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ABSTRACT

The US Food and drug Administration (FDA) is estimated to regulate markets accounting for about

20% of consumer spending in the US. This paper proposes a general methodology to evaluate FDA

policies, in general, and the central speed-safety tradeoff it faces, in particular. We apply this

methodology to estimate the welfare effects of a major piece of legislation affecting this tradeoff,

the Prescription Drug User Fee Acts (PDUFA). We find that PDUFA raised the private surplus of

producers, and thus innovative returns, by about $11 to $13 billion. Dependent on the market power

assumed of producers while having patent protection, we find that PDUFA raised consumer welfare

between $5 to$19 billion; thus the combined social surplus was raised between $18 to $31 billions.

Converting these economic gains into equivalent health benefits, we find that the more rapid access

of drugs on the market enabled by PDUFA saved the equivalent of 180 to 310 thousand life-years.

Additionally, we estimate an upper bound on the adverse effects of PDUFA based on drugs

submitted during PDUFA I/II and subsequently withdrawn for safety reasons, and find that an

extreme upper bound of about 56 thousand life-years were lost. We discuss how our general

methodology could be used to perform a quantitative and evidence-based evaluation of the

desirability of other FDA policies in the future, particularly those affecting the speed-safety tradeoff.
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I. INTRODUCTION 

 In virtually all developed countries, regulatory authorities provide public oversight of the 

safety and efficacy of prescription drugs, prior to their being approved for marketing.  In the 

U.S., such oversight is conducted by the Food and Drug Administration (FDA).  A central 

tradeoff facing the FDA, and argued by many to be the most central one, involves balancing two 

goals – fulfilling its mission set by Congress to assure the safety and efficacy of drugs, while at 

the same time advancing the public health by not slowing down or disabling the innovative 

process by which new medical products reach the market.   

 Critics of the FDA, domestic and foreign, appear on both sides of this tradeoff.  Some 

observers have argued that the FDA is not taking enough time evaluating new drugs, thereby 

allowing unsafe drugs to be marketed, while others have argued that the agency is taking too 

long in doing so and therefore inflicting harmful effects on innovative returns and patient 

welfare.1 However, surprisingly, very little quantitative empirical evidence has been put forward 

to evaluate the degree to which the speed and safety tradeoff facing the FDA is being resolved 

efficiently.  More generally, there seems to be no suggested quantitative methodology or 

framework for assessing the economic efficiency of the central speed-safety tradeoff of the 

agency.2  This is somewhat paradoxical, since despite the agency’s strict adherence to evidence-

based evaluation of products overseen, there is less evidence on its own safety and efficacy.  Put 

differently, no product application would pass the FDA approval process with the quality and 

type of evidence that currently exists for evaluating the FDA policies themselves.  The welfare 

consequences of this lack of methodology and systematic evidence may be quite substantial, as 
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the FDA is estimated to regulate markets accounting for about 20% of consumer spending in the 

US.      

  Motivated by this lack of quantitative assessment of FDA policies, this paper proposes a 

general methodology to evaluate the common speed-safety tradeoff of FDA regulations. The 

methodology only relies on the most common form of data available surrounding the drug 

approval process, namely, the distribution of approval and withdrawal times of drugs as well as 

the distribution of sales of the approved drugs. We use these commonly available data to 

estimate the social value of a drug.  As indicated in Figure 1, in this paper we interpret the 

overall social value of a drug as its yearly social welfare from the time of review and approval to 

the time of withdrawal, if the drug is withdrawn.  

As shown in Figure 1, the annual social surplus occurs after the drug is reviewed and 

approved, then split up into consumer and producer surplus components while on the market, and 

vanishes completely once the drug is withdrawn (if ever). Therefore, if the drug is beneficial as it 

is in the figure, its overall social value falls with the review time and rises with the time until 

withdrawal. However, if the drug is harmful, as when the social surplus is negative and below 

the x-axis in the figure, then its overall social value rises with the review time and falls with the 

time until withdrawal. The agency in general, and separate regulations in particular, influence 

aggregate social welfare by affecting the distribution of review and withdrawal times, as well as 

the magnitude and signs of the post-approval annual flows of social surplus. 

We apply this framework to quantify the change in aggregate social welfare induced by 

major legislative acts comprised of the Prescription Drug User Fee Act (PDUFA) of 1992, later 

continued as PDUFA-II in 1997 and PUDFA-III in 2002.  These legislative acts specified 

performance goals for the FDA in terms of faster review times, while levying taxes in the form 
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of user fees on the sponsoring applicant for consideration of new and supplemental drug 

applications, as well as for existing manufacturing establishments and products. The user fee 

revenues obtained under PDUFA represent a substantial portion of the FDA’s total revenues 

obligated to processing human drug applications, often estimated to be close to half of the 

funding of the drug review process.3   The implementation of PDUFA and its impact on the 

central speed-safety tradeoff of the agency can be envisaged in Figure 1; faster review of drugs 

involves a shift to the left of the surplus curve in Figure 1, which is accomplished with the 

additional resources generated from the user-fees, but with the potential consequence of less 

attention being devoted to the safety of the drugs approved, entailing a downward shift in the 

surplus curve of Figure1 together with a reduction in withdrawal times.   

To estimate the impact of PDUFA on aggregate social welfare, we first assess the impact 

of these Acts on review times using 662 New Molecular Entity (NME) drug approvals in the 

years 1979-2002 prior to and following enactment of the Acts in 1992.  We find that even though 

there was a decline in review times of 2 percent a year prior to PDUFA, passage and 

implementation of PDUFA I and II accelerated the decline by 6-7% and 3-4% a year 

respectively. Using the estimated effects of PDUFA on approval times for each of the drug 

approvals, we are then able to estimate the counterfactual approval time that would have 

occurred in the absence of PDUFA.  

The estimated effects in review times induced by PDUFA are first used to assess the 

impact on producer surplus or variable profits. One of the main issues of the speed-safety 

tradeoff facing the FDA is how PDUFA affects innovative returns. The revenues of a drug under 

PDUFA are derived from actual sales data, and the counterfactual revenues come from delaying 

the entry of the drug by the predicted drug-specific delay between the observed and 
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counterfactual review times in a world with and without PDUFA.  To estimate the effect of 

PDUFA on the innovative return of the drug, we then net out from the earlier arrival of its sales 

the application, product, and establishment fees associated with the drug under PDUFA as well 

as variable costs estimated by price levels before patents have run out and extensive entry of 

generic drugs has occurred.  Our main finding is that producer surplus rose with the introduction 

of PDUFA by about $11 billion or 1.2 percent (at a real discount rate of 3% and measured in 

1992 dollars at the inception of PDUFA).  For the sample of 284 drugs for which we had sales 

information during PDUFA I and PDUFA II, this represents a gain of about $39 million per drug 

launched.   

 We then consider estimation of  the social surplus from the additional speed induced by 

PDUFA through adding estimates of consumer surplus to the estimated producer surplus levels. 

