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1 Introduction

In this paper, we focus on nonparametric estimation of a univariate model with
stochastic volatility and jumps such as

dXt = a(Xt)dt + σ(Xt)dWt + dJt, t ∈ [0, T ],

defined on a fixed time span [0, T ]. X describes the evolution of an economic
variable as an interest rate or a logarithmic asset price. The semimartingale X
is composed by a drift component which is a deterministic function a(·) of Xt, by
a continuous, diffusive Brownian motion with stochastic volatility in the form of
a deterministic function σ(·) of Xt, and by a discontinuous part in form of jumps
driven by a Lévy process Jt. These kind of models turn out to be very useful when
the state variable varies in form of small, continuous changes (modelled by the
Brownian motion) as well as with abrupt, discontinuous variations (modelled by
the jump component).

Stochastic volatility models with jumps are used in a variety of financial applica-
tions. For interest rate modelling, Das (2002); Piazzesi (2005) show that the role
of jumps is relevant in incorporating newly released information in interest rate
levels. The statistical and economic role of jumps in interest rate modelling is fur-
ther discussed in Johannes (2004). Bond pricing for jump-diffusions is discussed
in Eberlein and Raible (1999). Jumps are also very important for derivative pric-
ing, since option writers and buyers are aware of the possibility of sudden changes
of the underlying, so that they demand an higher risk premium which affects the
term structure of implied volatility, see Bakshi et al. (1997); Bates (2000); Eraker
et al. (2002); Andersen et al. (2002); Pan (2002). Also pure-jump processes received
a lot of attention, see (Madan, 1999; Carr et al., 2002). An important problem for
the risk management and for the construction of hedging strategies is to identify
the contribution given to X separately by each component.

In the recent literature, many intriguing methodologies have been proposed to
separate the variations in the state variable Xt due to the diffusive part from those
due to jumps with a feasible econometric technique.
In a parametric model parameterized functional forms are imposed for the drift
and diffusion functions and for the jump component. In that framework Jiang and
Oomen (2004) develop estimators based on a weighted sum of squared increments
in an affine assets price model where the jump part has finite activity. Ait-Sahalia
(2004) shows that it is possible to disentangle jumps from the continuous variations
using a maximum likelihood approach. Aı̈t-Sahalia and Jacod (2005) construct a
threshold based estimator of the volatility when each source of randomness is a
stable Levy process.
In a nonparametric framework, Barndorff-Nielsen and Shephard (2004a,b); Wo-
erner (2003); Mancini (2004a) estimate the integrated volatility. Barndorff-Nielsen
and Shephard (2004b) show that, when the volatility is independent of the leading
Brownian motion, the power variation of the state variable is a consistent estima-
tor of the integral of the corresponding power of the volatility, even in the presence
of a finite activity jump process. Woerner (2003) shows that the power variation is
consistent even when the power is strictly less than 2 and the jump part belongs
to a specified class of infinite activity processes. Barndorff-Nielsen and Shephard
(2004a) develop the original theory of the bi-power variation, which also allows
them to construct a test for the presence of jumps.
In this paper, we want to estimate the local volatility. Nonparametric estimation
of the drift a(·) and the diffusion coefficient σ(·) has been studied, in absence of
the jump component, by Florens-Zmirou (1993); Jiang and Knight (1997); Stanton
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(1997); Bandi and Phillips (2003); Renò (2004). In presence of jumps, the only non-
parametric estimators we are aware of has been proposed by Bandi and Nguyen
(2003) and studied by Johannes (2004). Their model contains a finite activity jump
part, not necessarily of Lévy type, since it has stochastic jump intensity. They base
themselves on nonparametric kernel estimation of unconditional moments of the
state variable, and the presence of jumps is identified by an estimate of the excess
kurtosis.
Our estimator is basically different. We build on the work of Mancini (2004a,b),
who shows that when the interval between two observations shrinks, since the dif-
fusive part tends to zero at known rate, it is possible to establish when there were
some jumps and to identify asymptotically both jump times and sizes. Therefore
our idea is to get an estimate of the continuous path of the state variable, and to
perform nonparametric estimation on that. We also discuss an extension which
can be implemented with high-frequency data.

2 Assumptions and preliminary results

In this Section, we set up the model, the assumptions and we recall some prelim-
inary results which will be useful in constructing our estimator. We model the
evolution of an (observable) state variable by a stochastic process Xt in the time
interval [0, T ]. While we leave the possibility to Xt to be any variable, in financial
applications it can be thought as the short rate, or the logarithm of an asset price,
of a stock index, or of a foreign exchange rate.

We work in a filtered probability space (Ω, (Ft)t∈[0,T ], F , P), satisfying the usual
conditions (Protter, 1990), where W is a standard Brownian motion and J is a pure
jump Lévy process. We then assume that (Xt)t∈[0,T ] is a real process such that

X0 ∈ IR and

dXt = a(Xt)dt + σ(Xt)dWt + dJt, t ∈ [0, T ]. (2.1)

The Lévy process J can be decomposed as the sum of the jumps bigger than one
and the sum of the compensated jumps smaller than one. Following this decom-

position, we write J ≡ J1 + J̃2, where

J1s
.
=

∫ s

0

∫

|x|>1

xµ(dt, dx) and J̃2s
.
=

∫ s

0

∫

|x|≤1

x[µ(dt, dx) − ν(dx)dt],

µ being the jumps random measure of X, and ν being the Lévy measure of J . The
process J1 of the jumps with size bigger than one is a finite activity compound

Poisson process, J1s =
∑N1

s

`=1 γ1
` (see Cont and Tankov (2004)). For simplicity we

will write N in place of N1, and γ in place of γ1.

