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1 Introduction

In recent years, option prices on the S&P 500 index (e.g., the SPX contract) have been the focus of

much attention. One finding that researchers generally agree upon is that, prior to the 1987 stock

market crash, implied ‘volatility smiles’ were relatively flat (see, e.g., Bates (2000)). However, since

the crash, the Black-Scholes (B/S) formula has been producing systematic biases across ‘moneyness’

and maturity of SPX options. In particular, the B/S formula has been significantly underpricing

short maturity, deep out-of-the-money puts. This property has been referred to as a ‘volatility

smirk’ (see, e.g., Jackwerth and Rubinstein (1996) and Rubinstein (1994)).

Given the empirical failures of the B/S model in post-crash option data, much research has

gone into identifying which assumptions of that model do not hold in practice. Focusing solely on

stock returns, several authors have documented that, in contrast to the assumptions of B/S, stock

prices jump and are subject to stochastic volatility.1 As such, new option pricing models have been

proposed that incorporate these features (see, e.g., Bates (1996), Duffie et al. (2000), Heston (1993)).

Furthermore, these extended models have been tested empirically. Among recent contributions,

Bakshi et al. (1997, 2000), Bates (2000), and Huang and Wu (2004) extract information about the

model parameters of the underlying returns process from derivatives prices alone. Benzoni (2002),

Broadie et al. (2004), Chernov and Ghysels (2000), Eraker (2004), Jones (2003), and Pan (2002)

use data on both underlying and derivatives prices to fit the model. Overall, these studies concur

that a model with stochastic volatility and jumps significantly reduces the pricing and hedging

errors of the Black-Scholes model, both in- and out-of-sample.2

These previous studies, however, focus on post-1987 option data. Further, they follow a partial

equilibrium approach and let statistical evidence guide the exogenous specification of the underlying

return dynamics. Such an approach leaves open two important questions:

• Does there exist a reasonable model for the dividend process and the preferences of agents

that can explain the post-1987 SPX prices within a general equilibrium framework?

• Can such a model also explain the stark regime change in the volatility smirk that has

maintained since the crash?
1See, e.g., Andersen et al. (2002), Chacko and Viceira (2003), Chernov et al. (1999, 2003), and Eraker et al. (2003).
2A related literature investigates the profits of option trading strategies (e.g., Coval and Shumway (2001) and

Santa-Clara and Saretto (2004)) and the economic benefits of giving investors access to derivatives when they solve
the portfolio choice problem (e.g., Constantinides et al. (2004), Driessen and Maenhout (2004) and Liu and Pan
(2003)). Overall, these papers suggest that derivatives are non-redundant securities and, in particular, that volatility
risk is priced. These findings are consistent with the evidence in Bakshi and Kapadia (2003) and Buraschi and
Jackwerth (2001), as well as with the results of the studies that use data on both underlying and derivatives prices
to fit parametric stochastic volatility models.
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These questions are the focus of this paper. Interestingly, while the first question has already

received considerable attention in the literature, the second question, to our knowledge, has been

largely ignored.

Regarding the first question, the general consensus of the existing literature seems to be that it

is difficult to reconcile the post-crash prices of short-maturity, deep out-of-the-money put options

within a general equilibrium setting when the representative agent has standard expected utility

preferences. For example, the problem with specifying a constant relative risk-aversion utility

function for the representative agent is that the risk-aversion parameter γ is forced to govern both

the premium on equity and out-of-the-money puts. Liu, Pan and Wang (2004, LPW) consider

a model in which the endowment is an i.i.d. process and demonstrate that in this setting such

restriction is inconsistent with the empirical evidence presented in, e.g., Jackwerth (2000), Pan

(2002), and Rosenberg and Engle (2002). Further, LPW find that even the two-parameter recursive

utility of Epstein-Zin (1989) and Kreps-Porteus (1978) cannot explain the puzzle within their

framework, since it generates results very similar to those of a standard power utility setting (see,

e.g., page 151 of LPW).

Consistent with these empirical findings, much of the literature has advocated alternative prefer-

ences outside of the standard state-independent expected utility framework (see, e.g., Bates (2001),

Brown and Jackwerth (2004), and LPW).3 For example, LPW view the option smirk as evidence

for non-expected utility preferences on the part of market participants. Specifically, they argue

that if the endowment is an i.i.d. process, then in order to reconcile the prices of options and

the underlying index, agents must exhibit ‘uncertainty aversion’ towards rare events that is differ-

ent from the standard ‘risk-aversion’ they exhibit towards diffusive risk. In effect, they provide a

decision-theoretic basis to the idea of crash aversion advocated by Bates (2001), who proposed an

ad-hoc extension of the standard power utility that allows for a special risk-adjustment parameter

for jump risk distinct from that for diffusive risk.

In this paper, however, we take a different approach. In particular, we expand upon the insights

of Bansal and Yaron (2004, BY) by considering Epstein and Zin (1989) preferences and specifying

the expected growth rate of dividends to be driven by a persistent stochastic variable that follows a
3Bates (2001) proposes a model in which agents exhibit special crash aversion to capture many stylized facts

from stock index options markets. Brown and Jackwerth (2004) consider a representative agent model in which the
marginal utility of the representative agent is driven by a second state variable that is a function of a ‘momentum’
state variable. Related, Bondarenko (2003) argues that in order to explain S&P 500 put prices a candidate equilibrium
model must produce a path-dependent projected pricing kernel. Finally, Buraschi and Jiltsov (2005) consider a model
in which heterogeneity in beliefs over the dividend growth rate generates state dependent utility. They focus on the
volume of trading in the option market.
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jump-diffusion process. This approach contrasts with that of LPW and Bates (2001), who consider

non-standard preferences and specify dividends as an i.i.d. jump-diffusion process with constant

drift and volatility. However, as noted by BY and Shephard and Harvey (1990), it is very difficult

to distinguish between a purely i.i.d. process and one which incorporates a small persistent compo-

nent. Nevertheless, the presence of a small persistent component can have important asset pricing

implications.

Our approach has several desirable features. First, consistent with observation, our model

predicts that the dividend process is relatively smooth during a crash event, in contrast to these

previous papers that can only capture a 23% market crash with a 23% drop in dividends. Second,

our model is consistent with a large drop in the risk-free rate on crash dates, unlike these previous

papers that predict a constant risk-free rate. Finally, in contrast to Brown and Jackwerth (2004),

by incorporating jumps in the underlying processes we can capture the volatility smirk with a model

calibration that is more consistent with observation.

Within this framework, we show that a model with standard preferences and a realistic cali-

bration of the aggregate endowment process can simultaneously capture the levels of the equity

risk premium and the risk-free rate, and the prices of deep out-of-the-money put options. The

intuition for these results is similar to that discussed in BY.4 Epstein and Zin preferences allow

for a separation of the elasticity of intertemporal substitution (EIS) and risk aversion. When the

EIS is larger than one, the intertemporal substitution effect dominates the wealth effect. Thus,

in response to higher expected growth agents buy more assets, and consequently prices increase.

The opposite occurs when there is a decrease in expected growth, e.g., because of an unexpected

downward jump in the predictable component of dividends that triggers a market crash. In this

framework, the risky asset exhibits positive returns when the state is good, while it performs poorly

in the bad state. As such, investors demand a high equity premium and are willing to pay a high

price for a security that delivers insurance in the bad state, like, e.g., a put option on the S&P 500

index.

To maintain parsimony, we follow LPW and restrict our dividend dynamics to have constant

volatility. That is, we consider only the so-called ‘one-channel’ BY case. Extending the model

to incorporate stochastic volatility (the ‘two-channel’ BY case) is straightforward, but in order to

keep the model parsimonious, we choose to focus on a rather minimal model. We solve the model
4We emphasize, however, that most existing models that capture the equity premium (e.g., BY, Bansal et al.

(2004), and Campbell and Cochrane (1999)) specify the dividend growth rate process as continuous. As such, these
models cannot account for the high premium on near-term out-of-the-money put options, nor the possibility of a
market crash.
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using standard results in recursive utility (e.g., Duffie and Epstein (1992a,b), Duffie and Skiadas

(1994), Schroder and Skiadas (1999, 2003), and Skiadas (2003)). We show that the price-dividend

ratio satisfies an integro-differential equation that is non-linear when the EIS is different from

the inverse of the coefficient of risk aversion. To solve such equations, we use the approximation

method of Collin-Dufresne and Goldstein (2005), which is itself an extension of the Campbell-Shiller

approximation (see Campbell and Shiller (1988)).

We consider a realistic calibration of the model and we illustrate its implications for the pricing

of short-maturity SPX options. In our baseline case, a put option with maturity of one month

and a strike price that is 10% out-of-the-money has an implied volatility of approximately 24%. In

contrast, a one-month, at-the-money option has an implied volatility of approximately 14%. That

is, consistent with empirical evidence, we find a 10% volatility smirk. Further, we find that our

baseline case also captures the empirical properties of dividends and consumption, and generates a

realistic 1% real risk-free rate, a 6% equity premium, and a price-dividend ratio of 20. Sensitivity

analysis is performed suggesting that the main qualitative results are robust to a wide range of

parameter calibrations. In sum, we conclude that our specification successfully captures many

salient properties of the SPX prices during the post-1987 period.

Next, we proceed to investigate the second question of the paper. In particular, we examine

whether our model can also explain the stark change in the implied volatility pattern that has been

observed since the 1987 market crash. We note that an extreme event such as the 1987 crash is

likely to dramatically change the investor’s perception about the nature of possible future market

fluctuations. To formalize this intuition, we extend the model to a Bayesian setting in which the

agent formulates a prior on the average value of the jump size, and then updates her prior when

she observes an extreme event such as the 1987 crash. Note that the updating of beliefs only occurs

at crash dates. As such, her posterior beliefs on the average value of the jump size are potentially

very long lived, and hence can explain why the volatility smirk has remained high even eighteen

years after the crash.