We focus our discussion on two ways of adding consumer surplus to compute the social benefits 

of PDUFA. The first case occurs when full price discrimination is infeasible so that some 

consumer surplus exists under the patent.  We use as a benchmark the case when consumer 

surplus is half of producer surplus, as turns out to be true when demand is linear and there are 

constant returns to scale.  Also, under no price discrimination, we derive the simple but plausible 

conditions under which measures of sales, the most commonly available data on drug usage, 

constitute a lower bound to the social surplus.  The second case occurs when price discrimination 

is complete so that there is no consumer surplus during the patent period but only after generics 

have entered. In this case, sales during the patent period represent producer surplus, and sales 

just prior to expiration represent the consumer surplus after the patent has expired.  Our major 

findings here are that under no price discrimination, the social surplus generated by the greater 

speed of PDUFA is $31 billion or 1.2 percent under demand linearity and constant returns to 
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scale, but bounded below by $21 billion or 1.2 percent under less stringent demand and cost 

assumptions.  For the case of complete price discrimination, we find that the benefit of the 

additional speed is $18 billion or 1.2 percent.  For the 284 drugs with sales data, these estimates 

amount to a gain of about $109 or $62 million per drug introduced since the inception of 

PDUFA. 

 These evaluations of the social benefits of speed are then compared to the social costs of 

a possibly less safe approval process. To assess the impact on consumer safety, we first consider 

the effect PDUFA had on the fraction of drugs withdrawn and how rapidly they were withdrawn. 

However, these measures of the quantity and timing of withdrawal do not fully capture the 

quality of the drugs withdrawn. We also compute how much harm to health PDUFA must have 

imposed in order to offset the gains from speed due to more rapid review. Our major findings are 

that the proportion and timing of withdrawal of drugs approved pre- and post-PDUFA do not 

differ in a statistically significant way; about 2-3% of approved drugs are withdrawn at the same 

speed before and after the Acts. In addition, we compute an extreme upper bound on the adverse 

safety effects induced by PDUFA by assuming that all NME withdrawals after 1992 were due to 

PDUFA and that the were no benefits associated with the drugs so that their social surplus is 

measured by the harmful health effects the withdrawn drugs imposed.  Using this extreme upper 

bound on the adverse safety effects of PDUFA, we find that the drugs approved and withdrawn 

during PDUFA cost  about 56 thousand life years as compared to the gains in health implicit in 

the greater speed generated by PDUFA,  which are estimated at the equivalent of 180 to 310 

thousand life years. This estimate comes from dividing the value induced by speed for the 

different social surplus cases by a range of estimates for the value of a life year, between 

$100,000 to $300,000.  
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 The paper proceeds as follows.  In Section II we provide a general framework for 

assessing quantitatively the value of changes to the speed-safety tradeoff facing the FDA.  In 

Section III we provide a brief overview of PDUFA-I and PDUFA-II.   In Sections IV and V, we 

discuss estimation of the beneficial speed effects of PDUFA on producer, consumer, and social 

welfare, using methods of bounding social surplus from sales data.  In Section VI we estimate 

negative safety effects of PDUFA by considering their effects on drug withdrawals as well as 

calculating the equivalent losses in social surplus or health that must be induced to offset the 

observed benefits of speed.  Finally, in Section VII we summarize our findings, note limitations 

of our research, and suggest directions for further research.     

 

II. A FRAMEWORK FOR EVALUATING CHANGES IN THE SPEED-SAFETY 
TRADEOFF OF THE FDA 

 
This section discusses a parsimonious framework for evaluating changes in FDA policy 

that affect the speed-safety tradeoff.  Let p(y) denote the inverse demand curve for a drug in a 

given year and let c(y) be the cost function where y represents output.  The annual producer �(y) 

and consumer surplus s(y) are specified in a standard manner as  

 �(y) = p(y)y – c(y) and                                              

 s(y) = �
y

0
[p(q) – p(y)]dq.                                         

This specification could be modified to other forms of non-canonical producer and consumer 

surplus relationships, e.g., representing insurance coverage of consumers or asymmetric 

information about risks between consumers and producers.  Regardless of how surpluses are 

specified, we denote by w a vector of annual surpluses where each element wt=st+�t is the annual 

social surplus t years after the drug is first marketed. We assume throughout that either w�0 or 

w�0, that is, the drug is either always valued or not for all periods. Given these annual social 
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surplus levels, a drug that is approved at date a and is on the market for a duration of m periods, 

has the realized social welfare  

     W(a,m,s,�)= βa
 �

m

0
βt

 wt dt =βa
 �

m

0
βtstdt  +   βa

 �
m

0
βt

 �tdt = S + �. 

 
This realized surplus implies that if a drug has social value every period, w > 0, the 

overall welfare falls in the approval time and rises in the time on market; i.e., dW/da < 0 and 

dW/dm >0.  In other words, speeding up the entry of a valuable drug or postponing its exit both 

raise social surplus.  On the other hand, if the drug is socially harmful every period, w < 0, the 

welfare rises in the approval time and falls in the market time, i.e., dW/da > 0 and dW/dm <0.  In 

other words, delaying a harmful drug or shortening its time on the market both raise social 

welfare.  Note here that non-approval and non-withdrawal of a drug can be represented by 

infinite values of a, for which W is zero as no surplus is realized,  and m, in which case we 

assume the annual surplus  eventually decreases with time due to therapeutic and generic 

competition, making the welfare well defined.  

Given that drugs are patent protected, the social surplus, and its share attributable to 

consumers versus producers, may differ across years since the drug has been marketed.  In 

particular, the social surplus wt = st + �t for the tth year the drug is on the market depends on the 

length of the patent �. Given a patent length, the producer surplus mainly obtains from the profits 

while on patent, when t ��. Indeed, we will assume that the present value of profits after patent 

expiration at the time of launch is zero not only due to generic competition but also due to 

discounting.  As opposed to the case for producer surplus, the annual consumer surplus is lower 

during the patent period and occurs mainly after the patent has expired, when t � �, as producer 

surplus is then substituted for consumer surplus.   
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For a total of N applications with the distribution F(a,m,s,�) of approval times, market 

times, and surplus levels, the aggregate social welfare, A, can be broken down into a consumer 

and producer component as follows: 

 A=N�WdF =N�SdF + N��dF. 

Now consider the impact of the FDA on the aggregate social welfare A.  Assume that the 

drugs considered under the FDA are represented by (N,F) and the drugs without the FDA are 

represented by (No,Fo).  It seems warranted to assume that a drug would be marketed faster 

without the FDA, ao �a,  that it would remain on the market longer without the FDA as the 

producer can voluntarily exit in the presence of the FDA, m�mo, and that the drug pipeline 

would be more numerous without the FDA as the agency raises R&D costs, N�No.  Therefore, if 

the drug is valuable, then W(a,m) � W(ao ,mo), and the FDA generates a social cost due to the 

less rapid and potentially barred marketing of the drug and the potential that it is withdrawn for 

undue reasons:  

 C= NE[W|w�0]-NoEo[W|w�0]  � 0 . 

This term is negative because when the drug is socially valuable, the welfare falls in the approval 

time and rises in the market time m, so if the agency raises a and reduces m, then it lowers 

welfare. On the other hand, if the drug is socially harmful, then W(a,m) � W(ao ,mo) and the FDA 

confers a benefit by delaying or barring marketing of the drug or getting it off the market faster; 

hence 

B=NE[W|w<0]-NoEo[W|w<0] � 0 . 

This term represents the gain in welfare due to increased safety from keeping unsafe drugs off 

the market and, when approved, speeding up their withdrawal.  This term is positive because 
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when the drug is unsafe, welfare rises in the approval time a and falls in the market time m so 

that if the agency raises the approval time and lowers the market time, social welfare rises.  

