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1 Introduction

This paper studies the nonparametric identi�cation of the costs of simultaneous search in a class of

(portfolio) problems examined by Chade and Smith (2005, 2006). This class embeds a number of

important decision problems in economics. In these problems a decision maker must simultaneously

choose among a set of ranked stochastic options; each choice is costly and only the best realized

option is �nally exercised. This problem arises for example when students apply for colleges (Gale

and Shapley, 1962; Kelso and Crawford, 1982; Roth and Sotomayor, 1989), when consumers search

for di¤erentiated products (Stigler, 1961; Wolinsky, 1986; Anderson and Renault, 1999), or when

workers search for employment (Burdett et al., 2001; Albrecht et al., 2006; Kircher, 2009).

In all these papers, an important issue is the study of the extent to which the costs of simulta-

neous search drive a wedge between the market outcome and the social optimum. Assessing public

policy measures aimed at shortening the gap between the market and the social outcomes (for

instance policies to increase social mobility, minimum wage policy or merger policy), or estimating

the social value of new schools or new products requires the development of methods to identify

and estimate the costs of simultaneous search. This paper is a contribution to this objective.

We consider markets where the costs of search vary across the decision makers. In these types

of market, we study the conditions under which the econometrician can identify the search cost

distribution nonparametrically. We �rst show that detailed data from a single market (such as

the aggregate market share and the utility distribution corresponding to each of the available

options) do not provide su¢ cient information to identify the costs of simultaneous search in any

reasonable interval. The problem originates from the fact that the sequence of critical search costs

that can be identi�ed from the data is convergent to zero so the set of search cost values the

econometrician can identify is not dense in the support of the search cost distribution. As a result,

nonparametric identi�cation of the search cost distribution at quantiles other than the lowest fails.

The convergence-to-zero property of the search cost cuto¤s is related to the fact that the marginal

gains from searching k + 1 options rather than k options are typically decreasing in k (see our

Proposition 1).1

The paper proceeds by providing conditions under which the use of aggregate data from multiple

markets, or disaggregate data from multiple market segments, helps identify the search cost distri-
1Stigler (1961) made a related point within the speci�c context of consumer search for homogeneous products.
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bution. We propose to gather (market shares and utility distributions) data from several markets

(segments) with the same search technology. This helps in that every market (segment) generates a

distinctive set of search cost values for which the econometrician can retrieve the density of search

costs. By pooling market share data from many markets (segments) one forces the search cost

distribution to be uniquely determined for a much larger set of points. Gathering the appropriate

data is relatively easy for the econometrician. For example, in the college problem, one can take

data from di¤erent cities, with typically distinct numbers of colleges, di¤erent success rates and

distinct earning distributions. In the case of consumer search for di¤erentiated products, one can

pool data from markets where di¤erent product qualities are available, or, within a single market,

data from consumer segments with di¤erent demographics.2

In the remainder of the paper, we �rst describe the class of problems we study, then we provide

our identi�cation results and �nally we apply them to a couple of speci�c examples.

2 The model

We study the identi�cation of the costs of simultaneous search in a class of (portfolio) problems

inspired by the work of Chade and Smith (2006). In this class of problems, a decision maker must

make a simultaneous choice among ranked stochastic options; each choice is costly and only the

best realized alternative is �nally consumed. Chade and Smith (2005, 2006) prove that a greedy

algorithm �nds the solution in two classes of problems: problems with downward recursive (DR)

payo¤ functions, and non-DR problems with prize distributions ordered by a second-order stochastic

dominance condition. For the purpose of our paper, we can treat these two classes of problems

together within a single framework.