Typically, we do not observe Xt continuously, but in form of n discrete time ob-
servations {X0, Xt1 , ..., Xtn−1

, Xtn
}. We develop our theory for the case of equally

spaced observations, that is ti = iδ, where δ = T/n. However our results still hold
when the data are not equally spaced (Mancini (2004a), Florens-Zmirou (1993),
Jiang and Knight (1997)).

For a given process Z, we use the following notations:

• ∆iZ = Zti
− Zti−1

, the increment of Z between ti−1 and ti

• ∆Zt = Zt − Zt− the size of the jump, if any, at time t
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• ∆i,jZ = Zti+si
j
− Zti+si

j−1
, the increment of Z between ti + si

j−1 and ti + si
j

where {si
j , j = 1..m} is a partition of ]ti−1, ti]. In the case of equally spaced

observations we will have ∆i,jZ = Z 1
n (i+ j

m ) − Z 1
n (i+ j−1

m )

• Zc is the continuous martingale part of Z

• We denote by (τj)j∈IN the jump instants of J1 and by τ (i) the instant of the

first jump in ]ti−1, ti], if ∆iN ≥ 1

• H.W is the process given by the stochastic integral
(

∫ t

0
HsdWs

)

t∈[0,T ]
.

We require the following assumption throughout all the paper.

Assumption 2.1 at
.
= a(Xt), σt

.
= σ(Xt) are progressively measurable processes with

cadlag paths such to guarantee that the SDE (2.1) has a unique strong solution which is
adapted and right continuous with left limits on [0, T ] (see Ikeda and Watanabe (1981)).

Definition 2.2 A bandwidth parameter is a sequence of real numbers h such that as n →
∞ we have h → 0 and nh → ∞.

An example of bandwidth parameter which is very popular in applications (Scott,
1992) is the following:

h = hsσ̂n− 1
5 (2.2)

where hs is a real constant to be tuned, and σ̂ is the sample standard deviation.

When J ≡ 0 we denote our process by Y . In the case of no jumps, Florens-Zmirou
(1993) proves the following proposition

Proposition 2.3 (Florens-Zmirou, 1993) Define

Sn
t (x)

.
=

n
∑n

i=1 I{|Yti
−x|<hn}(∆iY )2

T
∑n

i=1 I{|Yti
−x|<hn}

. (2.3)

If
• the coefficient function a(x) is bounded and has two continuous bounded derivatives;
• the local volatility function σ(x) is uniformly bounded and bounded away from zero and
has three continuous bounded derivatives;
• if the bandwidth parameter satisfies nh4 → 0 as n → ∞,
then Sn

t (x) converges to σ2(x) in probability for any x visited by Y .

In fact she shows that
1

2h

n
∑

i=1

I{|Yti
−x|<h}

T

n
(2.4)

is a consistent approximation of the local time LT (x), the time the process Y stands
near x, and

1

2h

n
∑

i=1

I{|Yti
−x|<h}(∆iY )2 (2.5)
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is a consistent approximation of σ2(x)LT (x). Loosely speaking, the local time of Y
measures how many observations Yti

are near x. It is defined, for every t, as the
following almost sure limit:

Lt(x) = lim
ε→0

1

2ε

∫ t

0

I]x−ε,x+ε[(Yτ )dτ, (2.6)

see e.g. Revuz and Yor (1998). On the other hand it is well known that
∑n

i=1(∆iY )2

→P

∫ T

0
σ2

udu: if we take only those increments for which Yti
was near x, we get

pointwise information about σ(x) instead of about the integrated volatility over
the full path. This is justified by the fact that (see Revuz and Yor (1998))

lim
ε→0

1

2ε

∫ t

0

I{x−ε,x+ε}(Ys)d[Y ]s = lim
ε→0

1

2ε

∫ t

0

I{x−ε,x+ε}(Ys)σ
2(Ys)ds = σ2(x)LT (x).

Indeed, Sn
t (x) is a weighted average of the squared increments (∆iY )2 of the dif-

fusion Y where the weights are higher when Yti
happened to be near x.

Using the indicator function is not necessary. For example, Jiang and Knight (1997)
showed a result analogous to proposition 2.3 with a continuous kernel replacing
the indicator function.

Definition 2.4 A kernel K(·) is a bounded non negative real function such that
∫ +∞
−∞ K(s)

ds = 1.

An example of smooth kernel is the Gaussian function. The indicator function used
by Florens-Zmirou (1993), namely K(u) = I{|u|<1}, is non smooth. The choice of
the kernel function is usually found to be irrelevant in applications. Much more
important is the choice of the bandwidth parameter.

Jiang and Knight (1997) show that for proper kernels K

T

nh

n
∑

i=1

K

(

Yti
− x

h

)

→a.s. LT (x) (2.7)

and
1

h

n
∑

i=1

K

(

Yti
− x

h

)

(∆iY )2 →L2 σ2(x)LT (x) (2.8)

and therefore they validate the following result

Proposition 2.5 (Jiang and Knight, 1997) Define KSn
t (x) as:

KSn
t (x) =

n

n−1
∑

i=0

K

(

Yti
− x

h

)

(∆iY )2

T

n
∑

i=1

K

(

Yti
− x

h

)

(2.9)

If
• the assumptions of 2.3 on a, σ and the bandwidth h are satisfied;
• the kernel K is positive, continuously differentiable with lim

x→+∞
K(x) = lim

x→−∞
K(x)

= 0;
then Sn

t (x) converges to σ2(x) in probability for any x visited by Y .

