A2. Because the game is a zero sum game and the minimax value of the game is equal to (−ĝ2, ĝ2) we
have that g2(a

p
1, a2) = ĝ2.

14Note that with a slight abuse of notation gi denotes both the payoff function as well as the payoff level for player i.
15See Fudenberg and Levine (1992, Page 564) for more on this particular type of imperfect monitoring inherent in
extensive-form games.
16Abusing notation, we will use σi to also denote mixed repeated game strategies for player i.
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the types of player 1 and player 2. For any period t public history ht and σi ∈ Σi, the continuation

strategy induced by ht is σi|ht . For σ1 ∈ Σ1 and σ2 ∈ Σ2, the probability measure over the set of

(infinite) public histories induced by (σ1, σ2) is Pr(σ1,σ2).

In what follows we assume that Ω contains a certain Stackelberg type S. We elaborate on the

Stackelberg type in section 2.5. Also, we denote the set of other commitment types by Ω− =

Ω\{S,N}. In words, Ω− is the set of types other than the Stackelberg type and the normal type.

2.2. The repeated game and payoffs. A player’s repeated game payoff is the normalized dis-

counted sum of the stage game payoffs. For any infinite public history h∞ = (y0, y1, ...), let

ui(h
∞, δ) = (1 − δ)

∑∞
k=0 δkgi(y

k); and let ui(h
−t, δ) = (1 − δ)

∑∞
k=t δk−tgi(y

k) where h−t = (yt, yt+1, ...).

Following a period t public history, player 1 and player 2’s expected continuation payoff, under strat-

egy profile σ, are given by the following two equations, respectively:

U1(σ, δ|ht) = U1(σ1(N), σ2, δ|h
t),

and

U2(σ, δ|ht) =
∑

ω∈Ω

µ(ω|ht)U2(σ1(ω), σ2, δ|h
t),

where Ui(σ1(ω), σ2, δ|h
t) = E(σ1(ω),σ2)[ui(h

−t, δ)|ht] is the expectation over continuation histories

h−t with respect to Pr(σ1(ω)|ht ,σ2|ht). Also, Ui(σ, δ) = Ui(σ, δ|h0).

The repeated game of complete information (that is, the repeated game without any commitment

types) with discount factor equal to δ ∈ [0, 1), is denoted by Γ∞(δ). The repeated game of incomplete

information, with the prior over the set of commitment types given by µ ∈ ∆(Ω) and the discount

factor equal to δ ∈ [0, 1), is denoted by Γ∞(µ, δ).

2.3. Dynamic Stackelberg payoff and strategy. We define the commitment payoff of player

1’s repeated game strategy σ1 as

U c
1(σ1, δ) = min

σ2∈BR(σ1 ,δ)
U1(σ1, σ2, δ),

where the set BR(σ1, δ) denotes player 2’s best responses to σ1 in the repeated game Γ∞(δ). Also,

we define the dynamic Stackelberg payoff as U s
1 (δ) = supσ1∈Σ1

U c
1(σ1, δ); and we define a dynamic

Stackelberg strategy as any strategy, σ∗
1 , that satisfies U c

1(σ∗
1 , δ) = U s

1 (δ), if such a strategy exists.17

17This terminology follows Aoyagi (1996) and Evans and Thomas (1997).
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Player 1’s dynamic Stackelberg payoff is the highest payoff that player 1 can secure in the repeated

game through public commitment to a repeated game strategy. A dynamic Stackelberg strategy for

player 1 is a repeated game strategy such that any best response to this strategy gives player 1 at

least his dynamic Stackelberg payoff. In other words, a dynamic Stackelberg strategy’s commitment

payoff is equal to the dynamic Stackelberg payoff.

2.4. Class of stage games. We assume that the stage game satisfies Assumption 1 as stated

below:

Assumption 1. The stage game Γ satisfies either of the following:

(i) Locally Nonconflicting Interests (LNCI): For any g ∈ G and g′ ∈ G, if g1 = g′1 = ḡ1, then

g2 = g′2 > ĝ2; or

(ii) Strictly Conflicting Interests (SCI): There exists a1 ∈ A1 such that any best response to a1

yields payoffs (ḡ1, ĝ2). Also, g2 = ĝ2 for all (ḡ1, g2) ∈ G.18

Both Assumption 1 item (i) and (ii) require that there is a unique payoff profile where player

1’s payoff is equal to ḡ1 (for example, this is true if the game Γ is a generic extensive form game).

However, the set of games with LNCI and the set of games with SCI are mutually exclusive. Games

with LNCI, have a common value component: in the payoff profile where player 1 receives his highest

payoff player 2 receives a payoff that strictly exceeds her minimax value. To see that games with

LNCI have a common value component, notice that in figure 4a the boundary of the set of feasible

payoffs is increasing in a neighborhood of the point (ḡ1, g2). Some examples of games with LNCI

are the battle-of-the-sexes game where player 1 moves second (figure 1), the common interest game

(figure 2a) and the principal-agent game (figure 2b). In contrast, a game has SCI if player 1 has an

action (a Stackelberg action) such that any best response to this action yields player 1 his highest

payoff compatible with player 2’s individual rationality and yields player 2 her minimax payoff.19

Some examples of games with SCI are the chain-store game (figure 2c) and the battle-of-the-sexes

game where player 1 moves first (figure 2d). An example of the set of feasible payoffs for a game

with SCI is shown in figure 4b. Some games that do not satisfy Assumption 1 are discussed in

section 4.2.

There are two main implications of Assumption 1 that are central for the analysis that follows:

18See Cripps et al. (2005), or Mailath and Samuelson (2006, page 541).
19See the product choice game (figure 10b in section 4.2) for an example where a Stackelberg action does not exist.
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b

b (ḡ1, g2)

(ĝ1, ĝ2) ḡ1

ḡ2

P2’s payoff

P1’s payoff

(a) LNCI: the set F is bounded above
and below by the lines that go through
(ḡ1, g2).

(ĝ1, ĝ2)
b

ḡ1

ḡ2

P2’s payoff

P1’s payoff

(b) SCI: the set F is bounded above by
the downward sloping line that connects
(ḡ1, ĝ2) to (ĝ1, ḡ2).

Figure 4. Typical set of feasible payoffs for a game with LNCI (4a) or SCI (4b).

First, if Γ satisfies Assumption 1, then player 1’s dynamic Stackelberg payoff is equal to player

1’s high payoff that is compatible with the individual rationality of player 2 (i.e., ḡ1) and there

exists a particular strategy, σ1(S), such that the commitment payoff to σ1(S) is equal to ḡ1, in the

repeated game Γ∞(δ), for all δ that exceed a cutoff δ∗ ∈ [0, 1). We establish this in section 2.5

below by constructing σ1(S) for games that satisfy Assumption 1.20

Second, if Γ satisfies Assumption 1, then there are linear bounds on the feasible payoffs for player

2 that pass through the point (ḡ1, g2); and hence, player 2’s payoff are in a narrow range if player

1’s payoff is close to ḡ1 (see figure 4; or for a precise statement see inequalities (2) and (3) in section

3.2.1). This is because Assumption 1 requires that there is a unique payoff profile where player 1’s

payoff is equal to ḡ1.
21

These two main implications of Assumption 1 together establish the following (when the discount

factor exceeds a cutoff δ∗ ∈ [0, 1)): if player 1’s repeated game payoff is close to the commitment

payoff of σ1(S) (which is equal to player 1’s highest payoff compatible with player 2’s individual

rationality, i.e., ḡ1), then player 2’s feasible and individually rational repeated game payoffs are in

a narrow range determined by the linear bounds introduced in the previous paragraph.

20For an example in which our construction of σ1(S) does not work because Assumption 1 is violated, see the product
choice game depicted in figure 10b, section 4.2.
21For an example that does not satisfy this requirement of Assumption 1, see the non-generic common-interest game
depicted in figure 10a, section 4.2.
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2.5. The Stackelberg type. For an arbitrary stage game Γ that satisfies Assumption 1, we now

construct the strategy σ1(S) such that U c
1(σ1(S), δ) = ḡ1 for all δ that exceed a cutoff δ∗.22 We

term the commitment type S who plays strategy σ1(S) the Stackelberg type.

First, some preliminary definitions: If there is an action for player 1, a1 ∈ A1, and a best

response for player 2 to action a1, a2 ∈ A2, such that g1(a1, a2) = ḡ1, then define as
1 = a1 and ab

2 =

a2.
23 Otherwise, define (as

1, a
b
2) ∈ A1 × A2 as a particular action profile such that g1(a

s
1, a

b
2) = ḡ1.

Assumption 1 implies that there exists an action profile (as
1, a

b
2) ∈ A1×A2 such that g1(a

s
1, a

b
2) = ḡ1.

24

Description of σ1(S). The strategy σ1(S) has a profit phase and a punishment phase. In the

profit phase the strategy plays as
1, and in the punishment phase the strategy plays ap

1. The strategy

begins the game in the profit phase. The strategy remains in the profit phase in period t, if it was

in the profit phase in period t−1 and if g1(y
t−1) = ḡ1. The strategy moves to the punishment phase

in period t, if it was in the profit phase in period t−1 and if g1(y
t−1) 6= ḡ1. If the strategy moves to

the punishment phase in period t, then it remains in the punishment phase for np − 1 periods and

then moves to the profit phase. Intuitively, σ1(S) punishes player 2 by minimaxing her for the next

np − 1 periods if she does not allow player 1 to obtain a payoff of ḡ1. The number of punishment

periods np − 1 is the smallest integer such that

(1) g2(a
s
1, a2) + (np − 1)ĝ2 < npg2(a

s
1, a

b
2)

for any a2 ∈ A2 such that g1(a
s
1, a2) < g1(a

s
1, a

b
2) = ḡ1.

Assumption 1 implies that np ≥ 1 exists. The number of punishment periods is chosen to ensure

that it is a best response for a sufficiently patient player 2 to play ab
2 in every period against σ1(S).

More precisely, if σ2 ∈ BR(σ1(S), δ), then U1(σ1(S), σ2, δ) = ḡ1, for all δ that exceed a cutoff δ∗.

Consequently, σ1(S) is a dynamic Stackelberg strategy for all δ that exceed a cutoff δ∗. For more

detail, see Lemma A.1 and Remark A.1 in the appendix.