We assume that in a market (or in a market segment) there is a continuum of heterogeneous

decision makers who can choose to consume prizes/options from a total of N options. Each option

i gives a payo¤ ui with probability �i 2 (0; 1]; where ui is a random variable with probability

distribution 	i with support [ui; ui]; i = 1; 2; :::; N: The scalar �i measures the probability with

which an option succeeds to yield a payo¤. We assume that the random variables u1; u2; :::; uN
2Consumer search for di¤erentiated products is indeed an exciting area of active research. Several recent papers

have estimated models of search for di¤erentiated products by assuming parametric search cost distributions (Mehta,
Rajiv, and Srinivasan, 2003; Honka, 2010; Moraga-González, Sándor, and Wildenbeest, 2010). The results of our
paper contribute to the nonparametric identi�cation of the search cost distribution in such settings.
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are independent. Let the interval [0; u] contain the union of all the options� supports [ui; ui],

i = 1; 2; :::; N: De�ne �i = I�iui; where I�i is a Bernoulli random variable that takes value 1 with

probability �i: The distribution of �i is Gi = (1 � �i) + �i	i and its support will be denoted by

�i: When �i < 1 then �i � f0g [ [ui; ui]; otherwise �i � [ui; ui]: We assume that:

Assumption 1. The distributions Gi can be ranked according to the quasi-second order stochas-

tic dominance criterion, that is:
Z u

x
Gi(u)du �

Z u

x
Gi+1(u)du; i = 1; 2; :::; N � 1; for all x 2 [0; u]

with strict inequality at x = 0:

This assumption implies that E[ui+1] > E[ui] so (ex-ante) the best single option is option 1,

the second best single option is option 2, etc.

We shall assume that strictly dominated options, if any, have been already discarded. That is,

suppose there exists an option ` that succeeds with probability 1 and that pays always more than

some other option k; in this case ` strictly dominates k and k can be discarded. If there does not

exist an option that succeeds surely, then no option can be ex-ante discarded.

Assumption 2. Let NF be the set of options that can fail with strictly positive probability. Let

NF = N nNF : We assume \i2NF�i is a non-empty interval.

It is clear that if all options fail with strictly positive probability, then all options will have a

positive market share provided the costs of search are not too high. The role of this assumption is

to introduce some (ex-post) �competition�among the options that yield a payo¤ surely.

Each decision maker is characterized by her cost of searching an option. Let c be the cost of

search of a decision maker. If the decision maker searches the subset of options S; her total cost

is cjSj; where jSj denotes the cardinality of the subset S: Assume c is drawn independently from

a common atomless distribution H(c) with support 
 = [0; c]; let h(c) denote the corresponding

density. It will be convenient to assume c is su¢ ciently large, which ensures that there always exist

decision makers who do not search at all.3

Every decision maker ultimately consumes one single option (like in discrete choice models).

For a given set of options S � N , let f(S) denote the expected (gross-of-cost) payo¤:

f(S) � E[maxfui : i 2 Sg] =
Z u

0

 
1�

Y
i2S
Gi(u)

!
du: (1)

3This assumption can easily be relaxed (see Section 3.1). We do not allow the highest search cost to be low
here because this requires an amount of additional notation that makes the presentation of the ideas somewhat
cumbersome.
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We adopt the convention f(?) = 0: The problem of a decision maker with cost of searching options

equal to c is to choose a (sub-)set of options S � N to maximize her expected payo¤:

max
S�N

ff(S)� cjSjg : (2)

Under Assumption 1, a solution to the problem in (1) for decision maker with search cost c is

a set of options f1; 2; :::; i�(c)g. Chade and Smith (2006) provide an algorithm, namely the Mar-

ginal Improvement Algorithm (MIA), that identi�es the solution to this problem via an inductive

procedure. In essence, the MIA algorithm works as follows:

Step 1. Add option 1 to the optimal choice set if f(f1g) � c; otherwise choose the empty set

and stop.

Step 2. Add option 2 to the optimal choice set if f(f1; 2g)� f(f1g) � c; otherwise stop.

...

Step i. Add option i to the optimal choice set if f(f1; 2; :::; ig)�f(f1; 2; :::; i�1g) � c; otherwise

stop (for all i = 3; 4; ::; N):

In their papers Chade and Smith (2005, 2006) prove that the MIA algorithm encounters such

an optimal solution f1; 2; :::; i�(c)g:

In describing the market outcome this problem generates, it is useful to prove that the (gross-

of-cost) payo¤ in (1) has decreasing returns in i.