Under the further assumption that nh3 → 0 both Florens-Zmirou (1993) and Jiang
and Knight (1997) prove also the asymptotic normality for Sn

t (x) and KSn
t (x).
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3 Nonparametric estimation of the diffusion coefficient

3.1 The case of finite activity

We now focus on defining a nonparametric estimator of σ2(·) when our model
contains also a jump part. Let us begin considering the case in which J is a fi-
nite activity jump process, that is it is a compound Poisson process (see Cont and
Tankov (2004)). Our model is now

Xt = Yt + J1,t, (3.1)

where Yt =
∫ t

0
audu+

∫ t

0
σudWu is the diffusion part of X and J1,t =

∑Nt

k=1 γk, with
J1,0− = 0.
A fundamental tool for our aim is to disentangle, from the discrete observations of
X , the contributions given by the jumps and those given by the diffusion part. For
that we borrow some results from Mancini (2004a).

Theorem 3.1 (Mancini, 2004a) If r(u) is a real deterministic function such that

lim
n→∞

r

(

T

n

)

= 0 and lim
n→∞

T
n log n

T

r
(

T
n

) = 0

then for P-almost all ω ∃n̄(ω) s.t. ∀n ≥ n̄(ω) we have

∀i = 1, ..., n, I{∆iN=0}(ω) = I{(∆iX)2≤r( T
n )}(ω). (3.2)

•

This enables us to say that some jumps occurred within ]ti−1, ti] if and only if
the squared increment (∆iX)2 is larger than r(T

n ). As a first consequence, the
cumulative sum of the properly small squared increments (∆iX)2 will be equal,
for large n, to the sum of the squared increments of the continuous part Y and this
intuition has been pursued in Mancini (2004a) to provide an approximation of the
quadratic variation of Y , which is in fact the integrated volatility of X . Moreover
we reach an approximation of the whole jump process J using

γ̂τ(i)
.
= ∆iXI{(∆iX)2>r( 1

n )}.

In fact the following results hold.

Corollary 3.2 (Mancini, 2004a) If we choose r as in Theorem 3.1 then

n
∑

i=1

(∆iX)2I{(∆iX)2≤r( T
n )} →P

∫ T

0

σ2(Xs)ds

Proposition 3.3 (Mancini (2004b): we remark that part a) of theorem 3.1 of Mancini
(2004b) in the present framework with fixed time horizon T still holds. We can reformulate
the result as follows)
Assume that J is a compound Poisson process, let δ = T

n → 0 and the threshold function

r be such that
δ ln δ

δ

r(δ) →δ 0. Then, for any ε > 0,

P

(

n
⋃

i=1

{nk|γ̂τ(i) − γτ(i)I{∆iN≥1}| > ε}
)

→P 0 ∀k ∈ [0,
1

2
[.
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•

Another consequence of theorem 3.1 here is that now we can reach an estimation

Ŷ of the continuous part Y of (2.1) and we can apply to it, for instance, the estima-
tors proposed in Florens-Zmirou (1993) or in Jiang and Knight (1997) for the local
volatility σ2(x).
In fact, to get σ2(x)LT (x) in the spirit of proposition 2.3 of Florens-Zmirou (1993),
we will select, among the ”small” squared increments (∆iX)2 (having index i such
that no jumps occurred within the interval ]ti−1, ti]), those for which the continu-
ous part Y of X was close to x at time ti.

From a practical point of view Ĵ1,t
.
=

∑ti∧t
i=1 ∆iX I{(∆iX)2>r( 1

n )} is a consistent ap-

proximation of the jump part J1,t of Xt, so that Ŷ = X−Ĵ1 is a consistent estimator
of Y which allows us to detect whether Yt is near to x or not. Note that a continu-
ous semimartingale Y a.s. reaches any x belonging to [mint∈[0,T ] Yt,maxt∈[0,T ] Yt]
during the period [0, T ] (Karatzas and Shreve (1988)). Moreover this happens in-
finitely many times within [0, T ]. When X contains a finite activity jump process
J1, there are only finite many jumps within [0, T ], and thus X a.s. reaches any x
belonging to ] inft∈[0,T ] Xt, sup xt∈[0,T ]Xt[ anyway infinitely often.
The following theorem is our first result and validates our criterion.

Theorem 3.4 Let X be a jump-diffusion process as in (3.1).

• Let the assumptions of 2.3 for a and σ and for the bandwidth parameter hold

• let further the bandwidth parameter be such that ∃β > 1 : nhβ → ∞
• let the threshold function r satisfy the assumptions of theorem 3.1.
Then for any x visited by X

σ̂2
n(x) =

n
∑n

i=1 K
(

Xti
−Ĵ1,ti

−x

h

)

(∆iX)2I{(∆iX)2≤r( T
n )}

T
∑n

i=1 K
(

Xti
−Ĵ1,ti

−x

h

) →P σ2(x) (3.3)

as soon as the kernel K is continuous and satisfies the conditions in proposition 2.5 or
alternatively K(u) = I{|u|<1}.

Lemma 3.5 Mancini (2004a) Take T = 1.

sup
i

|∆iσ.W | ≤
√

2(σ̄ + 1)

√

1

n
lnn

.
= M(ω)

√

1

n
lnn,

where σ̄(ω) = sups∈[0,T ] |σs(ω)| is a.s. finite since σ is cadlag. •

Proof of Theorem 3.4 We set, without loss of generality, T = 1 and ti = T
n = 1

n . Set

Ŷ = X − Ĵ1 and L
.
= L1.

Step 1. We see that a.s. for n big enough, uniformly in i,

Ŷti
− Yti

h
→ 0.

