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“The crisis has shown that interest rates can actually hit the zero level, and when this happens it is a 
severe constraint on monetary policy that ties your hands during times of trouble. As a matter of logic, 
higher average inflation and thus higher average nominal interest rates before the crisis would have 
given more room for monetary policy to be eased during the crisis and would have resulted in less 
deterioration of fiscal positions. What we need to think about now is whether this could justify setting a 
higher inflation target in the future.” 

Olivier Blanchard, February 12th, 2010 

I Introduction 

One of the defining features of the current economic crisis has been the zero bound on nominal interest 

rates.  With standard monetary policy running out of ammunition in the midst of one of the sharpest 

downturns in post-World War II economic history, some have suggested that central banks should 

consider allowing for higher target inflation rates than would have been considered reasonable just a few 

years ago.  We contribute to this question by explicitly incorporating positive steady-state (or “trend”) 

inflation in a New Keynesian model as well as the zero lower bound (ZLB) on nominal interest rates.  We 

derive the effects of non-zero steady-state inflation on the loss function, thereby laying the groundwork 

for welfare analysis.  In particular, we show that steady-state inflation affects welfare through three 

distinct channels: steady-state effects, the magnitude of the coefficients in the utility-function 

approximation, and the dynamics of the model.  Our baseline finding is that the optimal rate of inflation is 

low, less than two percent a year, even when we allow for a variety of features that would tend to lower 

the costs or to raise the benefits of positive steady-state inflation. 

Despite the importance of quantifying the optimal inflation rate for policy-makers, modern 

monetary models of the business cycle, namely the New Keynesian framework, have been strikingly ill-

suited to address this question because of their near exclusive reliance on the assumption of zero steady-

state inflation, particularly in welfare analysis.1  Our first contribution is to address the implications of 

positive steady-state inflation for welfare analysis by solving for the micro-founded loss function in an 

otherwise standard New Keynesian model with labor as the only factor of production.   We identify two 

costs of positive trend inflation due to price dispersion, one well-known and the other less so, if at all.  

The first is the steady-state effect: with staggered price setting, higher inflation leads to greater price 

dispersion which causes an inefficient allocation of resources among firms, thereby lowering aggregate 

                                                      
1 Most papers incorporating positive steady-state inflation into the New Keynesian framework have focused on the 
implications for dynamics and determinacy issues.  For example, Cogley and Sbordone (2008) show that accounting 
for positive steady-state inflation significantly improves the fit of the New Keynesian Phillips Curve.  Kiley (2007) 
and Ascari and Ropele (2009) show that the Taylor principle is not sufficient to guarantee a unique rational 
expectations equilibrium in New Keynesian models for even moderate levels of inflation.  Coibion and 
Gorodnichenko (2009) show that once  this feature of New Keynesian models is incorporated into historical 
monetary policy analysis, the pre-Volcker monetary policy rule ensured the presence of self-fulfilling expectational 
fluctuations despite likely satisfying the Taylor principle, a reflection of the high target rate of inflation over this 
time period.   
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welfare.  The second is that positive steady-state inflation raises the welfare cost of a given amount of 

inflation volatility.  This reflects the fact that inflation variations create distortions in relative prices given 

staggered price setting. Since positive trend inflation already generates some inefficient price dispersion, 

the additional distortion in relative prices from an inflation shock becomes more costly as firms have to 

compensate workers for the increasingly high marginal disutility of sector-specific labor. Thus, the 

increased distortion in relative prices due to an inflation shock becomes costlier as we increase the initial 

price dispersion which makes the variance of inflation costlier for welfare as the steady-state level of 

inflation rises. In addition to the two costs from relative price dispersion, a third cost of inflation in our 

model comes from the dynamic effect of positive inflation on pricing decisions.  Greater steady-state 

inflation induces more forward-looking behavior when sticky-price firms are able to reset their prices 

because the gradual depreciation of the relative reset price can lead to larger losses than under zero 

inflation.  As a result, inflation is more volatile which lowers aggregate welfare.  This cost of inflation 

due to the positive relationship between the level and volatility of inflation has been well-documented 

empirically but is commonly ignored in quantitative analyses because of questions as to the source of the 

relationship.2  As with the first two costs of inflation, this cost arises endogenously in the New Keynesian 

model when one incorporates positive steady-state inflation.   

The key benefit of positive inflation in our model is a reduced frequency of hitting the zero bound 

on interest rates.  As emphasized in Christiano et al (2009), hitting the zero bound induces a deflationary 

mechanism which leads to increased volatility and hence large welfare costs.  A higher steady-state level 

of inflation implies a higher level of nominal interest rates and therefore, as suggested by Blanchard, a 

reduced incidence of zero-bound episodes.  Our approach for modeling the zero bound follows 

Bodenstein et al (2009) by solving for the duration of the zero bound endogenously, unlike in Christiano 

et al (2009) or Eggertsson and Woodford (2004).  This is important because the welfare costs of inflation 

are a function of the variance of inflation and output, which themselves depend on the frequency at which 

the zero bound is reached as well as the duration of zero bound episodes.   

After calibrating the model to broadly match the historical incidence of hitting the zero lower 

bound in the U.S., we then solve for the rate of inflation that maximizes welfare.  We show numerically 

that the welfare loss function is generally concave with respect to steady-state inflation, such that the 

optimal rate of inflation is positive as a result of the zero bound.  However, for plausible calibrations of 

the structural parameters of the model and the properties of the shocks driving the economy, the optimal 

inflation rate is quite low: less than two percent per year.  This result is remarkably robust to changes in 

parameter values, as long as these do not dramatically increase the implied frequency of being at the zero 
                                                      
2 For example, Mankiw’s undergraduate Macroeconomics textbook notes that “in thinking about the costs of 
inflation, it is important to note a widely documented but little understood fact: high inflation is variable inflation.”  
Similar statements can be found in other prominent texts. 
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lower bound.  Furthermore, we show that all three costs of inflation  – the steady state effect, the 

increasing cost of inflation volatility, and the positive link between the level and volatility of inflation –  

are quantitatively important: each is sufficient to bring the optimal inflation rate down to 2.5% or lower 

when the ZLB is present.   

This low optimal rate of inflation is unlikely to be driven by a low cost of business cycles: our 

model implies that eliminating business cycle fluctuations at the optimal inflation rate would improve 

welfare by the equivalent of permanently raising consumption by 1.5%, in line with much of the literature 

on business cycle costs (Barlevy (2004)).  In addition, hitting the ZLB is quite costly in the model: our 

calibration implies that at an annual inflation rate of 3%, a period of 8 quarters spent at the zero bound 

reduces welfare by the equivalent of a permanent decrease in consumption of more than 4%, above and 

beyond the welfare effects of the shocks which pushed the economy into the zero bound.  Furthermore, 

while the model implies that the optimal weight on the variance of the output gap in the welfare loss 

function is small, we show that to push the optimal inflation rate above the typical inflation targets of 

central banks would require this coefficient to be more than ten times larger than the weight on the 

annualized inflation variance.  Such weights would imply a welfare cost of being at the ZLB for 8 

quarters roughly equal to a permanent decline in consumption of 40% ($4 trillion per year), a magnitude 

which strikes us as too large to be plausible. 

To further investigate the robustness of this result, we extend our baseline model to consider 

several mechanisms which might raise the optimal rate of inflation.  For example, in the presence of 

uncertainty about the true parameter values, policy-makers might want to choose a higher inflation rate as 

a buffer against the possibility that the true parameters imply more frequent and costly incidence of the 

zero bound.  We address this possibility in two ways.  First, we calculate the optimal inflation rate taking 

into account the uncertainty about parameter values and find that this raises the optimal inflation rate only 

modestly, from 1.1% to 1.4% per year.  Second, we repeatedly draw from the distribution of parameters 

and calculate the optimal inflation rate for each draw.  We find that the 90% confidence interval of 

optimal inflation rates ranges from 0.1% to 2.2% a year, which closely mirrors the target range for 

inflation of most modern central banks.   

Similarly, one might be concerned that our findings hinge on modeling price stickiness as in 

Calvo (1983).  First, because this approach implies that some firms do not change prices for extended 

periods of time, it could overstate the cost of price dispersion and therefore understate the optimal 

inflation rate.  To address this possibility, we reproduce our analysis using Taylor (1977) staggered price 

setting of fixed durations.  The latter implies significantly less price dispersion than the Calvo 

assumption, yet using this alternative pricing structure has no significant impact on the optimal inflation 

rate.  Second, the degree of price rigidity in both Calvo and Taylor pricing is commonly treated as a 
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structural parameter, yet it is unlikely that the frequency of price setting is completely independent of the 

inflation rate, even for low inflation rates like those experienced in the U.S.  As a result, we consider a 

specification of the model in which the degree of price rigidity varies systematically with the trend level 

of inflation but find that this modification also does not qualitatively change the optimal inflation rate.   

Tobin (1972) suggests downward nominal wage rigidity as an additional factor which might push 

the optimal inflation rate higher.  By facilitating the downward adjustment of real wages in the presence 

of downward nominal wage rigidity, positive inflation can be beneficial.  We incorporate this “greasing 

the wheels” effect by constraining changes in the aggregate nominal wage index to be non-negative.  

Strikingly, this addition significantly lowers the optimal inflation rate.  The intuition for this somewhat 

surprising finding is that downward wage rigidity lowers the volatility of marginal costs and hence of 

inflation.  In addition, in the face of a negative demand shock, marginal costs decline by less in the 

presence of downward-wage rigidity, leading to a smaller decline in inflation and thus a smaller change of 

interest rates.  Hence, the ZLB binds less frequently which further reduces the benefits of positive 

inflation.  

Our analysis abstracts from several other factors which might affect the optimal inflation rate.  

For example, Friedman (1969) argued that the optimal rate of inflation must be negative to equalize the 

marginal cost and benefit of holding money.  Because our model is that of a cashless economy, this cost 

of inflation is absent, but would tend to lower the optimal rate of inflation even further, as emphasized by 

Khan et al (2003), Schmitt-Grohe and Uribe (2007, 2010) and Aruoba and Schorfheide (2009).  Similarly, 

a long literature has studied the costs and benefits of the seigniorage revenue to policymakers associated 

with positive inflation, a feature which we also abstract from since seigniorage revenues for countries like 

the U.S. are quite small, as are the deadweight losses associated with it.3  Feldstein (1997) emphasizes an 

additional cost of inflation arising from fixed nominal tax brackets, which would again lower the optimal 

inflation rate.  Furthermore, while our model includes an inflation cost arising from the positive link 

between the level and the volatility of inflation, it is likely that we still understate this cost of inflation 

because we abstract from the possibility that higher inflation volatility will raise risk premiums due to the 

increased risk of redistribution among borrowers and lenders.  In addition, the relationship between the 

level and the volatility of inflation could be even stronger than in our model because higher steady-state 

inflation moves the economy closer to the indeterminacy region where sunspot shocks would further raise 

inflation volatility.  Finally, because we do not model the possibility of endogenous countercyclical fiscal 

policy nor do we incorporate the possibility of nonstandard monetary policy actions during ZLB episodes, 

it is likely that we overstate the costs of hitting the ZLB and therefore again overstate the optimal rate of 

inflation.   

                                                      
3 See for example Cooley and Hansen (1991) and Summers (1991). 
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This paper is closely related to recent work that has also emphasized the effects of the zero bound 

on interest rates for the optimal inflation rate, such as Walsh (2009), Billi (2009), and Williams (2009).  A 

key difference between the approach taken in this paper and such previous work is that we explicitly 

model the effects of positive trend inflation on the steady-state, dynamics, and loss function of the model.  

Billi (2009) and Walsh (2009), for example, use a New Keynesian model log-linearized around zero 

steady-state inflation and therefore do not explicitly incorporate the positive relationship between the 

level and volatility of inflation, while Williams (2009) relies on a non-microfounded model.  In addition, 

these papers do not take into account the effects of positive steady-state inflation on the approximation to 

the utility function and thus do not fully incorporate the costs of inflation arising from price dispersion.4   

An advantage of working with a micro-founded model and its implied welfare function is the 

ability to engage in normative analysis.  In our baseline model, the endogenous response of monetary 

policy-makers to macroeconomic conditions is captured by a Taylor rule.  Thus, we are also able to study 

the welfare effects of altering the systematic response of policy-makers to endogenous fluctuations (i.e. 

the coefficients of the Taylor rule) and determine the new optimal steady-state rate of inflation.5  The 

most striking finding from this analysis is that even modest price-level targeting would raise welfare by 

non-trivial amounts for any steady-state inflation rate.  In addition, by reducing the volatility of inflation 

and output, and therefore the frequency of being at the zero lower bound on interest rates, price-level 

targeting leads to much lower optimal rates of inflation than in our baseline findings.  In a companion 

paper (Coibion et al, 2010), we show that similar results obtain under the Ramsey-optimal policy, 

consistent with the finding of Eggertsson and Woodford (2003) and Wolman (2005) that PLT closely 

approximates the Ramsey-optimal policy.  In short, the optimal policy rule for the model can be 

characterized by the name of “price stability” as typically stated in the legal mandates of most central 

banks.  

 Section 2 presents the baseline New Keynesian model and derivations when allowing for positive 

steady-state inflation, including the associated loss function.  Section 3 includes our calibration of the 

model as well as the results for the optimal rate of inflation while section 4 investigates the robustness of 

our results to parameter values.  Section 5 then considers extensions of the baseline model which could 

                                                      
4 Fuchi et al (2008) study the optimal inflation rate for Japan allowing for the zero-lower bound on interest rates, 
price stickiness, nominal wage rigidity and the opportunity cost of holding money and find a range between 0.5% 
and 2%.  However, they also do not explicitly take into account the effects of positive steady-state inflation on the 
dynamics of the model nor on the utility function approximation. 
5 Billi (2009) solves for the optimal policy, including the steady-state inflation rate, under commitment, discretion, 
and Taylor rules while we focus only on the latter case in this paper and consider the fully optimal policy under 
commitment in a companion paper.  While his results under commitment and Taylor rules point to an optimal 
inflation rate of under 1%, he argues that under discretion the optimal inflation rate can be as high as 17%. 
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potentially lead to higher estimates of steady-state inflation.  Section 6 considers additional normative 

implications of the model, including price level targeting, while section 7 concludes. 

II A New Keynesian Model with Positive Steady-State Inflation 

We consider a standard New Keynesian model with a representative consumer, a continuum of 

monopolistic producers of intermediate goods, a fiscal authority and a central bank. 