We find that our model can capture the implied volatility pattern of option prices both before

and after the 1987 crash. Specifically, we present simulation results in which the steepness of the

volatility smirk (i.e., the difference between implied volatilities of 10%-out-of-the-money and at-the-

money puts) is approximately 3%, a number that is consistent with the pre-crash evidence reported

in, e.g., Bates (2000). At the same time, the occurrence of a jump triggers the updating of the

agent’s beliefs about the expected value of the jump size. As such, after the crash, out-of-the-money

put options are perceived to be more valuable, and the volatility smirk becomes as steep as 10%.
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Furthermore, consistent with observation the model predicts a downward jump in the risk-free rate

during crash events.

One failure of our model, however, is its predictions for the day of the crash. In particular, our

model predicts jumps in both the stock price and risk-free rate that are even more extreme than

what was observed in the 1987 crash. We attribute this failure to our choice of keeping the model

as parsimonious as possible, and we suppose that if additional parameters and/or state variables

were added, we could further improve the fit. In addition, we note that there are institutional

features that may have attenuated the fluctuation in interest rates and market prices during the

crash day.5

In focusing on the pricing of both out-of-the-money put options and the equity index, our

paper is related to the recent literature that searches for a pricing kernel derived within a general

equilibrium setting that can simultaneously capture the salient features of equity returns, risk-

free rates, and the prices of derivative securities. For example, Chen et al. (2004) investigate

the ability of the BY and Campbell and Cochrane (1999) models to jointly price equity and risky

(defaultable) corporate debt. Bansal et al. (2004) examine the implications of the BY and Campbell

and Cochrane (1999) models for the pricing of at-the-money options on a stock market index as

well as on consumption and wealth claims.6

Also related is a growing literature that investigates the effect of changes in investors’ sentiment

(e.g., Han (2005)), market structure, and net buying pressure (e.g., Bollen and Whaley (2004),

Dennis and Mayhew (2002), and Gârleanu et al. (2005)) on the shape of the implied volatility

smile.7 These papers, however, do not address why end users buy these options at high prices
5On October 19 and 20, 1987, the S&P 500 Futures price was considerably lower than the index price, which

suggests that the drop in the index level does not fully represent the magnitude of the market adjustment in prices.
This evidence can be explained by the existence of significant delays in the submission and execution of limit orders
during the crash events, magnified by the standard problem of ‘stale’ prices (see, e.g., Kleidon (1992)). Moreover,
interventions of the exchange might have further contained the fluctuations in stock prices during the crash. Finally,
the Fed assured that it would provide adequate liquidity to the U.S. financial system necessary to calm the equity
and other markets (see, e.g., p. 3 of the November 3, 1987, ‘Notes for FOMC Meeting’ document available from the
Federal Reserve web site http://www.federalreserve.gov/fomc/transcripts/1987/871103StaffState.pdf).

6Other papers that examine the asset pricing implications of the BY model include Bansal and Lundblad (2002),
Hansen, Heaton, and Li (2004), and Malloy et al. (2005).

7This literature argues that due to the existence of limits to arbitrage, market makers cannot always fully hedge
their positions (see, e.g., Green and Figlewski (1999), Figlewski (1989), Hugonnier et al. (2005), Liu and Longstaff
(2004), Longstaff (1995), and Shleifer and Vishny (1997)). As such, they are likely to charge higher prices when
asked to absorb large positions in certain option contracts. Consistent with this view, Han (2005) finds that the
S&P 500 option volatility smile tends to be steeper when survey evidence suggests that investors are more bearish,
when large speculators hold more negative net positions in the S&P 500 index futures, and when the index level
drops relative to its fundamentals. Related, Bollen and Whaley (2004) and Gârleanu et al. (2005) identify an excess
of buyer-motivated trades in out-of-the-money SPX puts and find a positive link between demand pressure and the
steepness of the volatility smirk.
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relative to the B/S value or why the 1987 crash changed the shape of the volatility smile so

dramatically and permanently. Our paper offers one possible explanation.

The rest of the paper is organized as follows. In Section 2, we present an option pricing model

that explains the post-1987 volatility smirk in SPX prices. In Section 3, we extend our setting

to incorporate Bayesian updating of the agent’s believes. We use this setting to show that an

event such as the 1987 market crash can generate a change in the SPX price that is qualitatively

consistent with what we observe in the data. We conclude in Section 4.

2 A General Equilibrium Model of the Volatility Smirk

In this section, we present a general equilibrium model that produces option prices that are con-

sistent with the post-1987 evidence. We specify the consumption and dividend dynamics as

dC

C
= (μ

C
+ x) dt+

√
Ω dz

C
(1)

dD

D
= (μ

D
+ φx) dt + σ

D

√
Ω
(
ρ

C,D
dz

C
+
√

1 − ρ2
C,D

dz
D

)
(2)

dx = −κxx dt+ σx

√
Ω dzx + ν̃ dN. (3)

Here, {dz
C
, dz

D
, dzx} are uncorrelated Brownian motions, the Poisson jump process dN has a

jump intensity equal to λ and the jump size ν̃ is normally distributed:

E [dN ] = λdt (4)

ν̃ � N(μν , σν ). (5)

It is convenient to define c ≡ logC and δ ≡ logD. Itô’s formula then yields

dc =
(
μ

C
+ x− 1

2
Ω
)
dt+

√
Ω dz

C
(6)

dδ =
(
μD + φx− 1

2
σ2

D
Ω
)
dt+ σD

√
Ω
(
ρC,DdzC +

√
1 − ρ2

C,D
dzD

)
. (7)

We note that our specification is similar to the so-called one-channel BY model, in which the

expected growth rates in dividend and consumption are stochastic. There is however one important

difference—in our setting, the state variable driving the expected growth rate in consumption and

dividend (i.e., the x process) is subject to jumps. Consistent with BY, we calibrate the mean

reversion parameter κx to be relatively low, implying that the effect of a downward jump may be

very long-lived. As we demonstrate below, this persistence causes the agent in our model to be

willing to pay a high premium to buy out-of-the-money put options in order to hedge downside

risk.
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In contrast to our model, LPW assume that the dividend growth rate is subject to jumps, while

the expected dividend growth rate is constant in their model. That is, in their model a crash is due

to a downward jump in the dividend level.8 In particular, in order to explain a 23% drop in market

prices, their model predicts that the dividend also drops by 23%. We note that such large jumps

are not observed in the dividend data, which are instead relatively smooth.

2.1 Recursive Utility

Following Epstein and Zin (1989), we assume that the representative agent’s preferences over a con-

sumption process {Ct} are represented by a utility index U(t) that satisfies the following recursive

equation:

U(t) =
{

(1 − e−βdt)C1−ρ
t + e−βdtEt

(
U(t+ dt)1−γ

) 1−ρ
1−γ

} 1
1−ρ

. (8)

With dt = 1, this is the discrete time formulation of Kreps-Porteus/Epstein-Zin (KPEZ), in which

Ψ ≡ 1/ρ is the EIS and γ is the risk-aversion coefficient.

The properties of the stochastic differential utility in (8) and the related implications for asset

pricing have been previously studied by, e.g., Duffie and Epstein (1992a,b), Duffie and Skiadas

(1994), Schroder and Skiadas (1999, 2003), and Skiadas (2003). In Appendix A, we extend their

results to the case in which the aggregate output has jump-diffusion dynamics.9 The solution to

our model is a special case of such general results and follows immediately from Propositions 1 and

2 in Appendix A. Specifically, when ρ, γ �= 1 Proposition 1 gives the agent’s value function as:

J =
ec(1−γ)

1 − γ
βθ I(x)θ , (9)

where I denotes the price-consumption ratio and satisfies the following equation

0 = I
[
(1 − γ)μC + (1 − γ)x− γ

2
(1 − γ)Ω − βθ

]
− κxxθIx

+
1
2
σ2

x
Ωθ

[
(θ − 1)

(
Ix

I

)2

I + Ixx

]
+ λI J Iθ + θ , (10)

and where we have defined the operator

J h(x) = E
[
h(x+ ν)
h(x)

]
− 1. (11)

8Barro (2005) and Bates (2001) make a similar assumption about the dividend dynamics in their model.
9A related literature studies the general equilibrium properties of a jump-diffusion economy in which the agent

has non-recursive utility; see, e.g., Ahn and Thompson (1988) and Naik and Lee (1990). Also related, Cvitanić et al.
(2005) and Liu, Longstaff, and Pan (2003) examine the optimal portfolio choice problem when asset returns (or their
volatility) are subject to jumps.
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To obtain an approximate solution for I(x), we use the method of Collin-Dufresne and Goldstein

(2005), which itself is in the spirit of the Campbell-Shiller approximation. In particular, we note

that I(x) would possess an exponential affine solution if the last term on the right-hand-side (RHS)

of equation (10) (the θ term) were absent. As such, we move θ to the left-hand-side (LHS) and

then add to both sides of the equation the term h(x) ≡ (n0 + n1x) e
A+Bx. Hence, we re-write

equation (10) as

(n0 + n1x) e
A+Bx − θ = (n0 + n1x) e

A+Bx

+I
[
(1 − γ)μ

C
+ (1 − γ)x− γ

2
(1 − γ)Ω − βθ

]
− κxxθIx

+
1
2
σ2

x
Ωθ

[
(θ − 1)

(
Ix

I

)2

I + Ixx

]
+ λIJ Iθ . (12)

We then approximate the RHS to be identically zero and look for a solution of the form

I(x) = eA+Bx . (13)

We find this form to be self-consistent in that the only terms that show up are either linear in or

independent of x. This approach provides us with two equations, which we interpret as identifying

the {n0, n1} coefficients in terms of B

−n0 = (1 − γ)μC − γ

2
(1 − γ)Ω − βθ +

1
2
σ2

x
Ω(θB)2 + λ(χP

θB
− 1 ) (14)

−n1 = (1 − γ) − κxθB , (15)

where we have defined

χP
a
≡ E

[
eaν
]

= eaμν + 1
2
a2σ2

ν . (16)

Note that our solution is specified once we identify the four parameters {A, B, n0 , n1}. To this

end, the system (14)-(15) provides two identifying conditions. The last two equations necessary

to identify the remaining parameters are obtained from minimizing the following unconditional

expectation:

min
{A, B}

E−∞

{
(LHS)2

}
= min

{A, B}
E−∞

{(
(n0 + n1x) e

A+Bx − θ

)2
}
. (17)

The logic of this condition is as follows. Recall that we have set the RHS to zero above. Here, we

are choosing the parameters so that the LHS is as close to zero as possible (in a least-squares error

metric). Collin-Dufresne and Goldstein (2005) show that this approach provides a very accurate

approximation to the problem solution.
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We note that the Campbell-Shiller approximation is similar in that their first two equations are

as in (14)-(15) above. However, their last two equations satisfy10

0 =
[
LHS(x)

]∣∣∣∣
x=E−∞ [x]

0 =
∂

∂x

[
LHS(x)

]∣∣∣∣
x=E−∞ [x]

.