Proposition 1 Under Assumption 1,4 f(f1; 2; :::; ig) � f(f1; 2; :::; i � 1g) � f(f1; 2; :::; i + 1g) �

f(f1; 2; :::; ig); i = 2; :::; N:

Proof. Consider �rst the case where the CDFs 	i are not degenerated. For this case, we need

to prove thatZ u

0

0@1� iY
j=1

Gj(u)

1A du� Z u

0

0@1� i�1Y
j=1

Gj(u)

1A du� Z u

0

0@1� i+1Y
j=1

Gj(u)

1A du+ Z u

0

0@1� iY
j=1

Gj(u)

1A du
=

Z u

0

0@i�1Y
j=1

Gj(u)� 2
iY
j=1

Gj(u) +
i+1Y
j=1

Gj(u)

1A du = Z u

0

0@i�1Y
j=1

Gj(u) (1� 2Gi(u) +Gi(u)Gi+1(u))

1A du � 0:
We now argue thatZ u

0

0@i�1Y
j=1

Gj(u) (1� 2Gi(u) +Gi(u)Gi+1(u))

1A du � Z u

0

0@i�1Y
j=1

Gj(u)(1�Gi(u))2
1A du � 0:

4 In fact, we do not need the strict inequality condition at x = 0:
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For this, it su¢ ces that Z u

0
�(u)(u)du � 0; (3)

where �(u) =
Qi
j=1Gj(u) and (u) = Gi+1(u) � Gi(u): Note that � is monotonically increasing

in u; is absolutely continuous on (0; u], with �(0) = 0 and �(u) = 1: Moreover, by Assumption 1,R u
x (u)du � 0 for all x 2 [0; u]: Let

�(x) = �
Z u

x
(u)du:

Integrating (3) by parts givesZ u

0
�(u)(u)du = �(u)�(u)� �(0)�(0)�

Z u

0
�(u)

d�(u)

du
du

= �
iY
j=1

(1� �j)�(0)�
Z u

0
�(u)

d�(u)

du
du � 0:

and the result follows.

Consider now the case where the CDFs 	i are degenerated. In such a case, the payo¤ structure

is DR (for the de�nition see section 2.1) and the result follows from Lemma 5 in Chade and Smith

(2006).

We can use Proposition 1 to describe the market outcome this problem generates as follows. Let

us denote by qi the probability that a randomly selected decision maker chooses the set f1; 2; :::; ig;

i = 1; 2; ::; N: By construction
PN
i=0 qi = 1 where q0 is the probability of choosing the empty set.

Since c is distributed according to H; these probabilities can readily be computed:

q0 = 1�H(c0) and

qi = H(ci�1)�H(ci); i = 1; 2; :::; N;

where

c0 = f(f1g);

ci = f(f1; 2; :::; i+ 1g)� f(f1; 2; :::; ig); i = 1; 2; :::; N � 1 (4)

cN = 0:

The number ci is the cuto¤ value of the search cost distribution that makes a decision maker

indi¤erent between choosing i and i + 1 options. By Proposition 1, the sequence of cuto¤ values

fcigNi=0 is decreasing and therefore the probabilities qi are well-de�ned.
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Let si denote the market share of option i: Computing the market share of an option i involves

summing over all q�s the probability option i turns out to be the most attractive. In general this

market share can be written as follows:

s0 = q0 + q1 Pr(�1 = 0) + q2 Pr(�1 = �2 = 0) + :::+ qN Pr(�1 = �2 = ::: = �N = 0);

s1 = q1 Pr(�1 > 0) + q2 Pr(�1 > maxf0; �2g) + :::+ qN Pr(�1 > maxf0; �2; �3:::; �Ng);

s2 = q2 Pr(�2 > maxf0; �1g) + :::+ qN Pr(�2 > maxf0; �1; �3:::; �Ng); (5)

:::

sN = qN Pr(�N > maxf0; �1; �2; :::; �N�1g):

2.1 Examples

Some leading examples generate payo¤ structures similar to that in (1).

Example 1. The college problem.