In fact
Xtj

− Ĵ1,tj
− Ytj

h
=

J1,tj
− Ĵ1,tj

h
=
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1

h





Ntj
∑

k=1

γk −
j

∑

i=1

(

∫ ti

ti−1

audu +

∫ ti

ti−1

σudWu +

∆iN
∑

`=1

γ`

)

I{(∆iX)2>r( 1
n )}



 . (3.4)

By theorem 3.1 we have that a.s. for n big enough, uniformly in i, I{(∆iX)2>r( 1
n )} =

I{∆iN 6=0}; however, since J1 has finite activity, for big n, uniformly in i, I{∆iN 6=0} =
I{∆iN=1}. Therefore for big n (3.4) coincides with

1

h





Ntj
∑

k=1

γk −
j

∑

i=1

(

∫ ti

ti−1

audu +

∫ ti

ti−1

σudWu + γτ(i)

)

I{∆iN=1}



 =

j
∑

i=1

1

h

(

∫ ti

ti−1

audu +

∫ ti

ti−1

σudWu

)

I{∆iN=1}.

Set ā(ω) = sup
u∈[0,T ]

|au(ω)|: ā is a.s. finite, since a is a cadlag function of t. Then the

last sum tends to zero uniformly in j, since, for big n,

1

h

j
∑

i=1

∫ ti

ti−1

auduI{∆iN=1} =

j
∑

i=1

∫ ti

ti−1

audu∆iNI{∆iN=1} ≤ ā

nh
N1 → 0.

Moreover

1

h

j
∑

i=1

∫ ti

ti−1

σudWuI{∆iN=1} ≤ sup
i

|∆iσ.W |
h

NT → 0

uniformly on j, since by lemma 3.5 supi
|∆iσ.W |

h ≤ M(ω)
√

1
nh2 lnn →a.s. 0.

Consequence of step 1 for the indicator functions kernel. Remember that L is the local

time of Y . We have in particular that a.s. for each ε > 0 for n big enough supi |Ŷti
−

Yti
| ≤ ε. We now show that

Plim
n

∑n
i=1 I{|Ŷti

−x|<h}(∆iY )2

∑n
i=1 I{|Ŷti

−x|<h}
= Plim

n
∑n

i=1 I{|Yti
−x|<h}(∆iY )2

∑n
i=1 I{|Yti

−x|<h}

Let us preliminarily remark that for every ε > 0 then ∀ i if |Ŷti
− x| < h, since

|Yti
− x| ≤ |Ŷti

− Yti
| + |Ŷti

− x|, then |Yti
− x| < h + ε. On the other hand, if

|Yti
− x| < h − ε then |Ŷti

− x| ≤ |Yti
− Ŷti

| + |Yti
− x| < h .

That means: asymptotically Yti
is distant from x less than h if and only if Ŷti

does.
In particular, choosing for instance ε = ε(h) = h4, we have I{|Yti

−x|<h−h4} ≤
I{|Ŷti

−x|<h} and I{|Ŷti
−x|<h} ≤ I{|Yti

−x|<h+h4}, and thus

n
∑n

i=1 I{|Ŷti
−x|<h}(∆iY )2

∑n
i=1 I{|Ŷti

−x|<h}
≤

n
∑n

i=1 I{|Yti
−x|<h+h4}(∆iY )2

∑n
i=1 I{|Yti

−x|<h−h4}
=

n
∑n

i=1 I{|Yti
−x|<h+h4}(∆iY )2

∑n
i=1 I{|Yti

−x|<h+h4}

∑n
i=1 I{|Yti

−x|<h+h4}
∑n

i=1 I{|Yti
−x|<h−h4}

:

the first factor tends in probability to σ2(x) by proposition 2.3, since n(h+h4) → ∞.
The second factor, by (2.4), has Plim equal to

Plim

L(x)
2(h+h4)n

L(x)
2(h−h4)n

= 1.
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On the other hand we have

n
∑n

i=1 I{|Ŷti
−x|<h}(∆iY )2

∑n
i=1 I{|Ŷti

−x|<h}
≥

n
∑n

i=1 I{|Yti
−x|<h−h4}(∆iY )2

∑n
i=1 I{|Yti

−x|<h−h4}

∑n
i=1 I{|Yti

−x|<h−h4}
∑n

i=1 I{|Yti
−x|<h+h4}

,

where again the first factor tends to σ2(x) and the second one to 1.

Consequence of step 1 for continuous kernels. We show that

Plim

∑n
i=1 K

(

Ŷti
−x

h

)

(∆iY )2

∑n
i=1 K

(

Ŷti
−x

h

)

1
n

= Plim

∑n
i=1 K

(

Yti
−x

h

)

(∆iY )2

∑n
i=1 K

(

Yti
−x

h

)

1
n

In fact, from the results about the approximation of stochastic integrals with re-
spect to a continuous semimartingale (see Metivier (1982)),

Plim
n

∑

i=1

∣

∣

∣

∣

∣

K

(

Ŷti
− x

h

)

− K

(

Yti
− x

h

)

∣

∣

∣

∣

∣

(∆iY )2 =

∫ 1

0

Plim

∣

∣

∣

∣

∣

K

(

Ŷti
− x

h

)

− K

(

Yti
− x

h

)

∣

∣

∣

∣

∣

d[Y ]s

which is zero, since Plim
∣

∣

∣
K

(

Ŷti
−x

h

)

− K
(

Yti
−x

h

)
∣

∣

∣
= 0 a.s. and, uniformly in i,

∣

∣

∣
K

(

Ŷti
−x

h

)

− K
(

Yti
−x

h

)∣

∣

∣
≤ K̄

.
= sup[0,T ] K(u) < ∞.