2.2 Risk-Free Rate and Risk-Neutral Dynamics

When ρ, γ �= 1, Proposition 1 in Appendix A gives the pricing kernel as

Π(t) = e
t
0 ds((θ−1)I(xs )−1−βθ) βθe−γct I(xt)

θ−1 , (18)

which has dynamics

dΠ
Π

= −rdt− γ
√

ΩdzC + (θ − 1)Bσx

√
Ω dzx +

[
Iθ−1(x+ ν̃)
Iθ−1(x)

− 1
]
dN − λJ I(x)θ−1dt , (19)

where the risk-free rate r is given by Proposition 2 in Appendix A (ρ, γ �= 1):

r = r0 + ρx (20)

r0 ≡ β + ρμ
C
− γ

2
Ω(1 + ρ) − σ2

x
Ω(1 − θ)

B2

2
− λ(χP

(θ−1)B
− 1 ) +

θ − 1
θ

λ(χP
θB

− 1 ) . (21)

Given the pricing kernel dynamics, it is straightforward to determine the risk-neutral dynamics.

We find

dc =
(
μC + x− Ω

(
1
2

+ γ

))
dt+

√
Ω dzQ

C
(22)

dδ =
(
μ

D
+ φx− σ

D
Ω
(

1
2
σ

D
+ ρ

C,D
γ

))
dt+ σ

D

√
Ω
(
ρ

C,D
dzQ

C
+
√

1 − ρ2
C,D

dzQ
D

)
(23)

dx =
(−κxx− (1 − θ)Bσ2

x
Ω
)
dt + σx

√
Ω dzQ

x
+ ν̃ dN , (24)

where the three Brownian motions {dzQ
C
, dzQ

x
, dzQ

Ω
} are uncorrelated, and the Q-intensity of the

Poisson jump process N is

λQ = λχP
(θ−1)B

. (25)

Furthermore, the Q-probability density of the jump amplitudes is

πQ(ν̃ = ν) = π(ν̃ = ν)
Iθ−1(x+ ν)

E [Iθ−1(x+ ν̃)]

=
1√
2πσ2

ν

exp
{(

− 1
2σ2

ν

)[
ν − μν − (θ − 1)Bσ2

ν

]2}
. (26)

10Note that E−∞ [x] �= 0 since we have written the state vector dynamics without compensator terms on the jumps.
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That is,

ν̃Q � N(μQ
ν
, σν )

μQ
ν

= μν + (θ − 1)Bσ2
ν
. (27)

2.3 Dividend Claim

Define V (D, x) as the claim to dividend. By construction, the expected return under the risk

neutral measure is the risk-free rate:

EQ
t

[
dV +Ddt

V

]
= r dt. (28)

It is convenient to define the price-divided ratio ID ≡ V
D . Equation (28) can thus be written as

r − 1
ID

=
1
dt

EQ

[
dV

V

]
=

1
dt

EQ

[
dID

ID
+
dD

D
+
dD

D

dID

ID

]
. (29)

We look for a solution of the form

ID(x) = eF+Gx . (30)

We use the risk-neutral dividend and x-dynamics (23)-(24) to re-write equation (29) as

r − 1
ID

= μ
D

+ φx− γρ
C,D

σ
D
Ω − κxxG− (1 − θ)BGσ2

x
Ω +

1
2
G2σ2

x
Ω + λQ(χQ

G
− 1) , (31)

where we have defined

χQ
a
≡ EQ

[
eaν
]

= eaμQ
ν + 1

2
a2σ2

ν . (32)

As above, we find an approximate solution for ID by moving r to the RHS, multiplying both sides

by ID, and adding (m0 +m1x) ID to both sides. These calculations give

LHS = (m0 +m1x) e
F+Gx − 1 (33)(

1
ID

)
RHS = (m0 +m1x) − r + μ

D
+ φx− γρ

C,D
σ

D
Ω − κxxG

−(1 − θ)BGσ2
x
Ω +

1
2
G2σ2

x
Ω + λQ(χQ

G
− 1) . (34)

From equation (20), r = r0 + ρx. Hence, if we approximate the RHS to be identically zero, and

then collect terms linear in and independent of x, respectively, we obtain the system:

−m0 = −r0 + μ
D
− γρ

C,D
σ

D
Ω − (1 − θ)BGσ2

x
Ω +

1
2
G2σ2

x
Ω + λQ(χQ

G
− 1) (35)

−m1 = −ρ− κxG+ φ . (36)

10



Equations (35)-(36) should be interpreted as specifying the {m0 ,m1} in terms of G. In turn, we

identify {F,G} by minimizing the unconditional squared error:

min
{F, G}

E−∞

[
(LHS)2

]
= min

{F, G}
E−∞

[(
(m0 +m1x) e

F+Gx − 1
)2
]
. (37)

2.4 The Equity Premium

The general form of the risk premium on the risky asset is given in equation (102) of Proposition

2 in Appendix A. Here, such expression simplifies to

Equity Premium = γ σ
D
ρ

C,D
Ω + (1 − θ)BGσ2

x
Ω − λ [ χP

G+(θ−1)B
− χP

G
− χP

(θ−1)B
+ 1 ] , (38)

where the transform χP
• was previously defined in equation (16).

In equation (38), the second and third terms represent the risk premia on the diffusive and jump

components of expected growth risk. We note that in the constant relative risk aversion (CRRA)

case, γ equals 1/Ψ, and therefore θ = 1. As such, the last two terms in equation (38) vanish and

the CRRA equity premium reduces to (γ σDρC,D). Thus, as in BY, with CRRA utility a persistent

endowment process cannot generate a realistic equity premium, let alone explain out-of-the-money

put prices.

On the other hand, in the KPEZ case with Ψ > 1, the risk premium on expected growth

risk is positive. As in BY, the mechanism for this results is as follows. When Ψ > 1, the inter-

temporal substitution effect dominates the wealth effect. Thus, in response to higher expected

growth, agents buy more assets, and consequently the wealth-to-consumption ratio increases. That

is, in this scenario the coefficient B in the wealth-to-consumption-ratio function (13) is positive. In

addition, due to the effect of leverage the coefficient G in the price-to-dividend ratio function (30)

is larger than B. Hence, the last two terms in equation (38) are positive. Intuitively, with KPEZ

utility and Ψ > 1, the stock exhibits positive returns when the state is good, while it performs

poorly in the bad state. As such, investors demand a higher risk premium.

2.5 Valuing Options on the Dividend Claim

The date-t value of an European call option on the dividend claim Vt = Dte
F+Gxt , with maturity

T and strike price K, is given by

C(Vt , xt ,K, T ) = EQ
t

[
e
− T

t
r(xs ) ds (VT −K)+

]
. (39)
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We note that our model is affine. As such, the option pricing problem can be solved using standard

inverse Fourier transform techniques (see, e.g., Bates (1996), Duffie et al. (2000), and Heston

(1993)). In Appendix B, we report a semi-closed form formula for the price of an option given in

equation (39).

2.6 Model Calibration

To illustrate the implications of the model, we consider a realistic calibration of its coefficients.

In the next section, we will show that our main result is robust to a wide range of parameter

calibrations.

1. Consumption and Dividend Dynamics:

To calibrate the consumption process in equations (6), we rely on the model coefficients

reported in BY. BY use the convention to express their parameters in decimal form with

monthly scaling. Here, instead, we express them in decimal form with yearly scaling. After

adjusting for differences in scaling, we fix μ
C

= 0.018 and Ω = 0.00073.

We note that corporate leverage justifies a higher expected growth rate in dividends than in

consumption (see, e.g., Abel (1999)). This can be modeled by setting μ
D
> μ

C
and φ > 1 in

equation (7). As such, we fix μ
D

= 0.025 and φ = 1.5. We note the difference with BY, who

assume μD = μC and model leverage entirely through the φ coefficient, which they choose to

be in the 3-3.5 range. We use σ
D

= 4.5, the same value of BY. Finally, we allow for a 60%

correlation between consumption and dividend, i.e., ρ
C,D

= 0.6.

In the x-dynamics (3), we use κx = 0.3. This is in line with the value used by BY (if we

adjust for differences in scaling and we map the BY AR(1) ρ coefficient into the κx of our

continuous-time specification, we find κx = 0.2547). We fix σx = 0.4472, a value similar to,

but slightly lower than that of BY (i.e., 0.5280, after adjusting for differences in scaling). A

slightly lower value of σx is justified by the fact that part of the variance of the x process is

driven by the jump component, which is absent in the BY model.

Finally, we calibrate the Poisson jump intensity process to yield, on average, one jump every

fifty years, i.e., λ = 0.02. This is consistent with the intuition that our jump process captures

extreme and very rare price fluctuations such as the 1987 market crash. Further, we fix

μν = −0.094. This approach implies that one jump of average size produces a fall in market

prices of approximately 23%, which is in line with the 24.5% drop in the S&P 500 index

12



observed in between the close of Thursday, October 15, and Monday, October 19, 1987.

Finally, we fix the standard deviation of the jump size to σν = 0.015.