If np = 1, then the strategy σ1(S) does not have a punishment phase, that is, S is a simple

type who plays the same stage-game action, as
1, in each period of the repeated game. Moreover,

22For games that satisfy Assumption 1, there are typically multiple dynamic Stackelberg strategies. We discuss our
particular choice of σ1(S) and other possible dynamic Stackelberg strategies in section 4.3.
23If there is more than one action profile that satisfies our definition, then we pick (as

1, a
b
2) arbitrarily as any one of

these action profiles.
24If Γ has SCI, then ab

2 is a best response to as
1. If Γ has LNCI, then ab

2 is not necessarily a best response to as
1. For

an example that satisfies Assumption 1 but where ab
2 is not a best response to as

1, see figure 5.
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player 2’s best response to σ1(S) entails playing ab
2 in each period for any discount factor.25 Thus,

if np = 1, then the static Stackelberg payoff coincides with the dynamic Stackelberg payoff for any

discount factor (for example, see figure 1). If np > 1, then the dynamic Stackelberg payoff strictly

exceeds the static Stackelberg payoff for a sufficiently high discount factor (see figure 5).26

RL

Player 1

R

(0, 2)

L

(3, 1)

P2

R

(0, 0)

L

(0, 0)

P2

Figure 5. For this stage game as
1 = L, ap

1 = R, and we pick ab
2 as the action that always

chooses move L. Hence, S plays L in the profit phase, plays R in the two period punishment
phase, and np = 3. Notice that ab

2 is not a best response to as
1 in this example. However,

for sufficiently high δ, player 2’s best response to σ1(S) is to play ab
2 in each period of the

repeated game. This is because playing ab
2 (instead of playing R after L) avoids the two

period punishment phase.

2.6. Equilibrium and beliefs. The analysis in the paper focuses on the perfect Bayesian equilibria

(PBE) of the game of incomplete information Γ∞(µ, δ).27 In equilibrium, beliefs are obtained, where

possible, using Bayes’ rule given µ(·|h0) = µ(·) and conditioning on players’ equilibrium strategies.

In what follows, we say that player 1 deviated from σ1(S) in the tth period of a period k public

history h if there exists a decision node d within period t ≤ k that is visited in the public history

h such that the move of player 1 in public history h at node d differs from the move that strategy

σ1(S) would have chosen at node d. Notice that if µ(S) > 0, then the belief µ(·|h) is well defined

after any period k public history h in which player 1 has not deviated from σ1(S).

3. The reputation result

Our main reputation result, Theorem 1, restricts attention to stage games of perfect information

that satisfy Assumption 1 and considers a repeated game Γ∞(µ, δ) where µ(S) > 0. Under these

assumptions, the theorem provides a lower bound on player 1’s payoff in any PBE. Its formal

statement is given below.

25Notice that if np = 1 for a stage-game Γ, then by rewriting inequality (1) with np = 1 we obtain g2(a
s
1, a2) <

g2(a
s
1, a

b
2) for any a2 ∈ A2 such that g1(a

s
1, a2) < g1(a

s
1, a

b
2) = ḡ1, i.e., if g1(a

s
1, a2) < ḡ1, then a2 in not a best response

to as
1.

26For a definition of the static Stackelberg payoff, see Mailath and Samuelson (2006, chap. 15).
27For a precise statement of PBE, see Fudenberg and Tirole (1991, Definition 8.2).
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Theorem 1. Assume perfect information and Assumption 1. For any δ ∈ [0, 1), any µ ∈ ∆(Ω)

such that µ(S) > 0, and any PBE strategy profile σ of Γ∞(µ, δ), we have

U1(σ, δ) ≥ ḡ1 − f(z)max {1 − δ, φ} ,

where z = µ(S), φ = µ(Ω−)/µ(S), and f is the decreasing, positive valued function defined in

equation (10) in the appendix.

Proof. The proof is in the appendix. �

The theorem implies that as δ goes to one and µ(Ω−) (the probability of other commitment types)

goes to zero, player 1’s payoff converges to ḡ1, his highest payoff. Consequently, a normal type for

player 1 can secure a payoff arbitrarily close to ḡ1, his dynamic Stackelberg payoff, in any PBE of

the repeated game, for a sufficiently high discount factor and for sufficiently low probability mass on

other commitment types. Player 1 can attain the bound given in the theorem by simply mimicking

the Stackelberg type. Notice that the bound given in the theorem is not particularly sharp, if the

probability of other commitment types, µ(Ω−), is substantial. However, under certain assumptions,

player 1 can receive a payoff arbitrarily close to ḡ1, with no restrictions on the probability of other

commitment types. We discuss such issues that relate to other commitment types in section 4.4.

RL

Player 2

D

(0,−a)

U

(1, 0)

P1

D

(c, b)

U

(0,−l)

P1

Figure 6. A game of perfect information with LNCI. Assume that l ∈ (0, 1], a ∈ (0, 1],
b ∈ [−1, 1/2] and c ∈ [0, 1/2]. If l = a = 1 and b = c = 1/2, then this is a battle-of-the-sexes
game. If l = 1, a = 3/4, b = −1 and c = 0, then this is a common interest game.

In order to demonstrate the implications of Theorem 1 and to make the intuition more transpar-

ently, we restate our reputation result for the example depicted in figure 6 as Corollary 1; a detailed

argument for Corollary 1 appears in section 3.2.2. In this example, the Stackelberg type S plays

U at each decision node of player 1, and player 1’s highest stage game payoff is equal to one. Our

reputation result, for this particular example, is as follows:
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Corollary 1. Suppose that the stage game Γ is given by figure 6 and assume that µ(Ω−) = 0. For

any reputation level µ(S) = z > 0, we have limδ→1 U1(σ(δ), δ) = 1, where σ(δ) is a PBE strategy

profile for the repeated game Γ∞(µ, δ).

RL

Player 2

Player 1

D

(0,−a)

U

(1, 0)

D

(c, b)

U

(0,−l)

Figure 7. Assume that l ∈ (0, 1], a ∈ (0, 1], b ∈ [−1, 1/2], and c ∈ [0, 1/2]. This
simultaneous-move version of figure 6 is a game with LNCI.

Remark 1. If the stage game Γ is given by figure 7 instead of figure 6, then the reputation result

stated in Corollary 1 fails. We discuss this point further in Remark 2 and section 4.1.

3.1. The intuition for the reputation result. We now use figure 6 to convey the main intuition

driving our reputation result. Our result shows that a sufficiently patient player 1 can receive a

payoff approximately equal to one in any PBE by mimicking type S, i.e., by playing U in each

period of the repeated game. Equivalently, player 2 plays R, in only a payoff-insignificant number

of periods against an opponent who repeatedly plays U .

There are two main incentives that may induce player 2 to play R after observing U in all previous

periods. The first is a myopic incentive: she may expect player 1 to play D with high probability in

that period. The second is a nonmyopic incentive: she may expect her continuation payoff after R

to be sufficiently more attractive than her continuation payoff after L. We show that neither myopic

nor nonmyopic incentives are sufficiently strong to induce player 2 to play R against type S for a

payoff-significant number of periods. Myopic incentives are insufficient, as in Fudenberg and Levine

(1989, 1992), since if player 1 is expected to reveal rationality with high probability, then he can

instead mimic type S, thereby increasing his reputation significantly and obtaining a payoff close

to one in the continuation game.

Nonmyopic incentives: For player 2 to play R in a period where player 1 plays D with small

probability, she must expect a punishment for playing L (or a reward for playing R) in the contin-

uation game. Type S always plays U ; hence, any punishment (or reward) for player 2 must occur

after player 1 reveals rationality by playing D. Because player 1 moves after observing player 2’s
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move (perfect information), he can continue to mimic type S instead of punishing player 2 after

observing L (or rewarding her after R). Hence, his payoff while punishing (or rewarding) player 2

cannot differ significantly from his payoff from mimicking type S. In other words, punishing (or

rewarding) player 2 cannot be costly for player 1. For the class of games that we consider, the

commitment payoff of type S is equal to the highest payoff of player 1. Moreover, for this class of

games, if player 1’s payoff is close to his highest payoff, then player 2’s payoffs are in a narrow range

(also see figure 4a). Therefore, if punishments (or rewards) are not costly for player 1, then player

2’s feasible continuation payoffs lie in a narrow range. Thus, the scope for nonmyopic incentives is

also limited.

3.2. The argument for the reputation result.

3.2.1. Preliminaries. Recall that (as
1, a

b
2) ∈ A1 ×A2 is an action profile such that g1(a

s
1, a

b
2) is equal

to player 1’s highest stage game payoff compatible with individual rationality. For figure 6, the

stage game action as
1 plays U after either L or R; and ab

2 is the best response to as
1, that is, ab

2 = L.

Also, for this game np = 1, i.e., the static and dynamic Stackelberg payoffs coincide and are equal

to one, for any discount factor.

If Γ satisfies Assumption 1 (i), then there exists a finite constant ρ ≥ 0 such that

(2)
∣

∣

∣
g2 − g2(a

s
1, a

b
2)

∣

∣

∣
≤ ρ |ḡ1 − g1| , for any (g1, g2) ∈ F.

For example in figure 6, any feasible payoff profile (g1, g2) satisfies inequality (2) for ρ = 1. Also, see

figure 4a for a depiction of inequality (2). The set of feasible payoffs in the repeated game is equal

to the set of feasible stage game payoffs. Therefore, if Γ satisfies Assumption 1 (i), then inequality

(2) implies that

∣

∣

∣
U2(σ1, σ2, δ) − g2(a

s
1, a

b
2)

∣

∣

∣
≤ ρ |ḡ1 − U1(σ1, σ2, δ)| , for any pair (σ1, σ2) ∈ Σ1 × Σ2.

If Γ satisfies Assumption 1 (ii), then there exists a finite constant ρ ≥ 0 such that

(3) g2 − g2(a
s
1, a

b
2) ≤ ρ(ḡ1 − g1), for any (g1, g2) ∈ F.
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Also, see figure 4b for a depiction of inequality (3). If Γ satisfies Assumption 1 (ii), then inequality

(3) implies that

U2(σ1, σ2, δ) − g2(a
s
1, a

b
2) ≤ ρ(ḡ1 − U1(σ1, σ2, δ)), for any pair (σ1, σ2) ∈ Σ1 × Σ2.

We now introduce the resistance function, R(µ, δ), which is central to the analysis that follows.

As a preliminary, we define the resistance of the strategy σ2 for player 2 as follows:

r(σ2, δ) = ḡ1 − U1(σ1(S), σ2, δ).

For the example in figure 6, the resistance of strategy σ2 is equal to the expected discounted number

of periods in which (R,U) is played under the strategy profile (σ1(S), σ2). That is, the resistance

of strategy σ2 is equal to the expected number of times a nonbest response is played by strategy

σ2 against the Stackleberg type. Notice that if player 2 uses strategy σ2 and her opponent uses

strategy σ1(S), then player 2’s payoff, U2(σ1(S), σ2, δ), is equal to −lr(σ2, δ). This is because either

(R,U) or (L,U) is played in each period; and g2(R,U) = −l and g2(L,U) = 0.