In the college problem the distributions 	i are degenerated, for all i: A student must choose a

set S � N of colleges to apply for admission and this costs her cjSj. Given Assumption 1; we have

�1u1 > �2u2 > ::: > �NuN so ex-ante the best college is college 1, the second best is college 2,

etc.5 The expected (gross-of-cost) payo¤ from applying to the set of colleges S is

f(S) =
X
i2S

�iui
Y

j<i;j2S
(1� �j) (6)

Chade and Smith (2006) point out that this payo¤ function is downward recursive (DR). That is

for any two sets U;L in N with U w L (i.e. the worst option in U beats the best in L) we have

f(U + L) = f(U) + �(U)f(L) where �(U) �
Y
j2U
(1� �j) is the failure chance of all the options in

the set U:

This problem is similar to the directed search problem in labor economics studied by Burdett,

Shi and Wright (2001), Albrecht et al. (2006) and Kircher (2009).

Example 2. Search for di¤erentiated products.

5This follows from the fact that
Z u

0

Gi(u)du = u� �iui:
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In the model of search for di¤erentiated products, which generalizes Stigler (1961) and Burdett

and Judd (1983) to the case of non-identical prizes, �i = 0 for all i: A consumer must visit a set S

of shops to learn the utility she derives from the di¤erent products. Once the utility is learnt, the

consumer picks the product giving her the highest utility. Given Assumption 1; ex-ante the best

product is product 1, the second best product is product 2 etc. The expected (gross-of-cost) payo¤

from visiting the set of shops S is

f(S) �
Z u

0

 
1�

Y
i2S
	i(u)

!
du (7)

Chade and Smith (2005) note that the payo¤ structure in (7) is not DR. However, their MIA

algorithm also works in this case.

In recent research on oligopolistic competition with di¤erentiated products, it is typically as-

sumed that consumers di¤er in the (gross-of-cost) utilities they derive from the various products.

We note that the payo¤ structure in (7) should then be interpreted as the corresponding payo¤

to the consumers in a particular consumer segment. Later we will come back to this point when

discussing identi�cation using disaggregate data from various consumer segments.

Example 3. Capacity-constrained �rms and consumer search / Random job search

with multiple applications.

The generality of the payo¤ structure in (1) captures situations in which �rms may be capacity

constrained and the exact prizes ex-ante unknown by consumers. This situation arises for exam-

ple when a consumer searches for di¤erentiated products sold by capacity-constrained �rms. A

consumer needs to visit shops not only to learn the exact utility he/she derives from the products

but also to check their availability. Another situation is when a worker randomly searches in the

labor market for a better-paid job (Gautier and Moraga-González, 2004). Here workers apply for

multiple jobs but �rms have only a limited number of vacancies and wages are drawn from an

atomless probability distribution.

3 Identi�cation results

The econometrics problem consists of estimating the costs of simultaneous search, i.e., the CDF H

of search costs. A crucial requirement for consistent estimation is that the search cost distribution
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is identi�ed. In what follows, we study whether such identi�cation is possible using aggregate data

from a single market segment. In particular, we assume that:

Assumption 3. The econometrician observes:

1. A set of options with corresponding distributions fGigNi=1 over the set of prizes f�ig
N
i=1 each

option can deliver, where the Gi�s satisfy Assumption 1.

2. The aggregate market shares of each of the options, denoted fsigNi=0; where s0 denotes the

market share of the �outside�option.

In the examples above, Assumption 3.2 requires observing the numbers of students accepted

at the di¤erent colleges, observing the market shares of the various products in a single market

segment, or the number of persons hired by the di¤erent �rms in a market. Assumption 3.1 implies

that the researcher knows the utility (earning) distributions each option can yield. Admittedly, this

is a signi�cant amount of information and therefore Assumption 3 represents a case quite favorable

for identi�cation of the search cost distribution. Even in this favorable situation, we shall point to

some identi�cation challenges (which of course would remain if the utility distributions were not

known to the econometrician).

Our �rst result states that the data described in Assumption 3 allow for the identi�cation of

the search cost distribution at the cuto¤ values de�ned in (4).

Proposition 2 Under Assumptions 1, 2 and 3 the search cost cuto¤ values fcigNi=0 and the corre-

sponding values of the CDF of search cost fH(ci)gNi=0 are identi�ed.

Proof. The cuto¤ values can be computed from the set of equalities

c0 = f(f1g)

ci = f(f1; 2; :::; i+ 1g)� f(f1; 2; :::; ig); i = 1; 2; :::; N � 1;

cN = 0:

which form a decreasing sequence by Proposition 1.