Moreover, analogously,

Plim

n
∑

i=1

∣

∣

∣

∣

∣

K

(

Ŷti
− x

h

)

− K

(

Yti
− x

h

)

∣

∣

∣

∣

∣

1

n
=

Plim

n
∑

i=1

∣

∣

∣

∣

∣

K

(

Ŷti
− x

h

)

− K

(

Yti
− x

h

)

∣

∣

∣

∣

∣

∆[W ]ti
=

∫ 1

0

Plim

∣

∣

∣

∣

∣

K

(

Ŷti
− x

h

)

− K

(

Yti
− x

h

)

∣

∣

∣

∣

∣

ds = 0.

Step 2. For any kernel function K, we have that σ̂2
n(x) has the same limit in proba-

bility as

n
∑n

i=1 K
(

Yti
−x

h

)

(∆iY )2I{∆iN=0}
∑n

i=1 K
(

Yti
−x

h

) =

1
h

∑n
i=1 K

(

Yti
−x

h

)

(∆iY )2

1
h

∑n
i=1 K

(

Yti
−x

h

)

1
n

−
∑n

i=1 K
(

Yti
−x

h

)

(∆iY )2I{∆iN 6=0}
∑n

i=1 K
(

Yti
−x

h

)

1
n

. (3.5)

The Plim of the first term coincides with σ2(x) by Florens-Zmirou (1993) in the case
of indicator functions and by Jiang and Knight (1997) in the case of continuous
kernel, while the second term is negligible, since

supi(∆iY )2

1
n lnn

≤ sup
i

2(
∫ ti

ti−1
audu)2 + 2(

∫ ti

ti−1
σudWu)2

1
n lnn

≤

8



sup
i

2 ā2

n2 + 2M2 1
n lnn

1
n lnn

≤ C(ω),

and therefore
∣

∣

∣

∣

∣

∣

n
∑n

i=1 K
(

Yti
−x

h

)

(∆iY )2I{∆iN 6=0}
∑n

i=1 K
(

Yti
−x

h

)

∣

∣

∣

∣

∣

∣

≤

nC(ω)
1

n
lnn

∑n
i=1 K

(

Yti
−x

h

)

I{∆iN 6=0}
∑n

i=1 K
(

Yti
−x

h

) ≤

C(ω) lnn K̄

∑n
i=1 I{∆iN 6=0}

∑n
i=1 K

(

Yti
−x

h

) ≤

C(ω)K̄ lnn
NT

∑n
i=1 K

(

Yti
−x

h

) ,

and the ratio above has the same Plim as

Plim lnn
NT

2nhLT (x)
= Plim

nα

nh

lnn

nα
,

which is zero as soon as α = 1 − 1
β . •

While the estimator (3.3) is consistent, we define another estimator which asymp-
totically behaves in the same way as the former, but potentially has a much larger
relevance in practical application. The idea is just to replace (∆iX)2I{(∆iX)2≤r( 1

n )}
with m jump-free squared increments in the interval ]ti−1, ti] as follows:

σ̂2
n,m(x) =

n

n
∑

i=1



K

(

Xi − Ĵ1,ti
− x

h

)

m
∑

j=1

(∆i,jX)2I{(∆iJ̃2)2≤r( T
mn )}





T

n
∑

i=1

K

(

Xi − Ĵ1,ti
− x

h

) (3.6)

In fact since the quantity
∑m

j=1(∆i,jX)2I{(∆iJ̃2)2≤r( T
mn )} tends to the integrated

volatility in the interval ]ti−1, ti], it is the analogous of the very popular realized
volatility within ]ti−1, ti] (see for instance (Andersen et al., 2003)) when extended
for the presence of jumps in the driving equation, and theorem 3.4 allows to di-
rectly use realized volatility measures for estimating non-parametrically the diffu-
sion coefficient in (2.1). The following proposition validates our σ̂2

n,m(x).

Proposition 3.6 Let m → ∞ be such that mnh4 → 0. Then, under the same assump-
tions of theorem 3.4, we have

P lim
|(n,m)|→∞

σ̂2
n,m(x) = σ2(x).

Proof. Set again T = 1. Let us start considering the indicator functions kernel:

σ̂2
n,m(x) =

n
∑n

i=1 I{|Xti
−Ĵ1,ti

−x|<h}
∑m

j=1(∆i,jX)2I{(∆i,jX)2≤r( 1
mn )}

∑n
i=1 I{|Xti

−Ĵ1,ti
−x|<h}

,

9



has Plim coinciding with

Plim
n

∑

i,j I{|Yti
−x|<h}(∆i,jY )2I{∆i,jN=0}

∑n
i=1 I{|Yti

−x|<h}
=

= Plim
n

∑

i,j I{|Yti
−x|<h}(∆i,jY )2

∑n
i=1 I{|Yti

−x|<h}
, (3.7)

since the sum of the terms for which some jumps occurred is negligible.
Note that as soon as |Yti

−x| < h we have that for any ε > 0, for large n, |Yti,j
−x| ≤

|Yti
−x|+ |Yti

−Yti,j
| < h+ε, uniformly in i and j, since Y is uniformly continuous

on [0, T ]. Therefore we can show that

Plim σ̂2
n,m(x) ≤ σ2(x). In fact (3.7) is dominated by

Plim
n

∑

i,j I{|Yti,j
−x|<h+ε}(∆i,jY )2

∑n
i=1 I{|Yti

−x|<h}
=

Plim
h + ε

h

P

i,j I{|Yti,j
−x|<h+ε}(∆i,jY )2

2(h+ε)
Pn

i=1 I{|Yti
−x|<h}

2nh

=

Plim (1 +
ε

h
)
L1(x)σ2(x)

L1(x)
,

by Florens-Zmirou (1993), as soon as we choose a sequence ε = ε(h) such that
ε/h → 0, so that nm(h + ε)4 → 0.
Therefore, for any such sequence of εs, (3.7) is dominated by Plim (1 + ε

h )σ2(x) =
σ2(x).