2. Preferences:

We use a time discount factor coefficient β = 0.023.

Mehra and Prescott (1985) argue that reasonable values of the relative risk aversion coefficient

γ are smaller than 10. BY consider γ = 7.5 and 10. Bansal et al. (2004) report γ = 7.1421.

As such, we fix γ = 7.5 in our baseline case.

The magnitude of the coefficient ρ is more controversial. Hall (1988) argues that the EIS is

below 1. However, Attanasio and Weber (1989), Bansal et al. (2004), Guvenen (2001), Hansen

and Singleton (1982), among others, estimate the EIS to be in excess of 1. In particular,

Attanasio and Weber (1989) find estimates that are close to 2. Bansal et al. (2004) estimate

the EIS to be in the 1.5-2.5 region, and fix it at 2 in their application. Here we follow Bansal

et al. (2004) and use Ψ = 1/ρ = 2 for our baseline case.

In the next section, we document the sensitivity of our results to different values of γ and Ψ.

3. Initial Conditions:

In the plots below, we fix the state variable x at its steady-state mean value x0 = μνλ/κx .

We note that x0 is nearly zero in our calibration, i.e., it is very close to the steady-state mean

value of x in the BY model. Further, we emphasize that our results are robust to the value

assigned to the state x. Specifically, when option prices are computed at values of x that are

within ± 3 standard deviations from the steady-state mean x0, we obtain implied volatility

plots that are very similar to those reported below.

2.7 Simulation Results

We note that our calibration yields realistic values of the risk-free rate, the equity premium, and

the price-dividend ratio. Specifically, in the baseline case we find that the steady-state real risk-free

rate is 0.93%, while the equity premium predicted by the model is 5.76%. Further, we find that

the steady-state price-dividend ratio is 20.

Most importantly, the model produces a volatility smirk that is consistent with post-1987 market

crash observation. Figure 1 reports implied volatilities for options on the S&P 500 index with one

month to maturity for the baseline case. The main result is that put options that are 10% out-of-

the-money have a 23.8% implied volatility, which is roughly consistent with the evidence in, e.g.,

13



Bakshi et al. (2003), Bates (2000), Eraker (2004), Foresi and Wu (2003), and Pan (2002). Further,

at-the-money options have a 13.8% implied volatility. As such, the model predicts a realistic 10%

volatility smirk, as measured by the difference in 10%-out-of-the-money and at-the-money implied

volatilities.
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Figure 1: The plot depicts the implied volatility smirk for S&P 500 options with one month to
maturity. The model coefficients are set equal to the baseline values.

2.8 Sensitivity Analysis

Here we investigate the sensitivity of our findings to changes in the underlying parameters:

Jump Coefficients

Figure 2 illustrates the sensitivity of our results to the jump coefficients λ and μν . In the left panel

we lower the jump intensity coefficient λ to 0.01, which corresponds to an expected arrival rate of

one jump every 100 years. Interestingly, we find that most of the volatility smirk remains intact.

As intuition would suggest, increasing the jump intensity to 0.03, i.e., one jump every 33 years,

makes our results much stronger.
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In the right panel, we illustrate the effect of a one-standard-deviation perturbation of the average

jump size coefficient. We note that in the model a value of μν = (−0.094 + σν ) = −0.079 implies

that a jump of average size determines a 20.6% fall in stock prices, which is smaller than the 24.5%

drop in the S&P 500 index observed in between the close of Thursday, October 15, and Monday,

October 19, 1987.11 Still, the model predicts a steep volatility smirk.
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Figure 2: The plot illustrates the sensitivity of the implied volatility smirk to the agent’s preferences
coefficients, i.e., the jump intensity coefficient λ and the average jump size coefficient μν . Implied
volatilities are from S&P 500 options with one month to maturity.

Preferences Coefficients

Figure 3 illustrates the sensitivity of our results to the preferences coefficients γ and Ψ ≡ 1/ρ. The

left panel shows that when the coefficient of risk aversion is lowered to 5, most of the volatility

smirk remains intact. Further, we note that when γ = 10 (the upper bound of the range that

Mehra and Prescott (1985) consider reasonable) the volatility smirk becomes considerably steeper.
11Note, however, that the drop in prices between the close of Friday October 16 and Monday October 19 was

20.46%. Furthermore, the S&P 500 closing prices over that week are as follows. 1987-10-13: $314.52; 1987-10-14:
$305.23; 1987-10-15: $298.08; 1987-10-16: $282.94; 1987-10-19: $225.06; 1987-10-20: $236.84.
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The right panel illustrates the sensitivity of the volatility smirk to the EIS coefficient. As noted

previously, researchers have obtained a wide array of estimates for this parameter. Our base case

estimate of ρ = 2 is consistent with that of Bansal et al. (2004). Here we demonstrate that even

lower estimates for ρ, such as 1.25 and 1.5, still produce steep volatility smirks.
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Figure 3: The plot illustrates the sensitivity of the implied volatility smirk to the agent’s preferences
coefficients, i.e., the coefficient of relative risk aversion γ and the EIS Ψ = 1

ρ . Implied volatilities
are from S&P 500 options with one month to maturity.

3 Bayesian Updating of Jump Beliefs

In this section, we examine whether our model can also explain the stark change in the implied

volatility pattern that has maintained since the 1987 market crash. In the previous section, we

assumed that the specified parameters of the model are known to the agent. In what follows, we

will assume that, because stock market crashes are so rare, the agent does not know the exact

distribution of the jump size. As such, she will update her prior beliefs about the distribution of

jump size after observing a crash. Note that this Bayesian updating only occurs at crash dates. As

such, the effect on the implied volatility pattern can be extremely long-lived.
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We specify the model so that, prior to the first crash, given the agent’s information set, the

distribution of the jump size ν̃1 is a normal random variable whose mean value μ̄ν is itself an

unknown quantity, and is selected from a normal distribution:

ν̃1|μ̄ν � N(μ̄ν , σ̄
2
ν

) (40)

μ̄ν � N(¯̄μ
ν
, ¯̄σ 2

ν
) . (41)

That is, before the first crash occurs, the agent’s prior is

ν̃1 � N(¯̄μ
ν
, σ̄ 2

ν
+ ¯̄σ 2

ν
) . (42)

After the first crash occurs and the agent observes the realization of ν̃1, she updates her beliefs

about the distribution of μ̄ν via the projection theorem:

E[μ̄ν |ν̃1 ] = E[μ̄ν ] +
Cov(μ̄ν , ν̃1)

Var(ν̃1)
( ν̃1 − E[ν̃1 ] )

= ¯̄μ
ν

(
σ̄ 2

ν

σ̄ 2
ν

+ ¯̄σ 2
ν

)
+ ν̃1

(
¯̄σ 2

ν

σ̄ 2
ν

+ ¯̄σ 2
ν

)
(43)

Var[μ̄ν |ν̃1 ] = Var(μ̄ν ) − Cov(μ̄ν , ν̃1)
2

Var(ν̃1)

=
σ̄ 2

ν
¯̄σ 2

ν

σ̄ 2
ν

+ ¯̄σ 2
ν

. (44)

Hence, the agent sees the second crash size as distributed normally

ν̃2 � N
(
E[μ̄ν |ν̃1], σ̄

2
ν

+ Var[μ̄ν |ν̃1 ]
)
. (45)

We see from equation (43) that if the realization of ν̃1 is substantially worse than the pre-crash

estimate μ̄ν , then, after the first crash, the expected size of the next crash is considerably worse.

Further, we emphasize that the random variable μ̄ν is chosen only once at date-0, and hence

uncertainty about its value is reduced at the crash date, as noted in equation (44). Indeed, prior to

the crash the uncertainty about the value of μ̄ν is ¯̄σ 2
ν
, as can be seen from equation (41). However,

after the crash, this uncertainty reduces to σ̄ 2
ν

¯̄σ 2
ν

σ̄ 2
ν +¯̄σ 2

ν

= σ̄ 2
ν

1+
σ̄ 2

ν
¯̄σ 2
ν

. Below, we will parameterize the model

so that ¯̄σ 2
ν
� σ̄ 2

ν
. As such, most of the uncertainty regarding the value of μ̄ν is determined from the

first crash. While the agent would typically continue to update her beliefs about the distribution of

μ̄ν when subsequent crashes occur, given the parametrization of the model we choose below, there

would be little change in the subsequent posterior beliefs. Therefore, and because it considerably

simplifies the analysis, we make the assumption that the updating of jump beliefs occurs only once,
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when the agent observes a jump for the first time. Effectively this approach implies that the pre-

and post-crash jump distributions are given by, respectively:

ν̃1 � N(¯̄μ
ν
, σ̄ 2

ν
+ ¯̄σ 2

ν
) (46)

ν̃j � N

{[
¯̄μ

ν

(
σ̄ 2

ν

σ̄ 2
ν

+ ¯̄σ 2
ν

)
+ ν̃1

(
¯̄σ 2

ν

σ̄ 2
ν

+ ¯̄σ 2
ν

)]
, σ̄ 2

ν
+

σ̄ 2
ν
¯̄σ 2

ν

σ̄ 2
ν

+ ¯̄σ 2
ν

}
j = 2, 3, , ....∞ . (47)

3.1 Model Solution with Bayesian Updating

We have assumed that the agent updates her beliefs only once, when she observes the first jump.

As such, we only need to consider two cases when solving our problem. First, the case in which the

agent is aware that stock market prices can jump, but she has not yet seen a jump occur. Second,

the case in which the agent has witnessed a jump in market prices and therefore has updated her

beliefs on the jump distribution. Intuitively, we can think of the first case as a description of the

pre-1987 crash economy, while the second one depicts the post-1987 regime.

Once the agent has updated her beliefs in reaction to the occurrence of the first jump, the post-

crash problem reduces to the setting without Bayesian updating that we have already considered in

Sections 2.1-2.3. As such, the solution to the problem is unchanged, except that the mean μν and

variance σ2
ν

in the jump distribution (5) are replaced by those of the post-crash jump distribution

(47).