2.1 Model 

The representative consumer aims to maximize the present discounted value of the utility stream from 

consumption and leisure  

max ௧ܧ ∑ ௝ߚ ቄlog ௧ା௝ܥ െ ആ
ആశభ ׬ ௧ܰା௝ሺ݅ሻଵାଵ/ఎ݀݅

ଵ
଴ ቅஶ

௝ୀ଴   (1) 

where C is consumption of the final good, Nt(i) is labor supplied to individual industry i, η is the Frisch 

labor supply elasticity and β is the discount factor.  The budget constraint each period t is given by  

:௧ߦ ௧ܥ ൅ ܵ௧/ ௧ܲ ൑ ׬ ሺ ௧ܰሺ݅ሻ ௧ܹሺ݅ሻ/ ௧ܲሻ݀݅
ଵ

଴ ൅ ܵ௧ିଵݍ௧ିଵܴ௧ିଵ/ ௧ܲ ൅ ௧ܶ  (2) 

where S is the stock of one-period bonds held by the consumer, R is the gross nominal interest rate, P is 

the price of the final good, W(i) is the nominal wage earned from labor in industry i, T is transfers and 

profits from ownership of firms, q is a risk premium shock, and  is the shadow value of wealth.6  The 

first order conditions from this utility-maximization problem are then: 

௧ܥ
ିଵ ൌ  ௧  (3)ߦ

௧ܰሺ݅ሻଵ/ఎ ൌ ௧ߦ ௧ܹሺ݅ሻ/ ௧ܲ  (4) 
/௧ߦ ௧ܲ ൌ /௧ܴ௧ݍ௧ାଵߦ௧ሾܧߚ ௧ܲାଵሿ (5) 

Production of the final good is done by a perfectly competitive sector which combines a continuum of 

intermediate goods into a final good per the following aggregator 

௧ܻ ൌ ቂ׬ ௧ܻሺ݅ሻሺఏିଵሻ/ఏ݀݅
ଵ

଴ ቃ
ఏ/ሺఏିଵሻ

   (6) 

where Yt is the final good and Y(i) is intermediate good i, while θ denotes the elasticity of substitution 

across intermediate goods, yielding the following demand curve for goods of intermediate sector i 

௧ܻሺ݅ሻ ൌ ௧ܻሺ ௧ܲሺ݅ሻ/ ௧ܲሻିఏ (7) 

and the following expression for the aggregate price level 

௧ܲ ൌ ቂ׬ ௧ܲሺ݅ሻሺଵିఏሻ݀݅
ଵ

଴ ቃ
ଵ/ሺଵିఏሻ

.  (8) 

                                                      
6 As discussed in Smets and Wouters (2007), a positive shock to q, which is the wedge between the interest rate 
controlled by the central bank and the return on assets held by the households, increases the required return on assets 
and reduces current consumption. The shock q has similar effects as net-worth shocks in models with financial 
accelerators (see Bernanke et al (1999) for a survey).  
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The production of each intermediate good is done by a monopolist facing a production function 

linear in labor  

௧ܻሺ݅ሻ ൌ ௧ܣ ௧ܰሺ݅ሻ (9) 

where A denotes the level of technology, common across firms.  Each intermediate good producer has 

sticky prices, modeled as in Calvo (1983) where 1 െ  is the probability that each firm will be able to ߣ

reoptimize its price each period.  We allow for indexation of prices to steady-state inflation by firms who 

do not reoptimize their prices each period, with ω representing the degree of indexation (0 for no 

indexation to 1 for full indexation).  Denoting the optimal reset price of firm i by B(i), re-optimizing firms 

solve the following profit-maximization problem  

max ௧ܧ ∑ ௝ܳ௧,௧ା௝ൣߣ ௧ܻା௝ሺ݅ሻܤ௧ሺ݅ሻΠഥ ௝ఠ െ ௧ܹା௝ሺ݅ሻ ௧ܰା௝ሺ݅ሻ൧ஶ
௝ୀ଴    (10) 

where Q is the stochastic discount factor and Πഥ is the gross steady-state level of inflation.   The optimal 

relative reset price is then given by 

஻೟ሺ௜ሻ

௉೟
ൌ

ఏ

ఏିଵ

ா೟ ∑ ఒೕொ೟,೟శೕ௒೟శೕሺ௉೟శೕ/௉೟ሻഇశభஈഥషೕഘഇሺெ஼ሺ௜ሻ೟శೕ/௉೟శೕሻಮ
ೕసబ

ா೟ ∑ ఒೕொ೟,೟శೕ௒೟శೕሺ௉೟శೕ/௉೟ሻഇஈഥషೕഘഇಮ
ೕసబ

 (11) 

where firm-specific marginal costs can be related to aggregate variables using 

ಾ಴೟శೕሺ೔ሻ

ು೟శೕ
ൌ ቀ

಴೟శೕ
ಲ೟శೕ

ቁ ቀ
ೊ೟శೕ
ಲ೟శೕ

ቁ
ଵ/ఎ

ቀಳ೟ሺ೔ሻ
ು೟

ቁ
ିఏ/ఎ

ቀ
ು೟శೕ

ಀഥೕഘು೟
ቁ

ఏ/ఎ
. (12) 

Given these price-setting assumptions, the dynamics of the price level are governed by 

௧ܲ
ଵିఏ ൌ ሺ1 െ ௧ܤሻߣ

ଵିఏ ൅ ߣ ௧ܲିଵ
ଵିఏΠഥఠሺଵିఏሻ (13) 

We allow for government consumption of final goods (Gt), so the goods market clearing condition for the 

economy is  

௧ܻ ൌ ௧ܥ ൅  ௧.  (14)ܩ

We define the aggregate labor input as 

௧ܰ ൌ ቂ׬ ௧ܰሺ݅ሻሺఏିଵሻ/ఏ݀݅
ଵ

଴ ቃ
ఏ/ሺఏିଵሻ

.  (15) 

2.2 Steady-state and log-linearization 

Following Coibion and Gorodnichenko (2009), we log-linearize the model around the steady-state in 

which inflation need not be zero. Since positive trend inflation may imply that the steady state and the 

flexible price level of output differ, we adopt the following notational convention. Variables with a bar 

denote steady state values, e.g. തܻ௧ is the steady state level of output. We assume that technology is a 

random walk and hence we normalize all non-stationary real variables by the level of technology. Lower-

case letters denote the log of a variable, e.g.  ݕ௧ ൌ log ௧ܻ is the log of current output. We let hats on lower 

case letters denote deviations from steady state, e.g. ݕො௧ ൌ ௧ݕ െ  ത௧ is the approximate percentage deviationݕ

of output from steady state. Since we define the steady state as embodying the current level of 
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technology, deviations from the steady state are stationary. Finally, we denote deviations from the flexible 

price level steady state with a tilde, e.g. ݕ෤௧ ൌ ௧ݕ െ ത௧ݕ
ி is the approximate percentage deviation of output 

from its flexible price steady state, where the superscript F denotes a flexible price level quantity. Define 

the net steady-state level of inflation as ߨത ൌ log ሺΠഥሻ. The log-linearized consumption Euler equation is  

െܿ̂௧ ൌ ௧ሾെܿ̂௧ାଵܧ ൅ ௧ݎ̂ െ ො௧ାଵߨ ൅  ො௧ሿ (16)ݍ

and the goods market clearing condition becomes 

ො௧ݕ ൌ ܿҧ௬ܿ̂௧ ൅ ҧ݃௬ ො݃௧  (17) 

where ܿҧ௬ and ҧ݃௬ are the steady-state ratios of consumption and government to output respectively.  Also, 

integrating over firm-specific production functions and log-linearizing yields  

ො௧ݕ ൌ ො݊௧ (18) 

Allowing for positive steady-state inflation (i.e., ߨത ൐ 0) primarily affects the steady-state and price-

setting components of the model.  For example, the steady-state level of the output gap (which is defined 

as the deviation of steady state output from its flexible price level counterpart തܺ௧ ൌ തܻ௧/ തܻ௧
ி) is given by 

തܺሺఎାଵሻ ఎ⁄ ൌ
ଵିൣଵିఒఉషభஈഥሺభషഘሻഇ൧ቆ

భషഊಀഥሺభషಡሻሺഇషభሻ

భషഊ
ቇ

ሺആశഇሻ/ሺആሺഇషభሻሻ

ఒఉషభஈഥሺభషഘሻഇሺആశభሻ/ആ .  (19) 

Note that the steady-state level of the gap is equal to one when steady-state inflation is zero (i.e., Πഥ ൌ 1) 

or when the degree of price indexation is exactly equal to one.  As emphasized by Ascari and Ropele 

(2007), there is a non-linear relationship between the steady-state levels of inflation and output.  For very 

low but positive trend inflation, തܺ is increasing in trend inflation but the sign is quickly reversed so that തܺ 

is falling with trend inflation for most positive levels of trend inflation.   

Secondly, positive steady-state inflation affects the relationship between aggregate inflation and 

the re-optimizing price. Specifically, the relationship between the two in the steady state is now given by 

ሺܤ/ܲሻതതതതതതതത ൌ ቀ ଵିఒ

ଵିఒஈഥሺభషಡሻሺഇషభሻቁ
ଵ/ሺఏିଵሻ

  (20) 

and the log-linearized equation is described by 

ො௧ߨ ൌ ൬ଵିఒஈഥሺభషಡሻሺಐషభሻ

ఒஈഥሺభషಡሻሺಐషభሻ ൰ ෠ܾ
௧   ֜   ෠ܾ

௧ ൌ  ො௧     (21)ߨܯ

which implies that inflation is less sensitive to changes in the re-optimizing price as steady-state inflation 

rises.  This effect reflects the fact that, with positive steady-state inflation, firms which reset prices have 

higher prices than others and receive a smaller share of expenditures, thereby reducing the sensitivity of 

inflation to these price changes.  Indexation of prices works to offset this effect however, with full-

indexation completely restoring the usual relationship between reset prices and inflation. 

 

Similarly, positive steady-state inflation has important effects on the log-linearized optimal reset 

price equation, which is given by 
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ቀ1 ൅ ഇ
ആ
ቁ ෠ܾ

௧ ൌ ሺ1 െ ଶሻߛ ∑ ଶߛ
௝ ቀభ

ആ
ො௧ା௝ݕ௧ܧ ൅ ௧ܿ̂௧ା௝ቁஶܧ

௝ୀ଴ ൅ ௧ܧ ∑ ൫ߛଶ
௝ െ ଵߛ

௝൯൫݃ݕෞ௧ା௝ ൅ ௧ା௝ିଵ൯ஶݎ̂
௝ୀଵ ൅

∑ ቂߛଶ
௝ ቀ1 ൅ ഇሺആశభሻ

ആ
ቁ െ ଵߛ

௝ߠቃ ො௧ା௝ߨ௧ܧ
ஶ
௝ୀଵ ൅ ෝ݉௧ (22) 

where ෝ݉௧ is a cost-push shock, ߛଵ ൌ ଶߛ ഥሺଵିఠሻሺఏିଵሻ  andߎଵିߚߣ ൌ  ഥሺଵିఠሻሺଵାఏ/ఎሻ so that without steady-stateߎଵߛ

inflation or full indexation we have ߛଵ ൌ  ത increases the coefficients on futureߨ ଶ.  When ω < 1, a higherߛ

output and inflation but also leads to the inclusion of a new term composed of future differences between 

output growth and interest rates.  Each of these effects makes price-setting decisions more forward-

looking.7 The increased coefficient on expectations of future inflation, which reflects the expected future 

depreciation of the reset price and the losses associated with it, plays a particularly important role.  In 

response to an inflationary shock, a firm which can reset its price will expect higher inflation today and in 

the future as other firms update their prices.  Given this expectation, the higher the trend rate of inflation, 

the greater the optimal reset price must be to offset the expected future depreciation in the reset price.  

Thus, reset prices become more responsive to shocks with higher ߨത. This effect dominates the reduced 

sensitivity of inflation to the reset price in equation (21), thereby endogenously generating a positive 

relationship between the level and the volatility of inflation.   

To close the model, we assume that the log deviation of the desired gross interest rate from its 

steady state value, ݎො௧
  follows a Taylor rule כ

௧ݎ̂
כ ൌ ௧ିଵݎଵ̂ߩ

כ ൅ ௧ିଶݎଶ̂ߩ
כ ൅ ሺ1 െ ଵߩ െ ௧ߨଶሻൣ߶గሺߩ െ ሻכߨ ൅ ߶௬ሺݕ௧ െ ሻכݕ ൅ ߶௚௬ሺ݃ݕ௧ െ ሻכݕ݃ ൅ ߶௣ሺ݌௧ െ ௧݌

ሻ൧כ ൅ ௧ߝ
௥  

where ߶గ, ߶௬, ߶௚௬, ߶௣ capture the strength of the policy response to deviations of inflation, the output gap, 

the output growth rate and the price level from their respective targets, parameters ߩଵ and ߩଶ reflect 

interest rate smoothing, while ߝ௧
௥ is a policy shock. We set כߨ ൌ ,തߨ ௧݌

כ ൌ ݐכߨ ൌ ,ݐതߨ כݕ ൌ כݕ݃ ത  andݕ ൌ  തതതത  soݕ݃

that the central bank has no inflationary or output bias. The growth rate of output is related to the output 

gap by  

ෞ௧ݕ݃ ൌ ො௧ݕ െ ො௧ିଵݕ ൅ ሺܽ௧ െ ܽ௧ିଵ െ  ሻ  (23)ߤ

where ܽ௧ is the log level of technology and ߤ its trend growth rate. Since the actual level of the net 

interest rate is bounded by zero, the log deviation of the gross interest rate is bounded by ̂ݎ௧ ൌ logሺܴ௧ሻ െ

logሺ തܴሻ ൒ െ logሺ തܴሻ ൌ െݎҧ  and the dynamics of the actual interest rate are given by  

௧ݎ̂ ൌ max ሼ̂ݎ௧
,כ െݎҧሽ. (24) 

2.3 Shocks 

We assume that technology follows a random walk process with drift: 
 ܽ௧ ൌ ܽ௧ିଵ ൅ ߤ ൅ ௧ߝ

௔  (25) 
Each of the risk premium, government, and Phillips Curve shocks follow AR(1) processes 

ො௧ݍ ൌ ො௧ିଵݍ௤ߩ ൅ ௧ߝ
௤, (26) 

                                                      
7 See Coibion and Gorodnichenko (2009) for a discussion of each of these effects. 
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ො݃௧ ൌ ௚ߩ ො݃௧ିଵ ൅ ௧ߝ
௚, (27) 

ෝ݉௧ ൌ ௠ߩ ෝ݉௧ିଵ ൅ ௧ߝ
௠.  (28) 

We assume that ߝ௧
௔, ௧ߝ

௤, ௧ߝ
௚, ௧ߝ

௠, ௧ߝ
௥ are mutually and serially uncorrelated.  