The resistance function, R(µ, δ), provides an upper bound on how much player 2 can resist (or

hurt) type S in any PBE of Γ∞(µ, δ). It is defined as follows:

Definition 1 (Resistance function). For any measure µ ∈ ∆(Ω) and δ ∈ [0, 1) let

R(µ, δ) = sup{r(σ2, δ) : σ2 is part of a PBE profile σ of Γ∞(µ, δ)}.

3.2.2. The argument for Corollary 1. In this subsection we prove the reputation result given in

Corollary 1. At the end of the section we discuss the main argument for Theorem 1 that is given

in the Appendix. In what follows, because µ(Ω−) = 0, we use z ∈ [0, 1] to represent the measure µ.

One should understand this to mean µ(S) = z and µ(N) = 1 − z.

In this section we work under the hypothesis that the resistance function R(z, δ) is a nonincreasing

function of z for each δ ∈ [0, 1). We do this for expositional convenience only, as it allows us to

convey the main argument without the more technical details.28

At the start of any period t, if player 1’s reputation level is at least z > 0, then player 1 can

guarantee a continuation payoff of at least 1 − R(z, δ) by playing according to the Stackelberg

28In the Appendix we instead work with the maximal resistance function R̄(z, δ) = sup{R(z′, δ) : z′ ≥ z}, which is
nonincreasing by definition.
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strategy σ1(S). This follows from the definition of R, sequential rationality, and our assumption

that R is non-increasing. We will argue that limδ→1 R(z, δ) = 0, for any z > 0.

Consider a PBE σ of the repeated game Γ∞(z, δ). Suppose that the players are at a history in

which player 1 has played U in each period before t, and player 2 has played a2 ∈ {L,R} in period t.

Suppose further that player 1 plays D with positive probability at this decision node, i.e., player 1

reveals that he is not the Stackelberg type, with positive probability. Also, let player 1’s reputation

level be z′ > 0 at the start of period t + 1, if he plays U instead of D. In the next lemma we bound

the continuation payoff of player 2 by a linear function of R(z′, δ) at any such decision node. The

argument for the lemma is as follows: If player 1 is playing D with positive probability, then the

payoff from playing D must be at least as large as the payoff from playing U . However, if player 1

plays U , he gets at worst zero for the period, ensures that his reputation is z′ at the start of the

subsequent period, and thus guarantees 1 − R(z′, δ) at the start of period t + 1. Given this lower

bound on player 1’s continuation payoff, the linear bound on player 2’s continuation payoff follows

from inequality (2).

Lemma 1. Suppose z > 0. Pick any PBE σ of Γ∞(z, δ) and any period t public history of terminal

nodes ht where player 1 has played U in each period; and suppose player 1 plays D in period t given

history (ht, a2) with positive probability, where a2 ∈ {L,R}. Let z′ = µ(S|ht, a2, U); then we have

|U2(σ1(N), σ2, δ|h
t, a2,D)| ≤ R(z′, δ) + (1 − δ)/δ.

Proof. If player 1 plays U in period t, then his reputation level is z′ = µ(S|ht, a2, U) and he

can guarantee a continuation payoff equal to 1 − R(z′, δ), by using σ1(S). Also, player 1 can

get at worst zero in period t by playing U . Consequently, his payoff from playing U is at least

δU1(σ, δ|ht, a2, U) ≥ δ(1 − R(z′, δ)). If player 1 plays D instead, then he can get at most c for the

current period and δU1(σ, δ|ht, a2,D) as his continuation payoff. Because player 1 is willing to play

D instead of U , we have (1−δ)c+δU1(σ, δ|ht, a2,D) ≥ δU1(σ, δ|ht, a2, U). Hence, U1(σ, δ|ht, a2,D) ≥

1 − R(z′, δ) − (1 − δ)c/δ ≥ 1 − R(z′, δ) − (1 − δ)/δ. The bound on player 2’s payoff follows from

inequality (2) because the payoff profile (U1(σ, δ|ht, a2,D), U2(σ1(N), σ2, δ|h
t, a2,D)) is an element

of F and because the constant ρ is at most one for this particular game. Also see figure 8. �

Remark 2. Lemma 1 puts a bound on U2(σ1(N), σ2, δ|h
t, a2,D), not only for player 2’s equilibrium

choice of a2, but for any a2 ∈ {L,R}. Instead of the game of perfect information in figure 6,
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RL

Player 2

D

δU1(σ, δ|ht, L,D)

U

(1 − δ) + δ(1 − R(z′, δ))

P1

D

c(1 − δ) + δU1(σ, δ|ht, R,D)

U

δ(1 − R(z′′, δ))

P1

Figure 8. This figure depicts the payoff player 1 can guarantee by playing
U and his payoff if he plays D instead. In the figure, z′ = µ(S|ht, L, U)
and z′′ = µ(S|ht, R, U). If player 1 is to play D with positive probability
after R, then (1 − δ)c + δU1(σ, δ|ht, R,D) ≥ δ(1 − R(z′′, δ)). Consequently,
U1(σ, δ|ht, R,D) ≥ 1 − R(z′′, δ) − (1 − δ)c/δ, inequality (2), and ρ ≤ 1 together
imply that |U2(σ, δ|ht, R,D)| ≤ R(z′′, δ) + (1− δ)c/δ. Similarly, if player 1 is to play
D after L, then |U2(σ, δ|ht, L,D)| ≤ R(z′, δ) − (1 − δ)/δ.

suppose that the stage game Γ is given by the simultaneous-move game in figure 7. Further suppose,

in a given PBE σ after history ht, player 2 plays R with probability one and player 1 plays D

with positive probability. Then, as in Lemma 1, player 1’s ex-ante incentive constraint implies that

U1(σ, δ|ht, R,D) ≥ 1−R(z′, δ)−(1−δ)/δ. However, in contrast to Lemma 1, it is no longer possible

to assert that player 1’s ex-ante incentives require U1(σ, δ|ht, L,D) ≥ 1−R(z′, δ)− (1−δ)/δ; and as

a consequence, it is not possible to assert that |U2(σ1(N), σ2, δ|h
t, L,D)| ≤ ρ(R(z′, δ) + (1 − δ)/δ).

This is because player 1 chooses to play D before seeing player 2’s move (i.e., perfect information

is violated) and expects player 2 to play L with probability zero when making his choice; therefore

player 1’s continuation payoff after (ht, L,D) does not affect his ex-ante incentives. We discuss this

point further in section 4.1.

We now use Lemma 1 to sketch the argument for Corollary 1. Suppose that player 1’s reputation

level is z. Consider a PBE σ = (σ1(N), σ1(S), σ2) where player 2 resists the Stackelberg type by

approximately R(z, δ). In this PBE player 2 loses approximately lR(z, δ) in the event that player

1 is the Stackelberg type. We compare player 2’s payoff in this PBE with her payoff if she uses an

alternative strategy that plays L until player 1 plays D for the first time, and then reverts back to

the equilibrium strategy σ2. If player 2 uses the alternative strategy, then she avoids losing lR(z, δ)

in the event that player 1 is the Stackelberg type. We then use the fact that the PBE strategy σ2
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must give player 2 a payoff that is at least as great as the payoff from using the alternative strategy.

This establishes a bound on R(z, δ), for any z sufficiently close to 1.

Upper bound on player 2’s equilibrium payoff. Suppose that player 1 plays D for the first time

in some period t. In each period up to period t, player 2 receives at most zero; in period t, she

receives at most 1− δ; and after period t, she receives at most R(z, δ) + (1− δ)/δ as a continuation

payoff, by Lemma 1 and because R is nonincreasing. Consequently, player 2 gets at most δt(1 −

δ) + δt+1(R(z, δ) + (1− δ)/δ) ≤ R(z, δ) + 2(1− δ), if player 1 plays D for the first time in period t.

Alternatively, if player 1 plays U in each period, then player 2 receives at most −lR(z, δ). Player 1

will play U in every period with probability at least z because type S always plays U . So, player 1

will play D in some period t, with probability at most 1 − z. Thus, player 2’s payoff in the PBE σ

is at most (1 − z)(R(z, δ) + 2(1 − δ)) − zlR(z, δ). This line of reasoning is formalized by the upper

bound that we establish in Lemma 2 further below.

Lower bound on player 2’s equilibrium payoff. Suppose that player 2 uses the alternative strategy

and player 1 plays D for the first time in some period k. Player 2 receives at least −R(z, δ)−(1−δ)/δ

as a continuation payoff after period k, by Lemma 1 and because R is nonincreasing. Also, she

receives zero in each period up to period k, because she plays L and player 1 plays U . In period k

she receives −a(1− δ) ≥ −(1− δ), because she plays L and player 1 plays D, and because a ∈ (0, 1].

Alternatively, if player 1 plays U in every period, then player 2 receives zero. Player 1 will play D in

some period k, with probability at most 1−z. Consequently, if player 2 uses the alternative strategy,

then her payoff is at least −(1−z)(δk(1−δ)+δk+1(R(z, δ)+(1−δ)/δ)) ≥ −(1−z)(R(z, δ)+2(1−δ)).

This line of reasoning is formalized by the lower bound that we establish in Lemma 3 further below.

Bounding resistance. The payoff that player 2 gets from the equilibrium strategy σ2 must be at

least as great as the payoff she receives from the alternative strategy. So, −(1−z)(R(z, δ)+2(1−δ)) ≤

(1 − z)(R(z, δ) + 2(1 − δ)) − zlR(z, δ). Rearranging, R(z, δ) ≤ 4(1 − z)(1 − δ)/(lz − 2(1 − z)) ≤

4(1 − δ)/(lz − 2(1 − z)). Thus, for z sufficiently close to one, i.e., if 1 − z ≤ q ≡ lz/4, then

R(z, δ) ≤ C(1 − δ) where C = 16/zl.29 Therefore, the resistance at reputation level z is very close

to zero, if δ is close to one.