When solving the pre-crash problem, instead, we need to account for the fact that the agent

rationally anticipates that the occurrence of a crash will determine an updating of the prior on

the jump coefficients. To this end, we proceed as follows: As before, we exogenously specify

the aggregate consumption and dividends dynamics as in equations (3)-(7). However, we now

assume that the pre-crash jump size distribution is given by equation (46). Further, we consider a

representative agent’s whose preferences over the consumption process {Ct} are represented by a

utility index U(t) that satisfies the recursive equation (8).

Proposition 1 in Appendix A still applies. As such, when ρ, γ �= 1 the pre-crash value function

Jpre has the form:

Jpre =
ec(1−γ)

1 − γ
βθ Ipre(x)

θ , (48)

where the price-consumption ratio Ipre satisfies the following equation

0 = Ipre

(
(1 − γ)μC + (1 − γ)x− γ

2
(1 − γ)Ω − βθ

)
− κxxθIpre,x

+
1
2
σ2

x
Ωθ

[
(θ − 1)

(
Ipre,x

Ipre

)2

Ipre + Ipre,xx

]
+ λIpre E

ν1

[
Iθ

post
(x+ ν̃1)

Iθ
pre

(x)
− 1

]
+ θ . (49)
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We note the effect of Bayesian updating on the pre-crash price-consumption ratio Ipre . The agent

anticipates that if a crash occurs, the price-consumption ratio will take the post-crash form

Ipost = eÃ+B̃x , (50)

where, for each different possible realization of ν̃1, the coefficients Ã ≡ A(ν̃1) and B̃ ≡ B(ν̃1)

minimize the squared error in equation (17).

An approach similar to that followed in Section 2.1 delivers an approximate solution of the form

Ipre(x) = eApre+Bprex . (51)

Specifically, we re-write equation (49) as

(p0 + p1x) e
Apre+Bprex − θ − λe(1−θ)(Apre+Bprex) E

ν1

[
eθ(Ã+B̃(x+ν1 ))

]
= (p0 + p1x) e

Apre+Bprex

+eApre+Bprex

[
(1 − γ)μ

C
+ (1 − γ)x− γ

2
(1 − γ)Ω − βθ − κxxθBpre +

1
2
σ2

x
Ω(θBpre)

2 − λ

]
. (52)

We set the RHS of (52) to zero and obtain a system of two equations, which identify the {p0 , p1}
coefficients in terms of Bpre :

−p0 = (1 − γ)μ
C
− γ

2
(1 − γ)Ω − βθ +

1
2
σ2

x
Ω(θBpre)

2 − λ (53)

−p1 = (1 − γ) − κxBpreθ , (54)

We then choose {Apre , Bpre} by minimizing the unconditional squared error:

min
{Apre , Bpre}

E−∞

{(
(p0 + p1x) e

Apre+Bprex − θ − λe(1−θ)(Apre+Bprex)) E
ν1

[
eθ(Ã+B̃(x+ν1))

] )2
}
. (55)

Next, we derive the dynamics of the pre-crash pricing kernel:

dΠ1

Π1

= −rpredt− γ
√

Ωdz
C

+ (θ − 1)Bpreσx

√
Ω dzx

+

[
e(θ−1)(Ã+B̃(x+ν1))

e(θ−1)(Apre+Bprex)
− 1

]
dN − λE

ν1

[
e(θ−1)(Ã+B̃(x+ν1 ))

e(θ−1)(Apre+Bprex)
− 1

]
dt , (56)

where the pre-crash risk-free rate rpre is no longer an affine function of x:

rpre = rpre,0 + ρx− λ
(1 − θ)
θ

e−θ(Apre+Bprex) E
ν1

[
eθ(Ã+B̃(x+ν1))

]
−λ e(1−θ)(Apre+Bprex) E

ν1

[
e(θ−1)(Ã+B̃(x+ν1 ))

]
rpre,0 = β + ρμ

C
− γ

2
Ω(1 + ρ) − 1

2
σ2

x
Ω(1 − θ)B2

pre
+
λ

θ
. (57)
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Further, we obtain pre-crash risk-neutral dynamics:

dc =
(
μ

C
+ x− Ω

(
1
2

+ γ

))
dt+

√
Ω dzQ

C
(58)

dδ =
(
μ

D
+ φx− σ

D
Ω
(

1
2
σ

D
+ ρ

C,D
γ

))
dt+ σ

D

√
Ω
(
ρ

C,D
dzQ

C
+
√

1 − ρ2
C,D

dzQ
D

)
(59)

dx =
(−κxx− (1 − θ)Bpreσ

2
x
Ω
)
dt+ σx

√
Ω dzQ

x
+ ν̃1 dN , (60)

where the three Brownian motions {dzQ
C
, dzQ

x
, dzQ

Ω
} are uncorrelated, and the Q-intensity of the

Poisson jump process N is

λQ = λ e(1−θ)(Apre+Bprex) E
ν1

[
e(θ−1)(Ã+B̃(x+ν1 ))

]
. (61)

Furthermore, the Q-probability density of the jump amplitudes is

πQ(ν̃1 = ν1) = π(ν̃1 = ν1)
e(θ−1)(A(ν1 )+B(ν1 )(x+ν1 )

E
ν1

[
e(θ−1)(Ã+B̃(x+ν1 ))

] . (62)

3.2 Pre-Crash Dividend Claim

We denote the pre-crash claim to dividend by Vpre(D, x). By construction, its expected return

under the risk neutral measure is the risk-free rate:

EQ
t

[
dVpre +Ddt

Vpre

]
= rpre dt. (63)

We proceed as in Section 2.3. That is, we define the pre-crash price-dividend ratio ID
pre

≡ Vpre

D and

then look for a solution of the form

ID
pre

(x) = eFpre+Gprex . (64)

We combine equations (63)-(64) with the risk-neutral dynamics (59)-(60) to obtain:

rpre −
1
ID

pre

= μ
D

+ φx− γρ
C,D

σ
D
Ω − κxxGpre − (1 − θ)BpreGpreσ

2
x
Ω +

1
2
G2

pre
σ2

x
Ω

+λQe−(Fpre+Gprex) EQ
ν1

[
eF̃+G̃(x+ν1 )

]
− λQ , (65)

As above, we find an approximate solution for ID
pre

by moving rpre to the RHS, arranging the non-

affine terms to the LHS, multiplying both sides by ID
pre

, and adding (q0 + q1x) ID
pre

to both sides.

These calculations give

LHS = (q0 + q1x) e
Fpre+Gprex − 1 − λ

(1 − θ)
θ

e(Fpre+Gprex)−θ(Apre+Bprex) E
ν1

[
eθ(Ã+B̃(x+ν1))

]
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−λ e(Fpre+Gprex)+(1−θ)(Apre+Bprex) E
ν1

[
e(θ−1)(Ã+B̃(x+ν1 ))

]
− λQ EQ

ν1

[
eF̃+G̃(x+ν1)

]
(66)(

1
ID

pre

)
RHS = (q0 + q1x) − rpre,0 + μ

D
− σ

D
ρ

C,D
γ Ω − (1 − θ)BpreGpreσ

2
x
Ω +

1
2
G2

pre
σ2

x
Ω − λQ

+φx− κxxGpre − ρx , (67)

where the constant rpre,0 is defined in equation (57). We note the effect of Bayesian updating on the

pre-crash price-dividend ratio ID
pre

. The agent anticipates that if a crash occurs the price-dividend

ratio will take the post-crash form

ID
post

= eF̃+G̃x , (68)

where, for each possible realization of ν̃1 , the coefficients F̃ ≡ F (ν̃1) and G̃ ≡ G(ν̃1) minimize the

squared error in equation (37).

We approximate the RHS to be identically zero, and then collect terms linear in and independent

of x, respectively. We obtain a system of two equations that identify {q0 , q1} in terms of Gpre :

−q0 = −rpre,0 + μ
D
− σ

D
ρ

C,D
γ Ω − (1 − θ)BpreGpreσ

2
x
Ω +

1
2
G2

pre
σ2

x
Ω − λQ (69)

−q1 = φ− κxGpre − ρ . (70)

In turn, we identify {Fpre , Gpre} by minimizing the unconditional squared error:

min
{Fpre , Gpre}

E−∞

[
(LHS)2

]
. (71)

3.3 The Pre-Crash Equity Premium

In the pre-crash economy, the expression for the risk premium on the risky asset simplifies to:

Equity Premium pre = γ σDρC,D Ω + (1 − θ)BpreGpreσ
2
x
Ω

− λ I(1−θ)
pre

(ID
pre

)−1 E
ν1

[
e(θ−1)(Ã+B̃(x+ν1))+F̃+G̃ (x+ν1)

]
+ λ I(1−θ)

pre
E

ν1

[
e(θ−1)(Ã+B̃(x+ν1 ))

]
+ λ (ID

pre
)−1 E

ν1

[
eF̃+G̃(x+ν1 )

]
− λ .

(72)

where Ipre and ID
pre

were previously defined in equations (51) and (64), respectively.

The intuition for this formula is similar to that discussed previously in Section 2.4. That is, the

first term in equation (72) is identical to the risk premium in a model with CRRA. The following

terms are the risk premia on diffusive and jump components of expected growth risk. Again, in

the KPEZ with Ψ > 1 case, the agent demands a positive premium on expected growth risk, which

increases the risk premium on the risky asset.
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3.4 Valuing Options on the Dividend Claim

The option pricing problem for the pre-crash economy is outside of the affine class. Thus, we

lack an analytical formula for the option price. However, the problem is easily handled via Monte

Carlo simulation. Specifically, we simulate two antithetic samples of 50,000 paths of the dividend

δ and the process x from the Q-dynamics (23) and (24). For each simulated case, we use the

x-path from time t to maturity T to approximate the discount factor e−
T

t
r(xs )ds. Further, we

use the simulated value of x
T

to obtain the price-dividend ratio ID
pre

(T ) = eFpre+Gprex
T . Next,

we compute the simulated value of the contingent claim Vpre(T ) = D
T
ID

pre
(T ), where D = exp δ.

