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ABSTRACT

Asset prices set in a competitive market need not be martingales;

that is, it need not be true that the best predictor of future prices is

the current price. Nonetheless, statistical tests for this property are

sometimes treated as tests for the proper functioning of an asset market;

asset prices often seem to have the property to a close approximation, and

it is sometimes supposed that the martingale ought to be imposed on econo-

metric models of asset markets and forecasts made from them. This paper

shows that under general conditions, which allow among other things for

risk aversion among market participants, competitive asset prices ought to

be locally —— over small units of time —— martingale—like. This implies

that tests of proper functioning of the market ought to be conducted with

data at fine time intervals; results of such tests should not be used to

justify imposing the martingale property on a model's long—term projectiOns

of asset prices.
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MARTINGALE—LIKE BEHAVIOR OF PRICES

by Christopher A. Sims*

Price changes for a durable good with small storage costs must, in an

active market, be in some sense unpredictable. If they were predictable an

opportunity for arbitrage profits would arise. This idea has been formalized

in the theory that for such a good we ought to find prices behaving as a

martingale relative to any vector of time series observed by market participants.

In other words, if P is the price and is the vector of observed information,

we ought to find

1) E(Pt+
Zu all u < t) = P , for any s > 0.

This assertion has been subjected to empirical test rather often, and though it

is sometimes rejected as an exact equation, it turns out to be roughly correct

for many markets. These tests can have important implications. Sometimes there

is an interest in forecasting P , either for its own sake or as part of policy

analysis. In other cases, the test is interpreted as giving information on how

well the market in which P is set is functioning, with inartingale behavior of

P being taken as evidence of an "efficient market".

Despite the empirical activity in this area, it is understood that martin—

gale behavior of P emerges from a competitive general equilibrium model only

under extremely restrictive assumptions, as has recently been emphasized by Stephen

F. Leroy (1973) and R.E. Lucas, Jr. (1978), among others. Does this mean

that tests of the martingale hypothesis have no implications for how well the

market is functioning? Is it then just a matter of luck that the martingale model

seems to work well for forecasting?

*
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This paper shows that martingale behavior of prices does arise, as an

approximation which can be made arbitrarily accurate by proper choice of the

time unit, in competitive models. Proving this approximation result does

dependon the absence of frictions in the market —— transactions costs, price—

stickiness, monopoly power —— so that checking whether the approximation holds

does have implications for measuring the market's performance. However, the

approximation is essentially local —— it applies to small time units —— so that

it can be expected to break down over long tome horizons even when it works well

over short horizons. This suggests that the type of test of the martingale

hypothesis which is appropriate for checking market performance, involving small

time units, should not be interpreted as determining whether martingale models

are good forecasting models over long time horizons.

The asset—pricing model.

The mathematical apparatus of the more abstract part of this paper is similar

to that in some recent literature on the theory of asset markets in continuous

time (such as Harrison and Kreps (1979) and Ross (1978)). However, that literature

is concerned with deriving conditions on pricing rules from assumptions on behavior

of traders when the number of available securities is limited. In this paper

we assume the existence of a pricing rule which creates no incentive to open

markets in certain kinds of contingent claims, or equivalently that a rich array

of contingent claims are marketed and arbitrage opportunities of a simple kind do

not exist. Furthermore, we make certain existence and continuity assumptions

directly —— the discount rate for claims to dollars exists and has finite variance;

asset prices evolve in a temporarily homogeneous way —— without deriving them from

maximizing behavior.
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In effect, we assume that a competitive market equilibrium exists and

has certain "realistic" characteristics. From these assumptions we derive conclu—

sions about empirical tests for martingale behavior of prices. The harder

problem of deriving existence of equilibrium with realistic price behavior

from assumptions about individual behavior is sidestepped.

Economists have understood since the work of Arrow (1953 and Debreu (1959)

that time and uncertainty can be introduced into a general equilibrium competitive

model without any special analytic complications if a commodity is regarded as

priced separately at each combination of date and "state of the world". Of couse,

to preserve a finite number of commodities, we have to keep the number of states

and dates finite. Unfortunately, this paper's results depend critically on

considering a continuum of states and dates. It is nonetheless reasonable, it

turns out, to associate a distinct market price with each combination of commodity,

date and state.