More generally, the argument for Corollary 1 shows that for any two reputation levels z′′ >

z′ ≥ z such that z′/z′′ ≥ 1 − q, the resistance function satisfies the following functional inequality :

R(z′, δ) ≤ CR(z′′, δ) + C(1 − δ). That is, decreasing player 1’s reputation level by a factor of 1 − q

29To be precise, if z ≥ z and 1 − z ≤ lz/4, then lz − 2(1 − z) ≥ lz/2. Hence, R(z, δ) ≤ 4(1 − δ)/lz/2 = 8(1 − δ)/lz ≤
16(1 − δ)/lz.
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increases resistance by at most a factor of C plus an additive term equal to C(1 − δ). Observe

that we can recover the inequality that we established in the previous paragraph by substituting

z′ = 1 − q and z′′ = 1 into the functional inequality and by using the fact that R(1, δ) = 0. figure

9 depicts the upper bound on resistance implied by this functional inequality. Notice that for any

reputation level z ≥ z, the upper bound on resistance depicted in figure 9, converges to zero, as δ

converges to one.

ln(1)

bc

b

ln z1

ln(1 − q)

R∗
2 = C(R∗

1 + (1 − δ)) = (1 − δ)(C2 + C)

R∗
1 = C(R∗

0 + (1 − δ)) = (1 − δ)C

R∗
0 = 0

bc

b

b

ln z2ln zn̄−1 ln zn̄−2n̄ ln(1 − q) = ln zn̄

bc

bcb

b

R∗
n̄−1 = (1 − δ)

∑n̄−1
j=1 Cj

R∗
n̄ = CR∗

n̄−1 + C(1 − δ)

= (1 − δ)
∑n̄

j=1 Cj

ln z

Upper bound on R(z, δ)

Figure 9. Resistance’s upper bound as a function of ln(z). This upper bound is
implied by the functional inequality R(z′, δ) ≤ CR(z′′, δ) + C(1 − δ) that holds for
any z′′ > z′ ≥ z such that z′/z′′ ≥ 1 − q. The reputation levels zn, that are shown
on the x-axis, are such that ln zn − ln zn+1 = ln(1 − q) for each n.

We now proceed with the formal proof of Corollary 1 by establishing an upper and a lower bound

(Lemmata 2 and 3) for player 2’s PBE payoffs. Definition 2 below introduces a stopping time which

we use in constructing the upper and the lower bound.

Definition 2 (Stopping time). For an integer k, let E[0,k] denote the event (set of infinite public

histories) where player 1 plays D for the first time in period t for some t ∈ {0, ..., k}. For any

strategy profile σ = (σ1, σ1(S), σ2), and for reputation levels z > 0 and z′ > z, let

T (σ, z, z′) = min{k ∈ {0, 1, 2, ...} : z/(1 − π(k)) ≥ z′},

where π(k) = (1 − z) Pr(σ1,σ2)[E[0,k]]; and let T (σ, z, z′) = ∞ if the set is empty. Notice that

Pr(σ1,σ2)[E[0,k]] is the probability that player 1 plays D for the first time in period t for some t ∈

{0, ..., k}, if player 1 is using strategy σ1 and player 2 is using strategy σ2.
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Intuitively, the stopping time T (σ, z, z′) gives the first period in which player 1’s reputation level

exceeds z′, if his initial reputation level is z and if the players use strategy profile σ. The specific

implications of Definition 2, that we use in Lemmata 2 and 3, are summarized in the following

remark:

Remark 3. Suppose that player 1’s initial reputation level is z and suppose that z′ > z. Let

σ∗ = (σ1(N), σ1(S), σ∗
2) be any strategy profile where σ∗

2 is a pure strategy. Let T = T (σ∗, z, z′). By

definition, the total probability that player 1 plays D for the first time in any period t ≤ T − 1 (i.e.,

π(T − 1) in the terminology used in Definition 2) is at most 1− z/z′. Also, because both σ1(S) and

σ∗
2 are pure strategies, we have the following:

(i) There is a unique public history of terminal nodes hT+1 consistent with strategies σ1(S) and

σ∗
2.

(ii) If hT+1 is the unique history consistent with σ1(S) and σ∗
2 (i.e., player 1 has always played

U in all periods up to and including period T ), then Bayes’ rule implies that µ(S|hT+1) ≥ z′.

Lemma 2 (Upper bound). Suppose 0 ≤ z < z′ ≤ 1. Let σ = (σ1(N), σ1(S), σ2) denote a PBE of

Γ∞(z, δ) where player 2’s resistance is at least R(z, δ) − ǫ and ǫ > 0. Then,

(4) U2(σ, δ) ≤ q(R(z, δ) + 2(1 − δ)) + R(z′, δ) + 2(1 − δ) − zl(R(z, δ) − ǫ)

where q = 1 − z/z′.

Proof. Let σ∗
2 denote a pure strategy in the support of σ2 such that the resistance of σ∗

2 is at least

R(z, δ) − ǫ. Since the resistance of σ2 is at least R(z, δ) − ǫ, there must be a pure strategy in the

support of σ2 that has resistance of at least R(z, δ) − ǫ. Let profile σ∗ = (σ1(N), σ1(S), σ∗
2) and let

T = T (σ∗, z, z′). As we argued in Remark 3, player 1’s reputation exceeds z′ at the end of period

T if player 1 plays U and if player 2 plays according to σ∗
2 , in all periods up to and including T .

We bound player 2’s payoffs from σ∗
2 in the following three events: (i) The event where player 1

plays D for the first time in some period t < T ; the probability of this event is at most q = 1− z/z′

by Remark 3. (ii) The event where player 1 plays D for the first time in some period t ≥ T ; the

probability of this event is at most 1. (iii) The event where player 1 never plays D; the probability

of this event is at least z, because S never plays D. These three events are exhaustive.

In a period where player 1 plays U , player 2 receives at most zero. Consequently, player 2’s total

payoff in all the periods until player 1 plays D for the first time is at most zero.
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If event (i) occurs and player 1 plays D for the first time in some period t, then player 2 receives

zero until period t, receives at most (1 − δ) in period t,30 and knows with certainty that she faces

the normal type N . Hence, she receives a continuation payoff of at most R(z, δ) + (1 − δ)/δ by

Lemma 1 and because R is nonincreasing. So if event (i) occurs, then player 2’s payoff is at most

R(z, δ) + 2(1 − δ) because

R(z, δ) + 2(1 − δ) ≥ δt(1 − δ) + δt+1(R(z, δ) + (1 − δ)/δ) for any period t.

If event (ii) occurs and player 1 plays D for the first time in some period t, then player 2 receives

zero until period t, receives at most (1 − δ) in period t, and receives a continuation payoff of at

most R(z′, δ)+ (1− δ)/δ, by Lemma 1 and because R is nonincreasing. So if event (ii) occurs, then

player 2’s payoff is at most R(z′, δ) + 2(1 − δ) because

R(z′, δ) + 2(1 − δ) ≥ δt(1 − δ) + δt+1(R(z′, δ) + (1 − δ)/δ) for any period t.

If event (iii) occurs, then player 1 plays U in each period; player 2’s payoff in this event is at

most −l(R(z, δ) − ǫ). This is because the resistance of σ∗
2 is at least R(z, δ) − ǫ.

Putting the bounds on player 2’s payoffs in the three events together, we obtain:

U2(σ
∗, δ) ≤ q(R(z, δ) + 2(1 − δ)) + R(z′, δ) + 2(1 − δ) − zl(R(z, δ) − ǫ).

Recall that σ∗
2 is in the support of PBE strategy σ2. Consequently, we have U2(σ

∗, δ) = U2(σ, δ)

which implies the following:

U2(σ, δ) ≤ q(R(z, δ) + 2(1 − δ)) + R(z′, δ) + 2(1 − δ) − zl(R(z, δ) − ǫ).

�

Lemma 3 (Lower bound). Suppose 0 ≤ z < z′ ≤ 1. In any PBE σ of Γ∞(z, δ), we have

(5) U2(σ, δ) ≥ −q(R(z, δ) + 2(1 − δ)) − R(z′, δ) − 2(1 − δ),

where q = 1 − z/z′.

Proof. Pick any PBE σ of Γ∞(z, δ). Let σ∗
2 denote a pure strategy that moves according to ab

2

after any period k public history hk that is consistent with σ1(S); and that coincides with a pure

30Player 2’s highest stage game payoff is one in this game.
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strategy in the support of the PBE strategy σ2 if hk is not consistent with σ1(S). Let strategy

profile σ∗ = (σ1(N), σ1(S), σ∗
2), and let T = T (σ∗, z, z′). As we argued in Remark 3, player 1’s

reputation exceeds z′ at the end of period T if player 1 plays U and if player 2 plays according to

σ∗
2, in all periods up to and including T .

Once again we bound player 2’s payoff from strategy σ∗
2 in the following three events: (i) The

event where player 1 plays D for the first time in some period t < T ; the probability of this event

is at most q, by Remark 3. (ii) The event where player 1 plays D for the first time in some period

t ≥ T ; the probability of this event is at most 1. (iii) The event that player 1 never plays D.

Player 2’s payoff until player 1 plays D for the first time is at most zero. If event (i) occurs

and player 1 plays D for the first time in some period t, then player 2 receives zero until period t,

receives at worst −a(1 − δ) ≥ −(1 − δ) in period t, and receives a continuation payoff of at worst

−R(z, δ) − (1 − δ)/δ, by Lemma 1 and because R is nonincreasing. Consequently, player 2’s payoff

is at least −R(z, δ) − 2(1 − δ) because

−δt(1 − δ) − δt+1(R(z, δ) + (1 − δ)/δ) ≥ −R(z, δ) − 2(1 − δ).

If event (ii) occurs and player 1 plays D for the first time in some period t, then player 2 receives

zero until period t, receives at worst −(1 − δ) in period t, and receives a continuation payoff of at

worst −R(z′, δ)− (1− δ)/δ, by Lemma 1 and because R is non-increasing. Consequently, player 2’s

payoff is at least −R(z′, δ) − 2(1 − δ) because

−δt(1 − δ) − δt+1(R(z′, δ) + (1 − δ)/δ) ≥ −R(z′, δ) − 2(1 − δ).

If event (iii) occurs, then player 1 never plays D and consequently player 2 receives zero. Putting

the bounds on player 2’s payoffs in the three events together implies that:

U2(σ
∗, δ) ≥ −q(R(z, δ) + 2(1 − δ)) − R(z′, δ) − 2(1 − δ).

Because σ2 is player 2’s PBE strategy we have U2(σ, δ) ≥ U2(σ
∗, δ). Consequently,

U2(σ, δ) ≥ −q(R(z, δ) + 2(1 − δ)) − R(z′, δ) − 2(1 − δ).

�
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Below we use the fact that the upper bound provided in Lemma 2 must exceed the lower bound

given in Lemma 3 to obtain a functional inequality that relates maximal resistance at any two

reputation levels. We then use this functional inequality to complete our proof.

Lemma 4 (Functional Inequality). For any z ∈ [z, 1] and z < z′ ≤ 1, we have

(6) R(z, δ)(zl − 2q) ≤ 2R(z′, δ) + 8(1 − δ),

where q = 1 − z/z′.