Finally, we average across the simulated discounted realizations of |Vpre(T ) −K|+ to approximate

the expectation in (39).

3.5 Model Calibration

We note that the requirements imposed on this model is considerably higher than in the previous

section in that here we want to explain not only the post-1987 volatility smirk, but also the regime

shift in option prices that was observed immediately after the 1987 crash. As such, we consider a

slightly different baseline calibration. We argue that the coefficient values that we use below are

still consistent with observation and similar to those used in, e.g., BY and Bansal et al. (2004).

1. Consumption and Dividend Dynamics:

In the consumption dynamics (6), we fix μ
C

= 0.018 and Ω = 0.00078.

For the dividend process (7), we use μ
D

= 0.018, φ = 2.1, and σ
D

= 3.5. We fix the correlation

between shocks to dividend and consumption at 25%, i.e., ρC,D = 0.25.

In the x-dynamics (3), we use κx = 0.34 and σx = 0.6325. We fix the Poisson jump intensity

process at λ = 0.007, which on average corresponds to less than one jump every hundred

years.

In equations (46)-(47), we fix ¯̄μ
ν

= −0.011 and we assume that at the time of the crash ν̃1

takes value −0.094. Further, we set σ̄ν = 0.0023 and ¯̄σν = 0.022.

The intuition for this calibration is as follows. Before a crash occurs, the agent does not fully

appreciate the extent to which prices can fall. As such, her prior is that the jump size ν̃1 has

nearly zero mean, ¯̄μ
ν

= −0.011. The agent realizes however that there is considerable uncer-

tainty about the magnitude of a possible jump, as reflected by the large standard deviation

of ν̃1, which equals
√
σ̄ 2

ν
+ ¯̄σ 2

ν
= 0.0221.
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Suddenly, she unexpectedly observes a crash of the proportion of the 1987 event. When that

happens, she updates her beliefs about the post-crash jump distribution according to (47). As

such, the mean and standard deviation of the post-crash jump size ν̃2 become, respectively,

¯̄μ
ν

(
σ̄ 2

ν

σ̄ 2
ν

+ ¯̄σ 2
ν

)
+ ν̃1

(
¯̄σ 2

ν

σ̄ 2
ν

+ ¯̄σ 2
ν

)
= −0.0931 (73)√

σ̄ 2
ν

+
σ̄ 2

ν
¯̄σ 2

ν

σ̄ 2
ν

+ ¯̄σ 2
ν

= 0.0032 . (74)

That is, immediately after the crash the agent updates her prior on the average jump size in

a way that reflects the possibility of a large, although very rare, stock price fall.

Further, we note that the occurrence of a crash determines a stark increase in the precision

of the agent’s belief about the jump size. Specifically, the standard deviation of the post-

crash jump size is over seven times smaller than its pre-crash value. As discussed above, this

observation is consistent with the intuition that a single event of the proportion of the 1987

market crash can generate most of the updating of the agent’s beliefs.

2. Preferences:

We use a time discount factor coefficient β = 0.017. We fix the coefficient of relative risk

aversion at γ = 10. Finally, we follow Bansal et al. (2004) and we use Ψ = 1/ρ = 2 for our

baseline case.

3. Initial Conditions:

In the plots below, we fix the state variable x at the its steady-state mean value. In the

pre-crash economy, such value is xpre,0 = ¯̄μ
ν
λ/κx , while in the post-crash economy it is

xpost,0 =
[
¯̄μ

ν

(
σ̄ 2

ν

σ̄ 2
ν +¯̄σ 2

ν

)
+ ν̃1

(
¯̄σ 2

ν

σ̄ 2
ν +¯̄σ 2

ν

)]
λ/κx . We also confirmed, however, that our results are

robust to the choice of a wide range of values for the state x.

3.6 Simulation Results

We note that our calibration yields realistic values of the risk-free rate and the equity premium,

both pre- and post-crash. Specifically, we find that the pre-crash steady-state real risk-free rate is

1.33%, while the equity premium predicted by the model is 4.48%. Post-crash, the steady-state

value of the risk-free rate drops to 0.7%, while the equity premium becomes 6.4%. Further, the

calibration matches other aspects of the economy. For instance, we find that the steady-state value
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of the price-dividend ratio is around 27, a value that drops to approximately 19 in the post-crash

economy.

Rubinstein (1994) argues that until 1987 the Black-Scholes formula worked quite well to explain

S&P 500 index option prices. Similarly, Bates (2000) notes that pre-crash implied volatilities from

out-of-the-money puts on the S&P 500 futures where almost invariably higher than those from

at-the-money options. However, pre-crash implicit volatilities from out-of-the-money calls were

sometimes below and sometimes above those from at-the-money options. As such, pre-crash implied

volatilities displayed either a mild ‘smile’ or tenuous ‘smirk’ pattern. Our calibration produces a

mild smirk that is qualitatively consistent with the Bates evidence. As we illustrate in Figure 4,

the difference between the implied volatilities from 10%-out-of-the-money and at-the-money puts

is approximately 3%.

Immediately after the crash, however, the agent updates her beliefs about the expected value of

the jump size. As such, the volatility smirk steepens dramatically. In Figure 4, we show that post-

1987 the difference between the implied volatilities from 10%-out-of-the-money and at-the-money

puts becomes nearly 10%.

Finally, we note a drawback of our calibration. During the two weeks after the ‘Black Monday’

in October 1987, the 3-month Treasury bill rate was on average 1.5% lower than the same rate

during the two weeks preceeding the crash.12 Consistent with observation, our model predicts a

fall in the risk-free rate at the time of a market crash. However, the magnitude of the drop is larger

than what was observed in October 1987. To study this model implication, we use data from the

COMPUSTAT database and compute the price-dividend ratio for the S&P 500 index as of the end

of September 1987. We find it to be 36.24. Next, we infer the pre-crash value xt of the latent

process x (where t is the end of September 1987) by matching the pre-crash price-dividend ratio

predicted by the model with the value observed in the data:

ID
pre

(xt) = eFpre+Gprext ≡ 36.24 . (75)

Then, we use equation (57) to compute the change in the risk-free rate determined by a jump in x

from the pre-crash value xt to the post-crash level xt + ν̃1 . We find the jump in the risk-free rate

to be -5.2%.

Related, we can use our model to predict the drop in stock prices at the time of the 1987 crash.

We do so by following an approach similar to that we used above to determine the jump in the
12The bank discount rates on the 3M T-bill were as follows. 1987-10-05: 6.68; 1987-10-06: 6.55; 1987-10-07: 6.56;

1987-10-08: 6.69; 1987-10-09: 6.75; 1987-10-12: N.A.; 1987-10-13: 6.74; 1987-10-14: 7.19; 1987-10-15: 7.07; 1987-10-
16: 6.93; 1987-10-19: 6.39; 1987-10-20: 5.86; 1987-10-21: 5.60; 1987-10-22: 5.36; 1987-10-23: 5.29; 1987-10-26: 5.22;
1987-10-27: 5.23; 1987-10-28: 5.10; 1987-10-29: 5.03; 1987-10-30: 5.27.
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Figure 4: The plot depicts the implied volatility smirk pre- and post-1987 market crash. Implied
volatilities are from S&P 500 options with one month to maturity. The model coefficients are set
equal to the baseline values.

interest rate. That is, assuming that the level of the dividend is unaffected by the crash, the jump

in price around the crash event is given by

ID(xt + ν̃1)
ID

pre
(xt)

− 1 =
eF+G(xt+ν1)

eFpre+Gprext
− 1 , (76)

where xt is determined by equation (75) and ν̃1 is the jump in x at the time of the crash. The

model predicts a nearly fifty percent fall in the stock price, a drop twice as large as that observed

in 1987.

4 Conclusions

Prior to the stock market crash of 1987, the Black-Scholes model of option prices worked rather

well across all strikes. Since the crash, however, deep out-of-the-money S&P 500 put options have

become ‘expensive’ relative to the Black-Scholes benchmark. These observations motivate two

important questions. First, whether there exists a reasonable model for the endowment process
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and the preferences of agents that can explain the post-1987 SPX prices. Second, whether such a

model can also explain the stark change in the volatility smirk that has maintained since the 1987

market crash. These are the questions that we address in the paper.

Many researchers (e.g., Liu, Pan and Wang (2005)) have investigated the first of the two ques-

tions. In general, they conclude that the prices of these securities cannot be justified in a general

equilibrium setting if the representative agent is endowed with ‘standard preferences’. In this pa-

per, however, we demonstrate that the prices of these securities can be reconciled if the agent is

endowed with Epstein-Zin preferences and if the expected growth rate of the aggregate dividend

can experience (rare) jumps. We identify a realistic calibration of the model that simultaneously

matches the empirical properties of dividends, the equity premium, and the level of the risk-free

rate. Most importantly, we find that the agent, concerned with the possibility of a market crash,

is willing to pay a high premium to buy out-of-the-money put options and hedge downside risk.

Specifically, in our baseline calibration the implied volatility of 10% out-of-the-money put options

with one month to maturity is close to 24%. At-the-money options, instead, have an implied

volatility of approximately 14%. That is, consistent with empirical evidence we can generate a 10%

volatility smirk.

We then proceed to investigate the second question, namely, whether the model can also explain

the regime change observed in S&P 500 prices immediately after the 1987 market crash. We note

that an extreme event such as the 1987 market crash is likely to dramatically change the investor’s

perception about the nature of possible future market fluctuations. To formalize this intuition, we

extend the model to a Bayesian setting in which the agent uses the information on a jump in market

prices to update her belief about the expected magnitude of future jumps. Specifically, we assume

that the jump size is a normal random variable whose mean value is itself a normally distributed

random variable. The agent formulates a prior on the mean value of the jump size, and updates

her prior when she observes an extreme event such as the 1987 crash.

We find that the model can explain the time variation in the shape of the volatility smirk.