The overall welfare effect depends on the benefits of more quickly eliminating or 

removing unsafe drugs versus the costs of reduced speed of market entry of safe and efficacious 

drugs, i.e.,   

 A-Ao= Pr{w<0}B + Pr{w�0}C. 

The agency thus has two opposing effects; one harmful (speed effect for valuable products) and 

one beneficial (more speedy elimination effects for unsafe products). These two components of 

aggregate welfare comprise the essential speed vs safety tradeoff of the FDA analyzed in this 

paper.  The effects are exemplified by changes in behaviors surrounding PDUFA which may be 

interpreted as moving away from A towards Ao through speeding up approval but potentially 

increasing safety issues.  Note that the speed element central to the FDA makes the two 

components of welfare depend on elements of the distribution F in addition to the classic type I 

and II errors represented by the share of bad drugs approved, Pr{a<�|w <0}, and the share of 

good drugs not approved,  Pr{a=�|w>0}.  Rather, it is the timing of the decisions made that 

matters and that needs to be explicitly incorporated into any methodology evaluating agency 

approval behavior.    

Our empirical analysis will estimate the impact of PDUFA on the aggregate welfare A.  

In particular, we will estimate the first term in the change from A towards Ao induced by 

PDUFA, the value of the greater speed induced by the legislative acts.  Thereafter we compute 

the equivalent loss in health, in terms of life years lost, that any offsetting increase in the second 

term, due to a lowered safety of the approval process, must have to offset the benefits of this 

increased speed.  In doing so, we will estimate the impact of PDUFA on the distribution of 
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approval times F(a), the distribution of market times F(m), and use these with estimates of the  

producer and consumer surplus distribution F(�,s) to calculate the induced change in aggregate 

social surplus A. 

 
 
III.  ESTIMATING THE BENEFITS OF SPEED DUE TO PDUFA  

A.  Background on PDUFA4  

 The concept of payment of user fees by individuals or firms being provided services by a 

government regulatory body has ample precedent, e.g., application submission fees to the U.S. 

Patent and Trademark Office.  The development of the Prescription Drug User Fee Act permitted 

the FDA to collect fees from sponsors submitting a New Drug Application (NDA or Biologics 

License Application (BLA) for review.  The passage of PDUFA-I in 1992 was, however, 

somewhat controversial in that the amount of fees collected for each sponsor application was 

very substantial, unlike that for patent applications.  In the initial fiscal year 1993 user fee 

schedule, applications with clinical data were assessed a one-time fee of $100,000; each 

supplemental application with clinical data, and applications with no clinical data, $50,000; 

annual manufacturing establishment fees were $36,080, and annual product fees were $6,000.  

With effective renewals of PDUFA-I in 1997 under the Food and Drug Modernization Act of 

1997 (“PDUFA-II”) and the Bioterrorism Preparedness and Response Act of 2002 (“PDUFA-

III”), fees have escalated sharply.  In fiscal year 2004, for example, applications with clinical 

data were assessed a one-time fee of $573,500; each supplemental application with clinical data, 

and applications with no clinical data, were assessed a user fee of $286,750; annual 

manufacturing establishment fees were $226,800, and annual product fees were $6,000.  Waivers 
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and exemptions were granted to small firms, and to sponsors submitting an application under the 

Orphan Drug Act of 1983.5 

 In exchange for the collected user fees, the FDA was legally obliged to “review and act 

on” NDA/BLA submissions.  However, similar to the journal referee process in the academic 

environment, reviewing and acting on is not the same as reaching a final approval decision.   

According to the PDUFA-III legislation, for example:  

“ ’review and act on’ is understood to mean the issuance of a complete action letter after 

the complete review of a filed complete application.  The action letter, if it is not an 

approval, will set forth in detail the specific deficiencies and, where appropriate, the 

actions necessary to place the application in condition for approval.”6 

In essence, therefore, PDUFA mandates responses and action letters from the FDA, but not 

necessarily approvals or final denials. 

 NDA/BLA submissions are assigned either a “standard” or “priority” status, depending in 

part on the novelty of the therapeutic and the existence of unmet needs.  In the case of PDUFA-I, 

II and III, the FDA is required to deliver a “complete review” on 90% of priority applications 

within six months.  For standard applications, the FDA was obliged to review 90% of 

applications in twelve months under PDUFA-I; currently, the FDA is mandated to review 90% 

of standard applications within ten months.   

On the action date mandated by PDUFA, the FDA issues one of three possible actions.  

The first is a non-approvable letter indicating that the NDA/BLA has not satisfied the FDA’s 

standards for safety and/or efficacy.  The second is an “approvable” letter that indicates the 

NDA/BLA can be approved if certain deficiencies and questions are appropriately acted upon by 

the sponsor.  The third type of action is the ultimate approval letter that gives the sponsor 
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company the right to market the drug to the public.  Although PDUFA action date mandates have 

generally been met by the FDA, these action dates are not the same as approval dates.      

To assess the impact of PDUFA on approval times, we considered drug approval data 

provided to us by the FDA.  These data indicate that approval times have been falling for quite 

some time, at least since 1979, and appear to suggest that approval time declines have 

accelerated, particularly during PDUFA-I.  For example, mean approval time during 1979-86 

was 33.6 months, 28.2 months in 1987-92, 18.6 months during PDUFA-I, and 16.1 months 

during PDUFA-II.  Since the approval time data is skewed to the right, the corresponding median 

approval times are all smaller, but they too fall over time: 27.1 (1979-86), 23.8 (1987-92), 16.2 

(PDUFA-I), and 12.3 (PDUFA-II).   

One way of depicting drug approval time trends is to construct “survival” curves that plot 

the proportion of approvals not yet completed within a fixed time period.  More precisely, the 

“survival” curve in Figure 2 plots the percent approvals remaining over time in months, one 

curve for each of the time periods 1979-86, 1987-92, PDUFA-I and PDUFA-II.   

Survival curves from more recent time periods are clearly separate from and ever closer 

to the origin than are those from earlier eras.  The more rapid decline in survival curves during 

PDUFA-I and II relative to the pre-PDUFA time period indicates faster approvals.  Note that the 

horizontal line designated with a 90% rate in the graph intersects the various survival curves at 

far longer time periods than those stated by the PDUFA goals, since the PDUFA goals involved 

review times rather than approval times. 

B.  Estimating The Effects of PDUFA on The Approval Time Distribution F(a) 

To estimate the incremental impact of PDUFA on approval times empirically, we used 

data on 662 NMEs, small molecule chemicals and biological agents, submitted to the FDA for 
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review on a government fiscal year basis between October 1, 1979 and September 30, 2002. 

Initially we report here the main results contained in Berndt et al [2005]7, where we only 

assessed the effects on review times and thus did not propose and perform the economic 

evaluation discussed here.    

We estimated parameters in multivariate regression specifications in which the dependent 

variable was the natural logarithm of the time between NDA/BLA submission and final FDA 

approval.  An annual time trend counter variable (1979=1, 2002=23) was included as a regressor, 

as were 0-1 PDUFA-I and PDUFA-II indicator variables, the latter two interacted with another 

time trend counter (1992/1993=1, 2001/2002 = 10).   