Proof. For any ǫ > 0, there exists a PBE σ of Γ∞(z, δ) where player 2’s resistance is at least

R(z, δ) − ǫ, by the definition of the resistance function. By Lemma 2, inequality (4) holds for

any ǫ > 0 and any PBE σ where player 2’s resistance is at least R(z, δ) − ǫ. Also, the upper

bound given by inequality (4) must exceed the lower bound given by inequality (5) for any PBE σ.

Combining (4) and (5), taking the limit as ǫ goes to zero, and substituting z for z together imply

that R(z, δ)(zl − 2q) ≤ 4R(z′, δ) + 4(1 + q)(1 − δ). Using q ≤ 1 then delivers inequality (6). �

Proof of Corollary 1 under the hypothesis that R is nonincreasing. Let q = zl/4 and let n̄ be the

smallest integer such that (1 − q)n̄ ≤ z. We will show that R(z, δ) ≤ (1 − δ)
∑n̄

j=1 Cj where

C = 16/zl and hence 0 ≤ limδ→1 R(z, δ) ≤ limδ→1(1 − δ)
∑n̄

j=1 Cj = 0.

If z, z′ ∈ [z, 1] and z ∈ [z′(1 − q), z′], then 1 − z/z′ ≤ q. Hence, substituting q for q = 1 − z/z′ in

inequality (6) delivers the following:

R(z, δ)(zl − 2q) ≤ 2R(z′, δ) + 8(1 − δ).

Substituting zl/4 for q in the previous inequality and rearranging we obtain the following:

R(z, δ) ≤
4

zl
(R(z′, δ) + 4(1 − δ)).

Substituting C for 16/zl in the previous inequality and using the fact that R(z′, δ) ≥ 0 we obtain

the following:

(7) R(z, δ) ≤ CR(z′, δ) + C(1 − δ).

If z ≥ z and z ∈ [1 − q, 1], then substituting z′ = 1 into inequality (7) we obtain the following:

R(z, δ) ≤ CR(1, δ) + C(1 − δ),
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for z, z′ ∈ [z, 1] such that z ∈ [z′(1 − q), z′]. Notice that R(1, δ) = 0. Consequently, if z ≥ z and

z ∈ [1 − q, 1], then R(z, δ) ≤ C(1 − δ).

More generally, we will show that if z ≥ z and if z ∈ [(1 − q)n, (1 − q)n−1], then R(z, δ) ≤

(1 − δ)
∑n

j=1 Cj by using induction on n. We make the inductive hypothesis that if z ≥ z and if

z ∈ [(1 − q)k−1, (1 − q)k−2], then we have R(z, δ) ≤ (1 − δ)
∑k−1

j=1 Cj.

If z ≥ z and z ∈ [(1 − q)k, (1 − q)k−1], then substituting (1 − q)k−1 for z′ in inequality (7) gives

us the following:

(8) R(z, δ) ≤ CR((1 − q)k−1, δ) + C(1 − δ).

However, inequality (8) and the inductive hypothesis together show that if z ≥ z and z ∈ [(1 −

q)k, (1 − q)k−1], then R(z, δ) ≤ (1 − δ)
∑k

j=1 Cj, completing the induction.

The definition of n̄ implies that z ∈ [(1 − q)n̄, (1 − q)n̄−1], and consequently, R(z, δ) ≤ (1 −

δ)
∑n̄

j=1 Cj. See figure 9 for a depiction of this argument. �

3.2.3. Description of the proof of Theorem 1. Our discussion up to this point established a reputa-

tion result for the game depicted in figure 6. Here we describe the additional arguments we use to

prove Theorem 1. In particular, we sketch the steps involved in allowing for the Stackelberg type

that uses punishments (i.e., np > 1) and allowing for other commitment types (i.e., µ(Ω−) > 0).

In order to accommodate the Stackelberg type who punishes player 2, i.e., the case where np > 1,

we prove Lemmata A.1 and A.2. Lemma A.1 shows that player 2 faces an average per-period cost,

l > 0, for not best responding to the Stackelberg type. Lemma A.2 is an analog of Lemma 1 that

accounts for punishment phases. This lemma is needed because at any node where player 1 deviates

from σ1(S) under equilibrium play, if he instead plays according to σ1(S) in order to maintain his

reputation, then he may have to carry-out an np − 1 period punishment phase.

Allowing for µ(Ω−) > 0 requires accounting for the event where player 2 faces another commit-

ment type in the lower and upper bound calculations. In particular, we show that the effect of the

other commitment types is at most ±Mµ(Ω−) on the lower bound and the upper bound. This is

because player 1 is another commitment type with probability µ(Ω−), and because player 2 can

gain or lose at most M against any type. Consequently, if µ(Ω−) is small, then the effect of other

commitment types on the functional inequality is also small.

4. Discussion
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4.1. Without perfect information, the reputation result can fail. For example, without

perfect information a folk theorem applies to the simultaneous-move common interest game in

figure 3a (Cripps and Thomas, 1997), which has LNCI. For a reputation result in repeated games

with SCI, the perfect information assumption is not required (Cripps et al. (2005) or section 4.6 in

this paper).

Corollary 1 provides a reputation result for the repeated sequential common interest game.31

Lemma 1 is central for establishing Corollary 1 and the perfect-information assumption is required

for Lemma 1. In order to flesh out the intuition of why perfect information is necessary, we construct

a PBE for the repeated simultaneous-move common interest game given in figures 3a (where we

take x = 0), where there is no analog of Lemma 1. In this PBE, the players’ payoffs are low if z is

close to zero and δ is close to one.32 That is, the failure of Lemma 1 also leads to the failure of the

reputation result.

Suppose player 2 plays R and player 1 uses a mixed strategy that plays D with small probability

for the first K periods. After the first K periods, (L,U) is played forever. In this construction

U1(σ) = U2(σ) = δK . Also, the continuation payoff for the players, after (R,D) or (R,U), is

equal to δK−t in any period t ∈ {0, ..,K − 1}. To ensure that player 2 has an incentive to play

R, she is punished in the event that she plays L and player 1 plays D (thus revealing rationality).

Punishment entails a continuation payoff for player 2 that is close to zero.33 Player 1 is willing to

mix between U and D in the first K periods since player 2 only plays R on the equilibrium path.

In this construction, player 2 is deterred from playing L, even if player 1 reveals rationality with a

small probability in each period, because her continuation payoff is close to zero at (L,D). However,

if the probability that player 1 reveals rationality is small in each period, then it takes many periods

for player 1 to build a reputation and K can be chosen large to ensure low payoffs for both players.

This argument hinges on choosing low continuation payoffs for player 2 after terminal node (L,D),

during the first K periods. This does not conflict with player 1’s incentive to play D instead of U ,

even if low continuation payoffs for player 2 also implies low continuation payoffs for player 1, after

node (L,D). This is because, in the first K periods, when player 1 makes his move, he expects

player 2 to play L with probability zero and the terminal node (L,D) is reached with probability

31This is because figure 6 is a normalized sequential common interest game if a = 1 and b = −1.
32This construction follows Cripps and Thomas (1997).
33After (L, D) or (R,D), the continuation game is a repeated game of complete information and any payoff in [0, 1]
can be supported in equilibrium.
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zero. Thus, payoffs at node (L,D) have no effect on player 1’s ex-ante incentive to play D and

consequently player 1’s incentive constraint puts no restrictions on player 2’s continuation payoff

at (L,D). In contrast, if player 1 moves after observing player 2, as in figure 2a, then as shown in

Lemma 1, player 1’s incentive constraint implies that player 2’s continuation payoff after (L,D) is

at least 1 − R(z′, δ) − (1 − δ)/δ, i.e., player 1’s incentive to play D instead of U imposes a bound

on the amount of punishment that player 2 can expect after choosing L.

For our reputation result we make extensive use of Lemma 1 in establishing the upper and lower

bounds for player 2’s payoffs (Lemma 2 and Lemma 3). In Lemma 2, player 2’s payoff is bounded

along the equilibrium path. Consequently, in this lemma the perfect information assumption is not

required. Consider again the equilibrium described for the simultaneous-move game. The bound in

Lemma 1 applies without alteration to the simultaneous-move game at node (R,D) (the node of

interest for Lemma 2), because player 1 believes that player 2 plays R with probability one on the

equilibrium path.

In contrast to Lemma 2, perfect information is essential for Lemma 3. In Lemma 3 we consider

a strategy for player 2 that plays L until player 1 deviates from U , and we give a lower bound for

player 2’s payoff after (L,D). Lemma 1 provides a lower bound on player 2’s payoff after (L,D)

in the case of perfect information. However, there is no analog to Lemma 1 that provides a tight

bound on player 2’s payoff after (L,D) for the simultaneous-move game. For example, in the PBE

we construct we can put no restrictions on payoffs after node (L,D) beyond individual rationality

and feasibility. This is because player 1 expects to reach node (L,D) with probability zero.

4.2. Without Assumption 1, the reputation result can fail. Assumption 1 can fail in two

ways. First, Assumption 1 fails if the payoff profile where player 1 receives ḡ1 is not unique in G

(for example, if Γ is nongeneric). Such a failure is depicted in figure 10a. Second, Assumption 1

fails if, (ḡ1, ĝ2) ∈ G, but Γ is not a strictly conflicting interests game. Such a failure is depicted in

figure 10b. Below we demonstrate that a reputation result can fail to obtain in these examples.

In the nongeneric common interest game depicted in figure 10a, suppose that the Stackelberg type

of player 1 always plays U and µ(S) < 1/2. We describe a PBE where player 1 receives a payoff

strictly lower than one. Suppose on the equilibrium path (R,U) is played in the first K periods

and (L,U) is played thereafter. Player 1 does not build a reputation in this PBE. Choose K such

that both players receive a payoff equal to 1/2. Suppose that if player 2 deviates from equilibrium

by playing L, then player 1’s normal type reveals rationality by playing D, and the stage-game
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(b) The product choice game.

Figure 10. Games that fail to satisfy Assumption 1.

equilibrium (L,D) is played thereafter. Consequently, player 2 receives µ(S) if she deviates from

the equilibrium strategy which is less than her equilibrium payoff 1/2.