On the other hand for any ε ∈]0, h[ as soon as |Yti,j
− x| < h − ε then, for large n,

|Yti
− x| ≤ |Yti,j

− x| + |Yti
− Yti,j

| < h, uniformly in i and j, and thus

Plim
n

∑

i,j I{|Yti
−x|<h}(∆i,jY )2

∑n
i=1 I{|Yti

−x|<h}

≥ Plim

P

i,j I{|Yti,j
−x|<h−ε}(∆i,jY )2

2(h−ε)
Pn

i=1 I{|Yti
−x|<h}

2nh

h − ε

h
;

choosing a sequence ε(h) > 0 such that ε(h)/h → 0 such a Plim coincides with

= Plim
L1(x)σ2(x)

L1(x)

(

1 − ε

h

)

= σ2(x).

We analogously deal with a continuous kernel in place of the indicators. •

3.2 The case of infinite activity

Now we have
X = Y + J1 + J̃2, (3.8)

10



with J̃2s
.
=

∫ s

0

∫

|x|≤1
x[µ(dt, dx)−ν(dx)dt] and J1s =

∫ s

0

∫

|x|>1
xµ(dt, dx) =

∑Nt

k=1 γk.

Even in this case we can estimate the continuous part from our discrete observa-

tions and thus we can apply to Ŷ the nonparametric estimator of Florence-Zmirou
or of Jiang and Knight.
Set

Ĵ
(>r)
t

.
=

ti∧t
∑

i=1

∆iXI{(∆iX)2>r( T
n )}. (3.9)

Now Ĵ
(>r)
t is a consistent approximation not only of J1,t but also of part of J̃2. To

give an idea, for small δ = T
n we have substantially that, for each i, I{(∆iX)2≤r(δ)} =

I{(∆iJ̃2)2≤4r(δ),∆iJ1=0}, however within Ĵ
(>r)
t the contribution of the terms I{∆iJ1=0}

is negligible. So

ti∧t
∑

i=1

∆iXI{(∆iX)2≤r( T
n )} ≈

ti∧t
∑

i=1

∆iXI{(∆iJ̃2)2≤4r(δ),∆iJ1=0}

=

ti∧t
∑

i=1

(∆iY + ∆iJ̃2)I{(∆iJ̃2)2≤4r(δ),∆iJ1=0} ≈
ti∧t
∑

i=1

(∆iY + ∆iJ̃2)I{(∆iJ̃2)2≤4r(δ)}

≈
ti∧t
∑

i=1

∆iY +

ti∧t
∑

i=1

∆iJ̃2I{(∆iJ̃2)2≤4r(δ)}

and

Ĵ
(>r)
t =

ti∧t
∑

i=1

∆iX −
ti∧t
∑

i=1

∆iXI{(∆iX)2≤r( T
n )}

≈
ti∧t
∑

i=1

(∆iJ1 + ∆iJ̃2I{(∆iJ̃2)2>4r( T
n )}).

Now from (Mancini, 2004a) we have

∆iJ̃2I{(∆iJ̃2)2≤4r( 1
n )} = ∆iJ̃2m − ∆iJ̃2c

where

∆iJ̃2m
.
=

∫ ti

ti−1

∫

|x|≤2
√

r(δ)

xµ̃(dx, dt), ∆iJ̃2c
.
=

∫ ti

ti−1

∫

2
√

r(δ)<|x|≤1

xν(dx)dt,

and consequently ∆iJ̃2I{(∆iJ̃2)2>4r(δ)} =
∫ ti

ti−1

∫

2
√

r(δ)<|x|≤1
xµ(dx, dt). So Ĵ

(>r)
t is

given by all the jumps of J1 and all the jumps of J̃2 bigger in absolute value than

2
√

r(δ).

Since for r(δ) → 0 the jumps bigger in absolute value than 2
√

r(δ) are all jumps of

∆iJ̃2, the tool is to approximate Y with X − Ĵ
(>r)
t =

∑ti∧t
i=1 ∆iXI{(∆iX)2≤r( T

n )}. We

have the following result.

Theorem 3.7 Let X be as in (3.8). Under the same assumptions of theorem 3.4. Specify
r(δ) = δη, η ∈]0, 1[. We then have again that

σ̂2
n(x) =

n
∑n

i=1 K

(

Xti−1
−Ĵ

(>r)
ti−1

−x

h

)

(∆iX)2I{(∆iX)2≤r( T
n )}

T
∑n

i=1 K

(

Xti−1
−Ĵ

(>r)
ti−1

−x

h

) →P σ2(x) (3.10)

11



as soon as
√

r(δ)

h
→ 0

the kernel K is continuous and satisfies the conditions in proposition 2.5 and

K
(

z−x
h

)

h
≤ Cx for each x, uniformly on z

or alternatively K(u) = I{|u|<1}.

Remarks. Note that the kernel K(u) = e−u2

satisfies the assumptions of the previ-
ous theorem.
r(δ) and h satisfy the requested assumptions for η ∈]2/3, 1[.

Proof. Set T = 1. Let α be the Blumenthal-Gatoor index of J (see e.g. Cont and
Tankov (2004)).
First of all note that on {(∆iJ̃2)

2 ≤ 4r(δ),∆iN = 0} we have

(∆iX)2K

(

Xti−1
− Ĵ

(>r)
ti−1

− x

h

)

≤ (∆iJ̃2 + ∆iY )2K̄ = O(r(δ)),

so that by lemma 3.5 in Cont and Mancini (2005) (see the appendix) the limit in
probability of σ̂2

n(x) coincides with

Plim

n
∑n

i=1 K

(

Xti−1
−Ĵ

(>r)
ti−1

−x

h

)

(∆iX)2I{(∆iJ̃2)2≤4r(δ),∆iN=0}

∑n
i=1 K

(

Xti−1
−Ĵ

(>r)
ti−1

−x

h

) . (3.11)

We now show that we can replace K

(

Xti−1
−Ĵ

(>r)
ti−1

−x

h

)

with K
(

Yti−1
−x

h

)

for each

i. By lemma 5.2 and the continuity of K it is sufficient to show that for each tk

Xtk−1
− Ĵ

(>r)
tk−1

− Ytk−1

h
=

∑k
i=1(∆iXI{(∆iX)2≤r(δ)} − ∆iY )

h
→ 0.