2.4 Welfare function 

To quantify welfare for different levels of steady-state inflation, we use a second-order approximation to 

the household utility function as in Woodford (2003).8  We show our main results in a series of lemmas 

culminating in Proposition 1. All proofs are in Appendix A.  

First of all, we decompose utility described in equation (1) into utility due to consumption and 

(dis)utility due to labor supply. Lemmas 1 and 2 provide second order approximations for each 

component.  

Lemma 1. Utility from consumption in equation (1) is given by  
௧ሻܥሺݑ ൌ ෤ܿݐ ൅ .ݐ ݅. .݌ ൅݄. .݋  (29) .ݐ

where ܿ̃௧ ൌ log ሺܥ௧/ܥ௧
ிሻ is the percent deviation of consumption from its flexible-price level t.i.p. stands 

for terms independent from policy,  and h.o.t. means higher order terms.  

Lemma 2. Using production function (9), define ෤߭ሺ ௧ܻሺ݅ሻሻ ؠ ߭ሺ ௧ܰሺ݅ሻሻ ؠ ௧ܰሺ݅ሻଵାଵ/ఎ. Then  
෤߭൫ ௧ܻሺ݅ሻ൯ ൎ  തܻ௧

ி ෤߭௒ത೟
ಷ
′ ൛ݕ෤௧ሺ݅ሻ ൅ భ

మ
ሺ1 ൅ ෤௧ݕଵሻିߟ

ଶሺ݅ሻൟ ൅ .ݐ ݅. .݌ ൅݄. .݋  (30) .ݐ

where ݕ෤௧ሺ݅ሻ ൌ log ሺ ௧ܻሺ݅ሻ/ തܻ௧
ிሻ is the deviation of firm i’s output from the flexible-price level of output തܻ௧

ி. 
Correspondingly, the total disutility from labor supply is  

׬ ෤߭൫ܻݐሺ݅ሻ൯݀݅
ଵ

଴ ൌ തܻݐ
෤߭ܨ തܻݐ

ܨ
′ ቄݕ݅ܧ෤ݐ

ሺ݅ሻ ൅ 1
2
ሺ1 ൅ െ1ሻߟ ׬ ݐ෤ݕ

2ሺ݅ሻ݀݅
1

0
ቅ ൅ .ݐ ݅. .݌ ൅݄. .݋  (31) .ݐ

Proof: See Proposition 6.3 in Woodford (2003).  
 

The key insight from Lemmas 1 and 2 is that welfare is diminished when consumption is low 

relative to its flexible-price level and when the cross-sectional dispersion of output is large. To understand 

and assess the implications of cross-sectional output dispersion, we need to examine the cross-sectional 

dispersion of prices.  

Denote the cross-sectional dispersion of prices at time t with ∆௧ൌ var௜ሺlog ሺ ௧ܲሺ݅ሻሻሻ and let ∆ത be 

the cross-sectional dispersion of prices in the non-stochastic steady state. It is straightforward to show  

that ∆തൌ തଶഊሺభషഘሻమߨ

ሺభషഊሻమ  where ∆ത is increasing in price stickiness λ and steady-state inflation ߨത and decreasing in 

the degree of indexation .  Define തܲ௧ ൌ ௜logܧ ௧ܲሺ݅ሻ as the average (across firms) log price of goods.  

Lemma 3. The difference between the log price index Pt and the average log price across firms തܲ௧ is 
given by  

                                                      
8 In our welfare calculations, we use the second order approximation to the consumer utility function while 
structural relationships in the economy are approximated to first order. As discussed in Woodford (2010), this 
approach is valid if distortions to the steady state are small so that the first order terms in the utility approximation 
are premultiplied by coefficients that can also be treated as first order terms.  Since given our parameterization the 
distortions from imperfect competition and inflation are small (as in Woodford 2003), this condition is satisfied in 
our analysis.  
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log ௧ܲ െ തܲ௧ ൌ ܳ௣
଴ ൅ భషഇ

మ
ܳ௣

ଵሺ∆௧ െ Δഥሻ ൅ ݄. .݋  (32) .ݐ
where ܳ௣

଴ ൌ భషഇ
మ

Δഥ ሾ1 ൅ భ
మ

ሺଵିఏሻమΔഥሿଶൗ   and ܳ௣
ଵ ൌ ሾ1 െ భ

మ
ሺଵିఏሻమΔഥሿ ሾ1 ൅ భ

మ
ሺଵିఏሻమΔഥሿଷൗ .  

 

Lemma 3 is a manifestation of Jensen’s inequality. Note that since ∆ത is quadratic in ߨത, the 

dispersion of prices ∆ത is approximately zero when ߨത ൎ 0 and therefore ܳ௣
଴ ൎ 0, ܳ௣

ଵ ൎ 1 so that log ௧ܲ െ

തܲ௧ ൎ భషഇ
మ

∆௧, which is the standard result. Again, since ∆ത is quadratic in ߨത, one can show that ߲ܳ௣
଴/߲ߨത ൎ 0, 

߲ܳ௣
ଵ/߲ߨത ൎ 0 when ߨത ൎ 0.      

Using Lemma 3, we describe the dynamic properties of the price dispersion in Lemma 4.  

Lemma 4. Let Ξ୲ ൌ Δ୲ െ Δഥ be the deviation of cross-section price dispersion from its non-stochastic 
steady state level ∆ത. Then  

Ξ௧ ൌ Γଶሺߨ௧ െ തሻߨ ൅ ΓଵΞ௧ିଵߣ ൅ ሺߨ௧ െ തሻଶΓ଴ߨ ቄሺ1 െ ଶܯሻߣ ൅ ߣ ൅ ሺభషഇሻమ

ర
ൣܳ௣

ଵ൧
ଶ
Γଶ

ଶ ൅ ሺ1 െ ሻሺ1ߣ െ

௣ܳܯሻߠ
ଵΓଶ െ ሺ1ߣ െ ሻܳ௣ߠ

ଵΓଶቅ ൅ ݄. .݋ .ݐ

 

(33) 
where 

Γ଴ ൌ ൛1 ൅ ሺߠ െ 1ሻܳ௣
ଵൣሺ1 െ ሻ൫തܾߣ ൅ ܳ௣

଴൯ െ ሺ1ߣ െ ߱ሻߨത൧ൟ
ିଵ

,  
Γଵ ൌ ൛1 െ ሺߠ െ 1ሻሺ1 െ ߱ሻߨതܳ௣

ଵൟΓ଴,  
Γଶ ൌ 2൛ሺ1 െ ൫തܾܯሻߣ ൅ ܳ௣

଴൯ ൅ ሺ1ߣ െ ߱ሻߨതൟΓ଴,  
തܾ is the log of the optimal reset price in the non-stochastic steady state.  

This lemma shows that the cross-sectional price dispersion is a function of its past values as well as the 

deviation of inflation from its steady state level. In the vicinity of ߨത ൌ 0, Γ଴ ൎ 1, Γଵ ൎ 1, Γଶ ൎ 0 and thus 

cross-sectional price dispersion varies very little over time since it is only a function of the variance of 

inflation.  This is the standard result for welfare calculations in a zero steady state inflation environment 

(see e.g. Proposition 6.3 in Woodford (2003)). However, ߲Γ଴/߲ߨത ൐ 0, ߲Γଵ/߲ߨത ൏ 0, ߲Γଶ/߲ߨത ൐ 0 locally 

at ߨത ൎ 0. Hence, deviations of inflation from its steady state level have an increasingly strong effect on 

the cross-sectional price dispersion as ߨത rises and, as a result, the dynamics of price dispersion can 

become first-order when ߨത is sufficiently high.  However, given our parameter values and for the levels of 

trend inflation that we consider, Γଶ remains very small so that price dispersion effectively remains of 

second order as in Woodford (2003) and thus we can use a linear approximation of the structural 

relationships in the economy and a second order approximation of consumer utility for welfare 

calculations.9  Henceforth, we will treat Γଶ as approximately zero. 

Using the demand condition (7), we can link the cross-sectional dispersion of output to the cross-

sectional dispersion of prices:  

෤௧ሺ݅ሻݕ ൌ log ௧ܻሺ݅ሻ െ log തܻ௧
ி ൌ log ௧ܻ െ log തܻ௧

ி െ ሼlogߠ ௧ܲሺ݅ሻ െ log ௧ܲሽ  (34) 

and hence 
                                                      
9 In our baseline calibration the highest value for Γଶ  is 0.044 which is reached at 6% annual inflation.  
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Υ௧ ؠ var௜ݕො௧ሺ݅ሻ ൌ var௜ݕ෤௧ሺ݅ሻ ൌ ଶvar௜൫log൫ߠ ௧ܲሺ݅ሻ൯൯ ൌ  ଶΔ௧. (35)ߠ

Let Υഥ be the cross-sectional dispersion of output in the non-stochastic steady state. The remaining piece in 

the second-order approximation of household’s utility is ܧ௜ݕ෤௧ሺ݅ሻ, which is the average deviation of output 

from flexible price level at the firm level. Using the insight of Lemma 3, we can relate ܧ௜ݕ෤௧ሺ݅ሻ
 to the 

deviation of output from its flexible-price level at the aggregate level.  

Lemma 5. If the deviation of output from its flexible-price level at the aggregate level is defined as 
෤௧ݕ ൌ log ሺ ௧ܻ/ തܻ௧

ிሻ, then  
෤௧ሺ݅ሻݕ௜ܧ ൌ ෤௧ݕ െ ܳ௬

଴ െ ഇషభ
మഇ

ܳ௬
ଵሺΥ௧ െ Υഥሻ ൅ ݄. .݋  (36)  .ݐ

where ܳ௬
଴ ൌ ഇషభ

మഇ
Υഥ ሾ1 ൅ భ

మ
ቀభషഇ

ഇ ቁ
మ
Υഥሿଶൗ   and ܳ௬

ଵ ൌ ሾ1 െ భ
మ

ቀభషഇ
ഇ ቁ

మ
Υഥሿ ሾ1 ൅ భ

మ
ቀభషഇ

ഇ ቁ
మ
Υഥሿଷൗ .  

Similar to the cross-sectional price dispersion, one can show that, since Υഥ is quadratic in ߨത, ܳ௬
଴ ൎ 0, 

ܳ௬
ଵ ൎ 1 and ߲ܳ௬

଴/߲ߨത ൎ 0,  ߲ܳ௬
ଵ/߲ߨത ൎ 0 when ߨത ൎ 0.  

The central result can be summarized with the following proposition. 

Proposition 1. Given Lemmas 1-5, the second order approximation to per period utility in eq. (1) is10  
Θ଴ ൅ Θଵvarሺݕො௧ሻ ൅ Θଶvarሺߨො௧ሻ  (37) 

where parameters Θ௜, ݅ ൌ ሼ0,1,2ሽ  depend on the steady state inflation ߨത and are given by  

Θ଴ ൌ ቂ1 െ ሺభషಅሻ
൫భష೒ഥ೤൯

൫1 െ ሺ1 ൅ ηିଵሻܳ௬
଴൯ቃ log തܺ െ ሺభషಅሻ

൫భష೒ഥ೤൯
 ቄሺ1 ൅ ηିଵሻൣܳ௬

଴൧
ଶ

െ ܳ௬
଴ ൅ ഇషభ

ഇ
ܳ௬

ଵൣభ
మ

െ ሺ1 ൅

ηିଵሻܳ௬
଴൧Υഥቅ െ ሺభషಅሻ൫భశಏషభ൯

మ൫భష೒ഥ೤൯
ሾlog തܺሿଶ െ ഇమ

మ൫భష೒ഥ೤൯
ൣܳ௬

ଵሺିߠଵ െ 1ሻ െ ܳ௬
ଵ ൅ ሺ1 ൅ ηିଵሻ൫1 ൅ ഇషభ

ഇ
ܳ௬

଴ܳ௬
ଵ൯൧Δഥ,    

Θଵ ൌ െభ
మ
ሺ1 ൅ ηିଵሻ/ሺ1 െ ҧ݃௬ሻ,  

Θଶ ൌ െ ഇమ

మሺభష೒ഥ೤ሻ
Γଷ൛ൣܳ௬

ଵሺିߠଵ െ 1ሻ ൅ ሺ1 ൅ ଵሻ൫1ିߟ ൅ ഇషభ
ഇ

ܳ௬
଴ܳ௬

ଵ൯൧ െ ሺ1 ൅ ଵሻഇషభିߟ
ഇ

ܳ௬
ଵ log തܺ ൟ,   

Γଷ ൌ ౳బ
భషഊ౳భ

ሼሺ1 െ ଶܯሻߣ ൅   ,ሽߣ

Φ ൌ െ logሺഇషభ
ഇ

ሻ.  

The loss function in Proposition 1 illustrates the three mechanisms via which trend inflation affects 

welfare: the steady-state effects, the effects on the coefficients of the utility-function approximation, and 

the dynamics of the economy via the second moments of macroeconomic variables.11  First, the term Θ଴ 

captures the steady-state effects from positive trend inflation, which hinge on the increase in the cross-

sectional steady-state dispersion in prices (and therefore in inefficient allocations of resources across 

sectors) associated with positive trend inflation.12 Note that as ߨത approaches zero, Θ଴ converges to zero. 