In the product choice game depicted in figure 10b, player 1’s dynamic Stackelberg payoff is 1.5

and player 2’s minimax value is zero.34 Although a dynamic Stackelberg strategy does not exist

in this game, there are strategies that deliver a payoff arbitrarily close to the dynamic Stackelberg

payoff. Suppose that player 1’s mixed actions are observed at the end of each period. One might

conjecture that player 1 can obtain a payoff arbitrarily close to the dynamic Stackelberg payoff by

mimicking a type, ω∗, that plays H with probability 1/2+ ǫ. However, this is not the case: Suppose

that on the equilibrium path player 1 plays H with probability 1/2+ǫ, in each period. Player 2 plays

N for the first K periods and plays B thereafter. Choose K such that δK = 1/2. Consequently, no

reputation is built on the equilibrium path and equilibrium payoffs are ((1.5− ǫ)/2, ǫ/2). If player 1

deviates from equilibrium and reveals rationality, then player 2 plays N forever. If player 2 deviates

from equilibrium and plays B, then player 1 reveals rationality by playing L. In the subsequent

complete-information game an equilibrium with payoffs (1.5, 0) is played.35 This construction is a

PBE for any choice of ǫ, if µ(ω∗) < 1/2: If player 2 deviates and plays B, then she is facing ω∗ with

probability µ(ω∗) and receives payoff equal to ǫ. Alternatively, she is facing the normal type with

probability 1 − µ(ω∗) and receives payoff equal to zero. However, µ(ω∗)ǫ < ǫ/2.

4.3. The Stackelberg type. In the repeated games that we consider here, the dynamic Stackelberg

strategy is not necessarily unique. For example in the game depicted in figure 5, the grim-trigger

strategy is also a dynamic Stackelberg strategy. Mimicking the grim-trigger strategy would, however,

34In this stage-game, the Stackelberg payoff is also equal to 1.5 because, for any ǫ > 0, player 1 can guarantee a
payoff equal to 1.5 − ǫ by playing H with probability 1/2 + ǫ. Yet a Stackelberg action does not exist. The unique
action profile that yields player 1 a payoff exactly equal to 1.5 has player one mixing between H and L with equal
probability and player two playing B. However, both B and N are best responses to player 1’s equal mixture and
if player 2 best responds by playing N instead of B, then player 1’s payoff is equal zero. Therefore, player 1 cannot
guarantee 1.5 by committing to this mixed action, i.e., a Stackelberg action does not exist.
35Playing (N, L) in each period is a PBE of the complete information repeated game. Consequently, the threat of
switching to (N, L) can incentivize a patient player 1 to play H with probability 1/2 in each period.
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not give player 1 a high payoff. This is because the punishment phase is also very costly for player

1. In contrast, the particular Stackelberg type that we choose is not very costly to mimic since the

punishment phase is short, i.e., np is chosen minimally. If we had chosen any other finite length

n > np for the punishment phase instead of np, our reputation result would still hold.

4.4. Other commitment types. As noted previously by Schmidt (1993), Celentani et al. (1996),

or Evans and Thomas (1997), if there is a chance that player 1 is a commitment type other than

the Stackelberg type, then player 1 may be unable to build a reputation. Previous work has

addressed this issue by assuming that types are learned due to exogenous noise (Celentani et al.

(1996) or Aoyagi (1996)), by restricting the class of games (Schmidt, 1993), or by considering more

complicated types (Evans and Thomas, 1997).

In the environment we consider, the presence of commitment types can also hinder player 1

from building a reputation. A patient player 2 may resist the Stackelberg type because she fears

punishment or expects a reward for not best responding, either from another commitment type

or from player 1’s normal type. Accordingly, our reputation result holds because, as we show,

punishments or rewards cannot come from player 1’s normal type; and because we assume that the

probability of another commitment type is small compared to the probability of the Stackelberg

type.

The restriction on the relative likelihood of other commitment types can be relaxed if the other

commitment types are uniformly learnable. A uniformly learnable type reveals itself not to be the

Stackelberg type at a rate that is bounded away from zero, uniformly across all histories. If the

other commitment types are uniformly learnable, then player 1 can play according to σ1(S), thereby

ensuring that player 2’s posterior belief that player 1 is a type in Ω− is arbitrarily small in finitely

many periods. If player 2’s posterior belief that player 1 is a type in Ω− is small, then Theorem

1 implies that player 1’s payoff is close to one for sufficiently large discount factors. However, the

restriction to uniformly learnable types is a nontrivial assumption. For example, it rules out the

“perverse” type (see Schmidt, 1993) who plays like the Stackelberg type on the equilibrium path

but responds to deviations in a history-dependent way.

In previous work, Schmidt (1993) and Celentani et al. (1996) establish reputation results with a

nonmyopic player 2, even when the set of commitment types is arbitrary. Celentani et al. (1996)

assume that player 2’s moves are imperfectly observed with full support.36 This assumption ensures

36Also, see Aoyagi (1996) for a similar assumption.
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that all relevant histories are sampled with positive probability without any experimentation by

player 2. If player 2’s moves are imperfectly observed, then a rich set of commitment types is

uniformly learnable. A similar assumption would also enable us to allow for a rich set of commitment

types in the framework that we consider here.37

The reputation result of Schmidt (1993) obtains if there are conflicting interests in the stage

game, player 2’s discount factor is fixed, and player 1 is arbitrarily more patient. Conflicting

interests imply that the punishment that player 2 can expect from any other commitment type

(her minimax payoff) is no worse than best responding to the Stackelberg type and receiving her

minimax payoff. A commitment type may also reward player 2 for not best responding to the

Stackelberg type. But since player 2’s discount factor is fixed, a reward for player 2 must entail

behavior, that differs from the Stackelberg type and that occurs in a bounded number of periods

T . If player 1 is sufficiently patient, then he can mimic the Stackelberg type for these T periods,

depriving player 2 of the reward and thus building a reputation. However, rewards for an equally

patient player 2 need not accrue in a bounded number of periods. A commitment type that rewards

player 2 for resisting the Stackelberg type, in a history-dependent manner can hinder player 1 from

building a reputation against an equally patient opponent, even with strictly conflicting interests.

4.5. Two-sided incomplete information. The reputation results in games with asymmetric

discounting are robust to the introduction of two-sided uncertainty, while the reputation result

that we present in this paper is not. In order to obtain our one-sided reputation result we al-

low for only one-sided uncertainty. In other words, we replace asymmetric discount factors as in

Fudenberg and Levine (1989, 1992), or Celentani et al. (1996), with one-sided asymmetric informa-

tion.

In a related paper, Atakan and Ekmekci (2008b), we consider a repeated game of perfect informa-

tion with equally patient agents, two-sided LNCI or SCI, and two-sided uncertainty. In this related

paper, we show two results: First, the repeated game has a unique equilibrium if the players are

sufficiently patient. Second, under certain additional conditions, in the unique equilibrium of the

repeated game, a war-of-attrition (similar to Abreu and Gul (2000)) is played prior to one player

revealing herself to be the normal type, and once this has occurred, an equilibrium of the game of

one-sided incomplete information, as characterized in Theorem 1, is played.

37See Atakan and Ekmekci (2008a), which assumes player 2’s moves are imperfectly observed with full support; under
this assumption it shows that the set of other types can be taken as the set of all finite automata and the perfect
information assumption can be dropped.
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4.6. Simultaneous-move games with SCI. Cripps et al. (2005) obtain a reputation result for

the Bayes-Nash equilibria of repeated simultaneous-move games with SCI. A similar result can

be obtained using the method we develop here. In particular, redefine R(z, δ) using Bayes-Nash

equilibrium instead of PBE. The upper bound established in Lemma A.3 remains valid for Bayes-

Nash equilibria. This is because all the arguments were constructed on the equilibrium path without

any appeal to perfect information or sequential rationality. Also, U2(σ) ≥ ĝ2 = 0 in any Bayes-Nash

equilibrium. Consequently, functional inequality (6) holds, and a reputation result follows.

4.7. Reputation in dynamic games. We do not know whether our reputation result extends

to more general dynamic games where a different stage game is played in each period. However,

in the following restricted class of dynamic games our reputation result also holds: any one of a

finite number of stage games of perfect information is played in each period. All these stage games

satisfy Assumption 1. The stage game which is played in a particular period is determined by a

transition function, the transitions are stationary, and the transitions depend only on which game

was played in the previous period, but not on the outcome of the game played in the previous

period. For example, if the battle-of-the-sexes game in figure 1 is played in the odd periods and if

the battle-of-the-sexes game in figure 2d is played in the even periods, then our reputation result

would hold.

Appendix A. Proof of Theorem 1

Normalize payoffs, without loss of generality, such that

(9) ḡ1 = 1; g1(a1, a2) ≥ 0 for all a ∈ A; and g2(a
s
1, a

b
2) = 0.

Recall that M = max{max{|g1|, |g2|} : (g1, g2) ∈ F}, hence M ≥ 1.

For any z ∈ (0, 1], let K(z) = max{4ρ
zl

, 8M
zl

(ρnp + 2), 2}. For any z ∈ (0, 1] let

(10) f(z) = K(z)n̄(z),

where n̄(z) is the smallest positive integer j such that (1 − zl/4ρ)j−1 < z. Note that both K and

n̄ are decreasing, positive valued functions of z. Hence, f : (0, 1] → R
++ is a decreasing, positive

valued function.



REPUTATION 32

In what follows, we fix constant z > 0, and we fix constants

(11) K = K(z), and n̄ = n̄(z).

Also, we fix constant φ ∈ [0, 1). We show that for any µ ∈ ∆(Ω) such that µ(S) ≥ z and

µ(Ω−)/µ(S) ≤ φ, and for any PBE strategy profile σ of Γ∞(µ, δ), the following inequality holds

U1(σ, δ) ≥ 1 − f(z)max {1 − δ, φ} ≥ 1 − K n̄ max {1 − δ, µ(Ω−)/µ(S)} .

Lemma A.1. Posit perfect information and Assumption 1. There exists δ∗ ∈ [0, 1) and l > 0 such

that for any r ≥ 0, if U1(σ1(S), σ2, δ) = 1 − r, then U2(σ1(S), σ2, δ) ≤ −lr, for all δ > δ∗.

Proof. The definition of np given in inequality (1) implies that there exists a δ∗ < 1 and l > 0 such

that, for all δ > δ∗, and for any a2 ∈ A2 such that g1(a
s
1, a2) < 1 and any a′2 ∈ A2, we have

(12) g2(a
s
1, a2) +

np−1
∑

k=1

δkg2(a
p
1, a

′
2) < −lnp.

For public history ht = (y0, y1, ..., yt), let i(ht) = 1, if g1(y
t) < 1 and σ1(S, ht) = as

1; and i(ht) = 0,

otherwise. Player 1 receives at least zero in any period t where i(ht) = 1 and also receives at least

zero in the subsequent np − 1 period punishment phase. In all other periods player 1 receives one.