However we can proceed through the following steps.

First of all
∑k

i=1 ∆iXI{(∆iX)2≤r(δ)}
h

has the same Plim as

∑k
i=1(∆iJ̃2 + ∆iY )I{(∆iX)2≤r(δ),|∆iJ|≤2

√
r(δ),∆iN=0}

h
. (3.12)

In fact on {(∆iX)2 ≤ r(δ)} we have |∆iJ | − |∆iY | ≤ |∆iX| ≤
√

r(δ) and thus, for

small δ, |∆iJ | ≤ 2
√

r(δ). Therefore for small δ

k
∑

i=1

∆iXI{(∆iX)2≤r(δ)} =

k
∑

i=1

∆iXI{(∆iX)2≤r(δ),|∆iJ|≤2
√

r(δ)}.

12



Moreover

Plim

∑k
i=1 |∆iX|I{(∆iX)2≤r(δ),|∆iJ|≤2

√
r(δ),∆iN 6=0}

h
≤

√

r(δ)

h
NT → 0.

Secondly let us show that in fact

Plim

∑k
i=1(∆iJ̃2 + ∆iY )I{(∆iX)2>r(δ),|∆iJ|≤2

√
r(δ),∆iN=0}

h
= 0,

which will imply that (3.12) coincides with

Plim

∑k
i=1(∆iJ̃2 + ∆iY )I{|∆iJ|≤2

√
r(δ),∆iN=0}

h
. (3.13)

In fact we have

{(∆iJ̃2)
2 ≤ 4r(δ),∆iN = 0, (∆iX)2 > r(δ)} ⊂

{|∆iJ̃2| ≤ 2
√

r(δ), |∆iY | + |∆iJ̃2| >
√

r(δ)} ⊂

{|∆iJ̃2| ≤ 2
√

r(δ), |∆iY | >
√

r(δ)/2} ∪ {|∆iJ̃2| ≤ 2
√

r(δ), |∆iJ̃2| >
√

r(δ)/2} :
(3.14)

and, passing to a subsequence, both sets are empty, a.s., uniformly in i, for small δ

since on one hand {|∆iY | >
√

r(δ)/2} = { |∆iY |√
δ ln 1

δ

> 1
2

√
r(δ)√

δ ln 1
δ

} and

√
r(δ)√

δ ln 1
δ

→ ∞ by

assumption, while |∆iY |√
δ ln 1

δ

≤ ā + M < ∞.

On the other hand {|∆iJ̃2| ≤ 2
√

r(δ), |∆iJ̃2| >
√

r(δ)/2} ⊂ {(∆iJ̃2)
2 > 4r(δ)}.

However on {(∆iJ̃2)
2 > 4r(δ)} we have that ∆iJ̃2 =

∫ ti

ti−1

∫

|x|>2
√

r(δ)
xµ(dt, dx) =

∆iM + ∆iC, where

∆iM
.
=

∫ ti

ti−1

∫

|x|>2
√

r(δ)

xµ̃(dt, dx), ∆iC
.
=

∫ ti

ti−1

∫

|x|>2
√

r(δ)

xν(dt, dx),

so
{(∆iJ̃2)

2 > 4r(δ)} ⊂ {2(∆iM)2 + 2(∆iC)2 > 4r(δ)} ⊂
{(∆iM)2 > r(δ)} ∪ {(∆iC)2 > r(δ)}.

Now, {(∆iC)2 > r(δ)} = {δr(δ)−α
2 > 1} = ∅ for sufficiently small δ, uniformly in

i, since d

r(δ)
α
2

=
(

δ
r(δ)

)
α
2

δ1−α
2 → 0.

Moreover {(∆iM)2 > r(δ)} in probability coincides with {(Mδ)
2 > r(δ)} which is

a subset of

{sup
s≤δ

M2
s > r(δ)} = {sup

s≤δ

|Ms|
δ1/2−γ(1 − r(δ)1−α/2)

δ1/2−γ(1 − r(δ)1−α/2) >
√

r(δ)},
(3.15)

where we take γ > 0 such that 1 − η − 2γ > 0. Since by the Doob inequality

sups≤δ
|Ms|

δ1/2−γ(1−r(δ)1−α/2)
→P 0, passing to a subsequence we have the a.s. conver-

gence to zero, and in particular sups≤δ
|Ms|

δ1/2−γ(1−r(δ)1−α/2)
< 1 a.s. for small δ, so

(3.15) is subset of

{δ1/2−γ(1 − r(δ)1−α/2) >
√

r(δ)} = {δ1/2−γr(δ)−1/2(1 − r(δ)1−α/2) > 1}
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which is empty for small δ.