To follow the argument for the general case, the reader will have to be

familiar with the theory of measure and integration on general spaces. The

basic idea of the argument is presented in a simpler mathematical framework in

the discussion of the expectational theory of term structure later in the paper.
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If we want to find the price at date t0 of a security which gives rights

to one unit of a commodity over the time interval (t1,t2) on condition that the

state falls in the set E , we should expect to be able to use a formula of the

form:

2) P0 = f q(s,z) p(dz) ds
S (t,t) X E

where q(s,z) represents the value of the service of one unit of the commodity

at date s in state z , relative to a dollar at t=O . The measure is

important only in that it defines which sets of states are "impossible" —— have

measure zero. A security which pays off only in such events will always be

valueless. Our analysis will be unaffected if p is replaced by any other meas-

ure which gives measure zero to precisely the same class of sets of states as

does p

We will proceed at first to prove results taking (2) and a related valuation

formula for contingent claims to "dollars" as given, assuming that the reader

can see that they are the natural generalization to a continuum of states and

dates of the usual treatment of securitities pricing with finitely many states

and dates. Later we take up the question of what assumptions are necessary to

justify formulas like (2).

It is essential to our discussion that the price of a security in the

future is not known now. A standard mathematical device for expressing this

is to introduce a sequence of sigma—fields of events . Each element of

Ft is a set of states z and is thus a subset of the space Q of all states.

The behavioral interpretation is that events, subsets of Q , in Ft are
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verifiable at t . —' To capture the fact that information grows through

_/ We could be more concrete by postulating a vector I of observable

variables, defining a state as a particular infinite time path for the I

series. Then a set of possible time paths for I is in Ft if the set can

be defined in terms of the values of I for s < t only.

time, we assume that Ftc Ft+ for all s > 0

We assume that in addition to being able to provide valuations for securi-

ties of the type valued by (2) —— rights to a commodity at certain dates and

under certain conditions —— the market can also value securities which provide

a lump—sum payout of dollars, the numeraire in which we are measuring prices,

at a given date, with the payout random (that is varying with z ). The payout

of such a security is given by a function rr(z) of z . If the payout Is to

occur at t , it is essential that Tr(z) be Ft measurable. This means that

sets of the form {z
I

ir(z) > a} are In F , i.e., that the question of

whether the payout exceeds a is resolvable with information available at t

The same kind of economic intuition which justifies (2) as reflecting

the existence of state—date specific prices for access to the commodity we

are considering will justify state—date contingent prices for dollars, leading

to the following formula for the price at time zero of a security which provides

random return ir at date t:

3) P0 = f R(t,z)ir(z) ii (dz)
Q

where R(t,z) , being the price of money at date t and state z , plays the role

of a random discount factor. The measure is the measure p of (2)
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restricted to Ft , and R(t,z) is Ft measurable.

If R were not Ft measurable in z we could replace it by its conditional

expectation relative to Ft for purposes of valuing securities with Ft

measurable returns. Since securities which pay off at t are Ft measurable

by construction, we might as well just assume R(t,z) Ft measurable.

So far, our pricing formulas (2) and (3) only generate prices as of date

t0 , but the two together define the form of the stochastic process for prices

at other dates for a given security. Thus consider the security whose value

at 0 is given by (2). Let P(z) be the dollar price of the security at t.

Since we assume the security can be traded in the market at t, must be

Ft measurable. That is, its price must be observable information at t . Since

being given a dollar payout of P(z) would allow us to purchase the security

for sure at t , a security with lump—sum payout of P(z) at t must have the

the same dollar value at 0 as the basic security whose price is given by (2).—'

—'At least if t < t1 , we will take up the interpretation of this condition

for t > t, below.