                                                      
10 The complete approximation also contains two linear terms, the expected output gap and expected inflation. Since 
the distortions to the steady state are small for the levels of trend inflation we consider, the coefficients that multiply 
these terms can be considered as  first order so we can evaluate these terms using the first order approximation to the 
laws of motion as in Woodford (2003). We confirmed in numeric simulations that they can be ignored.  
11 When ߨത ൌ 0, equation (41) reduces to the standard second-order approximation of the utility function as in 
Proposition 6.4 of Woodford (2003). There is a slight difference between our approximation and the approximation 
in Woodford (2003) since we focus on the per-period utility while Woodford calculated the present value.  
12 The parameter Ф measures the deviation of the flexible-price level of output from the flexible-price perfect-
competition level of output. See Woodford (2003) for derivation. 
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As shown by Ascari and Ropele (2009), when ߨത ൌ 0, ߲Θ଴/߲ߨത ൐ 0, but the sign of the slope quickly 

reverses at marginally positive inflation rates. In our baseline calibration, Θ଴ is strictly negative and 

߲Θ଴/߲ߨത ൏ 0 when trend inflation exceeds 0.04% per annum.  Thus for quantitatively relevant inflation 

rates, the welfare loss from steady-state effects is increasing in the steady-state level of inflation. This is 

intuitive since, except for very small levels of inflation, the steady state level of output declines with 

higher ߨത because the steady state cross-sectional price dispersion rises.  The steady-state cost of inflation 

from price dispersion is one of the best-known costs of inflation and arises naturally from the integration 

of positive trend inflation into the New Keynesian model.  Consistent with this effect being driven by the 

increase in dispersion, one can show that the steady-state effect is eliminated with full indexation of 

prices and mitigated with partial indexation.  

Second, the coefficient on the variance of output around its steady state Θଵ ൏ 0 does not depend 

on trend inflation. This term is directly related to the disutility of cross-sectional dispersion of labor 

supply. A part of this disutility is brought about by the variance of output around its steady state which is 

not a direct function of trend inflation.  However, this does not imply that positive ߨത does not impose any 

output cost. Rather, trend inflation reduces the steady state level of output, which is already captured by 

Θ଴. Once this is taken into account, then log utility implies that a given level of output variance around 

the (new) steady state is as costly as it was before. Furthermore, the variance of output around its steady 

state depends on the dynamic properties of the model which are affected by the level of trend inflation.   

The coefficient on the variance of inflation Θଶ ൏ 0 captures the sensitivity of the welfare loss due 

to the cross-sectional dispersion of prices. One can also show analytically that for ߨത ൎ 0, ߲Θଶ/߲ߨത ൏ 0 so 

that  the cross-sectional dispersion of prices becomes ceteris paribus costlier in terms of welfare. Recall 

that an inflationary shock creates distortions in relative prices. Given that positive trend inflation already 

generates some price dispersion and hence an inefficient allocation of resources, firms operating at an 

inefficient level have to compensate workers for the increasingly high marginal disutility of sector-

specific labor. Because of this rising marginal disutility, the increased distortion in relative prices due to 

an inflation shock becomes costlier as we increase the initial price dispersion which makes the variance of 

inflation costlier for welfare as the trend level of inflation rises. Thus, this is a second, and to the best of 

our knowledge previously unidentified, channel through which the price dispersion arising from staggered 

price setting under positive inflation reduces welfare.  Finally, Θଶ increases in the Frisch labor supply 

elasticity and decreases in the elasticity of substitution across goods  and the Calvo parameter λ. 

III Calibration and Optimal Inflation 

Having derived the approximation to the utility function, we now turn to solving for the optimal inflation 

rate.  Because utility depends on the volatility of macroeconomic variables, this will be a function of the 



14 
 

structural parameters and shock processes.  Therefore, we first discuss our parameter selection and then 

consider the implications for the optimal inflation rate in the model.  We investigate the robustness of our 

results to parameter values in subsequent sections. 

3.1 Parameters 

Our baseline parameter values are illustrated in Table 1.  For the utility function, we set η, the Frisch labor 

supply elasticity, equal to one.  The steady-state discount factor β is set to 0.998 to match the real rate of 

2.3% per year on 6-month commercial paper or assets with similar short-term maturities given that we set 

the steady-state growth rate of real GDP per capita to be 1.5% per year (ܻܩതതതത ൌ 1.015଴.ଶହ), as in Coibion 

and Gorodnichenko (2009).  We set the elasticity of substitution across intermediate goods θ to 10, so that 

steady-state markups are equal to 11%. This size of the markup is consistent with estimates presented in 

Burnside (1996) and Basu and Fernald (1997).  The degree of price stickiness (ߣ) is set to 0.55, which 

amounts to firms resetting prices approximately every 7 months on average.  This is midway between the 

micro estimates of Bils and Klenow (2004), who find that firms change prices every 4 to 5 months, and 

those of Nakamura and Steinsson (2008), who find that firms change prices every 9 to 11 months.   

The degree of price indexation is assumed to be zero in the baseline for three reasons.  First, the 

workhorse New Keynesian model is based only on price stickiness, making this the most natural 

benchmark (Clarida et al (1999), Woodford (2003)).  Second, any price indexation implies that firms are 

constantly changing prices, a feature strongly at odds with the empirical findings of Bils and Klenow 

(2004) and more recently Nakamura and Steinsson (2008), among many others.  Third, while indexation 

is often included to replicate the apparent role for lagged inflation in empirical estimates of the New 

Keynesian Phillips Curve (NKPC; see Gali and Gertler 1999), Cogley and Sbordone (2008) show that 

once one controls for steady-state inflation, estimates of the NKPC reject the presence of indexation in 

price setting decisions.  However, we relax the assumption of no indexation in the robustness checks in 

section 4.1. 

 The coefficients for the Taylor rule are taken from Coibion and Gorodnichenko (2009).  These 

estimates point to strong long-run responses by the central bank to inflation and output growth (2.5 and 

1.5 respectively) and a moderate response to the output gap (0.43).13  The steady-state share of 

consumption is set to 0.80 so that the share of government spending is twenty percent.  The calibration of 

the shocks is primarily taken from the estimated DSGE model of Smets and Wouters (2007) with the 

exception of the persistence of the risk premium shocks for which we consider a larger value calibrated at 

                                                      
13 Because empirical Taylor rules are estimated using annualized rates while the Taylor rule in the model is 
expressed at quarterly rates, we rescale the coefficient on the output gap in the model such that ߶௬ = 0.43/4 = 0.11. 
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0.94 to match the historical frequency of hitting the zero lower bound and the routinely high persistence 

of risk premia in the financial series.14   

 In our baseline model, positive trend inflation is costly because it leads to more price dispersion 

and therefore less efficient allocations, more volatile inflation, and a greater welfare cost for a given 

amount of inflation volatility.  On the other hand, positive trend inflation gives policy-makers more room 

to avoid the ZLB on interest rates.  Therefore, a key determinant of the tradeoff between the two depends 

on how frequently the ZLB is binding for different levels of trend inflation.  To illustrate the implications 

of our parameter calibration for how often we hit the ZLB, Figure 1 plots the fraction of time spent at the 

ZLB from simulating our model for different steady-state levels of the inflation rate.  In addition, we plot 

the steady-state level of the nominal interest rate associated with each inflation rate, where the steady-

state nominal rate in the model is determined by തܴ ൌ ഥߎ · -ҧ.  Our calibration implies that with a steadyߚ/തതതതܻܩ

state inflation rate of approximately 3.5%, the average rate for the U.S. since the early 1950’s, the 

economy should be at the ZLB approximately 4 percent of the time.  With U.S. interest rates at the ZLB 

since late 2008 and expected to remain so until at least the end of 2010, this yields a historical frequency 

of being at the ZLB of 3.5 percent (i.e. around 2 years out of 60).   

 In addition, this calibration agrees with the historical changes in interest rates associated with 

post-WWII U.S. recessions.  For example, starting with the 1958 recession and excluding the current 

recession, the average decline in the Federal Funds Rate during a recession has been 4.76 percentage 

points.15  The model predicts that the average nominal interest rate with 3.5% steady-state inflation is 

around 6%, so the ZLB would not have been binding during the average recession, consistent with the 

historical experience.  Only the 1981-82 recession led to a decline in nominal interest rates that would 

have been sufficiently large to reach the ZLB (8.66% drop in interest rates), but did not because nominal 

interest rates and estimates of trend inflation over this period were much higher than their average values.  

Thus, with 3-3.5% inflation, our calibration (dotted line in Figure 1) implies that it would take unusually 

large recessions for the ZLB to become binding.  In addition, our calibration indicates that at much lower 

levels of trend inflation ߨത, the ZLB would be binding much more frequently.  For example, at a zero 

steady-state inflation rate, the ZLB would be binding 25% of the time.  Given the historical experience of 

the U.S., this seems conservative, as it exceeds the historical frequency of recessions.  The model predicts 

a steady-state level of interest rates of less than 2.5% when ߨത ൌ 0, and six out the last eight recessions 

(again excluding the current episode) were associated with decreases in interest rates that exceeded this 

                                                      
14 This is, for example, consistent with the persistence of the spread between Baa and Aaa bonds which we estimate 
to be 0.945 between 1920:1 and 2009:2 and 0.941 between 1950:1 and 2009:2 at the quarterly frequency. 
15 This magnitude is calculated by taking the average level of the fed funds rate (FFR) over the last 6 months prior to 
the start of each recession as defined by the NBER and subtracting the minimum level of the FFR reached in the 
aftermath of that recession. 
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value (specifically the 1969, 1973, 1980, 1981, 1990 and 2001 recessions).  Our calibration is also largely 

in line with the frequency of the ZLB we would have observed given historical declines in nominal 

interest rates during recessions and counterfactual levels of trend inflation (broken line in Figure 1).  

Thus, we interpret our parameterization as providing a reasonable representation of the likelihood of 

hitting the ZLB for different inflation rates given the historical experience of the U.S. 

3.2 Optimal Inflation 

Having derived the dynamics of the model, parameterized the shocks, and obtained the second-order 

approximation to the utility function, we now simulate the model for different levels of trend inflation ߨത 

and compute expected utility for each ߨത.  The results taking into account the ZLB and in the case when 

we ignore the ZLB are plotted in Panel A of Figure 2.  Note first that, when the ZLB is not taken into 

account, the optimal rate of inflation is zero because there are only costs to inflation and no benefits.16  

Figure 2 also plots the other extreme when we include the ZLB but do not take into account the effects of 

positive steady-state inflation on the loss function or the dynamics of the model.  In this case, there are no 

costs to inflation so utility is strictly increasing as steady-state inflation rises and the frequency of the 

ZLB diminishes.  Our key result is the specification which incorporates both the costs and benefits of 

inflation.  As a result of the presence of the ZLB, we find that utility is increasing at very low levels of 

inflation so that that zero inflation is not optimal when the zero bound is present.  Second, the peak level 

of utility is reached when the inflation rate is 1.1% at an annualized rate.  This is at the bottom end of the 

target range of most central banks, which are commonly between 1% and 3%.  Thus, our baseline results 

imply that taking into account the zero bound on interest rates raises the optimal level of inflation, but 

with no additional benefits to inflation included in the model, the optimal inflation rate is within the 

standard range of inflation targets.  Third, inflation rates above the optimal level monotonically lower 

utility.  Fourth, the costs of even moderate inflation can be nontrivial.  For example, a 4% annualized 

inflation rate would lower utility by nearly 2% relative to the optimal level, which given log utility in 

consumption is equivalent to a permanent 2% decrease in the level of consumption.   

In addition, Panel B of Figure 2 quantifies the importance of each of the three costs of inflation – 

the steady state effect, the increasing cost of inflation volatility, and the positive link between the level 

and volatility of inflation – by calculating the optimal inflation rate subject to the zero lower bound when 

only one of these costs, in turn, is included.  The first finding to note is that allowing for any of the three 

inflation costs is sufficient to bring the optimal inflation rate to 2.5% or below.  Thus, all three inflation 

costs incorporated in the model are individually large enough to prevent the ZLB from pushing the 

optimal inflation rate above the current target range of most central banks.  Second, the steady-state cost 

                                                      
16 We determine optimal inflation in a grid-space with a width of 0.04% per year. It is therefore possible, although 
quantitatively not important, that the optimal inflation rate without the ZLB is positive but less than 0.04% per year. 
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of price dispersion is the largest cost of inflation out of the three, bringing the optimal inflation rate down 

to 1.3% by itself.   

To get a sense of which factors drive these results, the top row of Figure 3 plots the coefficients 

of the second-order approximation to the utility function from Proposition 1.  In short, the results confirm 

the analytical derivations in section 2.4.  First, rising inflation has important negative steady-state effects 

on utility, as the increasing price dispersion inefficiently lowers the steady-state level of production and 

consumption.  For example, 6% inflation lowers utility by nearly 4% relative to zero inflation via the 

steady-state effects.  Second, the coefficient on the variance of output around its steady state is 

independent of ߨത even though the new steady state level of output is lower. This reflects our assumption 

of log-utility in consumption.  Third, the coefficient on inflation variance is decreasing in ߨത, i.e., holding 

the inflation variance constant, higher ߨത raises the utility cost of the variance in inflation.  This reflects the 

fact that when the steady state level of price dispersion is already high then a temporary increase in price 

dispersion due to higher or lower inflation is even more costly. Moving from zero inflation to six percent 

inflation raises the coefficient on inflation variance by over 40% in absolute value.  Thus, as ߨത rises, 

policy-makers should place an increasing weight on the variance of inflation relative to the variance of the 

output gap.     

The middle row of Figure 3 plots the effects of ߨത on the variance of inflation and the output gap, 

i.e. the dynamic effects of steady-state inflation and the zero bound on interest rates.  In addition, we plot 

the corresponding moments in the absence of the zero-bound on interest rates to characterize the 

contribution of the zero-bound on macroeconomic dynamics.  A notable feature of the figure is that 

output volatility rises much more rapidly as ߨത falls when the ZLB is present. Intuitively, the ZLB is hit 

more often at a low ߨത. With the nominal rate fixed at zero the central bank cannot stabilize the economy 

by cutting interest rates further and thus macroeconomic volatility increases. As we increase ߨത, 

macroeconomic volatility (especially for output) diminishes.  This is the benefit of higher ߨത in the model. 