Now we deal with (3.13), which like as before coincides with

Plim

∑k
i=1(∆iJ̃2 + ∆iY )I{(∆iJ̃2)2≤4r(δ)}

h
,

and also with

Plim

∑k
i=1 ∆iY +

∑k
i=1 ∆iJ̃2I{(∆iJ̃2)2≤4r(δ)}

h
(3.16)

Now (3.16) can be written as

Plim

∑k
i=1 ∆iY

(

1 + ∆iJ̃2c

∆iY
+ ∆iJ̃2m

∆iY

)

h
= Plim

∑k
i=1 ∆iY

h
,

where last equality holds since uniformly with respect to i we have on one hand,

for any ε > 0, E
[
∣

∣

∣

∆iJ̃2m

∆iY

∣

∣

∣

]

≤ E

[

|∆iJ̃2m|
(1−ε)

√
δ ln | ln δ|

]

which, by the Doob inequality is

dominated by

√
δ
√

∫

|x|≤
√

r(δ)
x2ν(dx)

(1 − ε)
√

δ ln | ln δ|
= O(

√

r(δ)1−α/2

ln | ln δ| → 0).

On the other hand E
[∣

∣

∣

∆iJ̃2c

∆iY

∣

∣

∣

]

≤
δ

R

|x|∈]2
√

r(δ),1]
xν(dx)

(1−ε)
√

δ ln | ln δ|
→ 0.

Now (3.11) is reduced to

Plim

∑n
i=1 K

(

Yti
−x

h

)

(∆iY + ∆iJ̃2)
2I{(∆iJ̃2)2≤4r(δ)}

h

Pn
i=1 K

“ Yti
−x

h

”

nh

=

= Plim

1
h

∑n
i=1 K

(

Yti
−x

h

)

(∆iY )2

LY
1

− Plim

∑n
i=1

K
“ Yti

−x

h

”

h (∆iY )2I{(∆iJ̃2)2>4r(δ)}
LY

1

+Plim

∑n
i=1

K
“ Yti

−x

h

”

h (∆iJ̃2)
2I{(∆iJ̃2)2≤4r(δ)}

LY
1

+2Plim

∑n
i=1

K
“ Yti

−x

h

”

h ∆iY ∆iJ̃2I{(∆iJ̃2)2≤4r(δ)}
LY

1

:

the first term tends to σ2(x) by Florens-Zmirou (1993), while each one of the other
terms tends to zero in probability. The second one vanishes like as before. Define

Ks = K

(

Ys − x

h

)

.

Then the numerator of the third term has Plim coinciding with

Plim

∫ 1

0

Ks

h
d[J̃2,m]s = Plim

∫ 1

0

∫

|z|≤2
√

r(δ)

Ks

h
z2µ(dz),
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whose expectation is Plim
∫ 1

0

∫

|z|≤2
√

r(δ)
Ks

h z2ν(dz) = 0.

Finally the numerator of the last term has Plim coinciding with

2Plim

∫ 1

0

Ks

h
d[Y, J̃2,m]s = 0,

since [Y, J̃2,m]t =< Y c, J̃c
2m >t +

∑

s≤t ∆Ys∆J̃2m,s = 0. •

4 Conclusions

In this preliminary version paper, we introduce nonparametric estimation of the lo-
cal volatility in univariate processes with stochastic volatility and jumps in the case
of Lévy jump part, extending the preceding literature on nonparametric estimation
of continuous diffusions and of diffusions plus finite activity jump processes. We
build on the results of Mancini (2004a) who shows how to identify jump times and
sizes of a discretely observed process. Our results can be useful in the framework
of interest rate modelling and option pricing, and further research on this topic is
under development.

5 Appendix

Lemma 5.1 (Lemma 3.5 in Cont and Mancini (2005)) If r(δ) →δ 0 supi=1..n |ani|0(r(δ))
then

Plim
∑

i

|ani|I{(∆iX)2≤r( 1
n )} = Plim

∑

i

|ani|I{(∆iJ̃2)2≤4r(δ),∆iN=0}.

Lemma 5.2 Let K(δ) be a uniformly bounded sequence of semimartingales, that is |K(δ)
t | ≤

K̄ a.s. for each δ and t. Let K
(δ)
t converge, as δ → 0, to a semimartingale K, a.s. for every

t.
a) If Z is a semimartingale then

n
∑

i=1

K
(δ)
ti−1

(∆iZ)2 →P

∫ T

0

Ksd[Z]s.

b) If Z(δ) is a sequence of semimartingales for which E[(∆iZ
(δ))2] = δuδ with uδ → 0

then
n

∑

i=1

K
(δ)
ti−1

(∆iZ
(δ))2 →L1 0.

Proof. a) Note that
∑n

i=1 Kti−1
(∆iZ)2 →P

∫ T

0
Ksd[Z]s.

Following now the lines in Metivier (1982), p.177, we have

n
∑

i=1

(K
(δ)
ti−1

−Kti−1
)(∆iZ)2 =

n
∑

i=1

(K
(δ)
ti−1

−Kti−1
)∆i(Z

2)−2

n
∑

i=1

(K
(δ)
ti−1

−Kti−1
)Zti−1

∆iZ =

=

∫ T

0

φ(δ)
s d(Z2

s ) − 2

∫ T

0

ψ(δ)
s dZs
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where φ
(δ)
s =

∑n
i=1(K

(δ)
ti−1

−Kti−1
)I]ti−1,ti](s) is adapted and left continuous, bounded

by 2K̄ and tends to 0 a.s. for each t; analogously ψ
(δ)
s =

∑n
i=1(K

(δ)
ti−1

−Kti−1
)Zti−1

I]ti−1,ti](s)

is adapted and left continuous bounded a.s. by 2K̄ supt∈[0,T ] |Zt| < ∞ and tends
to 0 a.s. for each t. Therefore, by the ”dominated convergence” theorem (theorem
24.2 in Metivier (1982)) the integrals above converge in probability, as δ → 0, to 0.

b)

E[

n
∑

i=1

K
(δ)
ti−1

(∆iZ
(δ))2] ≤ K̄nE[(∆iZ

(δ))2] = 2K̄nδuδ → 0.

•
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