Being given a payout P(z) on condition that ZE Ge F is equivalent to being

given the basic security on condition that zeG . Thus we have the condition:

G
4) P0 = q(s,z)i(dz) ds

(t1,t2)XE(
G

= f R(t,z)P(z)v(dz)
G

Now define the random variable P(z) = f q(s,z) ds . Clearly P0
(t1,t2)
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is the expectation over E of P relative to the base measure j.i

The conditional expectation of P given Ft relative to ji we will denote

by Et[P] . The defining property of conditional expectations isthat they

satisfy a formula like

G
5) P0 = j Et[PI ji (dz)

G E

Furthermore, under rather general conditions conditional expectations are

almost everywhere unique. Comparing (4) and (5) we can see, therefore, that

except on a set of states with ji measure zero we must have

6) R(t,z)P(z) Et [P IE]

where IE(z) is the indicator for the set E

With (6), we are nearly ready to derive our main conclusion. First, though

we should clarify the economic interpretation of P(z) . If the payoff period

for the security —— (t1,t2) in (2) —— is after t, then P(z) is naturally inter-

preted as the dollar price at t of the security. If t exceeds t2 , however,

the interpretation must be different —— we don't ordinarily speak of the current

price ofasecurity whose payoff period lies in the past. In this case P(z) can

be thought of as the realized value of the proceeds from renting out the commodity

over (t1,t2) under conditions E and reinvesting the proceeds. Alternatively,

P(z) can be thought of as a pattern of payouts at t which is equivalent, at

dates before t1 , to the basic security, and which therefore could always be

traded for the basic security.
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When we speak of the price at t of a durable commodity, we ordinarily

mean the price of rights to the commodity from period t onward, with no

contingent restrictions on those rights. In the formula (2), the interval

(t1,t2) becomes (t, co), and the set E becomes the whole state space,

Labeling the price of such a security pt(z), it is a specialization of (6)

to note that

7) pt(z)R(t,z) = E q(s,z) ds

We can now state the theorem we are aiming at:

Theorem 1: If 1) R(t,z) is absolutely continuous in t with probability one

and has with probability one a finite—variance Radon—Nikodym derivative for
2

t+cS
all t, ii) lim sup Var[ f q(s,z) ds] < for all t , iii) the

t
stochastic process X (z) = Et f°° q(s,z) ds has Var(Xt) an absolutely

0
continuous function of t with a.e non—zero derivative, then p(z) is

locally unpredictable in the sense that Var(p+ — Pt)/a(pt+v — Ep÷) —> 1

as v —-> 0 for almost all t > 0

The proof of the theorem is straightforward, and given in the appendix.

It follows from the fact that 1t+v — Pt can be broken into two components ——

— X and the rest. The change in X is a martingale difference, and under

the assumed regularity conditions has variance 0(v) . The remaining components

of the change in p are under the assumed regularity conditions 0(v2) in

variance, thus comparatively negligible for small v . The probability measure

implicit in the statement of the theorem is p
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The regularity conditions of the theorem are probably somewhat more

restrictive than necessary, yet they are quite unrestrictive. Assumption (i)

is satisfied if the discount rate can be expressed in the usual way as
t

exp( — f r(s) ds) , with the instantaneous interest rate r a finite—variance
0

stochastic process. Condition (ii) is met if, e.g., q(s,z) is bounded in

finite intervals. Since Var(X) as defined in (iii) must be continuous if

X is to have mean—square continuous sample paths, absolute continuity is not

a strong additional requirement. Failure of (iii) would imply that information

is flowing in a locally inhomogeneous way —— not at a constant expected rate

over small time intervals.

We may want also to consider the behavior of interest rates. A result

formally very similar to Theorem 1 is that k—period interest rates, defined

as rk(t,z) = k1 E(l — R(t + k, z)) are also locally unpredictable.

Formally we have the following.

Theorem 2: Given the assumptions of Theorem 1 and the additional hypothesis

that the process Y = E[R(s,z)] has var(Y) absolutely continuous in t

for each s , with non—zero derivative a.e. t < s , rk(t) is locally unpredic-

table.