The effect of changes in ߨത, however, is non-linear for the variance of inflation when we take into 

account the zero-bound on interest rates. At low levels of inflation, increasing ߨത reduces the volatility of 

inflation for the same reason as for output: the reduced frequency of hitting the zero bound.  On the other 

hand, higher ߨത also tends to make price-setting decisions more forward-looking, so that, absent the zero 

bound, inflation volatility is consistently rising with ߨത, a feature emphasized in Kiley (2007) and 

consistent with a long literature documenting a positive relationship between the level and variance of 

inflation (Okun (1971), Taylor (1981) and Kiley (2000)).  When ߨത rises past a specific value, the latter 

effect starts to dominate and the variance of inflation begins to rise with ߨത.  Given our baseline values, 

this switch occurs at an annualized trend inflation rate of approximately 2.5%.  These results show the 

importance of modeling both the zero-bound and the effects of ߨത on the dynamics of the model.  
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The bottom row of Figure 3 then plots the contribution of these different effects on the welfare 

costs of inflation, i.e. each of the terms in Proposition 1.  These include the steady-state effects of ߨത as 

well as the interaction of the effects of ߨത on the coefficients of the utility function approximation and the 

dynamics of the economy.  The most striking result is that the welfare costs and benefits of positive ߨത are 

essentially driven by only two components: the steady-state effect and the contribution of inflation 

variance to utility.  In particular, the U-shape pattern of the inflation variance combined with decreasing 

Θଶ plays the key role in delivering a positive level of the optimal inflation rate, while the effects of the 

ZLB on the contribution of the output gap variability are an order of magnitude smaller and therefore play 

a limited role in determining the optimal inflation rate.  

3.3 Are the costs of business cycles and the ZLB too small in the model? 

The minor contribution of output gap volatility to the optimal inflation rate might be interpreted as an 

indication that the model understates the costs of business cycles in general and the ZLB in particular.  

For the former, the implied welfare costs of business cycles in our model are approximately 1.5% of 

steady-state consumption at the optimal inflation rate, in line with DeLong and Summers (1988), Barlevy 

(2004), and much larger than in Lucas (1987).  To assess the cost of hitting the ZLB, we compute the 

average welfare loss net of steady-state effects from simulating the model under different inflation rates 

both with and without the zero bound.  The difference between the two provides a measure of the 

additional welfare cost of business cycles due to the presence of the ZLB.  We can then divide this cost by 

the average frequency of being at the zero bound from our simulations, for each level of steady-state 

inflation, to get a per-quarter average welfare loss measure conditional on being at the ZLB which is 

plotted in Figure 4.  With a steady-state inflation rate of zero, the average cost of a quarter spent at the 

ZLB is equivalent to a permanent 3.5% reduction in consumption.  As steady-state inflation rises, this 

per-period cost declines because the average duration of ZLB episodes gets shorter and the output losses 

during the ZLB are increasing non-linearly with the duration of the ZLB (see Christiano et al (2009)).  At 

a steady-state inflation rate of 3%, the average per-quarter cost of the ZLB is approximately equal to a 

permanent 0.5% reduction in consumption.  The additional cost conditional on being restrained by the 

zero lower bound on interest rates for 8 quarters would then exceed a permanent 4% reduction in 

consumption, or $400 billion per year based on 2008 consumption data.17,18  For comparison, Williams 

                                                      
17 In this calculation, we treat as negligible the fact that in our model the presence of the ZLB can reduce the average 
level of output because the product of the average reduction in output, the frequency of hitting the ZLB and the 
utility weight on the first order term corresponding to the output gap is small. However, conditional on hitting the 
ZLB, the reduction in output could be substantial. For example, the average per-quarter reduction in output when the 
ZLB is binding at three percent trend inflation is about one percent. Assuming the binding ZLB lasts for eight 
quarters, the fall in output is then worth $1.2 trillion dollars over 2 years, or 33% more than Williams’ (2009) 
estimate.  
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(2009) uses the Federal Reserve’s FRB/US model to estimate that the ZLB between 2009 and 2010 cost 

$1.8 trillion in lost output over four years, or roughly $300 billion per year in lost consumption over four 

years if one assumes that the decline in consumption was proportional to the decline in output.  Thus, the 

costs of both business cycles and the ZLB in the model cannot be described as being uncharacteristically 

small. 

3.4 How does optimal inflation depend on the coefficient on the variance of the output gap? 

The fact that the large decline in the volatility of the output gap associated with the decreased frequency 

of hitting the ZLB as steady state inflation rises has so little effect on optimal inflation reflects the small 

relative weight assigned to output gap fluctuations in the utility function.  At ߨത ൌ 0, the coefficient on the 

output gap variance in the loss function is less than one-hundredth that on the quarterly inflation variance 

(or one-tenth for the annualized inflation variance), and this difference becomes even more pronounced as 

 ത rises.  The low optimal weight on output gap volatility is standard in New Keynesian models (seeߨ

Woodford (2003)) and could reflect the lack of involuntary unemployment, which causes substantial 

hardship to a small fraction of the population and whose welfare effects may therefore be poorly 

approximated by changes in aggregate consumption and employment, or the absence of distributional 

considerations, since business cycles disproportionately affect low income/wealth individuals who are 

likely to have higher marginal utilities of consumption than the average consumer.19 

 To assess how sensitive the optimal inflation rate is to the coefficient on the output gap variance, 

we increase this coefficient by a factor ranging from 1 to 100 and reproduce our results for the optimal 

inflation rate for each factor (see Figure 4).  As expected, raising the coefficient on the variance of the 

output gap pushes the optimal inflation rate higher.  However, the coefficient on the output gap variance 

needs to be strikingly large to qualitatively affect our findings.  For example, much of the traditional 

literature on optimal monetary policy assumed an equal weight on output and annualized inflation 

variances in the loss function.  With inflation being measured at an annualized rate, this equal weighting 

obtains at zero steady-state inflation when Θ1 is multiplied by a factor of approximately 10.  Yet this 

weighting would push the optimal inflation rate up only modestly, to less than 1.4% per year.   

Raising the optimal inflation rate substantially above 2.5% would require increasing the 

coefficient on output gap variance in the loss function by around 100, thereby making the weight placed 

on output volatility approximately ten times as large as that on annualized inflation volatility, a weighting 

scheme which seems difficult to justify.  Furthermore, such a loss function would imply that the costs of 

business cycles are equivalent to a permanent drop in consumption of 10% when evaluated at the optimal 
                                                                                                                                                                           
18 In our baseline calibration, the 90% confidence interval for the duration of ZLB episodes is (2,12) at 3.5% 
inflation. 
19 Christiano et al (2010) introduce involuntary unemployment into a New Keynesian model and find that this does 
not significantly raise the cost of business cycles. 
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inflation rate, which is much larger than commonly found in the literature. Finally, placing such weight 

on output volatility would also substantially increase the per-quarter cost of having the ZLB bind.  

Evaluated at the optimal inflation rate, each quarter with a binding ZLB would lower utility by an average 

amount equivalent to a 5% permanent reduction in consumption, such that an episode of 8 consecutive 

quarters at the ZLB would deliver welfare losses equivalent to roughly 40% of steady-state consumption, 

above and beyond the costs of the shock in the absence of the ZLB.  Thus, while one can mechanically 

raise the optimal inflation rate by appealing to larger weights on output fluctuations than implied by the 

model, weighting schemes which meaningfully raise the optimal inflation rate will point to welfare costs 

of business cycles, and particularly episodes at the ZLB, that depart from the conventional wisdom.  

IV Robustness of the Optimal Inflation Rate to Alternative Parameter Values 

In this section, we investigate the robustness of the optimal inflation rate to our parameterization of the 

model.  We focus particularly on the pricing parameters, the discount factor, and the risk premium 

shock.20   

4.1 Pricing Parameters 

Figure 5 plots the utility-approximation for different levels of ߨത for alternative pricing parameters, as well 

as the optimal inflation rates associated with these parameter values.  First, we consider the role of the 

elasticity of substitution θ.  Note that the welfare costs of inflation are larger when θ is high.  This result 

captures the fact that a higher elasticity of substitution generates more real rigidity and therefore more 

persistence in fluctuations, thereby raising the welfare cost of fluctuations for any ߨത.  However, the 

effects of this parameter on the optimal ߨത are relatively small: using a value of θ = 5, half of our baseline 

and an upper bound on how big markups are in the economy, raises the optimal ߨത to about 1.6% from our 

baseline of 1.1%.  This is well within the range of inflation targets employed by modern central banks. 

 We also investigate the role of price indexation.  In our baseline, we assumed ω = 0, based on the 

fact that firms do not change prices every period in the data, as documented by Bils and Klenow (2004) 

and Nakamura and Steinsson (2008), as well as the results of Cogley and Sbordone (2008) who argue that 

once one controls for time-varying trend inflation, we cannot reject the null that ω = 0 for the US.  

However, because price-indexation is such a common component of New Keynesian models, we consider 

the effects of price indexation on our results.  Figure 5 indicates that higher levels of indexation lead to 

higher optimal rates of inflation because indexation reduces the dispersion of prices. Yet with ω = 0.5, 

                                                      
20 We also investigated the sensitivity of our results to the Frisch labor supply elasticity and other parameters.  These 
had minor quantitative effects on our results; we omit them from the text in the interest of space.  We also added 
habit formation to the model and found that this had little effect on the optimal inflation rate.   
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which is most likely an upper bound for an empirically plausible degree of indexation in low-inflation 

economies like the U.S., the optimal ߨത remains less than 2%. 

 Third, we investigate the effects of price stickiness.  Our baseline calibration, λ = 0.55, is midway 

between the findings of Bils and Klenow (2004) of median price durations of 4-5 months and those of 

Nakamura and Steinsson (2008) of median price durations of 9-11 months.  We now consider values of λ 

ranging from 0.50 to 0.65.  There is little impact on welfare for very low levels of inflation, but as the 

steady state inflation rate rises past 3%, higher degrees of price stickiness are associated with much larger 

welfare losses than the baseline.21  This reflects the fact that with more price stickiness, price dispersion is 

greater, and this effect is amplified at higher levels of steady-state inflation, thereby generating much 

larger welfare losses.  Nonetheless, this has only minor effects on the optimal inflation rate. 

4.2 Discount Factor and Risk Premium Shocks 

We also consider the sensitivity of our results to the discount factor and the parameters governing the risk 

premium shocks.  First, we reproduce our baseline welfare figure for different levels of the persistence to 

risk premium shocks.  The results are quite sensitive to this parameter, which reflects the fact that these 

shocks play a crucial role in hitting the zero lower bound.  For example, Figure 6 illustrates that when we 

raise the persistence of the shock from 0.94 to 0.96, the optimal inflation rate rises from 1.2% to 2.7% 

because this increase in the persistence of the shock has a large effect on the frequency and duration of 

being at the ZLB.  At 3.5% inflation, this frequency more than doubles relative to our baseline scenario, 

thereby raising the benefit of higher steady-state inflation.  The reverse occurs with lower persistence of 

risk premium shocks: the frequency of being at the ZLB declines sharply as does the optimal inflation 

rate. Second, similar results obtain when we vary the volatility of the risk premium shock.  When we 

increase the standard deviation of these shocks to 0.0035 from our baseline of 0.0024, the optimal 

inflation rate again rises to slightly over two percent.  As with the persistence of the shocks, this is driven 

by a higher frequency of being at the ZLB: at 3.5% inflation, this alternative shock volatility implies the 

economy would be at the ZLB more than twice as often as under our baseline calibration. 

 Third, we consider the sensitivity of our results to the steady-state level of the discount factor β.  

This parameter is also important in determining the frequency at which the economy is at the ZLB since it 

affects the steady-state level of nominal interest rates.  This is particularly important at low levels of ߨത.  

As with the risk premium shock variables, a higher value of β is associated with a lower steady-state level 

of nominal interest rates, so that the ZLB will be binding more frequently.  For example, with β=0.9999 

(which corresponds to a real rate of 1.54% per year), the ZLB is binding approximately 6% of the time 

                                                      
21 In fact, if we increase λ above 0.65 the model starts to run into indeterminacy regions which are potentially 
associated with unbounded volatility.  
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when steady-state inflation is 3.5%.  At the maximum, however, the optimal ߨത is only 0.5% higher than 

implied by our baseline results.   

These robustness checks clearly illustrate how important the frequency at which the economy hits 

the ZLB is for our results.  Naturally, parameter changes which make the ZLB binding more often raise 

the optimal rate of inflation because a higher ߨത lowers the frequency of hitting the ZLB.  Thus, the key 

point is not the specific values chosen for these parameters but rather having a combination of them that 

closely reproduces the historical frequency of hitting the ZLB for the U.S.  In any case, even if we 

consider parameter values that double the frequency of hitting the ZLB at the historical average rate of 

inflation for the U.S., the optimal inflation rate rises only to about 2-2.5%, which is still well within the 

target range of most central banks.

 
V What Could Raise the Optimal Inflation Rate? 

While our baseline model emphasizes the tradeoff between higher trend inflation to ensure against the 

zero-bound on nominal interest rates versus the utility costs associated with higher trend inflation, 

previous research has identified additional factors beyond the lower-bound on nominal interest rates 

which might lead to higher levels of optimal inflation.  In this section, we extend our analysis to assess 

their quantitative importance.  First, we include capital formation in the model.  Second, we allow for 

uncertainty about parameter values on the part of policy-makers. Third, we consider the possibility that 

the degree of price stickiness varies with ߨത.  Fourth, we explore whether our results are sensitive to using 

Taylor pricing. Fifth, we integrate downward nominal wage rigidity, i.e. “greasing the wheels,” into the 

model. 

5.1 Capital 

First, we consider how sensitive our results are to the introduction of capital. We present a detailed model 

in Appendix B and only provide a verbal description in this section. In this model, firms produce output 

with a Cobb-Douglas technology (capital share ߙ ൌ 0.33). All capital goods are homogeneous and can be 

equally well employed by all firms. Capital is accumulated by the representative consumer subject to a 

quadratic adjustment cost to capital (߰ ൌ 3 as in Woodford (2003)) and rented out in a perfectly 

competitive rental market. The aggregate capital stock depreciates at rate ߜ ൌ 0.02 per quarter.  We 

calculate the new steady state level of output relative to the flexible price level output and derive the 

analogue of Proposition 1 in Appendix B with proofs in Appendix C. 

By allowing capital to freely move between firms we reduce the steady state welfare cost from 

trend inflation. Now firms that have a relatively low price can hire additional capital rather than sector-

specific workers to boost their output. Thus the disutility of labor does not increase by as much as it did in 

the labor-only model and this will be a force to raise the optimal inflation level. However, capital also 
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reduces the likelihood of hitting the ZLB. Unlike the labor-only model, including capital permits positive 

savings and so we are less likely to be in a situation where an increase in qt pushes interest rates to zero. 

This channel will lower the optimal inflation rate in the capital model relative to the labor-only model. 

We isolate the first channel by setting ߩ௤ ൌ 0.93 to match the historical frequency at the ZLB.  As shown 

in Figure 7, utility peaks at a trend inflation rate of 1.7% per annum suggesting that capital does not lower 

the cost of inflation substantially, yielding only a small net increase in the optimal inflation rate.  