Market shares satisfy the system of equations in (5). Note that this system of equations is trian-

gular and it has strictly positive diagonal elements. To see this, consider the k-th diagonal element:

Pr(�k > maxf0; �1; �2; :::; �k�1g): Denote by L � f1; 2; :::; k � 1g the subset of options that fail with

strictly positive probability. Let �(L) be the probability that all options in L fail; by convention
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�(?) = 1. Then Pr(�k > maxf0; �1; �2; :::; �k�1g) � �(L) Pr(�k > max
�
0;maxf�i : i 2 Lg

	
): If op-

tion k succeeds with probability 1, then by Assumption 2, Pr(�k > maxf�i : i 2 Lg) > 0: If option

k fails with strictly positive probability, by the free disposal of strictly dominated options assump-

tion, it must be the case that the upper bound of the support of option k; uk > maxfui : i 2 Lg:

As a result, Pr(�k > maxf�i : i 2 Lg) > 0:

Therefore, the system of equations (5) can be solved for fqigNi=0. Once we have obtained

such solution, one can iteratively compute the corresponding values of the CDF of the costs of

simultaneous search at the cuto¤s:

H(ci) = 1�
Xi

k=0
qk where i = 0; 1; :::; N:

Given that one can identify the sequence of points fci;H(ci)gNi=0 of the search cost distribution,

the question that arises is whether taking a market with many options (N !1) can allow for the

identi�cation of the search cost distribution in any interval of interest.

Proposition 3 Under Assumptions 1,2 and 3, the search cost distribution is not identi�ed in any

interval, even if N !1.

Proof. If N !1 then, by Proposition 1 the sequence fcigNi=0 will be decreasing and convergent

to zero because ff(f1; 2; :::; ig)gNi=1 is convergent. Therefore, the set of points outside an arbitrarily

small neighborhood around the limit point will be necessarily �nite. The result follows.

Proposition 3 shows that using the type of aggregate data described in Assumption 3 only allows

for identi�cation of the costs of simultaneous search at low quantiles. This is a problem because any

reasonable study of the e¤ects of public policy measures aimed at improving the market outcome (for

instance, introducing new college options, increasing school places, challenging a merger between

options, etc.) in any of these settings would require the identi�cation of search costs at higher

quantiles. We next move to the study of identi�cation using data from multiple market segments.

We propose to pool data from a (large) numberM of distinct markets segments, all of them with

the same underlying search cost distribution but with di¤erent characteristics. Let the features of

market segment m be characterized by the vector �m; m = 1; 2; :::;M: Assume that M ! 1 and

de�ne N1 as the set that includes all the numbers of options bN for which in�nitely many market
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segments exist. For each bN 2 N1 let fc bNi (�m)g bNi=0 denote the series of search cost cuto¤s obtained
from a market segment m (containing bN options).

Assumption 4. The econometrician observes the following data:

1. A number M !1 of di¤erent market segments, indexed by m; each of them characterized

by a vector �m randomly drawn from a distribution with bounded support �, and all of them having

the same underlying search cost distribution H.

2. In every market segment m with number of options bN 2 N1 the data described in Assump-

tion 3, i.e., fG bN
i (�; �m)g

bN
i=1; where G

bN
i is continuous in �m, and fs

bN
i (�m)g

bN
i=0; m = 1; 2; :::;1.

Then we can state that:

Proposition 4 Under Assumptions 1,2, and 4, the search cost distribution is identi�ed in the

following interval:

[ bN2N1 [
bN�1
i=0 [min

�2�
c
bN
i (�);max

�2�
c
bN
i (�)]; (8)

where � is the closure of �.

Proof. For any bN 2 N1, i 2
n
0; 1; :::; bNo and �m 2 �, the cuto¤ value c bNi (�m) corresponding

to i in market segment m with bN options and H
�
c
bN
i (�m)

�
are identi�ed by Proposition 2, for all

market segments m with bN options. We know that

c
bN
i (�m) =

Z u

0

 
iY

k=1

Gk(�; �m)�
i+1Y
k=1

Gk(�; �m)
!
du;

so c bNi (�) is a continuous function of �m. Since there are in�nitely many market segments m withbN options and �m is drawn randomly from �, the realizations c bNi (�m) will be dense in the setn
c
bN
i (�) : � 2 �

o
. By the continuity of c bNi (�) in � and by the compactness of �, this set is the

compact interval
h
min�2� c

bN
i (�);max�2� c

bN
i (�)

i
. Therefore, the search cost distribution is identi�ed

on this interval. The result follows.