Both theorems imply that the prices they deal with will behave "approxi-

mately" as martingales over small intervals. That is, regressions of

p(z) — Pt (z) or rk(t) — rk(t — v) on data available at t — v should

have low R2 if v is chosen small enough. —'i This does not mean that the

This depends on the variances in question being computed relative to the

measure 1 , which raises questions we will take up below.

statistical significance of the coefficients on the explanatory variables will

shrink to zero with v , however. Frequently the historical span of the

available data will be more or less fixed, so that the sample size T of the
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estimated regression equation will be a linear function of V1 . If there is

one explanatory variable in the regression equation explaining the price

change, the t—statistic on it is (T — l)R2 . Thus, if the time unit v

shrinks to zero with the historical span of the data fixed, the expected

t—statistic on the explanatory variables converges to a non—zero constant.

Of course, it is also true that work with daily or weekly data will

sometimes cover a much shorter historical span than would be reasonable for

work with monthly or quarterly data, so that when we look at an array of

studies of a given type of market using different data sets we may indeed find

a tendency for work with shorter time units to reject the martingale hypothesis

less often, using the usual criteria for rejection.

Deriving the pricing rules from complete—markets assumptions

Proving the existence and uniqueness of equilibrium with pricing rules

like (2) and (3) is a delicate task. Work along this line has been done by,

e.g., Harrison and Kreps (1979). For this paper's purposes, however, it suffices

to assume that a well—defined asset price exists and to show what properties it

must have if there are no effective constraints on trading in contingent claims

on it. This kind of an argument has been made before by, e.g., Ross (1978).

The formula (2) provides a rule by which a security giving access to the

commodity under any set S of the type (t1,t2)xE of date—state pairs (t,z)

can be given a price —— integrate q over S with respect to Lebesgue measure

on the real line and p on the probability space ç . To guarantee that a

pricing rule P(s) for securities takes the form of (2) we need assume little

beyond the absence of opportunities for arbitrage. An opportunity for arbitrage

may arise most directly when an exhaustive set of contingent claims has a price

different from a single uncontingent claim. To rule this out we require that if

the set S of state—date contingencies is the union of the non—overlapping sets
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S, j = 1,... , then P(S) is the sum of the P(S.)'s . But even if the

pricing rule displays no inconsistencies of this type, more complicated arbi-

trage opportunities may arise. For example, if P(XiY.iZ) = 3 , P(XvY) = 2

and P(Y..1Z) = 2 , then, P(XZ) had better be 2 . If it were less then an

arbitrager could buy XuZ , at the same time selling two units of XuYZ

buying one unit each of XvY and Y)Z . He would in this way have bought

and sold exactly equivalent sets of claims while making a profit. This type

of arbitrage can be ruled out by our previous adding—up requirement if we also

require that P be extendible consistently to cover S —
S2 (the set difference)

whenever it also covers S1 and

Precise conditions under which P can be given the form (2) are set down

in the appendix. Beyond the arbitrage restrictions already set out, the only

economically important restriction is that P be consistent with in the

sense that if

ii(dz) = 0

then P(S) = 0 i.e., if a security gives access to the commodity only over a

period of zero length or under a set of contingencies of zero probabiity its

price is zero. This requirement rules Out securities with lump—sum coupon

payments at specific times, for example, though the theory could be extended

to cover such cases.

The pricing formula (3) for assets with dollar payouts can be justifed by

similar arbitrage arguments. Here we require that prices be defined not only

for securities which pay p(z) dollars at t for every security price
Pt

we may want to deal with, but also for contingent claims which pay p(z) at

t if z falls in E , for any E in Ft . The contingent claims then must not

provide arbitrage opportunities. Further, we require that when the conditional
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expectation over E relative to of Pt is zero, then a claim to p(z)

contingent on z in E must be valueless. Equivalently , when p(z) is zero

for all z in E except for a set of z's of p—probability zero, rights to

at t contingent on E must be valueless.

Operational interpretation of the base probability

The message of Theorem 1 is that data on security prices or durable good

prices are likely to show that most of the observed variance of short—term changes

is unpredictable. But to reach this conclusion requires further assumptions,

because the argument so far does not require any connection between p and,

say, the probability distribution for p which would be estimated using regres-

sion models. If there is some arbitrary p which is consistent with market prices

in the sense of not giving zero probability to events which the market seems to

imply are possible, then we can get (2) and (3) from arbitrage conditions. Neither

p nor the market's pricing system are guaranteed by absence of arbitrage to have

any connection with a "tue" probability structure.