5.2 Model Uncertainty 

An additional feature that could potentially lead to higher rates of optimal inflation is uncertainty about 

the model on the part of policy-makers.  If some plausible parameter values lead to much higher 

frequencies of hitting the ZLB or raise the output costs of being at the ZLB, then policy-makers might 

want to insure against these outcomes by allowing for a higher ߨത.  To quantify this notion, we consider 

two exercises.  First, we identify ߨത that maximizes expected utility taking into account parameter 

uncertainty.  Second, we generate a distribution of optimal ߨത from the distribution of parameters. 

Our starting point for both exercises is uncertainty about the parameters of the model.  We 

characterize this uncertainty via the variance-covariance matrix of the estimated parameters from Smets 

and Wouters (2007). We place an upper bound on parameter values to eliminate draws where the ZLB 

binds unrealistically often, in excess of 10% at 6% annual trend inflation.  To assess the optimal inflation 

rate given uncertainty about parameter values, we compute the expected utility associated with each level 

of steady-state inflation by repeatedly drawing from the distribution of parameter values.22  Figure 8 

(Panel A) plots the implied levels of expected utility associated with each steady-state level of inflation.  

Maximum utility is achieved with an inflation rate of 1.4% per year.  As expected, this is higher than our 

baseline result, which reflects the fact that some parameter draws lead to much larger costs of being at the 

zero-bound, a feature which also leads to a much more pronounced inverted U-shape of the welfare losses 

from steady-state inflation.  Nonetheless, this optimal rate of inflation remains well within the bounds of 

current inflation targets of modern central banks.23 

Secondly, for each draw from the parameter space, we solve for the optimal inflation rate, thereby 

allowing us to characterize the uncertainty associated with our baseline results.  Figure 8 (Panel B) plots 

the distribution function of these inflation rates.  The 90% confidence interval of optimal inflation rates 

ranges from 0.1% to 2.2% per year, which again is very close to the target range for inflation of most 

                                                      
22 Note that some parameter draws yield an indeterminate solution.  In this case, we solve for the dynamics using the 
“continuous” solution as in Lubik and Schorfheide (2003). 
23 Billi (2009) considers the effects of parameter uncertainty on the optimal inflation rate via robust control methods 
and also finds that parameter uncertainty raises the optimal inflation rate slightly.  
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central banks.  In short, incorporating model uncertainty confirms our baseline finding that, even after 

taking into account the ZLB, the optimal inflation rate is low and close to current targeted levels. 

5.3 Endogenous Price Stickiness 

In our baseline analysis, we treat the degree of price rigidity as a structural parameter.  However, theory 

implies that the cost to firms of not changing prices should increase as ߨത rises (Romer 1990).  Higher 

levels of inflation should therefore be associated with lower levels of price stickiness, which would tend 

to lower the welfare costs of positive trend inflation.  Thus, by ignoring this endogeneity, we might be 

overstating the costs of positive inflation and thereby underestimating the optimal rate of inflation. 

The empirical evidence on the sensitivity of price rigidity to the inflation rate is mixed.  Gagnon 

(2009), for example, finds a statistically significant relationship between the inflation rate and the 

frequency of price changes for Mexico, but only when the inflation rate exceeds 10% per year.  Dhyne et 

al (2005) find a positive relationship between the two for a cross-section of European countries, but the 

relationship is not statistically significantly different from zero once they control for a variety of other 

factors.  Nakamura and Steinsson (2008) similarly estimate the relationship between annual inflation and 

the frequency of price changes using micro-level US data and find only mixed evidence in favor of a 

statistically significant link between the two.   

Despite the absence of a strong empirical link between price stickiness and the steady state level 

of inflation (at least for plausible U.S. levels of inflation), we consider the sensitivity of our baseline 

results to a possible systematic link between the two.  Specifically, we follow Nakamura and Steinsson’s 

empirical approach and posit a linear relationship between the (monthly) frequency of price changes and 

the steady state annual rate of inflation, with the coefficient on inflation denoted by βπ.  The average 

estimate of Nakamura and Steinsson across price measures and time periods is approximately βπ = 0.5, 

and the upper bound of their confidence intervals is approximately βπ = 1.  We reproduce our analysis 

using these values, as well as our baseline assumption of βπ = 0, and plot the results in Figure 9.24  In each 

case, we calibrate the degree of price rigidity such that λ=0.55 (our baseline value) at a steady-state level 

of annual inflation of 3.5%. 

Panel A shows the implied variation in the degree of price stickiness.  For the mean estimated 

degree of endogeneity from Nakamura and Steinsson (2008), the average duration between price changes 

                                                      
24 To be clear, we allow the degree of price stickiness to vary with the steady-state rate of inflation, but not with 
fluctuations in the inflation rate around its steady-state value.  An alternative approach would be to model 
endogenous price setting via “menu” costs.  Although we do not consider this approach explicitly here, one would 
expect two opposing effects on the optimal inflation rate from such an extension.  First, paying the fixed costs of 
changing prices would lower welfare, and this cost would be rising with steady-state inflation as firms would reset 
their prices more often.  On the other hand, because of selection effects, price dispersion should rise less rapidly 
with inflation than under time-dependent pricing models, as emphasized in Burstein and Hellwig (2008).  It is 
unclear, ex ante, which effect would dominate. 
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varies from eight months to six months, while the upper bound on endogeneity of price stickiness yields 

durations ranging from nine months to five and a half months.  Panel B shows that the frequency of 

hitting the ZLB varies little across specifications: for a given inflation rate, a higher frequency of price 

changes is associated with larger movements in inflation (and therefore hitting the ZLB more frequently) 

but these changes are less persistent (so the economy exits the ZLB more rapidly), leaving the overall 

frequency of being at the ZLB largely unchanged across specifications.  Panels C-F demonstrate the 

effects of endogeneity on the optimal inflation rate and the utility associated with different levels of 

steady-state inflation.  First, the optimal inflation rate is remarkably insensitive to endogenous price 

stickiness, falling only to slightly less than 1.0% at the maximum sensitivity of price stickiness to steady-

state inflation.  Second, the welfare costs of inflation at the optimal rate are rising with endogenous price 

setting.  This reflects the fact that, given the same low optimal rate of inflation, more endogeneity is 

associated with higher degrees of price stickiness and therefore a higher cost of inflation.  Third, despite 

the fact that the optimal rate of inflation varies little with endogenous price stickiness, the costs of much 

higher ߨത are significantly lower relative to our baseline, because higher inflation leads to more frequent 

price changes and therefore less price dispersion in the steady state.   

5.4 Taylor pricing 

An alternative approach to Calvo pricing is the staggered contracts approach of Taylor (1977) in which 

firms set prices for a pre-determined duration of time. This pricing assumption can loosely be thought of 

as a lower bound on forward-looking behavior (conditional on price durations) since it imposes zero 

weight on expected profits beyond those of the contract length in the firm’s reset price optimization. The 

derivation of the utility approximation as well as the structural log-linearized equations of the model is 

similar to Calvo pricing (Appendix D contains details for the utility approximation when the duration of 

price spells is equal to three quarters). 

Figure 10 compares the results under Taylor pricing (duration of price contracts equal to 3 and 4 

quarters) with the results from Calvo pricing. The optimal inflation rates for the Taylor model are 1.4 and 

1.1 percent per year for price durations of 3 and 4 quarters respectively, which is close to the 1.1 percent 

per year found for the baseline Calvo model. Note also that the volatility of inflation and the output gap 

(Panels C and D) as well as the frequency of hitting ZLB (Panel B) are approximately the same in all 

models. However, the Taylor model has smaller welfare losses as ߨത increases above 2 percent per year. 

For example, the welfare loss at the steady state inflation of 6 percent per year relative to the minimum 

loss is about 4 percent in the Calvo model but only about 1-2 percent in the Taylor model (Panel A). The 

key source of this difference is that the Taylor model assigns smaller steady state effects (Panel E) and a 
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lower weight on inflation variability (Panel F) than the Calvo model does.25  Intuitively, since firms under 

Calvo pricing may be stuck with a suboptimal price for a long time, the cost of positive steady state 

inflation is larger than in the Taylor model where firms are guaranteed to change prices in a fixed number 

of periods. In summary, although both the Taylor and Calvo models yield similar optimal inflation rates, 

these models provide different estimates of welfare gains from low steady state inflation.
 

5.5 Downward Wage Rigidity 

A common motivation for positive trend inflation, beside the zero-lower bound and seigniorage, is the 

“greasing the wheels” effect raised by Tobin (1972).  If wages are downwardly rigid, as usually found in 

the data (e.g., Dickens et al 2007), then positive trend inflation will facilitate the downward-adjustment of 

real wages required to adjust to negative shocks.  To quantify the effects of downward nominal wage 

rigidity in our model, we integrate it in a manner analogous to the zero-bound on interest rates by 

imposing that changes in the aggregate nominal wage index be above a minimum bound 

ෝ௧ݓ∆ ൌ max ሼ∆ݓෝ௧
௠, ෝ௧ݓ∆

 ሽכ

where ∆ݓ௧
 is the change in wages that would occur in the absence of the zero-bound on nominal wages כ

and ∆ݓෝ௧
௠ is the lower-bound on nominal wage changes.  Note that even with zero steady-state inflation, 

steady-state nominal wages grow at the rate of technological progress.  Thus, we set ∆ݓෝ௧
௠  to be equal to 

minus the sum of the growth rate of technology and the steady state rate of inflation.   

Figure 11 presents the utility associated with different steady-state inflation rates under both the 

zero-bound on interest rates and downward-wage rigidity.  The result is striking: the optimal inflation rate 

falls to zero with downward wage rigidity.  The reason for this counterintuitive finding is illustrated in 

Panel B of Figure 11.  With downward wage rigidity, marginal costs are much less volatile, so the 

variance of inflation is substantially reduced relative to the case with flexible wages.  In addition, the fact 

that marginal costs are downwardly rigid means that, in the face of a negative demand shock, inflation 

will decline by less and therefore interest rates will fall less, reducing the frequency of the ZLB.  With 

തߨ ൌ 0, the ZLB binds approximately 10 percent of the time with downward wage rigidity but over 25 

percent of the time with flexible wages.  This decrease in the frequency of binding ZLB at low ߨത reduces 

the benefit of higher trend inflation and leads to lower estimates of the optimal inflation rate.26

 

VI Normative Implications 

We have so far been treating the question of the optimal inflation rate independently of the systematic 

response of the central bank to macroeconomic fluctuations.  In this section, we consider the sensitivity of 

                                                      
25 The coefficient on the output variability is the same in the Taylor and Calvo models.  
26 Kim and Ruge-Murcia (2009) similarly find that downward wage rigidity, by itself, has little positive effect on the 
optimal inflation rate in an estimated DSGE model.   
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our baseline results to alternative coefficients for the central bank’s response function as well as the 

normative question of how the central bank can optimize over both optimal inflation and its systematic 

response to the economy. 

6.1 Taylor Rule Parameters 

Our baseline Taylor rule parameters are taken from Coibion and Gorodnichenko (2009) based on the 

post-1982 era.  However, as has been emphasized in the empirical literature on central banks’ reaction 

functions, there is robust evidence of time-variation in the Federal Reserve’s systematic response to 

economic fluctuations.27  In addition, like the steady-state inflation rate, the reaction function is under the 

control of policymakers so we are interested in studying the interaction of these policy variables on 

welfare.  Thus, we consider the implications of alternative parameter values in the Taylor rule, illustrated 

in Figure 12.  First, we consider long-run responses to inflation by the central bank ranging from 2 to 5.  

The effects on welfare are unambiguous: stronger long-run responses to inflation raise welfare in the 

model for all inflation rates.  Intuitively, this stronger systematic response reduces inflation and output 

volatility, thereby leading to a lower frequency of being at the ZLB and higher utility.  However, this has 

little effect on the optimal inflation rate, which ranges from 1.2% when ߶గ ൌ 2 to 0.9% when ߶గ ൌ 5. 

We also investigate the sensitivity to the central bank’s response to the real side of the economy 

via output growth or output gap.  We find that stronger responses to output growth generally lower 

welfare while higher responses to output gap are welfare-improving.  This finding is interesting for two 

reasons.  First, Orphanides (2003) and Coibion and Gorodnichenko (2009) emphasize that one of the 

primary changes in U.S. monetary policy around the time of the Volcker disinflation was the switch from 

responding aggressively to the gap toward responding more aggressively to the growth rate of output.  

One advantage of the latter is that output growth is readily observable whereas the output gap is likely to 

be subject to much more real-time measurement error, as documented in Orphanides and van Nordern 

(2002).  However, our results indicate that responding strongly to output growth actually reduces welfare 

in a New Keynesian model.  Second, Coibion and Gorodnichenko (2009) show that responding to the 

output gap can be destabilizing in New Keynesian models under positive steady-state inflation because it 

can lead to indeterminacy.  Responding to output growth, on the other hand, helps achieve determinacy 

for smaller responses to inflation when steady-state inflation is positive. Figure 12 indicates that 

conditional on staying in the determinacy region the welfare results go in the other direction.  Hence, 

there is a tradeoff between the two measures in terms of stabilization: responding to the (properly 

measured) gap is welfare improving as long as the economy remains in the determinacy region, but 

increases the likelihood of switching to an indeterminate equilibrium with the possibility of sunspot 

                                                      
27 See Clarida et al (2000), Orphanides (2003), Boivin (2006), and Coibion and Gorodnichenko (2009) for examples. 
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fluctuations.  Responding to the growth rate of output moves the economy away from the indeterminacy 

region but leads to lower welfare within the indeterminacy region.  However, in terms of the optimal 

inflation rate, the distinction is minor and neither measure has much quantitative importance in 

determining the optimal inflation rate within the determinacy region of the parameter space.
 

6.2 Price-Level Targeting, the Zero Bound, and the Optimal Inflation Rate 

While our baseline specification of the Taylor rule restricts the endogenous response of the central bank 

to inflation and the real side of the economy, an additional factor sometimes considered is price-level 

targeting (PLT).  While the evidence for central banks actually following PLT remains scarce, PLT has 

nonetheless received substantial attention in the literature for several reasons.  First, as emphasized in 

Woodford (2003), PLT guarantees determinacy under zero trend inflation for any positive response to the 

price level gap.  Second, Coibion and Gorodnichenko (2009) show that PLT ensures determinacy for 

positive steady-state inflation rates as well, and is not subject to the deterioration of the Taylor principle 

as a result of positive trend inflation which occurs when the central bank responds only to inflation.  