3.1 Identi�cation in the full support

Proposition 4 gives set (8), in which the costs of simultaneous search are identi�ed. Such set is the

union of a number of intervals so the question that arises is whether such union covers the entire

support of the search cost distribution. We now address this issue within the speci�c context put
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forward in the examples above. In particular, we provide simple su¢ cient conditions under which

a full identi�cation result obtains.

Example 1. The college problem.

In the college problem, suppose every market/city m has just two colleges. For simplicity,

suppose that utilities are constant across markets but success rates vary from market to market.

Let u1 and u2 denote the common utilities colleges o¤er the applicants. Let �m1 and �m2 denote

the success rates of the two colleges in market m: Therefore, in the context of Proposition 4

�m = (�m1 ; �
m
2 ): Let us assume that �m is randomly distributed across markets, with support

� = (0; 1]� (0; 1]:

By Assumption 1, in every market �m1 u1 > �m2 u2 so, from Proposition 4, we can identify

the costs of simultaneous search in the interval [0; u1]: Whether the distribution of the costs of

simultaneous search is identi�ed in its full support then depends on the relationship between u1

and c: If c is less than or equal to u1; a full identi�cation result obtains.

Example 2. Search for di¤erentiated products.

Consider the model of search for di¤erentiated products above where the utility from a product

i is given by ui = �i + "i: The parameter �i represents quality of product i and the term "i is a

consumer-speci�c match-value, uniformly distributed across consumers with support [0; "]. Assume

match values are independent across consumers. Suppose there are just two products in every

market m and assume they only vary in their quality �i: If instead of markets we have market

segments the parameter �i should be seen as a random coe¢ cient. Let �m = (�m1 ; �
m
2 ) and assume

�m is randomly distributed across market (segments) with support � = f�1; �2 2 [0; 1]� [0; 1] such

that �1 > �2g which means that Assumption 1 holds so in every market segment m; option 1 is

ex-ante the best option. Moreover, note that

cm0 = �
m
1 +

"

2
(9)

so using this information, we can identify the search cost distribution in the set
�
"
2 ;
"
2 + 1

�
(see

(8)). Notice that when " is su¢ ciently large (so that "
2 + 1 > c), we can identify the search cost

distribution at high quantiles. However, note that using the information provided by the series
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of cm0 cuto¤s, we cannot identify the search cost distribution in the set
�
0; "2
�
: To gain further

information we can use the series of cm1 cuto¤s (see (8)), given by

cm1 =
("� (�m1 � �m2 ))

3

6"2

Using this information, we can additionally identify the search cost distribution in the set [0; "6 ]: As

a result, if across markets the products vary only in their quality, we can only obtain identi�cation

of the search cost CDF in the set [0; "6 ] [
�
"
2 ;
"
2 + 1

�
:

To obtain additional variation so as to identify the search cost distribution in its full support,

let us suppose that " also varies across markets and let " take on just two values, "1 and "2; with

"1 � 3"2: This su¢ ces to identify the search cost distribution in its full support.

4 Concluding remarks

In this paper we have studied the identi�cation of the costs of simultaneous search in the class of

(portfolio) problems studied by Chade and Smith (2006). We have shown that aggregate data from

a single market, or disaggregate data from a single market segment, in particular, market shares

and utility distributions corresponding to each of the available options, do not provide su¢ cient

information to identify the search cost distribution at any reasonable interval. The reason is that

the sequence of critical search cost values that is identi�ed is convergent to zero and therefore not

dense in the support of the search cost distribution.

We have provided conditions under which pooling aggregate data from multiple markets, or

pooling disaggregate data from multiple market segments, can help identifying the cost of simulta-

neous search. Within the context of two speci�c examples, we have shown that full identi�cation

results can easily be obtained.
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