The straightforward way out of this is to assert that there is a "true"

probability structure and that it is given by p . Then the consistency

requirements needed to justify (2) and (3) are a limited form of a "rationality"

hypothesis: economic agents know the events which the true probability structure

rules out as impossible and put zero value on securities which pay out only

contingent on such events. Economists used to the rational expectations hypothesis

may find this restricted version of it easy enough to accept. With this

hypothesis, the ratios of variances about which Theorem 1 yields conclusions are

true variances, and regression tests of martingale hypotheses are interpreted as

inference about true variances.
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There are difficulties with this point of view, however, Suppose the

market doesn't understand the truth. One could easily imagine, e.g., that a

security which paid off only if a certain invention worked might have value

for a time, until the invention were tried, even though a really thorough

analysis of the engineering principles behind the invention could show that it

could not in fact work. A more dramatic version of the same argument is that

there might be no such thing as "true"randomness: in fact, the course of

history is predetermined from initial conditions; only our ignorance makes it

appear random; the true probability measure on Q puts a mass of one on a single

z —— but the market doesn't have the t:line or computational capacity or correct

scientific theory to deduce which z is correct.

To avoid ruling out such possibilities, we can, instead of taking p

to be the "true" probability distribution, simply construct an appropriate p

from the asset—pricing rule which we assume exists. In particular, assuming

that the commodity in question has a finite spot price at time 0 , we will have

P((O,co)xQ) (which is just the spot price at time 0) finite. By dividing

the price of every other contingent claim by this spot price at 0 , we convert

the pricing rule into a probability measure, which will serve as p

This expedient solves the problem of what p might be if there is no true

randomness or if market valuations involve mistaken physics, but leaves us with

the question of whether Theorem 1 has any implications for actual data in such a

case. If there is a true u and the normalized pricing rule is a very

different measure from the true p , we might expect statistical inference to

fail to verify the conclusion of Theorem 1, despite the absence of arbitrage.

There is a middle ground. In carrying out statistical inference

about the ratio of predictable to unpredictable variance in price changes we will

use data to construct a model or range of plausible models for the joint

behavior of the security price and some other time series, treating them as a
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vector stochastic process. We will end up with a set of possible probability

measures on the vector time series; with different degrees of confidence on

various elements of the set depending on how well they fit the data. When we esti-

mate the ratio of variances in question we will use a range of possible probability

models in which we have high confidence. It is these possible probability models

which we require to be able to play the role of p . So long as our inference

procedure leads to a model which has the property that it puts probability

zero on no set of contingencies which the market treats as possible, Theorem 1

will hold for our modeL An (somewhat misleadingly) attractive way to put this is:

the market must not know less than the econometrician doing the testing. A more

accurate way to describe the assumption is: the econometrician must not use a

model which implies he thinks he knows more than the market.

This seems an encouraging result. So long as econometricians do not have

access to scientific knowledge or to data which is not available to the market,

and so long as the market evaluates evidence by methods consistent with those used

by the econometricians, empirical research should verify the conclusion of

Theorem 1.

This seems a resonable place to terminate this discussion, but the reader

should be aware that further layers of philosophical puzzlement and speculation
I

remain to be laid open for those so inclined.

In particular, inference about the local properties of the Pt process is

inference in an infinite—dimensional linear parameter space. In such a

parameter space there is no "unprejudiced" Borel measure analogous to Lebesgue

measure on the real line —— a measure whose class of zero—measure sets is trans-

lation invariant. As I have pointed out before (1971), this means there is no

way for a Bayesian to avoid ruling out a priori some events which in some sense

"look like" events which he gives positive probability. The operational impact
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of this paradox in this problem is that, In examining the limiting behavior of

changes in Pt over intervals 6 tending to zero, we must start from some

presumption about how fast the limiting behavior takes over as 6 gets small.