Several additional explanatory variables were added to account for potentially 

confounding non-PDUFA effects (e.g., efforts by oncology and HIV/AIDS patient advocacy 

groups). These variables included binary (0-1) variables for whether the application was 

submitted under the Orphan Drug Act provisions, whether the application was designated a 

Priority Review status, and whether the sponsor was domestic versus foreign.  To account for 

differential clinical difficulties in the development process, the time in clinical development 

(natural logarithm of time between the Initial New Drug Application (IND) and the NDA/BLA 

submission) was added as a regressor, as were 0-1 indicator variables for twelve therapeutic 

classes (cardiovascular, anti-infective, anti-neoplastic, CNS, AIDS, metabolic/endocrine, 

gastrointestinal, dermatology/ophthalmology, anti-inflammatory, radiopharmaceuticals, 

respiratory and other, with biologics being the omitted reference case).  To allow for therapeutic 

class-specific time trends, each of the twelve therapeutic class indicator variables was interacted 

with the PDUFA-I and PDUFA-II time trend interaction variables.  Analysis revealed that only 

in two therapeutic areas (anti-inflammatory and anti-neoplastic) were PDUFA-related time 
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trends different from the overall trends.  Regression results with and without the differential anti-

inflammatory and anti-neoplastic PDUFA-related trends are given in Table 1. 

In the specification assuming equal time trends across therapeutic classes (first column of 

Table 1), the parameter estimate on the overall time trend suggests an annual decline of about 

1.7% in approval times; the negative coefficients on the PDUFA-I and II variables imply that this 

decline accelerated to about 9-10% annually during PDUFA-I, and then declined at a slightly 

slower rate of about 5% during PDUFA-II.  When differential therapeutic class PDUFA-related 

time trends are permitted (the second set of columns in Table 1), the pre-PDUFA and post-

PDUFA annual declines for most therapeutic classes remain the same as in the more restricted 

specification.  However, during PDUFA-II, the annual declines in approval time for anti-

inflammatory drugs approach 15%, while those for anti-neoplastic agents reach about 10%.  In 

both specifications, as expected, the regression analysis revealed shorter approval times for 

priority vs. standard review (-0.490 exponentiated, about 38%). 

In terms of therapeutic class effects, since the regression coefficients are relative to the 

biologics class, controlling for other confounding variables, approval times were shortest for 

AIDS applications (about 56% shorter than biologics), about 30% shorter for the “other” class, 

and about 25% shorter for applications in the anti-infective and anti-neoplastic therapeutic 

classes; each of these was statistically significantly shorter than that for biologics (p-values < 

0.05).  The only class for which approval times were significantly longer than biologics both pre- 

and post-PDUFA was that for respiratory agents (about 33% longer). 

 

 

 



  17 

IV. THE EFFECT OF PDUFA ON PRODUCER SURPLUS 

We now report results from estimating the effects of PDUFA on the total producer 

surplus ��dF, which represents the innovative return of the drug after R&D has been undertaken.  

PDUFA affects an innovator’s returns by raising both the costs and the benefits of innovation.  

The cost is raised by the amount of the use fee taxes levied, while the benefit is raised by the 

gains in the present value of the innovator’s return induced by the more rapid FDA approval.   

The effect of faster approval on producer surplus is the difference between the surplus 

under the observed approval time and the counterfactual approval time for that drug with 

PDUFA interaction variables set to zero in the estimated approval time multivariate regression 

specifications discussed in the previous section.  A similar set of calculations can be undertaken 

to compute the present value of the additional user fee costs associated with PDUFA for a given 

drug.  The net gain in the present value of an innovative return is then computed by netting out 

the user fees from the gains due to faster approvals since the inception of PDUFA, all in present 

values.   

To implement these calculations empirically, several estimation issues must be resolved 

regarding the discount rate, the estimation of sales profiles and the estimation of drug specific 

taxes or user fees.  First, we implement the innovative return calculations using a range of real 

discount rates from 3 to 9 percent.8   

Second, data are needed on actual and predicted sales of drugs over their life cycle, as 

well as actual and predicted PDUFA user fees.  Through a third party agreement with IMS 

Health Inc., the FDA provided us comprehensive retail plus hospital sales data for all drugs on 

the U.S. market from February 1998 through December 2002.  The sales data included the 

following channels: independent pharmacies, chain pharmacies, mass merchandisers with and 
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without pharmacies, mail order pharmacies, food stores with pharmacies, non-federal hospitals, 

federal facilities, clinics, long-term care facilities, home health care, closed HMOs, and 

miscellaneous channels (starting in 1999, prisons, universities and other).9  Given that many 

drugs were approved prior to 1998 and that data on future sales beyond 2002 were unavailable, 

estimates of sales outside years 1998 through 2002 were needed.   IMS Health has reported 

results of an analysis of launch to peak sales for new chemical entities, based on 816 new 

chemical entities launched since 1983 (information on the terminal year is not available).10  

Results from this analysis relate over a 15-year life cycle the average yearly sales as a percent of 

peak sales.  Although the IMS analysis found that a drug on average reached its peak sales 13 

years after launch, sales in years 10 through 13 are relatively flat, and then drop off 

precipitously.11  Based on the IMS data and analysis, for each drug, sales were first annualized if 

the available sales data did not begin in January of a given year.12   Predicted peak sales for that 

drug were then computed using the IMS life cycle year to peak percentages, as were sales for all 

other years not observed in the IMS data.  All sales were then deflated to 1992 dollars using the 

GDP deflator. 

 Third, incremental costs associated with PDUFA include calculations of the present value 

of PDUFA user fees.  PDUFA fees consist of application fees, establishment fees, and product 

fees; as noted earlier, these have risen sharply since 1992.  PDUFA fees for 2005 and forward 

were estimated based on the compound annual growth rates (CAGR) observed from 1993 to 

2004.  Given that the US Congress has renewed PDUFA in 1997 and 2002, and given that the 

renewal year has generated a much larger percentage increase in the user fee schedule than the 

relatively minor subsequent increases within PDUFA-I, PDUFA-II, and PDUFA-III, we 

forecasted significant increases for 2008 and 2013, the next times PDUFA will likely need to be 
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reauthorized.  Specifically, we constructed large percentage increases in reauthorization years 

and subsequent minor increases between reauthorizations so as to yield a CAGR in real user fees 

of 15%, approximately equal to that observed historically.  Similar to the sales curves, the actual 

PDUFA fees were deflated to 1992 dollars using the GDP deflator. 

 Novel NDA/BLA application fees were charged during the year of an NDA/BLA 

submission to the FDA.  Product fees and establishment fees were allocated during each year of 

sales.  We allocated 100% of the establishment fee to each NME.  This likely overstates such 

fees, since many establishments manufacture more than one drug or biologic; informal 

conversations with the FDA indicated that on average, approximately three drugs/biologics are 

manufactured per location.  This allocation therefore biases upward the user fee cost 

calculations.  It was also necessary to forecast the number of future supplemental applications,  

since detailed information is not yet readily available to us.  From PDUFA performance reports 

of 1997, 1999 and 2003, we noted that between 1993 and 2003, a total of 1,266 original 

NDAs/BLAs were filed at the FDA (not all of which were, of course, approved).  Over the same 

time period, 1,518 efficacy supplements were also filed (of which how many were approved we 

do not know).  The ratio of filed supplements to filed original NDAs/BLAs over this time period 

is 1.199.  Since it is plausible to expect that the proportion of supplemental submissions 

approved by the FDA is larger than the proportion of novel NDA/BLA submissions that is 

approved, we expect the actual number of supplementals approved for each approved NDA/BLA 

to be larger than 1.199.   We therefore make the assumption that for every approved NDA/BLA, 

two supplemental applications are submitted in the second year post market launch.  This is a 

relatively “conservative” assumption in that 2.0 is a large number, and that the timing of both 

supplements being in the second year post launch likely overstates the rapidity with which such 
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supplementals are filed.13  These assumptions on supplementals therefore bias upwards the 

present value of the PDUFA supplemental user fees.  Since supplemental NDAs/BLAs do not 

increase the product fee or establishment fee already being paid by a sponsor, no further 

adjustments are made.    