Specifically, we present simulation results in which the steepness of the pre-crash volatility smirk

(i.e., the difference between implied volatilities from 10%-out-of-the-money and at-the-money puts)

is approximately 3%, a number that is consistent with the pre-crash evidence reported in, e.g., Bates

(2000). At the same time, the occurrence of a jump triggers the updating of the agent’s beliefs

about the expected value of the jump size. As such, after the crash out-of-the-money put options

are perceived to be more valuable, and the volatility smirk becomes as steep as 10%, consistent

with the post-crash evidence.
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Our model shows that a single channel (a rare jump in consumption growth) suffices to reconcile

option and index prices. However, for the case with Bayesian updating, the model consistent with

pre- and post-crash data seems to predict a crash on the day of the event larger than what was

observed in 1987. We note that there are several channels available that would most likely improve

the fit on this dimension also. For instance, as in Collin Dufresne et al. (2003), we can allow for

Bayesian updating not only on the size of the jump, but also on its intensity, i.e., on the probability

that a jump will occur. Further, following BY we could model volatility as stochastic (possibly

with jumps). We leave these interesting extensions to future research.

5 Appendix A: Equilibrium Prices in a Jump-Diffusion Exchange
Economy with Recursive Utility

There are several formal treatments of stochastic differential utility and its implications for asset

pricing (see, e.g., Duffie and Epstein (1992a,b), Duffie and Skiadas (1994), Schroder and Skiadas

(1999, 2003), and Skiadas (2003)). For completeness, in this Appendix we offer a very simple infor-

mal derivation of the pricing kernel that obtains in an exchange economy where the representative

agent has a KPEZ recursive utility. Our contribution is to characterize equilibrium prices in an

exchange economy where aggregate output has particular jump-diffusion dynamics (Propositions 1

and 2).

5.1 Representation of Preferences and Pricing Kernel

We assume the existence of a standard filtered probability space (Ω,F , {Ft}, P ) on which there

exists a vector z(t) of d independent Brownian motions and one counting process N(t) =
∑

i 1{τi≤t}
for a sequence of inaccessible stopping times τi, i = 1, 2, . . ..13

Aggregate consumption in the economy is assumed to follow a continuous process, with sto-

chastic growth rate and volatility, which both may experience jumps:

d logCt = μC (Xt)dt+ σC (Xt)dz(t) (77)

dXt = μx(Xt)dt + σx(Xt)dz(t) + ν̃dN(t) . (78)

We note thatXt is a n-dimensional Markov process (we assume sufficient regularity on the coefficient

of the stochastic differential equation (SDE) for it to be well-defined, e.g., Duffie (2001) Appendix

B). In particular μx is an (n, 1) vector, σx is an (n, d) matrix and ν̃ is a (n, 1) vector of i.i.d. random
13We note that N(t) is a pure jump process by construction and hence is independent of z(t) by construction (in

the sense that their quadratic co-variation is zero).
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variable with joint density (conditional on a jump dN(t) = 1) of g(ν). We further assume that the

counting process has a (positive integrable) intensity λ(Xt) in the sense that N(t) − ∫ t
0 λ(Xs)ds is

a (P,Ft) martingale.

Following Epstein and Zin (1989), we assume that the representative agent’s preferences over

a consumption process {Ct} are represented by a utility index U(t) that satisfies the following

recursive equation:

U(t) =
{

(1 − e−βdt)C1−ρ
t + e−βdtEt

(
U(t+ dt)1−γ

) 1−ρ
1−γ

} 1
1−ρ

. (79)

With dt = 1, this is the discrete time formulation of KPEZ, in which Ψ ≡ 1/ρ is the EIS and γ is

the risk-aversion coefficient.

To simplify the derivation let us define the function

uα(x) =

{
x1−α

(1−α) 0 < α �= 1
log(x) α = 1 .

Further, let us define

g(x) = uρ(u−1
γ (x)) ≡

⎧⎪⎨⎪⎩
((1−γ)x)1/θ

(1−ρ) γ, ρ �= 1
uρ(ex) γ = 1, ρ �= 1

log((1−γ)x)
(1−γ) ρ = 1, γ �= 1 ,

where

θ =
1 − γ

1 − ρ
.

Then defining the ‘normalized’ utility index J as the increasing transformation of the initial utility

index J(t) = uγ(U(t)) equation (79) becomes simply:

g(J(t)) = (1 − e−βdt)uρ(Ct) + e−βdt g (Et [J(t+ dt)]) . (80)

Using the identity J(t+ dt) = J(t) + dJ(t) and performing a simple Taylor expansion we obtain:

0 = βuρ(Ct)dt − βg(J(t)) + g′(J(t)) Et [dJ(t)] . (81)

Slightly rearranging the above equation, we obtain a backward recursive stochastic differential

equation which could be the basis for a formal definition of stochastic differential utility (see Duffie

Epstein (1992), Skiadas (2003)):

Et[dJ(t)] = −βuρ(Ct) − βg(J(t))
g′(J(t))

dt . (82)
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Indeed, let us define the so-called ‘normalized’ aggregator function:

f(C, J) =
βuρ(C) − βg(J)

g′(J)
≡

⎧⎪⎨⎪⎩
βuρ(C)

((1−γ)J)1/θ−1 − βθJ γ, ρ �= 1
(1 − γ)βJ log(C) − βJ log((1 − γ)J) γ �= 1, ρ = 1

βuρ(C)

e(1−ρ)J − β
1−ρ γ = 1, ρ �= 1 .

(83)

We obtain the following representation for the normalized utility index:

J(t) = Et

(∫ T

t

f(Cs, J(s)) + J(T )
)
. (84)

Further, if the transversality condition limT→∞ Et(J(T )) = 0 holds, letting T tend to infinity,

we obtain the simple representation:

J(t) = Et

(∫ ∞

t

f(Cs, J(s))ds
)
. (85)

Fisher and Gilles (1999) discuss many alternative representations and choices of the utility index

and associated aggregator as well as their interpretations. Here we note only the well-known fact

that when ρ = γ (i.e., θ = 1) then f(C, J) = βuρ(C)− βJ and a simple application of Itô’s lemma

shows that

J(t) = Et

(∫ ∞

t

e−β(s−t)βuρ(Cs)ds
)
.

To obtain an expression for the pricing kernel note that under the assumption (which we main-

tain throughout) that an ‘interior’ solution to the optimal consumption-portfolio choice of the agent

exists, a necessary condition for optimality is that the gradient of the Utility index is zero for any

small deviation of the optimal consumption process in a direction that is budget feasible. More

precisely, let us define the utility index corresponding to such a small deviation by:

Jδ(t) = Et

(∫ ∞

t

f
(
C∗

s + δC̃(s), Jδ(s)
)
ds

)
.

Then we may define the gradient of the utility index evaluated at the optimal consumption process

C∗(t) in the direction C̃(t):

∇J(C∗
t ; C̃t) = lim

δ→0

Jδ(t) − J(t)
δ

= lim
δ→0

Et

[∫ ∞

t

f(C∗
s + δC̃(s), Jδ(s)) − f(Cs, J

δ(s))
δ

ds

]

= Et

[∫ ∞

t

fC(C∗
s , J(s))C̃s + fJ(Cs, J(s))∇J(C∗

s ; C̃s)ds
]
. (86)
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Assuming sufficient regularity (essentially the gradient has to be a semi-martingale and the transver-

sality condition has to hold: limT→∞ Et[e
T

t
fJ (Cs,Js)ds∇J(C∗

T ; C̃T ) = 0), a simple application of the

generalized Itô-Doeblin formula gives the following representation:

∇δJ(C∗
t ; C̃t) = Et

(∫ ∞

t

e
s

t
fJ (Cu,Ju)du

fC(Cs, Js)C̃sds

)
. (87)

This shows that

Π(t) = e
t
0 fJ (Cs,Js)dsfC(Ct, Jt) (88)

is the Riesz representation of the gradient of the normalized utility index at the optimal consump-

tion. Since a necessary condition for optimality is that ∇J(C∗
t ; C̃t) = 0 for any feasible deviation

C̃t from the optimal consumption stream C∗
t , we conclude that Π(t) is a pricing kernel for this

economy.14

5.2 Equilibrium Prices

Assuming equilibrium consumption process given in (77)-(78) above we obtain an explicit charac-

terization of the felicity index J and corresponding pricing kernel Π.

For this we define the operator for any h(·) : R
n − R:

J h(x) =
∫
. . .

∫
h(x+ ν)
h(x)

g(ν)dν1 . . . dνn − 1

and the standard Dynkin operator:

Dh(x) = hx(x)μx(x) +
1
2
trace(hxxσx(x)σx(x)�) ,

where hx is the (n, 1) Jacobian vector of first derivatives and hxx denotes the (n, n) Hessian matrix

of second derivatives. with these notations, we find:

Proposition 1 Suppose I(x) : R
n → R solves the following equation:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 = I(x)
(
(1 − γ)μ

C
(x) + (1 − γ)2 ||σ

C
(x)||2
2 − βθ

)
+

DI(x)θ

I(x)(θ−1) + (1 − γ)θσC (x)σx(x)�Ix(x) + θ + I(x)λ(x)J I(x)θ for ρ, γ �= 1
0 = I(x) ((1 − ρ)μ

C
(x) − β) + I(x)D log I(x) + 1 + I(x)λ(x) log (1 + J I(x)) for γ = 1, ρ �= 1

0 = I(x)
(
(1 − γ)μ

C
(x) + (1 − γ)2 ||σ

C
(x)||2
2

)
+ DI(x)+

(1 − γ)σ
C
(x)σx(x)�Ix(x) − βI(x) log I(x) + I(x)λ(x)J I(x) for ρ = 1, γ �= 1

(89)
14Further discussion is provided in Chapter 10 of Duffie (2001).
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and satisfies the transversality condition (limT→∞ E[J(T )] = 0 for J(t) defined below) then the

value function is given by:⎧⎪⎨⎪⎩
J(t) = uγ(Ct)(βI(xt))θ for ρ, γ �= 1
J(t) = log(Ct) + log(βI(xt))

1−ρ for γ = 1, ρ �= 1
J(t) = uγ(Ct)I(xt) for ρ = 1, γ �= 1 .