This philosophical difficulty is of course also entangled with the problem

that the notion of a single market price existing at every instant is itself only

an approximation whose accuracy is bad when 6 becomes very small.

The Term Structure Example

Consider the case of a pure discount bond, so that the T—period rate at

time s, rT(s), satisfies

T

1) rT(s) = T1 f 5r0(5 + t) dt
0

where r0(v) is the instantaneous rate expected to prevail at time v based

on information available at time s . We assume
r0(s) r0(s).

Differen-

tiating (1) with respect to s gives us

1T+s
2) rT(s) = T 1(r0(T + s) — r0(s)) + R I (d/ds) r0(u) du

Assume that r0 is generated as part of a jointly covariance—stationary linearly

regular vector stochastic process with finite variance. Then r0 can be

represented as

3) r0(s) = f a(v)e(s — v) dv
0

where e is a vector continuous—time white noise process consisting of the

innovations in the vector stochastic process of which r0 is an element. A

continuous—time white noise process is serially uncorrelated from instant to

instant, and has infinite variance. Moving averages of it are of finite variance.

In fact, a vector white noise can be defined by the property that if a process

r0 is obtained from e by a moving average according to a formula like (3),
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its lagged covariances are generated by

4) E(r0(s)r0(s - v)') = f a(w)a(w + v)' dw

Applying optimal forecasting rules, we obtain

5) 5r0(u) = a(v)e(u — v) dv

assuming that expectations are being formed as best linear forecasts. This

leads directly to

6) (d/ds)r0(u) = a(u — s)e(s)

and, putting (6) into (2),

7) = T(r0(T + s) - r0(s)) + Te(s) f a(v)dv

This formula (7) captures the essence of the martingale property. It can be

paraphrased to say that the derivative of the interest rate can be divided into

two components: a predictable component T1(r0 (T + s) — r0(s)) which may

be related to observable past variables, and an unpredictable component
T

T1e(s) f a(v) dv . Whereas, the former component has finite variance, the
0

latter component has infinite variance. To make the same point without using the

notion of an infinite variance, we could say that differences rT(t) — rT(t —

have a fraction of unpredictable variance which grows arbitrarily close to one

as 5 is taken smaller and smaller. This conclusion holds for any choice of

T —— 90 days or 20 years.

To see the basis for the presumption that the martingale approximation is

better for larger T , we write out
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8) r0(T + s) - r0(s) = f [a(v + T) - a(v)] e(s - v) dv

If IS continuous, the integral of (8) over a time interval of very small

length cS will be approximately times its level. Thus, for small 5 we will

have

9) rT(s) — rT(s
- = T f [a(v + T) - a(v)]e(s — v) dv

0
—l t+ T j a(v) dv f e(u) du

0 s—ES

The ratio of variance of the predictable component to variance of the unpredic-

table component on the right—hand—side of (9) is

T T
10) ó f [a(v + T) - a(v)][a(v + T) - a(v)]' dv/[( f a(v)dv)( f a(v)' dv)]

0 0 0

This formula (10) displays explicitly the tendency of this ratio to go to zero as

5 goes to zero. For fixed
, as T goes to infinity there Is no tendency for

this ratio to go to zero. Instead, one can see fairly easily, the ratio tends to

a fixed limit as T tends to infinity. Thus, it is not true that a long enough

interest rate is arbitrarily close to a martingale. The only way to get arbitrar-

ily cLose to a martingale is to make the differencing interval arbitrarily small.

It is true, however, that as the length of the term of the interest rate is made

smaller, the martingale approximation may get arbitarily bad. In particular, assum-

ing a is differentiable, one can deduce after some manipulation that the limit

of (10), as T goes to zero, is

11) fa(v)(v'dv / [a(0)a(0)']



—18—

Thus, if a(0) 0 , the limit is finite and non—zero. The conclusion that

for short T the martingale approximation breaks down is available only if

a(0) = 0 . This is possible only if the R0 process has a finite—variance

derivative. Thus, long rates are "closer" to a being martingales than short

rates only if the underlying instantaneous—rate process has a finite—variance

derivative.