Table 2 reports our principal findings for the effect of PDUFA on producers’ innovative 

returns, based on assumptions regarding the share of variable costs of revenues and the real 

discount rate.  Our estimates of the share of sales that are attributable to costs are from existing 

estimates in the literature.  For example, using generic prices several years after initial generic 

entry as an estimate of marginal costs, and based on data from the 1980s and early to mid-1990s, 

Grabowski and Vernon [1992] and Berndt, Cockburn, and Griliches [1996] report that in most 

cases the brand price is more than four times the estimated marginal costs.14  In Table 4 we 

therefore set variable costs equal to 20% of sales revenue, for drugs during patent protection.      

Table 2 indicates that the aggregate gains in producer surplus ranged from $14 billion 

($11 billion with PDUFA and variable costs removed) under a 3% real discount factor to $17 

billion ($13 billion with PDUFA and variable costs removed) under a 9% real discount factor. 

These gains in producer surplus incorporate the additional user fee costs of PDUFA represented 

by an aggregate amount of about $890M in present value in the case of a 3% discount rate and 

$390M under a 9% discount rate.   

 

V.  THE EFFECT OF PDUFA ON SOCIAL SURPLUS 

Next we report results from estimating the effects of PDUFA on the total social surplus 

�WdF by augmenting the estimated effects of PDUFA on producer surplus ��dF by the estimated 

effects on consumer surplus �SdF.  However, as opposed to the producer surplus, the annual 
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consumer surplus is lower during the patent period, when it is limited by the degree of market 

power by the patent holder, than after the patent has expired, when prices come down and 

consumer surplus rises. Annual consumer and social surplus calculations must therefore 

differentiate between pre- and post patent expiration, whereas this was not a major issue when 

producer surplus was assumed zero after patent expiration. 

 In estimating social surplus, we are interested in how one can use readily available sales 

data in order to provide a bound on the social surplus before and after expiration.  Regardless of 

the form of the inverse demand and variable cost functions, sales bound social surplus from 

below when   

  � + s � py.                                                       

Substituting in for �(y) and rearranging yields 

  s � c, 

i.e., consumers’ surplus is at least as large as variable costs.  This holds because sales understate 

social surplus by the amount of consumer surplus, and overstate social surplus by the costs of 

production.  Sales always overstate producer surplus, but understate social surplus if variable 

costs are small and there is some consumer surplus.   

 The degree to which sales captures the social surplus depends on the extent of market 

power.  Let f be the fraction of social surplus captured by the producer as defined by 

  f=f[� + s]. 

Under perfect competition the fraction f attains its minimum value of zero and the consumers 

capture the entire surplus. At the opposite extreme, when producers have sufficient market power 

to perfectly price discriminate, this share attains its maximum value of unity.  Given the extent to 
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which producers capture social surplus, we can rewrite the condition when sales bound social 

surplus according to 

 (1/f)� � py,                                                            

which when rewritten becomes   

 p/[c/y] � 1/(1-f). 

This states that if the average markup is above a threshold level, sales provide a lower bound on 

surplus.  A special case, potentially applicable to pharmaceuticals when sales perfectly measure 

social surplus, is when the producer captures the entire surplus through perfect price 

discrimination and variable costs are ignorable; 1-f=s=c=0.    

 To illustrate, consider the often estimated constant returns case with a linear demand 

function, as in p(y) = a – by and c(y) = cy.  In this case, regardless of (a,b,c), the fraction of 

surplus captured by the producer is f=2/3, so that sales bound social surplus from below 

whenever the variable cost to price ratio is less than a third : c/p < 1/3. This follows from the 

result that in this case the monopoly output is half the competitive output, which implies that 

consumer surplus is half the profits.   

Using these bounding methods to identify consumer and social surplus from sales data, 

we report in  Table 3 our principal findings on the estimated effects of PDUFA on these 

quantities.   

The various rows in Table 3 are calculated in a relatively straightforward fashion.  The 

sales bound for the social surplus before expiration (Row A) is simply the present value of gross 

sales over a 15 year time period under patent protection.  Variable costs and PDUFA fees are not 

subtracted.  In all cases, the counterfactual calculations use our regression specification to predict 

the delay in approval time, which increases the number of years the 15-year sales curve is 
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discounted.  The sales bound on social surplus after patent expiration (Row B) is calculated as a 

15-year decreasing annuity with the initial payment being the average of the last three years of 

sales for each product while on patent.  This annual payment then decreases by 10% per annum 

and is discounted back to 1992.  The calculations are done on a drug by drug basis and then 

aggregated. 

We next calculate cases for the highest consumer surplus (corresponding to a linear 

demand curve and constant returns) and lowest consumer surplus (producer captures entire social 

surplus during time of patent protection).  The highest case before patent expiration (Row C) is 

calculated as 50% of the net sales that are shown in Table 2 for both PDUFA and the 

counterfactual scenario.  For the case after patent expiration (Row D), we double the post-patent 

expiration social surplus sales bound (Row B).  If we sum the pre- and post-patent expiration 

periods for the highest case, we obtain the total consumer surplus (Row E).  We can then add the 

producer surplus, calculated with PDUFA and variable costs removed in Table 2, to obtain the 

total social surplus in the highest case (Row F).  For the case of the lowest consumer surplus, we 

assume that the consumer does not accrue any benefit prior to patent expiration (Row G = 0).  

After patent expiration, the consumer accrues a surplus equal to the lower bound of the social 

surplus (Row H), which was calculated in Row B.  We can then sum the before- and after-patent 

expiration (Rows G and H) to obtain the total consumer surplus for the lowest case scenario 

(Row I).  To calculate the total social surplus under the lowest case scenario (Row J), we simply 

add the total consumer surplus we calculate here to the producer surplus in Table 2, which is net 

of PDUFA fees and variable costs. 

Table 3 presents our major findings on the consumer and social surplus induced by the 

more rapid drug approvals associated with PDUFA. The first set of estimates measures lower 
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bounds on social surplus represented by sales when price-cost margins are high on the patent 

together with the last year prior to patent expiration representing the annual surplus after patent 

expiration.  This provides lower bounds on the social surplus during the patent and assumes the 

social surplus is the same after the expiration as during the expiration.  Under a low (high) 

discount rate of 3% (9%), the table indicates that PDUFA I - II raised the estimated lower bound 

on social surplus by $14B or 1.3 % ($17B or 3.7%) before patent expiration and $7B or 1.2% 

($5B or 4%) after patent expiration. 

The second set of estimates assumes a consumer surplus under a linear demand and 

constant marginal costs. In this case, during the patent the consumer surplus is half the producer 

surplus and after patent twice the producer surplus just prior to expiration. Under a low (high) 

discount rate of 3% (9%), Table 3 indicates that PDUFA I and II raised the high estimate of 

consumer surplus, comprised of both prior-and post-expiration levels, by $19Bor 1.2 % ($17B or 

3.8%).  Together with the producer surplus estimates of roughly $11B ($13B) from the previous 

table, this amounts to a total increase in social surplus of $31B or 1.2% ($30B or 3.7%). 