Consequently,

U1(σ1(S), σ2, δ) ≥ 1 − np(1 − δ)E(σ1(S),σ2)

[

∞
∑

t=0

δti(ht)

]

,

and (1− δ)E(σ1(S),σ2)

[
∑∞

t=0 δti(ht)
]

≥ r/np.38 If i(ht) = 1, then player 2 receives a total discounted

payoff of at most −npl(1 − δ) for periods t through t + np − 1, if δ > δ∗ by inequality (12). In any

period where as
1 is played and i(ht)=0, player 2 receives zero. Consequently,

U2(σ1(S), σ2) ≤ −npl(1 − δ)E(σ1(S),σ2)

[

∞
∑

t=0

δti(ht)

]

≤ −lr,

if δ > δ∗. �

Remark A.1. We argue that UC
1 (σ1(S), δ) = 1, i.e., σ1(S) is a dynamic Stackelberg strategy, for

all δ > δ∗. Lemma A.1 implies that if U1(σ1(S), σ2, δ) < 1, then U2(σ1(S), σ2, δ) < 0, for all δ > δ∗.

Thus, if U2(σ1(S), σ2, δ) ≥ 0, then U1(σ1(S), σ2, δ) ≥ 1, for all δ > δ∗. If player 2 plays ab
2 in

each period of the repeated game against σ1(S), then player 2’s payoff is equal to zero. Therefore,

38The bound on player 1’s payoff is crude, especially for low δ.
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if σ2 ∈ BR(σ1(S), δ), then U2(σ1(S), σ2, δ) ≥ 0 and as a consequence U1(σ1(S), σ2, δ) ≥ 1, for all

δ > δ∗. Also, if σ2 ∈ BR(σ1(S), δ), then U2(σ1(S), σ2, δ) is at least as large as player 2’s minimax.

Hence, if σ2 ∈ BR(σ1(S), δ), then U1(σ1(S), σ2, δ) = 1, for all δ > δ∗. This follows because player

1’s highest payoff compatible with player 2’s individual rationality is equal to one.

In what follows, we assume that δ > δ∗, where δ∗ is the cutoff established in Lemma A.1.

Definition A.1. For any z ∈ (0, 1], define the maximal resistance function as follows:

R̄(z, δ) = sup{R(µ, δ) : µ ∈ ∆, µ(S) ≥ z, µ(Ω−)/µ(S) ≤ φ}+,

where ∆ is the set of all measures over Σ1 ∪ {N} with countable support, each commitment type is

identified by the strategy that it plays, and Ω is the support of µ.39

Remark A.2. Definition A.1 implies that R̄(·, δ) : (0, 1] → [0, 1] is a nonincreasing function.

Lemma A.2. Suppose that µ(Ω−)/µ(S) ≤ φ. Pick any PBE σ of Γ∞(µ, δ), and any period t public

history h = (ht, d0); and suppose player 1 deviates from σ1(S) at node d0 with positive probability.

Let ht+1 be any public history of terminal nodes that is reached with positive probability under

Pr(σ1(N)|h,σ2|h); and let h′ = (ht, d′) be the public history that is reached immediately (with positive

probability under Pr(σ1(S)|h,σ2|h)) if σ1(S) is used at d. For any z′ > 0, if µ(S|h′) ≥ z′, then

|U2(σ1(N), σ2, δ|h
t+1)| ≤ ρ(R̄(z′, δ) + npM(1 − δ)/δ), if Γ satisfies Ass. 1 (i); and

U2(σ1(N), σ2, δ|h
t+1) ≤ ρ(R̄(z′, δ) + npM(1 − δ)/δ), if Γ satisfies Ass. 1 (ii).

Proof. Note that player 1’s reputation level µ(S|h′) ≥ z′ and µ(Ω−|h
′)/µ(S|h′) ≤ φ. Therefore, if

a history (hk, d′′) is consistent with σ1(S) and if the node specified by the history (hk, d′′) comes

after the node specified by the history (ht, d′), then player 1’s reputation level µ(S|hk, d′′) ≥ z′ and

µ(Ω−|h
k, d′′)/µ(S|hk, d′′) ≤ φ. If player 1 plays according to σ1(S) at d0 and through the remaining

nodes of period t, then he obtains at least zero for the period and an np − 1 period punishment

phase may ensue. His payoff is at least zero in these periods. Consequently, if he plays according

to σ1(S), his payoff is at least:

0 × (1 − δnp

) + δnp

(1 − R̄(z′, δ)) = δnp

(1 − R̄(z′, δ)),

39For any a ∈ R, a+ = max{a, 0}.
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because R̄ is nonincreasing. Alternatively, if he chooses a move that differs from the move that

σ1(S) would have chosen, then he receives at most M(1− δ) for the period, and U1(σ, δ|ht+1) as his

continuation payoff. Therefore, M(1 − δ) + δU1(σ, δ|ht+1) ≥ δnp

(1 − R̄(z′, δ)). This implies:

U1(σ, δ|ht+1) ≥ δnp−1(1 − R̄(z′, δ)) − M(1 − δ)/δ ≥ 1 − R̄(z′, δ) − npM(1 − δ)/δ,

where the last inequality follows because M ≥ 1, by definition. The bounds on player 2’s payoff fol-

low from inequalities (2) and (3), and from the fact that the payoff profile (U1(σ, δ|ht+1), U2(σ1(N), σ2, δ|h
t+1))

is an element of the set F . �

Definition A.2 (Stopping time). For any integer k, E[0,k] denotes the event (set of infinite public

histories) where player 1 deviates from σ1(S) for the first time in period t for some 0 ≤ t ≤ k. For

any strategy profile σ = ({σ1(ω)}ω∈Ω, σ2), any measure µ ∈ ∆, and any z′ ∈ (0, 1], let

T (σ, µ, z′) = min{k : µ(S) ≥ z′(1 − π(k))},

where π(k) =
∑

ω∈Ω µ(ω) Pr(σ1(ω),σ2)

[

E[0,k]

]

; and let T (σ, µ, q) = ∞ if the set is empty.

Suppose that player 1’s initial reputation level µ(S) = z and µ(Ω−)/µ(S) ≤ φ; pick z′ > 0 and

pick a strategy profile σ∗ = ({σ1(ω)}ω∈Ω, σ∗
2). Let T = T (σ∗, µ, z′). Further suppose that σ∗

2 is a

pure strategy. Because both σ1(S) and σ∗
2 are pure strategies, there is a unique path of play that

is induced by σ1(S) and σ∗
2 . Suppose that T < ∞ and let hT and hT+1 denote the unique public

histories of terminal nodes consistent with (σ1(S), σ∗
2). If z < z′, then the stopping time definition

and Bayes’ rule implies that that µ(S|hT ) < z′ and µ(S|hT+1) ≥ z′. Therefore there exists a unique

public history (hT , d∗) consistent with (σ1(S), σ∗
2) such that µ(S|hT , d∗) < z′ and µ(S|h′) ≥ z′ where

h′ = (hT , d′) is the public history that is reached immediately after d∗ if σ1(S) is used at node d∗

in period T . Also, by Bayes’ rule, the total probability that player 1 deviates from the Stackelberg

strategy at any decision node (in periods zero through T ) up to but excluding (hT , d∗) is at most

1 − z/z′.

Lemma A.3. Posit perfect information and Assumption 1. For any µ ∈ ∆ such that µ(S) = z > 0

and µ(Ω−)/µ(S) ≤ φ, pick a PBE σ of Γ∞(µ, δ) such that r(δ, σ2) ≥ R(µ, δ) − ξ.40 For the chosen

40For each ξ > 0, such a PBE of Γ∞(µ, δ) exists because the resistance function R is defined as the supremum over
the set {r(δ, σ2) : σ2 is part of a PBE of Γ∞(µ, δ)}.
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PBE σ and any z′ > 0,

U2(σ, δ) ≤ ρ(q(z, z′)R̄(z, δ) + R̄(z′, δ) + 2npMǫ) + 5Mǫ − (R(µ, δ) − ξ)zl,(13)

where ǫ = max{φ, 1 − δ} and q(z, z′) = max{1 − z/z′, 0}.

Proof. Choose a pure strategy σ∗
2 in the support of the possibly mixed strategy σ2 such that

r(σ∗
2, δ) ≥ R(µ, δ) − ξ. Such a pure strategy exists because the mixed strategy σ2 has resistance

of at least R(µ, δ) − ξ. Let profile σ∗ = ({σ1(ω)}ω∈Ω, σ∗
2) and let T = T (σ∗, µ, z′). If z < z′ and

T < ∞, then let (hT , d∗) denote the unique public history consistent with (σ1(S), σ∗
2) such that

µ(S|(hT , d∗)) < z′ and µ(S|h′) ≥ z′ where h′ = (hT , d′) is the public history that is reached imme-

diately after (hT , d∗) if σ1(S) is used at node d∗. If z′ ≤ z, then T = 0 and we let d∗ denote the

initial node of the game. If T = ∞, then we say d∗ = ∞ which means that there are no decision

nodes that come after d∗.

Given that µ(S) = z and µ(Ω−)/µ(S) ≤ φ, if h = (ht, d′′) is a public history that is consistent

with (σ1(S), σ∗
2), then µ(Ω−|h)/µ(S|h) ≤ φ and µ(S|h) ≥ z; and moreover if the decision node

(ht, d′′) comes after d∗, then µ(S|h) ≥ z′.

Let E1 denote the event, i.e., set of infinite histories, where player 1 deviates from σ1(S) in a

decision node before (and excluding) the decision node d∗ of period T . Also, let E2 denote the event

where player 1 deviates from σ1(S) in a decision node after (and including) the decision node d∗ of

period T .41 We will bound player 2’s payoff from σ∗ in the following five events: ω = N and E1;

ω = N and E2; ω = N and player 1 never deviates from σ1(S); ω = S; and ω ∈ Ω−.

Before proceeding to bound player 2’s payoff in the five events, as a preliminary step, we argue

that player 2’s payoff until the period t where player 1 deviates from σ1(S) for the first time is at

most (1− δ)M ≤ ǫM . To see why, consider the following three possibilities: First, if player 2 plays

ab
2 in each period until time t, then her payoff is zero. Second, if player 2 deviates from ab

2 in period

t′ ≤ t−np, then she receives at most (1− δ)M in period t′ and a punishment phase ensues. Lemma

A.1 implies that player 2’s discounted payoff, for periods t′ through t′ + np − 1, is negative. Third,

if player 2 deviates from ab
2 in period t′ < t but t′ > t − np, then she receives at most (1 − δ)M

in period t′, a punishment phase ensues (but is not completed before period t), and she receives

at most zero in periods t′ + 1 through t − 1, i.e., she receives at most zero in each period of the

incomplete punishment phase.