In this sense, then, it is wrong to doubt that there is any reason to

suppose long rates more likely to be martingales than short rates. On the other

hand, the most interesting aspects of this derivation of the result maybe the

limitations it suggests, rather than the positive conclusion. There is no a

priori reason to suppose that the underlying r0 process must have finite—

variance derivatives, and in that case the inartingale approximation might even

be best for rates of shortest term. Also, beyond some point further extension

of the term is predicted to have no effect in improving the martingale approxima-

tion —— thus it could be, e.g., that in the range of 30—day to 20—year rates

there is no systematic tendency for long rates to be more closely approximated

as martingales.

Both the result that martingales are good approximations at short differ—

encing intervals and the result that they might deteriorate at short terms are

purely local results. They concern the nature of the autocovariance function in

a small neighborhood of zero, or equivalently the nature of the spectral density

function as frequency tends to infinity. They have, therefore, no useful

implications for how predictable interest rates should be over long time horizons.

Also, because the assertion that the martingale approximation should work

turns out to be nothing more than the assertion that the derivative should have

a white—noise component, the martingale approximation is only a weak implication

of the rational expectations hypothesis. Any variable which can be defined as a
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smooth weighted average of expected future variables will have the "martingale

property" in this sense regardless of whether e.g., the weights are those pre—

dicted by the rational expectations hypothesis.

An Application

To illustrate the application of these results, consider the following

estimated bivariate stochastic model for the U.S. Treasury Bill 3—month rate and

the Standard & Poors Stock Price Index over 1949—79. The data are monthly

averages, and it is therefore important that we correct for this in checking the

applicability of the martingale hypothesis. If the bill rate r(t) were exactly

a continuous—time random walk with stationary increments, then it is easy to show

that its monthly averages would have first differences forming a first—order

moving average process with parameter .2682. This implies in turn that the uni—

variate autoregression for the levels of the monthly averages would have

coefficients on successive lags of 1.268, —.3398, +.091 . . . . Unless stock

prices and bill rates are entirely unrelated, time aggregation would introduce non-

zero coefficients on the lagged stock prices and yield different coefficients on

lagged bill rates from those computed above. Nonetheless it can be seen that the

estimated coefficients on lagged bill rates (see Table 1) are not far from those

suggested by the univariate theory. For short time horizons a mart ingale model

provides a very good approximation in that the one—month forecast standard

error for the bill rate is estimated to be reduced by only five per cent by use

of data on lagged stock prices. Yet lagged stock prices are statistically signi-

ficant in the regression, with an "F statistic" of 2.97 as a group. As can be

seen from the Chart, shocks to stock prices produce initially small, but eventually

large, effects on the forecast time path for bill rates. A shock to the bill rate

produces a sharp immediate effect on the forecast, but it is not dominating the

forecast at long horizons. This is precisely what Theorem 2 should lead us to

expect.
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APPENDIX

Technical details and proofs

The sigma—field F over which p is defined is obviously one which includes

U F . The integral in (2) is then defined for an arbitrary combination of the

interval (t1,t2) with a set E from F . However, it is not reasonable to

require the pricing function P(S) to work on such a wide class of sets ——

we don't suppose that the market sets prices for securities which give access at a

date subject to contingencies not verifiable at that date. Thus, the class of

sets for which P is defined is naturally restricted to the sigma—field generated

by sets of the form (t1,t2)xE , where E is in Ft
1

The formula (2) is justified by the Radon—Nikodym theorem (see, e.g., Munroe

(1953), p. 196). This theorem states that if P(S) is defined and countably addi-

tive on the same sigma—field as U , is finite for all S , is absolutely continu-

ous with respect to & (has P(S)=0 when U(S)=O), and if U makes the whole

space a countable union of sets of finite measure, then P can be expressed as the

integral of a density with respect to 0 . The arbitrage conditions listed in the

text are needed to insure that P is defined or can be extended to all of F

and is countably additive. The consistency condition guarantees absolute continu-