The third set of estimates is the most conservative estimate of the consumer gains, and is 

based on the assumption that there is no consumer surplus while the drug is on patent. Because 

of the extensive market power of the patent-monopolist assumed in these estimates, the 

consumer surplus after the patent expires equals the producer surplus just prior to patent 

expiration. This represents a worst case scenario for consumers.  Under a low (high) discount 

rate of 3% (9%), Table 3 indicates that PDUFA I and II raised the estimated consumer surplus by 

$7 billion or 1.2 % ($5 billion or 4%) in this case.  Therefore, even in this conservative case, 

there are substantial gains to consumers from the more rapid FDA approval of drugs during 

PDUFA I and II . 
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VI. ESTIMATING THE SAFETY EFFECTS OF PDUFA  

The previous discussion reports findings from estimating the first term or speed 

component of the change in aggregate welfare A towards Ao induced by the changes of PDUFA. 

In this section we discuss the second term representing any offsetting changes in safety that may 

have occurred.  We also attempt to price out these safety deteriorations in terms of health effects. 

A.   Estimating The Effects of PDUFA on The Market Time Distribution F(m) 

In a previous analysis, we have examined the impact of PDUFA on the market time 

distribution F(m) by considering the time until withdrawal of  drugs pre- and post-PDUFA. 

Specifically, in Berndt et al. [2005] we have reported on various pre- and post-PDUFA 

withdrawal comparisons.15  Simple proportion comparisons involving the number of NMEs 

withdrawn prior to the passage of PDUFA I relative to the number of NMEs withdrawn during 

PDUFA I and II suggest that no difference exists between the two periods.  However, these 

simple, naïve comparisons do not account for censoring of the data (limited observation time for 

post PDUFA NMEs compared to the pre-PDUFA cohort).  In order more reliably to assess the 

potential difference between the cohort of NMEs with withdrawals prior to PDUFA to the cohort 

of NMEs with withdrawals after PDUFA, we constructed Kaplan-Meier curves (see Figure 3).  

Based on a log-rank test analysis, we concluded that we could not reject the null hypothesis that 

the two curves are identical (p-value of no difference = 0.39).  We note that all comparisons, 

whether simple proportion comparisons or Kaplan-Meier analysis, are heavily reliant on the 

determination of what NMEs belong in the numerator and in the denominator.  More 

specifically, determining the actual distribution of NMEs withdrawn from market and assigning 

them to the appropriate cohort is reliant on three main factors.  First, the definition of when the 

PDUFA legislation actually took effect and which NMEs were reviewed under the PDUFA 



  26 

guidelines is not definitive.  Discussions with FDA personnel confirm that the legislation was 

passed as of late 1992 but that the actual effects of PDUFA were only affected sometime in 

1993.  The “flexibility” in timing can shift several NMEs (e.g., tamfloxacin, cisapride) between 

the pre-PDUFA and post-PDUFA cohorts.  

 Secondly, as discussed in our 2005 article, the definition of pre-PDUFA is ambiguous as 

well.  For purposes of our analysis, we defined a time period from roughly 1980 forward; 

however, one could easily argue that the pre-PDUDFA period should extend further back in 

time.  Our choice of the initial year of the pre-PDUFA era was made by simple data availability, 

which began in fiscal year 1980.   

Finally, the list of NMEs and withdrawn NMEs may be deemed somewhat arbitrary 

given that there are examples of product withdrawals for lack of use (a.k.a. revenue) that may 

suggest reduced efficacy or intolerable side effects.  These drug withdrawals are not accounted 

for in our analysis.  Other NMEs have been withdrawn, but later reintroduced.     

 While several studies have investigated the withdrawal rate of NMEs (i.e., a Government 

Accountability Office study in 2002, and a 1999 FDA analysis published in the Journal of the 

American Medical Association) 16, the fact that there are relatively few safety withdrawals, pre- 

and post-PDUFA, as compared to the total NMEs approved implies that the statistical power to 

detect significantly different safety withdrawal rates pre- and post-PDUFA is likely rather low.  

Combined with the additional  issues regarding inherent ambiguity in determining the 

numerator/denominator, we recognize that there is room for continued debate and discussion of 

the withdrawal distribution and whether it has changed pre- and post-PDUFA.  Thus we assess 

safety issues by making alternative bounding assumptions..   
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B.  Estimating the Potential Health Effects or Quality of Withdrawal 

Even though we believe there is no convincing evidence of differences in the distribution 

of market times pre-and post PDUFA, representing the quantity of safety withdrawals, there may 

be differences in the quality of drugs that were withdrawn.  More precisely, in such cases the 

producer surplus would still be estimated by observed revenues, but when a drug is withdrawn 

appropriately, there may have been negative consumer surplus levels that more than offset the 

positive producer surplus, making the social surplus negative. Ideally, we would subtract the 

negative social surplus of such withdrawn drugs from the overall gain in surplus attributable to 

their initial more rapid approval.  However, it is very difficult to estimate these negative 

consumer surplus effects of withdrawn drugs as it entails consumers paying for and consuming 

products that are claimed to make them worse off.  Nonetheless, to assess the potential health 

effects of such unwanted consumption, we estimate the magnitude in the reduction in health that 

would eliminate the benefits of more rapid approval of drugs attributable to PDUFA.  In Table 4 

we report results from computing the equivalent amount of life years that must have been lost in 

order for PDUFA to have reduced social welfare.  These estimates are derived from dividing the 

estimates of the benefits of speed (under 3% discounting) by existing estimates of the value of a 

life year, which we assume range between $100,000 and $300,000.    

The estimates in Table 4 indicate how many life years must have been lost on withdrawn 

drugs in order to offset the estimated gains in consumer surplus of non-withdrawn drugs, plus 

producer surplus gains from both withdrawn and non-withdrawn drugs.  Table 4 indicates that 

for the lower bound on the social surplus, there must have been a loss of 70,000 life years when 

estimated at $100K per life year, and 23,333 life years when estimated at $300K per life year. 

Similarly, for the highest surplus estimated, the health loss must have been 310,000 to 103,333 
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and for the lowest social gains estimated, withdrawn drugs must have caused a loss of 180,000 to 

60,000 life years, depending on whether an additional life year is evaluated at $100K or $300K, 

respectively. 

C. Estimating an Upper bound on The Adverse Safety effects of PDUFA 

For any estimates of the quality or safety effects of PDUFA one needs counterfactual 

estimates of the approval- and market times (a,m) in the absence of PDUFA for the withdrawn 

drugs observed under PDUFA, analogous to previous sections where we estimated 

counterfactual approval times in absence of PDUFA for non-withdrawn drugs. 

 We consider an extreme case in which all withdrawals after 1992, for drugs submitted for 

review after the passage of PDUFA I, were attributable to PDUFA and where there were no 

benefits associated with the drugs so that their social surplus was measured by the harmful health 

effects the withdrawn drugs imposed.  More precisely, in this extreme case we assume the 

counterfactual approval times in the absence of PDUFA to be infinite, a=�, and thus 

corresponding to no welfare W(�,m)=0. The change in welfare is thus 

 W(�,m)-W(a,m). 