Third, Gorodnichenko and Shapiro (2007) show that PLT robustly helps stabilize inflation expectations, 

thereby yielding smaller inflation and output volatility than would occur in inflation-targeting regimes. 

We extend our baseline model to include PLT in the central bank’s reaction function (߶௣ ൐ 0) in  

Figure 13 which shows the effects of PLT on welfare for different ߨത as well as its implications for the 

optimal rate of inflation.  First, PLT strictly increases welfare for any ߨത.  Second, PLT leads to much 

lower levels of optimal inflation than inflation-targeting regimes.  Even for moderate responses to the 

price level gap, the optimal level of inflation is less than 0.1 percent per year, which is close to the zero 

optimal inflation rate in the Ramsey problem under commitment where we do not impose constraints on 

policy reaction function.28 This magnitude practically means price level stability (rather than inflation 

stability) which is, in fact, the mandated objective for most central banks.  

The intuition for why PLT delivers such a small optimal inflation rate is straightforward.  First, as 

observed in Gorodnichenko and Shapiro (2007), PLT stabilizes expectations and has a profound effect on 

output and inflation volatility.  In our simulations, the reduction in inflation and output volatility is so 

substantial that the welfare costs of inflation are almost exclusively driven by the steady-state effects. As 

a result of reduced volatility, the ZLB binds less frequently.  For example, with ߶௣ ൌ 0.3, the ZLB binds 

less than two percent of the time at a steady-state level of inflation of 3.5%.  Second, even if the nominal 

rate hits zero, the policy rule remains a potent factor in stimulating the economy despite the ZLB because 

                                                      
28 The Ramsey problem under commitment seeks the welfare maximizing policy subject to commitment constraints 
and structural relationships in the economy. In our analysis, the objective function for the Ramsey problem is the 
sum of the approximation given in Proposition 1 and a penalty for interest rate variability calibrated at 0.077 כ Θଶ as 
in Woodford (2003). See Coibion et al (2010) for more details.  
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agents know that the deflationary pressures during the ZLB will have to be offset by above-average 

inflation in the future.  This limits the downward movement in inflationary expectations and therefore the 

associated increase in real interest rates.  In short, PLT limits the extent of deflationary spirals so that the 

exit from a ZLB episode occurs more rapidly and the welfare costs of the ZLB are substantially reduced. 

To give a sense of the magnitude of the associated welfare change, we note that by increasing ߶௣ from 

zero to 0.25 (combined with the appropriate change in the optimal rate of inflation), a policymaker could 

raise welfare by the equivalent to a permanent increase in consumption of 1.5 percent and approach the 

welfare gains for the optimal policy in the Ramsey problem under commitment (see Figure 13). Thus, 

these results provide a new justification for the consideration of PLT by monetary policymakers. 

In addition, we consider a closely related issue: the degree of interest smoothing.  Coibion and 

Gorodnichenko (2009) observe that PLT is very similar to a policy rule with high inertia, i.e., ߩଵ ൅  ଶߩ

close to one.29  For simplicity, we abstract from the AR(2) interest-smoothing commonly found in 

empirical studies and instead restrict our attention to AR(1) interest smoothing: i.e. we set the AR(1) 

coefficient in the interest rate smoothing polynomial equal to ߩଵ ൅  .ଶ and the AR(2) coefficient to zeroߩ

Figure 13 confirms that, like PLT, higher interest rate smoothing leads to lower levels of optimal steady-

state inflation because it reduces the incidence and damage of hitting the ZLB and therefore lowers the 

optimal inflation rate.30  However, unlike PLT, this decrease in the optimal inflation rate is associated 

with lower welfare after ߩଵ ൅  ଶ passes 0.89. The inverted U-shape of the welfare results from theߩ

tradeoff between strong short-run and strong long-run responses to endogenous variables implied by our 

Taylor rule specification (26) since we hold the long-run responses to inflation, output gap and output 

growth rate constant in this experiment but, by raising ߩଵ ൅   .ଶ, decrease the short run responseߩ

VII Concluding remarks 

If nothing else, the Great Recession has taught monetary

 

economists

 

one lesson: the zero bound is not a 

theoretical curiosity of interest only to historians of the Great Depression or as a precautionary tale 

against overly cautious policy-makers such as the Japanese monetary and fiscal authorities in the early 

1990s.  Instead, the pervasiveness of the zero bound constraint among major industrial countries has 

demonstrated the necessity of incorporating this issue into modern macroeconomic models.  Indeed, the 

recent interest in raising the inflation targets of central banks has resurrected a basic question for 

macroeconomists: what is the optimal inflation rate?  Strikingly, New Keynesian models, with their 

                                                      
29 Specifically, a Taylor rule with only PLT is observationally equivalent to a super-inertial Taylor rule that responds 
to contemporaneous inflation.  More generally, a Taylor rule with “partial” PLT in which the central bank pushes 
prices only partly back to the initial target path is observationally equivalent to a Taylor rule with interest smoothing 
and a contemporaneous response to inflation.  See Coibion and Gorodnichenko (2009) for more details. 
30 Billi (2009) similarly finds that higher interest smoothing lowers the optimal rate of inflation. 
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pervasive reliance on the assumption of zero steady-state inflation, have been ill-equipped to answer this 

key question for central bankers.

 

 

We provide an integrated treatment of the effects of non-zero steady-state inflation in New 

Keynesian models.  Most importantly, we derive an approximation to the utility function of the 

representative agent which incorporates the various dimensions along which steady-state inflation 

matters: the steady-state, the dynamics of the model, and the coefficients of the utility-function 

approximation.  This allows us to study the optimal rate of inflation using a welfare criterion derived 

explicitly from the microfoundations of the model.  Combining this with the zero-bound on nominal 

interest rates, we are then able to study the costs and benefits of steady-state inflation and quantify the 

optimal rate of inflation in the model.  Our baseline result is that this optimal rate of inflation is fairly 

low: less than two percent a year.  We show that this result is robust to a variety of parameter 

specifications and modifications of the model.

 

 

Given that most central banks are targeting inflation rates between 1% and 3% a year, our results 

can be interpreted as supporting the current regimes and providing little evidence in favor of raising these 

targets to provide additional insurance against the zero-bound constraint on interest rates.  However, from 

a normative point of view, we also show that welfare could be substantially improved by introducing 

price-level targeting.  The latter helps stabilize economic fluctuations and reduces the probability of 

hitting the zero-lower bound.  As a result, the optimal inflation rate under a price level targeting regime 

would be close to zero.  In other words, optimal monetary policy, characterized as a combination of a low 

inflation target and a systematic response to deviations of the price-level from its target, can be 

interpreted as being very close to the “price stability” enshrined in the legal mandates of most central 

banks.
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Table 1:  Baseline Parameter Values 
 

  
Parameters of Utility Function Steady-State Values 

      η: Frisch Labor Elasticity 1.00       ݃ݕതതതത: Growth Rate of RGDP/cap 1.5% p.a. 
      β: Discount factor 0.998       ܿ௬തതത: Consumption Share of GDP 0.80 
        ݃௬തതതത: Government Share of GDP 0.20 

Pricing Parameters Shock Persistence 
      θ: Elasticity of substitution  10       ρg: Government Spending Shocks 0.97 
      λ: Degree of Price Stickiness 0.55       ρm: Cost-Push Shocks 0.90 
      ω: Price indexation 0.00       ρq: Risk Premium Shocks 0.94 

Taylor Rule Parameters Shock Volatility 
      ߶గ: LR response to inflation 2.50       σg: Government Spending Shocks 0.0052 
      ߶௚௬: LR response to output growth 1.50       σm: Cost-Push Shocks 0.0024 
      ߶௫: LR response to output gap 0.11       σq: Risk Premium Shocks 0.0024 
      ρ1: Interest smoothing  1.05       σa: Technology Shocks 0.0090 
      ρ2: Interest smoothing -0.13       σr: Monetary Policy Shocks 0.0043 
    
 
 
Note: The table presents the baseline parameter values assigned to the model in section 3.1 and used for solving for 
the optimal inflation rate in section 3.2.  “p.a.” means per annum.  
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Figure 1. Frequency of being in the Zero Lower Bound and Steady-State Nominal Interest Rate 

 
Note: The figure plots the steady-state level of the annualized nominal interest rate (right axis) implied by the 
baseline model of section 3 for different steady-state inflation rates.  In addition, the figure plots the frequency of 
hitting the zero bound on nominal interest rates (left axis) from simulating the baseline model at different steady-
state inflation rates as well as historical frequencies of ZLB for the U.S. for counterfactual inflation rates.  See 
section 3.1 for details. 
 

Figure 2. Utility at Different Levels of Steady-State Inflation 
 Panel A: Effect of ZLB  Panel B: Effects of positive trend inflation 

 
Note: The figures plot the approximation to the utility function in Proposition 1 from simulating the model for 
different levels of steady-state inflation.  Panel A includes results for the baseline model, the baseline model without 
the ZLB, as well as the model with the ZLB but omitting the three cost channels of inflation: steady-state effects, the 
changing coefficient on inflation variance in utility and the dynamic effects.  Panel B reproduces our baseline with 
ZLB, then presents results when we restrict the model to include only one cost of inflation and the ZLB.  “Dynamic 
cost only” includes only the dynamic effects of positive inflation and keeps the rest of the model being 
approximated around zero trend inflation, “Steady-state cost only” includes only the steady-state cost of inflation 
and keeps the rest of the model being approximated around zero trend inflation, while “Changing inflation weight 
only” includes only the changing coefficients on inflation variance in the loss function and keeps the rest of the 
model being approximated around zero trend inflation.  See section 3.2 for details. 
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Figure 3. The Sources of Utility Costs of Inflation 

 
Note: The first row of the figure plots the coefficients of the approximation to the utility function from Proposition 1 for different levels of trend inflation.  The 
second row plots the variance of macroeconomic variables that enter the approximation to the utility function in Proposition 1 from simulating the model subject 
to the zero bound on nominal interest rates for different levels of steady-state inflation using the baseline parameter values of the model.  The dashed black lines 
are the corresponding moments without the zero-bound on nominal interest rates, while the dotted lines correspond to the moments of the model when the 
dynamics are approximated at zero trend inflation.  The third row plots the contribution of the different components of the approximation to the utility function in 
Proposition 1. See section 3.2 for details. 
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Figure 4. The Costs of Business Cycles 

 

Panel A: The costs of the ZLB 

 
Panel B: Changing the weight on output gap volatility in the loss function 

 
Note: The top panel plots the average duration of ZLB episodes in the baseline calibration and the implied average welfare cost per quarter of being at the ZLB 
for different levels of trend inflation.  The bottom panel plots the effects of changing the coefficient on the variance of the output gap in the utility function 
approximation of Proposition 1 on the optimal inflation rate (left graph), the welfare costs of business cycle fluctuations (middle graph), and the average welfare 
costs of hitting the ZLB (right graph).  The latter two are measured using Proposition 1 net of the steady-state effects of trend inflation.  See sections 3.3 and 3.4 
for details.  
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Figure 5. Robustness: Price Setting Parameters. 

 

  

  
Note: Figures in the left column plot the welfare loss as a function of steady state inflation for alternative values of structural 
parameters. The solid thick back line corresponds to the baseline parameterization. Figures in the right column plot the optimal 
level of steady-state inflation and the welfare loss at the optimal steady state level of inflation as a function of a structural 
parameter.  
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Figure 6. Robustness: Risk Premium Shocks and the Discount Factor. 

 
 

 
  

   
Note: Figures in the left column plot the welfare loss as a function of steady state inflation for alternative values of structural 
parameters. The solid thick back line corresponds to the baseline parameterization. Figures in the middle column plot the 
optimal level of steady-state inflation and the welfare loss at the optimal steady state level of inflation as a function of a 
structural parameter. Figures in the right column plot the frequency of hitting the ZLB for different parameter values. 
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Figure 7. Sensitivity Analysis: Capital  

 
Note: the figure plots the approximation to the utility function in Proposition 2 from simulating the model subject to 
the zero bound on nominal interest rates for different levels of steady-state inflation using the baseline parameter 
values of the model with capital.  See section 5.1 for details.  
 

Figure 8.  Model Uncertainty 
 Panel A: Optimal Inflation Rate Panel  B: Distribution of Optimal Inflation Rates 

    
 
Note: Panel A plots the expected utility for different steady-state inflation rates under baseline parameter values as 
well as under model-uncertainty.   Panel B plots the distribution of optimal inflation rates associated with different 
draws from the distribution of parameter values.  See section 5.2 for details.  
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Figure 9. Sensitivity Analysis: Endogenous Price Stickiness 

 

 
 
Note: The figures plot the implications of endogenous price stickiness on the model.  βπ is the effect of steady state 
inflation on the frequency of price changes, with βπ = 0 being our baseline case of exogenous price stickiness. See 
section 5.3 for details.  
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Figure 10. Sensitivity Analysis: Taylor pricing 

 
Note: The figures plot the implications of Calvo vs. Taylor price setting for welfare and optimal inflation.  Taylor, X quarters 
corresponds to the duration of price contracts equal to X quarters.  See section 5.4 for details. 
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Figure 11.  Downward Wage Rigidity 
 

Panel A: Optimal Inflation Rate 

  
 

Panel B: Effects of Downward-Wage Rigidity 

 
 

Note: Panel A plots the utility associated with different steady-state inflation rates under the baseline model as well 
as the model with downward nominal wage rigidity.  Panel B figures plot the variance of inflation and the frequency 
of hitting the zero-bound on interest rates for different steady-state inflation rates using our baseline model and the 
model with downward nominal wage rigidity.  See section 5.5 for details.  
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Figure 12. Positive Implication: Parameters in the Taylor Rule. 

   

 

 
Note: Figures in the left column plot the welfare loss as a function of steady state inflation for alternative values of the 
monetary policy rule parameters. The solid thick back line corresponds to the baseline parameterization. Figures in the right 
column plot the optimal level of steady-state inflation and the welfare loss at the optimal steady state level of inflation as a 
function of the monetary policy rule parameters.  ߶గ  is the long-run response of interest rates to inflation, ߶௚ is the response to 
output growth, and ߶௬  is the response to the output gap.  See section 6.1 for details. 
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Figure 13. Positive Implications: Price Level Targeting and Interest Rate Smoothing. 

