
On the Implementation and Use of a Genetic Algorithm

Romanian Journal of Economic Forecasting – 2/2010 223

ON THE IMPLEMENTATION AND USE

OF A GENETIC ALGORITHM WITH

GENETIC ACQUISITIONS

George Daniel MATEESCU

Abstract

A genetic algorithm is convergent when genetic mutations occur on the objective
function gradient direction. These genetic mutations are called genetic acquisitions
(Mateescu, 2005). We improved the algorithm and its implementation by using the
characteristics of parents in order to generate new individuals. Finally, we applied the
genetic algorithm in order to find the parameters of a Cobb-Douglas function.

Keywords: evolutionary algorithms, optimization

JEL Classification: C61, C63

Introduction

In this paper, we present the implementation of a genetic algorithm that includes
genetic acquisitions. In a previous paper we proved the convergence of such an
algorithm, and now we will make an improvement, by changing the method of new
individuals generating. Also, taking into account the algorithm, we will present how to
create C++ programs.

We plan to analyze the implementation and application of a genetic algorithm
described in the form of blocks, as follows:

Step 1. Generate initial population

Step 2. Apply genetic mutations of a number of individuals

Step 3. Generate offspring

Step 4. Remove excess population

Step 5. Continue with Step 2, until the stop conditions are fulfilled.

Consider an optimization problem as:

inf f , where: f is a function : mf R R

Institute of Economic Forecasting, Romanian Academy, e-mail: daniel@mateescu.ro .

14.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6716938?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Institute of Economic Forecasting

Romanian Journal of Economic Forecasting – 2/2010224

Suppose that the function f possesses Frechet derivative and it fulfills a Lipschitz type
condition:

'() '() , 0f u f v L u v L

where: u v represent the Euclidian norm in m
R and '() '()f u f v is the

corresponding linear application norm.

As shown in Mateescu (2005), the sequence m

nu R which consists of the

individuals with minimum value of the function f, at the n-th generation, is convergent.
If the function f possesses partial derivatives of second order, and the Hessian matrix
is positively defined, i.e. satisfies a relationship of the form:

2
''() , , 0f x y y a y a (where , is the inner product in m

R) (1)

then minnu u and the speed of convergence is measured by an inequality of the

form:

min

1
.nu u const

a

Implementation of Genetic Algorithms

The functional framework described is implemented by using the C++ language,
observing the steps of a genetic algorithm.

Population

This is a subset of possible solutions, i.e. a finite subset of points in m
R space. Each

point is an individual, with m attributes corresponding to its coordinates. Furthermore,
we associate a measure of its performance, by associating the appropriate value of
objective function f. In summary, we associate to an individual, one vector of the form:

1 2 1 2, ,..., , , ,...,m mx x x f x x x

In C++ implementation, we consider that the population is a matrix:

float pers[max] [m+1];

where: max represents the number of individuals.

On each matrix row, the first m components are corresponding to coordinates and the
m+1-th is the objective function value. In implementation, the objective function has
the form:

float goal (x1, x2, ..., xm)
and

 xm+1 = goal (x1, x2, ..., xm)
Genetic mutations

We used genetic acquisitions that correspond to genetic modification of coordinates,
with respect to the objective function gradient. As it is demonstrated in Mateescu
(2005), such genetic mutations lead to the convergence algorithm.

On the Implementation and Use of a Genetic Algorithm

Romanian Journal of Economic Forecasting – 2/2010 225

In implementation, we will use a function that determines the sign of partial derivatives
corresponding to a coordinate. Thus, the genetic mutation of a component will be
implemented as an assignment of the form:

 pers [n] [i] = pers [n] [i]-h *sign (n,i)
where: h is a value equal to the desired accuracy of calculations.