This is a gain (loss) in welfare if the annual welfare w is negative (positive).  In terms of this 

expression, this computation estimates a worst case scenario against PDUFA by estimating the 

highest welfare losses possible induced by PDUFA.  For all the withdrawn drugs discussed here, 

we assume that the counterfactual approval time in absence of PDUFA would be infinite, a=� 

(the drugs would never have been approved), implying that regardless of the assumption of the 

counterfactual market time, welfare vanishes, W=0.  In addition, though an FDA induced 

withdrawal may be inefficient in the sense that those benefiting from a drug may outweigh the 

harms imposed, we assume that those benefits are zero for both consumers and producers so that 
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the value of withdrawal is maximized by minimizing the negative annual value of the flow of 

pre-withdrawal surpluses w.   

  We have calculated the adverse health effects associated with drugs withdrawn from the 

market that were submitted for review under PDUFA I and II using historical data available via 

The Adverse Event Reporting System (AERS) (http://www.fda.gov/cder/aers/extract.htm for the 

format of the data and limitations) which reports individual reports by drug and year, the age of 

the patient, and the type of adverse events experienced.  Specifically, we investigated the drugs 

listed in Table 5. 

In Table 6 we report the estimated cost in life years and calculated value in dollars of the 

drugs that were withdrawn.  The AERS data were filtered to provide only deaths and 

hospitalizations for the selected drugs.  For each drug, there were events that did not have an 

event date or age of the patient.  An average of patient age and event date was calculated with the 

existing data for each drug and these values were then completed for the events with missing 

information.  In order to calculate life years lost, we first had to establish life expectancies.  Life 

expectancies were calculated for the period of 1990 and 2000 according to the US Census life 

tables published by the National Center for Health Statistics.  For each individual we were able 

to establish a life expectancy that was specific for that individual’s sex, age, and year of event 

(i.e., a 30 year-old male in 1990 has a different life expectancy than a 30 year-old male in 2000).  

In this analysis, we do not account for hospitalizations that did not result in a fatality and instead 

only focus on reported deaths.  After calculating the estimated life years lost for each drug, we 

can estimate the cost by multiplying the life years either by $100,000 or $300,000, and 

discounting as appropriate.  
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As shown in Table 6, adding up across the universe of withdrawn NMEs since the 

enactment of PDUFA, we find that this extreme upper bound entails around 55,600 life years 

lost.  This upper bound is then compared to the gains in health implicit in the greater speed 

generated by PDUFA, which we estimated at the equivalent of 180,000 to 310,000 life years 

when valued at $100 thousand per life year (see Table 4).  Put differently, monetizing the life-

years lost by $100 thousand per year and discounting these monetized losses to 1992 dollars (at a 

real discount rate of 3%) from the average year of the events leads to a value of $4.4 billion, 

which is about 40 percent of the estimated value of speed at $11 billion (see Table 2).  Note that 

these calculations include Vioxx (rofecoxib) and Bextra( valdecoxib), which were both recently 

withdrawn, and whether any of them will eventually return to the market is as yet unclear.  

Additionally, we include Alosetron in our calculations; this drug has been returned to market 

with a more restrictive label. 

Table 6 also reports the number of non-fatal hospitalizations reported for each drug, 

which in aggregate for all drugs amounts to approximately 16,000. Although the fatalities 

reported from these data seem more likely to be of lower error than hospitalizations, these 

hospitalizations, if valued substantially, could potentially lead to offsets larger than the gains of 

greater speed induced by PDUFA.  However, we stress that these health effects are an extreme 

form of upper bounds on the adverse effects of PDUFA, based on the assumption that the 

withdrawn drugs had no benefits, that all the drugs that were withdrawn would never have been 

approved in the absence of PDUFA, and that all the individuals who died would have had an 

average life expectancy but  for the consumption of the implicated drug.    
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VII. DISCUSSION, LIMITATIONS, AND CONCLUDING REMARKS 

 Our analysis is based on a number of assumptions and limitations.  First, our benefit-cost 

and social surplus calculations are aggregated over all drug classes.  Further research might 

fruitfully focus on disaggregating into specific therapeutic areas and “blockbuster” products.   

 Second, we have employed a product life cycle sales profile pattern based on data and 

analysis from IMS Health.  Other life cycle sales profiles, such as that in the rate of return 

calculations by Grabowski, Vernon and DiMasi [2002] could be used instead; moreover, their 

framework allows for a more detailed free cash flow analysis that allows the intensity of 

marketing, manufacturing, and other costs to vary over the product life cycle.  Although we have 

interpreted the relationships among social surplus and industry sales within the context of a 

linear demand curve, explicit nonlinear formulations of the demand curve are worthy of further 

examination.   Moreover, though studies exist that indicate fairly little within class substitution 

across drugs, more general substitution patterns would of course allow for social surplus 

calculations that took into account offsets in producer and consumer surplus due to such 

substitution.   

Third, the analysis reported here ends with NDAs/BLAs submitted to the FDA by the end 

of PDUFA-II (September 30, 2002), and approved by the FDA up through May 2004.   It would 

be useful to update the approval data, to ensure that right censoring is not a significant issue.       

Fourth, another limitation of our study is that the sales data used in the benefit 

calculations represent U.S. sales only.  Foreign sales for drugs sold in the US are typically 75% 

to 100% of U.S. sales.  The extent to which accelerated approval in the United States affected 

international approvals and launch dates was not incorporated into our calculations.  If earlier 
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U.S. approval encouraged more rapid approval abroad, then the NPV social surplus benefit of 

PDUFA would be greater than we have calculated.   

Fifth, to the extent that accelerated FDA approval of NDAs/BLAs resulted in an increase 

in the duration of patent protection prior to patent expiration, it is possible that our calculations 

understate producers’ benefits from PDUFA.  Two considerations suggest that any such impact 

is likely to be rather small.  First, patent expiration typically takes place 12 or so years following 

product launch (“effective patent life”), and thus viewed in present value terms at the beginning 

of PDUFA in 1992, such end of product life benefits are likely to be very small when 

discounted.17   Second, under the Hatch-Waxman Act, the maximum amount of time a drug 

could enjoy market exclusivity was set at 14 years (with possible 6-month extensions for 

sponsors proving efficacy in the pediatric population); precisely how many of the drugs in our 

sample would have run into this exclusivity ceiling is unclear, but the number is likely to be non-

trivial.  To the extent this would occur, accelerated FDA approval would not translate into longer 

effective patent life.   

A final limitation of our study is that we have not undertaken a separate analysis of “fast 

track” provisions that involve rolling submissions to the FDA.  We believe the impact of this 

omission is likely to be relatively minor, for not only is the number of NDAs/BLAs granted fast 

track study in our sample up through 2002 likely to be small, but preliminary analyses by several 

researchers suggests that the differential impact of fast track from priority status on approval 

times is small, and in some cases fast track may even lengthen approval times.18 

The methodology and framework proposed could be extended to numerous policies 

beyond PDUFA, such as, for example, facilitating more rapid FDA approvals by allowing 

greater use of surrogate markers as endpoints, while simultaneously requiring enhanced post-
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approval surveillance and monitoring efforts.   Since the clinical development time between 

filing of the Investigational New Drug application and submission of the NDA/BLA is two to 

four times larger than review time of the NDA/FDA at the FDA, the framework developed here 

might be useful in examining potential costs and benefits of various other policies that could 

affect the critical pathway from pre-clinical discovery through submission of an NDA/BLA.   