ity with respect to U : U(S) = J dsp(dz)
S

To arrive at (3) we can again rely on the Radon—Nikodym theorem if we need

to evaluate only contingent claims to p(z) —— as is all that is necessary for

Theorem l's argument. Here the basic measure is 0(E) f p(z) P(dz) . A condi—
E

tion left implicit in the text is that unconditional rights to Pt must have finite

value at 0
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For Theorem 2 we require that a pure discount bond, giving a riskless claim

to $1 at a given date, can be evaluated with the same formula (3) as we use to

evaluate p(z) . This requires that lump—sum—dollar—payout--at--t securities have

prices which are linear in the payout function and that securities whose t

expected payout is zero have zero value. These are reasonable additional require-

ments for a competitive market pricing rule. They then guarantee (see p. 252—253

of Munroe (1953)) that the pricing rule has the form (3) and further that R(t,z)

is essentially bounded (i.e., bounded except on a set of measure zero.).

Proof of Theorem 1:

We can write

Al) R(t + v,z)pt+(z) — R(t,z)pt
=

Et+ tv q(s,z)dsp(dz) — Et+ f q(s,z)dsp(dz)

+ Et÷V f q(s,z)dsp(dz) — Et f q(s,z)dsi.i(dz)

Using the fact that q(t,z) must be Fmeasurable in z (guaranteed by the

restricted class of sets S over which we have required P to be defined above)

we can rewrite the right—hand side of this expression as

t+v

f q(t,z)dsp(dz) + [E÷ f q(s,z)dsi(dz) — Et f q(s,z)dsp(dz)]

t
0 0

The first term in this expression goes to zero as v2 by assumption (ii) of the

theorem, while the latter goes to zero as v , by assumption (iii). Furthermore,

the latter term is precisely E+(R(t + v,z)p÷) — E(R(t + v,z)p+) . Thus,

the theorem is proved for the case where R is a constant. It is then a straight-

forward matter to show that assumption (i) guarantees that the random time-varia-

tion of R does not affect the result. Theorem 2 follows from exactly the same

type of argument.



TABLE 1

REGRESSION OF TREASU BILL PATE
ON PAST BILL PATES AND

STOCK PRICE INDEX

DEPENDENT VARIABLE
FRON 49- 1 UNTIL
OBSERVATIONS

0.99724448
1.9104833

LAG

2

3

4

5

6

7
8
9
10

11

2

3

4

5

6

7

8
9

10

11

12

RBAR**2
SEE

COEFFICIENT

0. 1025303

—0. 5367409E—01

0.1180318
—0.1102948

0.3267774

—0.3765413
0. 1400143

0. 1281484

—0. 2784103

—0.663901 9E—02

—O . 9648246E—01
0. 1608295

1.286894

—0. 3991305

0.1777965

0.1524211E—01

—0.1752820

—0.761 4550E—01

0. 40623 28E—01

0.1973266
—0.6241259E—01
—0.61 66673E—01

0.8385237E—01

—0.788261 1E—Ol

—0.1589836

347

0.98593771

O.?4200496E-01

STAND. ERROR

01285493
0.1980752

0.1985940
0. 1988538

0. 19856 22

0.1994773
0. 2002269

0. 2 0074 30

0. 2015954

0.2008211

0. 1970764

0.1297909

0.5377086E—01

0.8740643E—01

0.901 9?82E—01

0.90571 43E—01

0 .8986084E—01

0.9029393E—01

0.89951 16E—01

0 .8900926E-01

0.8956382E—01
0.8923651 E—01

0.871 2009E—01

0.5252708E—01
0.5013146E—01

Notes: TBILLS is the rrünthly average of daily fiqures for the auction average
rate for new issues of 3 nonth treasury bills. It is CITIBASE series FYON3,

original source the Board of Governors of the Federal Reserve. STOCKS is the
Standard and Poors Composite index, also as rrnthly averages of daily figures.
It is CITIBASE series FSPCOM, original source the Standard and Poors Corporation.

TBILLS
79—12

372 DEGREES OF FREEDOM

R**2 , UNADJ
SSR

STOCKS

TBILLS

CONSTANT
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