In applications we used h=0.001 and an approximation of the partial derivative,
respectively:

1 2 1 1 2 1, ,..., , ,..., , ,..., , ,...,i i m i i m

i

f x x x h x x f x x x x xf
x

x h

Offspring

I brought an improvement to the method of generation of descendants, in conformity
with the optimization problem. Thus, two individuals

1 2, ,..., mx x x x and

1 2, ,..., my y y y

will generate a new one:

1 1 2 2, ,...,
2 2 2 2

m mx y x y x yx y
z

By using the functional framework, it results that the objective function f is convex.
Indeed, by using Taylor's formula and (1) we have:

1
() () '()() ''()(),() 0

2
f x f z f z x z f x z x z

1
() () '()() ''()(),() 0

2
f y f z f z y z f y z y z

which implies, by adding the above relations:

() () 2 () '()(2) 0f x f y f z f z x y z

While 2 0x y z , it follows:

() () 2 () 0f x f y f z or

() ()
()

2

f x f y
f z

The above relationship shows that the new individual will have the objective function
value lower than that those of almost one of his/her parents, i.e.:

f x f z or f y f z

Selection

Next, we ordered the population according to objective function values in the form

1 2 max, ,..., ,..., ,...,i ju u u u u , where 1() (), 1..max 1q qf u f u q

Assuming that ku is generated by using iu and ju , we already stated that

i kf u f u or
j kf u f u which implies that we may eliminate any element

situated at the left side of iu and ju .

Institute of Economic Forecasting

Romanian Journal of Economic Forecasting – 2/2010226

Consequently, in our implementation, we used a population consisting into 100
individuals, but we used only the last 50 in order to create new individuals. This new
population may replace the firsts 50 individuals, as we observed above. Finally we
ordered the population, descending, according to the objective function f.

By using such a strategy we keep constant the number of population, but, as it is
demonstrated in Mateescu (2005), the algorithm is convergent, i.e., the sequence of
the best individuals, in each generation, is convergent and the limit is a local optimum
point for the function f.

Validation of the Genetic Algorithm

Finally, we need to verify our algorithm, by using some significant values. We used
statistical data on GDP, employment and gross fixed capital formation, in order to
determinate the coefficients of a Cobb-Douglas function:

Y AL K
To avoid inconsistent units of measurement, we used a dimensionless form,
corresponding to two-year consecutive evolution, starting from:

1 1 1t t tY AL K

t t tY AL K

1 1 1t t t

t t t

Y L K

Y L K

Using National Institute of Statistics official web site we processed the following data:

Table 1

 Yt+1/Yt Lt+1/Lt Kt+1/Kt

1997/1996 0.938 0.961 1.016

1998/1997 0.952 0.977 0.942

1999/1998 0.988 0.955 0.951

2000/1999 1.021 1.024 1.054

2001/2000 1.058 0.992 1.101

2002/2001 1.050 0.972 1.082

2003/2002 1.052 0.998 1.084

2004/2003 1.085 0.990 1.111

2005/2004 1.041 1.018 1.126

2006/2005 1.079 1.017 1.228

2007/2006 1.062 1.004 1.290

Source: http://www.insse.ro

Applying the genetic algorithm described, we optimized the function:
2

1 1 1, t t t

t t t t

Y L K

Y L K
 (1)

On the Implementation and Use of a Genetic Algorithm

Romanian Journal of Economic Forecasting – 2/2010 227

Figure 1

Objective function

and we obtained the values 0.245 , 0.359 (we used the above data from

Table 1 for Y, L, K).

Although the algorithm is convergent, the function (1) graph shape suggests the
direction of slow convergence (Figure 1).

Taking into account this observation, we questioned the mathematical behavior of a
function related to a more general Cobb-Douglas function:

1 1 1t t t

t t t

Y L K

Y L K
 (2)

Such a function would correspond to a case when the parameter A is not constant.
Minimizing the corresponding function j provides an appropriate example of
spectacular function, having more points of local minimum. Thus, using data from the
table, the simulation with genetic algorithm, we obtained various points minimum,
such as:

=0.195, =0.354, =1.001

=0.364, =0.331, =1.004

Conclusions

The genetic algorithm may be used in order to find the minimum points for an
objective function. If such a function corresponds to a last square expression, the
algorithm may be used in order to find some known function parameters.