More generally, in our judgment much more work is warranted providing more evidence-based 

and quantitative assessment on the many types of FDA policies that affect the US and other 

populations.    
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FIGURES AND TABLES 
 
Figure 1:  Producer and Consumer Surplus for a given Review and Market Time 
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Figure 2:  Survival Curve for NMEs pre and post PDUFA 
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Figure 3:  Survival Curves depicting NME withdrawal rates pre and post PDUFA 
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Table 1:  Estimated Effects of PDUFA-I and PDUFA-II on Approval Times 
 

Variable Coefficient P-Value Coefficient P-Value

Intercept Constant 3.515 < 0.001 3.524 < 0.001
Natural Log IND to NDA time -0.001 0.965 -0.012 0.695
Time Trend -0.017 0.038 -0.016 0.050
Priority Review -0.490 < 0.001 -0.487 < 0.001
PDUFA I Time Trend -0.081 0.001 -0.080 0.001
PDUFA II Time Trend -0.037 0.018 -0.029 0.062
IND to NDA Data Missing 0.103 0.521 0.055 0.728
Orphan Drug 0.109 0.094 0.114 0.078
Domestic Company Sponsor -0.072 0.115 -0.074 0.100

Cardiovascular 0.120 0.203 0.136 0.144
Anti-Infectives -0.306 0.001 -0.294 0.002
Anti-Neoplastics -0.304 0.009 -0.143 0.276
CNS 0.128 0.211 0.143 0.159
AIDS -0.812 < 0.001 -0.805 < 0.001
Metabolic/Endocrine -0.062 0.514 -0.056 0.550
Gastrointestinal -0.088 0.516 -0.069 0.607
Dermatology/Opthalomology -0.188 0.087 -0.179 0.101
Anti-Inflammatories 0.101 0.505 0.322 0.061
Radiopharmaceuticals 0.183 0.122 0.202 0.085
Respiratory 0.288 0.041 0.309 0.027
Other -0.352 0.019 -0.334 0.025

Anti-Inflammatory PDUFA II Time Trend N/A N/A -0.114 0.007
Anti-Neoplastic PDUFA II Time Trend N/A N/A -0.064 0.011

R-squared 0.393 R-squared 0.405
Observations 662 Observations 662

Aggregate Specification
for PDUFA Time Trends

Drug Class Specification 
for PDUFA Time Trends

 
 
 

Table 2:  The Effects on producer surplus of PDUFA I and II 

 
$'s (Billions)

PDUFA
Counter
factual Difference % Diff PDUFA

Counter
factual Difference % Diff

Sales 1,149$ 1,134$  14$            1.3% 482$    465$     17$            3.7%

PDUFA Costs 0.89$   -$      0.89$         N/A 0.39$   -$      0.39$         N/A

Variable Costs 230$    227$     3$              1.3% 96$      93$       3$              3.7%

Net 918$    907$     11$            1.2% 385$    372$     13$            3.6%

ββββ  = 1 / 1.09ββββ  = 1 / 1.03
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Table 3:  The Effects on Social Surplus of PDUFA I and II 

 

$'s Billions

Row PDUFA
Counter
factual Difference % Diff. PDUFA

Counter
factual Difference % Diff.

Sales Bound on Social Surplus
A Before Expiration 1,149$ 1,134$  14$            1.3% 482$    465$     17$            3.7%

B After Expiration 579$    572$     7$              1.2% 130$    125$     5$              4.0%

Highest Consumer Surplus Case
C Before Expiration 459$    454$     5$              1.2% 192$    186$     7$              3.6%

D After Expiration 1,158$ 1,144$  14$            1.2% 260$    250$     10$            4.0%

E Total Consumer Surplus 1,617$ 1,598$  19$            1.2% 452$    436$     17$            3.8%

F Total Social Surplus 2,536$ 2,505$  31$            1.2% 838$    808$     30$            3.7%

Lowest Consumer Surplus Case
G Before Expiration -$     -$      -$          0.0% -$    -$      -$          0.0%

H After Expiration 579$    572$     7$              1.2% 130$    125$     5$              4.0%

I Total Consumer Surplus 579$    572$     7$              1.2% 130$    125$     5$              4.0%

J Total Social Surplus 1,497$ 1,479$  18$            1.2% 515$    497$     18$            3.7%

ββββ  = 1 / 1.03 ββββ  = 1 / 1.09

 
 
 

Table 4:  Estimate of Life Years Impacted to Offset Benefits of PDUFA I and PDUFA II 
PDUFA Benefit 

$ Billions
Life Years Valued 

at $100K
Life Years Valued 

at $300K

Social Surplus Lower Bound $7 70,000                   23,333                   

Social Surplus High Consumer Surplus $31 310,000                 103,333                 

Social Surplus Low Consumer Surplus $18 180,000                 60,000                    
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Table 5:  List of NMEs submitted during PDUFA I/II that were subsequently withdrawn 
for safety reasons 

Drug Name NDA Submission Date Year Approved Year Withdrawn

Bromfenac Dec 30, 1994 1997 1998
Cerivastatin Jul 26, 1996 1997 2001
Grepafloxin Nov 08, 1996 1997 1999
Mibefradil Mar 11, 1996 1997 1998
Troglitazone Aug 01, 1996 1997 2000
Rapacuronium Jun 25, 1998 1999 2001
Rofecoxib*** Nov 23, 1998 1999 2004
Alosetron** Jun 30, 1999 2000 2000
Valdecoxib*** Jan 16, 2001 2001 2005

* Not considered an NME
** Returned to market in 2002 w/ restrictions
*** Not in CDER's 2004 Report to Nation - added by authors  
 
 

Table 6:  Estimated cost of NMEs withdrawn from market that were submitted for review 
during PDUFA I/II 

Drug Name

# of 
Hospitilzations 
Not Resulting in 

Death
# of 

Deaths

Average 
year of 
event

Life Years 
Lost*

Cost at $100K 
per Life Year ($ 

M) 

Cost at $300K 
per Life Year 

($ M)

Cost at $100K 
per Life Year 

(1992 $ M) 

Cost at $300K 
per Life Year 

(1992 $ M)

Cost at $100K 
per Life Year 

(1992 $ M) 

Cost at $300K 
per Life Year 

(1992 $ M)
Alosetron 685                      46        2000 1,037 104 311 81                  244                 51                    153                

Bromfenac 257                      77        1998 1,787 179 536                151                453                 109                  328                
Cerivastatin 4,455                   883      2000 14,086 1,409 4,226             1,099             3,297              683                  2,049             

Grepafloxacin 72                        13        1998 228 23 68                  19                  57                   13                    40                  
Mibefradil 665                      129      1998 2,029 203 609                172                517                 126                  377                

Rapacuronium 22                        11        2000 516 52 155                41                  122                 26                    77                  
Rofecoxib 8,013                   1,349   2001 21,815 2,181 6,544             1,669             5,007              999                  2,998             

Troglitazone 1,444                   688      1998 13,048 1,305 3,914             1,094             3,282              780                  2,341             
Valdecoxib 581                      56        2003 1,056 106 317                77                  231                 42                    126                

TOTAL 16,194                 3,252   55,601 5,560 16,680 4,403 13,209 2,830 8,490

ββββ = 1/1.03 ββββ = 1/1.09
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