(90)

The corresponding pricing kernel is:⎧⎪⎪⎨⎪⎪⎩
Π(t) = e

− t
0 (βθ+

(1−θ)
I(xs)

)ds(Ct)−γ(I(xt))(θ−1) for ρ, γ �= 1

Π(t) = e
− t

0
β

I(xs)
)ds 1

(CtI(xt))
for γ = 1, ρ �= 1

Π(t) = e−
t
0

β(1+log I(xs))ds(Ct)−γI(xt) for ρ = 1, γ �= 1 .

(91)

Proof 1 We provide the proof for the case γ, ρ �= 1. The special cases are treated similarly.

From its definition

J(t) = Et

(∫ ∞

t
f(cs, J(s))

)
. (92)

Thus, J(xt, ct) +
∫ t
0 f(cs, J(xs, cs))ds is a martingale. This observation implies that:

E[dJ(xt, cs) + f(ct, J(xt, ct))dt] = 0 . (93)

Using our guess (J(t) = uγ(ct)βθI(x)θ) and applying the Itô-Doeblin formula we obtain:

(1 − γ)μc(xt) + (1 − γ)2
||σc(xt)||2

2
+

DIθ(xt)
I(xt)θ

+ λ(x)J I(x)θ +
θ

I(xt)
− βθ = 0 , (94)

where we have used the fact that

f(c, J)
J

=
uρ(ct)

((1 − γ)J)1/θ−1J
− βθ =

θ

I(x)
− βθ

and the definition of the Dynkin operator DI(x) = Ix(x)�μx(x) + 1
2Trace(Ixx(x)σx(x)σx(x)�).

Rearranging we obtain the equation of the proposition.

Now suppose that I(·) solves this equation. Then, applying the Itô Doeblin formula to our

candidate J(t) we obtain

J(T ) = J(t) +
∫ T

t
DJ(s)ds +

∫ T

t
Jcσcdzc(s) +

∫ T

t
Jxσxdzx(s) +

∫ T

t
J(s−)(

I(X
s− + ν)θ

I(X
s− )θ

− 1)dN(s)

= J(t)−
∫ T

t
f(cs, Js)ds+

∫ T

t
J(s)(1 − γ)σc(xs)dzc(s)+

∫ T

t
θJ(s)σI(xs)dzx(s) +

∫ T

t
dM(s), (95)

where we have defined σI(x) = I′(x)
I(x) σx(x) and the pure jump martingale

M(t) =
∫ t

0
J(s−)(

I(X
s− + ν)θ

I(X
s− )θ

− 1)dN(s) −
∫ t

0
λ(X

s− )J(s−)J I(Xs)θds .
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If the stochastic integral is a martingale,15 and if the transversality condition is satisfied, then we

obtain the desired result by taking expectations and letting T tend to infinity:

J(t) = E
[∫ ∞

t
f(cs, Js) ds

]
, (96)

which shows that our candidate J(t) solves the recursive stochastic differential equation. Uniqueness

follows (under some additional technical conditions) from the appendix in Duffie, Epstein, Skiadas

(1992).

The next result investigates the property of equilibrium prices.

Proposition 2 The risk-free interest rate is given by:⎧⎪⎨⎪⎩
r(xt) = β + ρ(μ

C
(xt) + ||σ

C
(xt)||2
2 ) − γ(1 + ρ) ||σC

(x)||2
2 −

(1 − θ)σ
I
(x)�(σ

C
(xt) + 1

2σI
(xt)) + λ(xt)

(
θ−1

θ J Iθ − J I(θ−1)
)

for ρ �= 1

r(xt) = β + μ
C
(xt) + ||σ

C
(xt)||2
2 − γ||σ

C
(xt)||2 for ρ = 1 .

(97)

Further, the value of the claim to aggregate consumption is given by:{
S(t) = C(t)I(xt) for ρ �= 1
S(t) = C(t)

β for ρ = 1 .
(98)

Thus
dSt

St
= μS(xt)dt+ (σ

C
(xt) + σ

I
(xt)) dz(t) + νI(xt)dN(t) , (99)

where we have defined:

σ
I
(x) =

1
I(x)

Ix(x)�σx(x)1{ρ �=1} (100)

νI(x) =
(
I(x+ ν̃)
I(x)

− 1
)
. (101)

The risk premium on the stock is given by

μS(x) +
1

I(xt)
− r(xt) = (γσ

C
(xt) + (1 − θ)σ

I
(x))� (σ

C
(x) +σ

I
(x)) +λ(xt)

(
J I(x)θ−1 − J I(x)θ

)
.

(102)
15Sufficient conditions are:

E
T

0

J(s)2 σc(xs)
2 + σI(xs)

2 ds < ∞ ∀T > 0 .
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Proof 2 To prove the result for the interest rate, apply Itô-Doeblin to the pricing kernel and it

follows from r(t) = −E[dΠ(t)
Π(t) ]/dt that we obtain:

r(xt) = βθ +
(1 − θ)
I(xt)

+ γμc(xt) − 1
2
γ2||σc(xt)||2 − DI(xt)(θ−1)

I(xt)(θ−1)
− λ(Xt)J I(x)θ−1 . (103)

Now substitute the expression for 1
I(x) from the equation in (89) to obtain the result.

To prove the result for the consumption claim, define S(t) = ctI(xt). Then using the definition

of

Π(t) = e
−βθt− t

0
(1−θ)
I(xs)

ds
c−γ
t I(xt)θ−1

we obtain:

d (Π(t)S(t)) = e
−βθt− t

0
(θ−1)
I(xs)

ds
(
dJ(t) − J(t)

(
βθ +

(1 − θ)
I(xt)

)
dt

)
. (104)

Now, note that by definition we have:

dJ(t) = −f(ct, J)dt + dMt

= −J(t)
(

θ

I(xt)
− θβ

)
dt+ dMt (105)

for some P -martingale M . Combining this observation with (104), we get:

d (Π(t)S(t)) = e
−βθt− t

0
(1−θ)
I(xs)

ds (−J(t))
I(xt)

dt+ e
−βθt− t

0
(1−θ)
I(xs)

ds
dMt

= −Π(t) c(t) dt + e
−βθt− t

0
(1−θ)
I(xs)

ds
dMt . (106)

Thus integrating we obtain

Π(T )S(T ) +
∫ T

t
Π(s)csds = Π(t)S(t) +

∫ T

t
e
−βθ(u−t)− u

t
(1−θ)
I(xs)

ds
dMu . (107)

Taking expectations and letting T → ∞ and assuming the transversality condition holds

(i.e., limT→∞ E[Π(T )S(T )] = 0), we obtain the desired result:

Π(t)S(t) = Et

[∫ ∞

t
Π(s) cs ds

]
. (108)

6 Appendix B: The Price of an Option in the Post-Crash Affine
Model

We note that the model in Section 2 is affine. In particular, the value of the dividend claim

Vt = Dte
F+Gxt has the following risk-neutral dynamics:
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dVt

Vt
=
(
μQ

0 + μQ
1 xt

)
dt+σD

√
Ω
(
ρ

C,D
dzQ

c (t) +
√

1 − ρ2
C,D

dzQ
D(t)

)
+Gσx

√
ΩdzQ

x (t)+(eGν̃−1)dN(t),

where

μQ
0 = μ

D
− γρ

C,D
σ

D
Ω − (1 − θ)Bσ2

x
ΩG+

1
2
σ2

x
ΩG2 (109)

μQ
1 = φ− κxG. (110)

As such, the option pricing problem can be solved using standard inverse Fourier transform tech-

niques. In particular, the date-t value of a European call option on the dividend claim Vt, with

maturity T and strike price K, is given by

C(Vt , xt ,K, T ) = EQ
t

[
e
− T

t
ds rs (V

T
−K) 1{V

T
> K}

]
= Ψt,1(logK) −KΨt,0(logK) , (111)

where we have defined:

Ψt,a(k) ≡ EQ
t

[
e
− T

t
rs ds

ea log V
T 1{log V

T
> k}
]
. (112)

Following Bates (1996), Heston (1993), Duffie et al. (2000), and others, we use the Fourier

inversion theorem for the random variable (log Vt) to obtain:

Ψt,a(k) =
ψt(a)

2
+

1
π

∫ ∞

0

IM [
ψt(a+ Iv) e−Ivk

]
v

dv . (113)

In equation (113), the transform ψt(α) ≡ EQ
t

[
e−

T
t rsds eα log V

T

]
admits the following closed form

solution:

ψt(α) = exp (M(T − t) +N(T − t)xt + α log Vt) , (114)

where the functions M(τ), N(τ) satisfy

N(τ) =
(
αμQ

1 − ρ
) (1 − e−κxτ

κx

)
(115)

M(τ) =
∫ τ

0
dτ

{
N2σ2

x
Ω

2
−N(1 − θ)Bσ2

x
Ω + αμQ

0 − r0 + α(α− 1)
Ω(σ2

D
+G2σ2

x
)

2
+ λQ

(
χQ

N+αG
− 1
)}

.

(116)
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Proof 3 The proof simply consists in showing that
[
e−

t
0

rsds exp (M(T − t) +N(T − t)xt + α log V (t))
]

is a Q-martingale. Indeed, in that case

e−
t
0 rsds exp (M(T − t) +N(T − t)xt + α log V (t)) = EQ

[
e−

T
0 rsds exp (M(0) +N(0)xt + α log V (T ))

]
= EQ

[
e−

T
0 rsds exp (α logS(T ))

]
= e−

t
0

rsdsψt(α) , (117)

which is the desired result. To verify the martingale condition we apply Itô-Doeblin formula to

Yt ≡ e−
t
0 rsds exp (M(T − t) +N(T − t)xt + α log V (t))

and obtain that

Et[dYt] = 0

holds when N and M satisfy equations (115)-(116) above. A standard argument then shows that

Yt is a Q-martingale.
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