41Observe that if d∗ is the initial node, then E1 = ∅. Also, if d∗ = ∞, then E2 = ∅.
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We now bound player 2’s payoff in the event ω = N and E1. Suppose that h∞ ∈ E1, then let

h = (hj , d) denote the node in period j in which player 1 deviates from σ1(S) for the first time

in the infinite public history h∞. Player 2’s payoff until period j is at most ǫM and player 2’s

payoff in period j is at most ǫM . Lemma A.2 and the fact that ǫ ≥ (1 − δ) together imply that

U2(σ1(N), σ∗
2 , δ|hj+1) ≤ ρ(R̄(z, δ) + ǫMnp/δ). Hence, for any such period j, player 2’s repeated

game payoff is at most

Mǫ + δjMǫ + δj+1ρ(R̄(z, δ) + ǫMnp/δ) ≤ 2Mǫ + ρ(R̄(z, δ) + npMǫ).

We therefore obtain:

(14) U2(σ1(N), σ∗
2 , δ|E1) ≤ 2Mǫ + ρ(R̄(z, δ) + npMǫ).

We bound player 2’s payoff in the event ω = N and E2. Suppose that h∞ ∈ E2, then let h = (hj , d)

denote the node at which player 1 deviates from σ1(S) for the first time in the infinite public history

h∞. Player 1’s reputation is at least z′ if he plays according to σ1(S) at the decision node d of

period j. Consequently, Lemma A.2 implies that U2(σ1(S), σ∗
2 , δ|hj+1) ≤ ρ(R̄(z′, δ) + npMǫ/δ). As

a result, an argument identical to that in the previous paragraph implies that

(15) U2(σ1(N), σ∗
2 , δ|E2) ≤ 2Mǫ + ρ(R̄(z′, δ) + npMǫ).

Player 2’s payoff in the event that ω = S (i.e., the event in which she faces type S) is at most

−(R(µ, δ)− ξ)l, and the probability of this event is equal to z. This is because player 2’s resistance

is at least R(µ, δ) − ξ for the strategy σ∗
2; hence, she loses at least (R(µ, δ) − ξ)l against S, by

Lemma A.1. Player 2’s payoff in the event that ω ∈ Ω− (i.e., the event in which she faces any other

commitment type) is at most M , and the probability of this event is at most φz ≤ φ ≤ ǫ. A bound

on player 2’s payoff in the event that ω = N and E1 is given by inequality (14), and the probability

of this event is at most q(z, z′). A bound on player 2’s payoff in the event that ω = N and E2 is

given by inequality (15), and the probability of this event is at most one. Player 2’s payoff in the

event that ω = N and player 1 never deviates from σ1(S) is at most zero. Consequently,

U2(σ
∗, δ) ≤ q(z, z′)ρR̄(z, δ) + ρR̄(z′, δ) − z(R(µ, δ) − ξ)l + 2ρnpMǫ + 5Mǫ.
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Since σ∗
2 is in the support of PBE strategy σ2, we have U2(σ, δ) = U2(σ

∗, δ). Hence,

U2(σ, δ) ≤ q(z, z′)ρR̄(z, δ) + ρR̄(z′, δ) − z(R(µ, δ) − ξ)l + 2ρnpMǫ + 5Mǫ.

�

Lemma A.4. Posit perfect information and Assumption 1 (i). Suppose that µ(S) = z > 0 and

µ(Ω−)/µ(S) ≤ φ. In any PBE σ of Γ∞(µ, δ) and for any z′ > 0, we have

(16) U2(σ, δ) ≥ −ρ(q(z, z′)R̄(z, δ) + R̄(z′, δ) + 2npMǫ) − 3Mǫ,

where ǫ = max{φ, 1 − δ} and q(z, z′) = max{1 − z/z′, 0}.

Proof. Fix a PBE profile σ of Γ∞(µ, δ). Let σ∗
2 denote a pure strategy which moves according to

ab
2 after any public history h that is consistent with σ1(S); and coincides with a pure strategy in

the support of the PBE strategy σ2 if public history h is not consistent with σ1(S). Let profile

σ∗ = ({σ1(ω)}ω∈Ω, σ∗
2) and let T = T (σ∗, µ, z′). If z < z′ and T < ∞, then let (hT , d∗) denote

the unique public history consistent with (σ1(S), σ∗
2) such that µ(S|(hT , d∗)) < z′ and µ(S|h′) ≥ z′

where h′ = (hT , d′) is the public history that is reached immediately after (hT , d∗) if σ1(S) is used

at node d∗. If z′ ≤ z, then T = 0 and we let d∗ denote the initial node of the game. If T = ∞, then

we say d∗ = ∞ which means that there are no decision nodes that come after d∗.

Because (as
1, a

b
2) is played in each period under (σ1(S), σ∗

2), player 2 receives zero in each period

until player 1 deviates from σ1(S). Also, player 2’s payoff in the period in which player 1 deviates

from σ1(S) is at least −Mǫ. Using the reasoning in Lemma A.3 and applying Lemma A.2 we obtain

U2(σ1(N), σ∗
2 , δ|E1) ≥ −ρ(R̄(z, δ) + npMǫ) − Mǫ,

and

U2(σ1(N), σ∗
2 , δ|E2) ≥ −ρ(R̄(z′, δ) + npMǫ) − Mǫ,

where E1 and E2 are the events defined in Lemma A.3.

If player 1 never deviates from σ1(S), then player 2 receives zero. Player 2 can get at least −M

against any other commitment type, whom she faces with probability of at most φ ≤ ǫ; she gets

zero against type S, whom she faces with probability z. Following the same reasoning as in Lemma
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A.3 and because σ2 is part of the PBE σ, we obtain

U2(σ, δ) ≥ U2(σ
∗, δ) ≥ −ρq(z, z′)R̄(z, δ) − ρR̄(z′, δ) − 2ρnpMǫ − 3Mǫ.

�

Completing the proof of Theorem 1 by using Lemma A.3 and Lemma A.4. If Γ satisfies Assumption

1 and perfect information, then inequality (13) is satisfied, by Lemma A.3. If Γ satisfies Assumption

1 (i) and perfect information, then inequality (16) is satisfied, by Lemma A.4. Also, if Γ satisfies

Assumption 1 (ii), then U2(σ, δ) ≥ ĝ2 = 0, and inequality (16) is trivially satisfied because the right-

hand side of the inequality is negative. By combining the upper and lower bounds for U2(σ, δ), given

by inequalities (13) and (16), and using the fact that ξ > 0 can be chosen arbitrarily, we obtain

(17) zlR(µ, δ) ≤ 2ρ(q(z, z′)R̄(z, δ) + R̄(z′, δ) + 2npMǫ) + 8Mǫ,

for any µ ∈ ∆ such that µ(S) = z and µ(Ω−)/µ(S) ≤ φ, and for any z′ ∈ (0, 1]. Pick another

measure µ′ ∈ ∆ such that µ′(S) ≥ z and µ′(Ω−)/µ′(S) ≤ φ. By rewriting inequality (17) for µ′ and

z′ ∈ (0, 1] and by rearranging, we obtain the following inequality:

(18) R(µ′, δ) ≤
(

2ρ(q(µ′(S), z′)R̄(µ′(S), δ) + R̄(z′, δ) + 2npMǫ) + 8Mǫ
)

/µ′(S)l.

However, q(z, z′) ≥ q(µ′(S), z′), because µ′(S) ≥ z; and R̄(z, δ) ≥ R̄(µ′(S), δ) ≥ 0, because R̄ is

nonnegative and nonincreasing in z. Substituting z for µ′(S), q(z, z′) for q(µ′(S), z′), and R̄(z, δ)

for R̄(µ′(S), δ) on the right-hand side of inequality (18) delivers the following:

(19) zlR(µ′, δ) ≤ 2ρ(q(z, z′)R̄(z, δ) + R̄(z′, δ) + 2npMǫ) + 8Mǫ,

for all µ′ ∈ ∆ such that µ′(S) ≥ z and µ′(Ω−)/µ′(S) ≤ φ. Because R̄(z, δ) is the supremum over

the set {R(µ′, δ) : µ ∈ ∆, µ′(S) ≥ z and µ′(Ω−)/µ′(S) ≤ φ}, and because each R(µ′, δ) in this set

satisfies inequality (19), we obtain the following:

(20) zlR̄(z, δ) ≤ 2ρ(q(z, z′)R̄(z, δ) + R̄(z′, δ) + 2npMǫ) + 8Mǫ.

For any z ≥ z, substituting z for z in inequality (20) and rearranging gives the following functional

inequality:

(21) R̄(z, δ)(zl − 2ρq(z, z′)) ≤ 2ρR̄(z′, δ) + 4M(ρnp + 2)ǫ.
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Let q = zl/4ρ. If z, z′ ∈ [z, 1] and z ∈ [z′(1 − q), z′], then q(z, z′) ≤ q. Hence, substituting q for

q(z, z′) in inequality (21) we obtain the following:

R̄(z, δ)(zl − 2ρq) ≤ 2ρR̄(z′, δ) + 4M(ρnp + 2)ǫ.

Substituting zl/4ρ for q in the previous inequality and rearranging, we obtain the following:

R̄(z, δ) ≤
4ρ

zl
R̄(z′, δ) +

8M

zl
(ρnp + 2)ǫ.

Using the fact that R̄(z′, δ) ≥ 0, and substituting K = max{4ρ
zl

, 8M
zl

(ρnp+2), 2} for 4ρ
zl

and 8M
zl

(ρnp+

2) in the previous inequality, we obtain the following:

(22) R̄(z, δ) ≤ KR̄(z′, δ) + Kǫ.

However, the functional inequality (22) is identical to inequality (7) (since K and ǫ in inequality

(22) serve the same roles as C and 1 − δ in inequality (7)). Also, R̄(1, δ) = 0. Consequently, an

argument identical to the one used to establish Corollary 1 implies that R̄(z, δ) ≤
∑n̄−1

j=1 Kjǫ, where

n̄ is the smallest integer j such that (1− q)j−1 < z. Because K ≥ 2 we have R̄(z, δ) ≤
∑n̄−1

j=1 Kjǫ ≤

K n̄ǫ = K n̄ max{1 − δ, φ}. For any µ such that µ(S) ≥ z and µ(Ω−)/µ(S) ≤ φ, and for any

PBE strategy σ of Γ∞(µ, δ), we have U1(σ, δ) ≥ 1 − R(µ, δ) and R(µ, δ) ≤ R̄(z, δ). Consequently,

U1(σ, δ) ≥ 1 − K n̄ max{1 − δ, φ}. �
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