  

 
 

Note: Figures in the left column plot the welfare loss as a function of steady state inflation for alternative values of the 
monetary rule parameters. The solid thick back line corresponds to the baseline parameterization. Figures in the right column 
plot the optimal level of steady-state inflation and the welfare loss at the optimal steady state level of inflation as a function of 
the monetary policy rule parameters.  ߶௣ is the response to the price-level gap while ρr1 is the degree of interest smoothing.  See 
section 6.2 for details. 
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Appendix A. Proofs for section 2.4.  
 
Lemma 1. 
The expansion of the utility derived from consumption around flexible price steady state is  
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where σ is the intertemporal elasticity of substitution for consumption,  and ܥҧ௧ிis the flexible price level of 
consumption in the steady state. Tildes denote percent deviations from the flexible price level, tip stands 
for terms independent from policy, hot means higher order terms. We assume that utility is logarithmic, 
௧ሻܥሺݑ ൌ log ҧ௧ܥ ,௧ܥ

ிݑ஼ҧ೟
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ᇱ ൌ 1 and σ =1 so that the expression becomes ݑሺܥ௧ሻ ൌ ܿ̃௧ ൅ ݐ݋݄ ൅  ■ .݌݅ݐ
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Note that  
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By the delta method, we have  
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Now observe that  
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Lemma 5. 
Consider the term ݕܧො௧ሺiሻ.  From the Dixit-Stiglitz aggregator we have  
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Using the delta method, we have  
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Combine (A.7) and (A.8) to re-write (A.6) as follows 
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We use a guess and verify procedure to determine the dispersion of prices. In particular, we posit that if 

the deviation of cross-sectional price dispersion from its non-stochastic steady state level   is 
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Where we assume that KQ is of the same order as the shock processes, so that the first term is of second 
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The non-stochastic steady state value is given by 
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We can solve for deviations from steady state dispersion tt     
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Note that the form of (A.15) is the same as the form of our guess in (A.13). Let 
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coefficients with the guess and verify equation (A.13), we have 
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which completes the proof. ■ 
 
Proposition 1.  
From  Lemma 5, we have  0 111

2( ) var )ˆ (i t t y ty iE i Q Qy hy oty i

       . Therefore, we can express 

the approximation from the disutility of labor supply given in Lemma 2 as follows:  
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As Woodford (2003) shows, (1 )F F
t tCY

u   , where (with log utility) 1Φ ln( ) 
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  which follows from 

the intra-temporal condition for labor supply. Hence,  
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As in Lemma 1, ˆ
ˆ 1F

tC

F

tC u  . Using equation (35) from the derivations in the paper and Lemma 4, we 

replace the cross-section dispersion of output in (A.17) with the cross-sectional dispersion of prices.  
Given the low levels of inflation we consider in our analysis, Γଶ is close to zero and Γଶሺߨ௧ െ  തሻߨ

has (in expectation) negligible effects on ߌ௧ so that 
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Note that from the definition of t , we have  
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Since all variables are stationary and ˆ log( )t ty y X  , we can compute the expected per period 
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After using (A.18) and (A.20) and collecting terms, one arrives at equation  (37). ■  
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Appendix B: Model with Capital 
The representative consumer aims to maximize the present discount value of the utility stream from 
consumption and leisure  
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where C is consumption of the final good, Nt(i) is labor supplied to individual industry i, h is the degree of 
external habit formation, η is the Frisch labor supply elasticity and βt is the time-varying discount factor.  
The budget constraint each period is given by  
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where S is the stock of one-period bonds held by the consumer, R is the gross nominal interest rate, P is 
the price of the final good, W(i) is the nominal wage earned from labor in industry i, K is capital owned 
by the representative consumer, Rk is the nominal rental rate on capital, T is transfers and profits from 
ownership of firms, qt is the risk premium shock, and  is the shadow value of wealth. The fourth term on 
the left hand side is a quadratic adjustment cost to the stock of capital held by the consumer, where  
measures the strength of the adjustment cost.  is the rate of depreciation on capital and ܻܩതതതത the steady 
state growth rate of output.  Capital can be accumulated according to the law of motion 
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The first order conditions from this utility-maximization problem are then: 
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where /t j t j    is Tobin’s q and /k k
t j t j t jR R P   is the real rental rate of capital. 

Production of the final good is done by a perfectly competitive sector which combines a continuum of 

intermediate goods into a final good per the following aggregator 
111

0
( )t tY Y i di
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


        (B.9) 

where Yt is the final good and Y(i) is intermediate good i, while θ denotes the elasticity of substitution 
across intermediate goods, yielding the following demand curve for goods of intermediate sector i 
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( ) ( ( ) )t t t tY i Y P i P    (B.10) 

and the following expression for the aggregate price level 
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The production of each intermediate good is done by a monopolist facing a Cobb-Douglas production 
function with capital share  

1
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where A denotes the level of technology, common across firms.  We assume that capital is perfectly 
mobile across firms, 
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Each intermediate good producer has sticky prices, modeled as in Calvo (1983) where 1-λ is the 
probability that each firm will be able to reoptimize its price each period.  We allow for indexation of 
prices to steady-state inflation by firms who do not reoptimize their prices each period, with ω 
representing the degree of indexation (0 for no indexation to 1 for full indexation).  Denoting the optimal 
reset price of firm i by B(i), re-optimizing firms solve the following profit-maximization problem  
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where Q is the stochastic discount factor and   is the gross steady-state level of inflation.   The optimal 
relative reset price is then given by 
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where firm-specific marginal costs can be related to aggregate variables using 
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Firm-specific marginal cost remain a function of aggregate variables and the reset price only because full 
capital mobility implies that all firms have the same (adjusted) capital labor ratio. The first order 
condition for the firms’ input usage is 
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which we combine with the first order condition for labor supply to get 
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Since the right hand side consists of aggregate variables only, the left hand side must be identical across 
firms. 
Give these price-setting assumptions, the dynamics of the price level are governed by 
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We allow for government consumption of final goods (Gt), so the goods market clearing condition for the 
economy is  

.t t ttY C G I     (B.20) 

We define the aggregate labor input as 
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Note that this definition of labor input differs from the labor-only model. We make different assumptions 
to simplify our aggregation problems. 
 
Log-linearization 
In the model with capital the goods market clearing condition becomes 
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where yc , yg , and yi are the steady-state ratios of consumption, government and investment to output 

respectively.  
 
Lemma 6. Let yc , yg , and yi be the steady-state ratios of consumption, government and investment to 

output respectively. Then  
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Proof: See Appendix C. 
 
Corollary 1. Since yc , yg , and yi are independent of the degree of price stickiness  , they are equal to 

their flexible price level counterparts,
 

F
y yc c , F

y yg g , and F
y yi i  . 

 
 Also, integrating over firm-specific production functions and log-linearizing yields the aggregate 
production function: 
 
Lemma 7. Let lower case letters denote the deviations from steady state values. Then the aggregate 

production function up to a first order approximation is given by 

ˆˆ ˆ(1 )
t t t

y k n    , (B.25)  

Proof: See Appendix C. 
 
Allowing for capital also changes the steady state effects of positive trend inflation.  For example, the 

steady-state level of the output gap (which is defined as the deviation of output from its flexible price 

level counterpart) is given by 
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Note that the steady-state level of the gap is again equal to one when steady-state inflation is zero (i.e., 

1  ) or when the degree of price indexation is exactly equal to one.   
 
Lemma 8. The expansion of the utility part that corresponds to disutility from labor supply in the capital 
model is given by 
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labor supply. 
Proof: See Appendix C. 
 
 
Lemma 9. The cross sectional variations in labor input and prices are proportional, 
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Proof: See Appendix C. 
 
Before we proceed with Proposition 2 we write the inter-temporal condition for labor supply as, 
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The right hand side of this expression is simply total labor income. Because of the distortion due to 
monopolistic competition it is equal to 
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 where 1 ( 1) /    . Since we assume log utility this expression further simplifies to 
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where F
yc is the share of consumption in output at the flexible price steady state.
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Proposition 2. In the model for capital, the second order approximation to utility (1) is  
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Appendix C: Proofs for model with capital 
 
Lemma 6 
From the first order condition for the use of capital we know that capital for a firm that reset its price at 
time t  evolves as follows 
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where R
tk  is the optimal reset stock of capital at time t . Due to Calvo pricing the aggregate capital stock 

today is an aggregate of an infinite sum of past capital stocks, adjusted for their growth rate in the interim  
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Thus, the ratio of capital to output yk . From the capital accumulation equation we know that in the steady 

state the share of output going to investment is equal to 
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The conclusion for yc then follows directly from the resource constraint. ■ 

 
Lemma 7 
We first rewrite the individual production function as 
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From the first order condition for labor supply and the optimal capital labor ratio, we know that the term 
in parentheses is the same across firms. Integrating this equation then yields, 
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We then take logs of this expression and consider a first order approximation to the integral, 
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where the last line follows from price dispersion being of second order (Lemma 4, Appendix A). ■ 
 
Lemma 8 
Note that 
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t t ti n in N  is the deviation of firm i’s labor input from flexible price level of labor 
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tN and η is the Frisch elasticity of labor supply. Because of our definition of labor input in the 
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Consider the first term ( )ˆi tE n i .  We define aggregate labor input as  
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Using the delta method, we have  
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Combine (C.11) and (C.12) to re-write (C.10) as follows 
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We use Taylor series expansion of the second term, 
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It then follows from (C.14), 
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which implies that the first order term in (C.8) is equal to 
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Using (C.16), we can re-write (C.17) as follows 
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Now we combine (C.18) and (C.16) to finally get the part which corresponds to the second-order 
approximation of utility due to the disutility of labor supply (C.8): 
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Lemma 9 
We first note that, 
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To replace variability of log labor with variability of log prices we will use the market firms’ first order 
conditions for inputs and combine it with the agents first order condition for labor supply, 
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This implies that the idiosyncrasy in the capital-labor ratio is proportional to log labor input across firms, 
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This then allows us to calculate the cross sectional variation in output, 
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Finally, using the demand curve for each variety, we have 
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and it follows that the cross-sectional variation in labor input is proportional to the cross-sectional 
variation in prices. 
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Proposition 2.  
Combine Lemmas 8-9 and Corollary 1  with Lemma 1 and Lemma 4 to get 
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Appendix D: Taylor-pricing model with 3-quarter length contracts 
 
In the Taylor-pricing model with 3-quarter length contracts, in each period one third of all firms can 
change their price. This price will then have to last for 3 quarters before it can be reset. The model is 
otherwise identical to the baseline model. 
 
The firms maximization problem is now given by 
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since the price is only fixed for 3 quarters. The first order condition from this optimization problem is 
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Substituting the equations for the discount factor and the firm-specific marginal cost from the baseline 
model yields, 

 

1

1

1

2
1 1 (1 )

1 1
0 1

2
1 1

1
0 1

1

j
t j t j

t t i t i t i
j i t j t jt

j

t
t t i t i t i

j i

R
C Y

GY
A AB

P
YR G

E

E



 












   

    
   

 
   

 








  
    

 


  
    

 








 

 
 (D.3) 

Given these price-setting assumptions, the dynamics of the price level are governed by 
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The remaining equations are as in the baseline model. 
 
Steady State: 
 
The steady state real reset price is then equal to 
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which is greater than one for positive trend inflation. This implies that the output gap is equal to 
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In the steady state, the cross sectional mean of prices is given by 
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This implies that the cross sectional variance of prices in the steady state is equal to 
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Dynamic Equations: 
 
With staggered pricing the log-linearized equations are now as follows. For equation (D.4), 
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and for equation (D.3) 

 

1 1 1

2 2

1 2 1 2 1 2 1 2

1 2 2 2 1 1 1 2 1 2 2 1 1

2 1 1 2

1 2 2 2 1 1 1

2

2 1 2 2 2 1 2 2
ˆ

ˆ ˆ ˆ ˆ( )[ ] ( )( )

ˆ 1 (1 / )

ˆ

ˆ ˆ ˆ ˆ ˆ ˆ(1 / ( ) ( )

( )

)

1 (1 /

( )

[( )( ) ( )]

)[(

t

t t t

t

t

t t t t t t

t

b G G

gy r G G gy r G G

G G

c c c y y y

     

        



     

  

  

  
  

 




    

       

     



    

  2 1 2 1
2 2 1 1) ]G G  

 (D.10) 

Where ߛଵ ൌ ଶߛ ഥሺଵିఠሻሺఏିଵሻ  andߎଵିߚߣ ൌ ഥሺଵିఠሻሺଵାఏ/ఎሻ, and 2ߎଵߛ 2

2 2 2 1 1 1 1 ,  1G G         . 

 
Lemma 4 in Taylor model: 
In the baseline model, we derived the cross-sectional price dispersion up to a second order approximation. 
Because, the pricing contracts are different in the Taylor model, this section derives an equivalent Lemma 
for the Taylor model. 
 
Lemma 4 (Taylor): 
Let tt      be the deviation of cross-section price dispersion from its non-stochastic steady state 

level  . Then 
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where 
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At any given time the cross sectional dispersion is given by 
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The deviation from the steady state is then equal to 
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where 

 
1 0 1

1 [1 ( ( ]1) ) .p pQ b Q     ■ (D.15) 

 
Proposition 2 (Taylor) in the Taylor model 

Given Lemmas 1-5 for the Taylor model, the second order approximation to utility is  
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where parameters , 0,...,6i i   depend on the steady state inflation   and are given by  
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As Woodford (2003) shows, (1 )F F
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the intra-temporal condition for labor supply. Hence,  
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  (D.26) 

As in Lemma 1, ܥҧ௧
ிݑ஼ҧ೟

ಷ
ᇱ ൌ 1. Using equation (42) and Lemma 4 (Taylor) we replace the cross-section 

dispersion of output in (A.17) with the cross-sectional dispersion of prices. Using ܧሺߨ௧ െ തሻߨ ൌ 0, we 
compute the expected value of Ξ௧: 
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  (D.27) 

where 

 
1 0 1

1 [1 ( ( ]1) ) .p pQ b Q      (D.28) 

Note that from the definition of t , we have  

( ) ( )t tE E    .  (D.29) 

Since all variables are stationary and ˆ log( )t ty y X  , we can compute the expected per period 

utility as follows 
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After using (A.18) and (A.20) and collecting terms, one arrives at equation (D.16).■ 
 
 
 