On the other hand, by using the genetic algorithm it is possible to identify multiple
minimum points. Such a situation may occur simply by executing repetitively the
associated C++ program. The existence of multiple optimal points raise serious doubt
on the possibility of using the Cobb-Douglas function with three parameters. This is

Institute of Economic Forecasting

Romanian Journal of Economic Forecasting – 2/2010228

the case of the function (2) the conclusion being that the function Cobb Douglas
having more than 2 parameters is not reliable according to the statistical data in
Table 1.

In fact, taking into account the shape of the function in Figure1 it results the important
conclusion that Cobb Douglas function becomes less reliable as the number of
parameters increases.

On the Implementation and Use of a Genetic Algorithm

Romanian Journal of Economic Forecasting – 2/2010 229

Annex

C++ PROGRAM

#include<stdio.h>

#include<stdlib.h>

#include<math.h>

FILE * date;

float pers[100][3];

float h=0.001;

float goal(float alfa,float beta){

float s,y,l,k;

s=0;

date=fopen("date.art.dat","r");

for(int i=0;i<11;i++){

 fscanf(date,"%f,%f,%f",&y,&l,&k);

 s+=(y-pow(l,alfa)*pow(k,beta))*(y-pow(l,alfa)*pow(k,beta));

 }

 fclose(date);

 return s;

}

int sign(int n,int i){

 switch(i){

 case 0: {if(goal(pers[n][0]+h,pers[n][1])-goal(pers[n][0],pers[n][1])>0) return 1;else return -1;};

 case 1: {if(goal(pers[n][0],pers[n][1]+h)-goal(pers[n][0],pers[n][1])>0) return 1;else return -1;};

 }

}

void generate(){

randomize();

for(int i=0;i<100;i++){

 for(int j=0;j<2;j++) pers[i][j]=(1+random(40))/10.;

 pers[i][2]=goal(pers[i][0],pers[i][1]);

 }

}

void mutation(int n){

 pers[n][0]+=-h*sign(n,0);

 pers[n][1]+=-h*sign(n,1);

}

float * crossover(float (* a)[3],float (* b)[3]){

 float (* p)[4] = new float[3];

 int i=random(3)-1,j;

 for(j=0;j<=i;j++)(*p)[j]=(*a)[j];

 for(j=i+1;j<2;j++)(*p)[j]=(*b)[j];

 (*p)[2]=goal((*p)[0],(*p)[1]);

 return p;

}

void order(){

Institute of Economic Forecasting

Romanian Journal of Economic Forecasting – 2/2010230

float temp;

for(int p=99;p>0;p--) for(int q=0;q<p;q++) if(pers[q][2]<pers[q+1][2])

 for(int j=0;j<3;j++){

 temp=pers[q][j]; pers[q][j]=pers[q+1][j]; pers[q+1][j]=temp;

 }

}

void main(){

float * r;

int i,p,q;

generate();

order();

do{

 for(i=0;i<50;i++) mutation(random(100));

 for(i=0;i<50;i++){

 p=50+random(50);q=50+random(50);

 r=crossover(pers[p],pers[q]);

 pers[i][0]=r[0]; pers[i][1]=r[1];

 pers[i][2]=goal(pers[i][0],pers[i][1]);

 }

 order();

}while(fabs(pers[0][0]-pers[99][0])+fabs(pers[0][1]-pers[99][1])>h);

printf("%f\n%f\n%f\n%i\n",pers[99][0],pers[99][1]);

getchar();

}

References

Back, Th. (1966), “Evolutionary Algorithms in Theory and Practice”, New York: Oxford
University Press.

Bakhvalov, N. (1976), Methodes numeriques, Editions MIR.

Mateescu, G.D. (2005), “Optimization by Using Evolutionary Algorithms With Genetic
Acquisitions”, Romanian Journal of Economic Forecasting, 6(2): 26-
30.

National Institute of Statistics, http://www.insse.ro

Pchenitchny, B., Daniline, Y. (1977), Methodes numeriques dans les problemes
d’extremum, Editions MIR.

Stoer, J., Bulirsch, R. (1992), Introduction to Numerical Analysis, Springer-Verlag.

