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1 Introduction

The expectations theory of the term structure posits that variables in the information set

at time t should have no predictive power for excess bond returns. Consider the predictive

regression

rt+h = a+ b′Zt + eth

where rt+h is excess returns for holding period h, and Zt is a set of predictors. Conventional

tests often reject the null hypothesis that the parameter vector b is zero. Some suggest

that over-rejections may arise if r is stationary and the variables Z are highly persistent,

making inference highly distorted in finite samples. For this reason, researchers often use

finite sample corrections or the bootstrap to conduct inference. However, it is often the case

that robust inference still points to a rejection of the null hypothesis.

For a long time, the Zs found to have predictive power are often financial variables such

as default premium, term premium, dividend price ratio, measures of stock market variability

and liquidity. Cochrane and Piazzesi (2005) find that a linear combination of five forward

spreads explains between 30 and 35 percent of the variation in next year’s excess returns on

bonds with maturities ranging from two to five years. Yet theory suggests that predictive

power for excess bond returns should come from macroeconomic variables. Campbell (1999)

and Wachter (2006) suggest that bond and equity risk premia should covary with a slow-

moving habit driven by shocks to aggregate consumption. Brandt and Wang (2003) argue

that risk premia are driven by shocks to inflation as well as aggregate consumption; notably,

both are macroeconomic shocks.

In an effort to reconcile theory and evidence, recent work has sought to establish and

better understand the relation between excess returns and macroeconomic variables. Pi-

azzesi and Swanson (2004) find that the growth of nonfarm payroll employment is a strong

predictor of excess returns on federal funds futures contracts. Ang and Piazzesi (2003) uses

a no-arbitrage factor model of the term structure of interest rates that also allows for time-

varying risk premia and finds that the pricing kernel is driven by a few observed macroeco-

nomic variables and unobserved yield factors. Kozicki and Tinsley (2005) uses affine models

to link the term structure to perceptions of monetary policy. Duffie (2008) finds that an

‘expectations’ factor unrelated to the level and the slope has strong predictive power for

short term interest rates and excess returns, and that this expectations factor has a strong

inverse relation with industrial production. Notably, these studies have focused on the rela-

tion between expected excess bond returns, risk premia, and a few selected macroeconomic
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variables. The evidence falls short of documenting a direct relation between expected excess

bond returns (bond risk premia) and the macro economy.

In Ludvigson and Ng (2007), we used a new approach. We used a small number of

estimated (static) factors instead of a handful of observed predictors in the predictive re-

gressions, where the factors are estimated from a large panel of macroeconomic data using

the method of asymptotic principal components (PCA). Such a predictive regression is a

special case of what is known as a ‘factor augmented regression’ (FAR). 1 The factors enable

us to substantially reduce the dimension of the predictor set while still being able to use

the information underlying the variables in the panel. Furthermore, our latent factors are

estimated without imposing a no-arbitrage condition or any parametric structure. Thus, our

testing framework is non-structural, both from an economic and a statistical point of view.

We find that latent factors associated with real economic activity have significant predictive

power for excess bond returns even in the presence of financial predictors such as forward

rates and yield spreads. Furthermore, we find that bond returns and yield risk premia are

more countercyclical when these risk premia are constructed to exploit information in the

factors.

This paper investigates the robustness of our earlier findings with special attention paid

to how the factors are estimated. We first re-estimate the FAR on a panel of 131 series over

a longer sample. As in our previous work, these (static) factors, denoted f̂t, are estimated

by PCA. We then consider an alternative set of factor estimates, denoted ĝt, that differ from

the PCA estimates in two important ways. First, we use a priori information to organize the

131 series into 8 blocks. Second, we estimate a dynamic factor model for each of the eight

blocks using a Bayesian procedure.

Compared with our previous work, we now use information in the large macroeconomic

panel in a different way, and we estimate dynamic factors using a Bayesian method. It is

thus useful to explain the motivation for doing so. The factors estimated from large panels of

data are often criticized for being difficult to interpret, and organizing the data into blocks

(such as output and price) provides a natural way to name the factors estimated from a

block of data. At this point, we could have used PCA to estimate one static factor for each

block. We could also have estimated dynamic factors using dynamic principal components,

which is frequency-domain based. Whichever principal components estimator we choose, the

estimates will not be precise as the number of series in each block is no longer 131 but a much

smaller number. Bayesian estimation is more appropriate for the newly organized panels of

1See Bai and Ng (2008) for a survey on this literature.

2



data and Bayesian estimation yields a direct assessment of sampling variability. Using an

estimator that is not principal components based also allows us to more thoroughly assess

whether the FAR estimates are sensitive to how the factors are estimated. This issue, to

our knowledge, has not been investigated in the literature. Notably, the factors that explain

most of the variation in the large macroeconomic panel of data need not be the same as

the factors most important for predicting excess bond returns. Thus for each of the two

sets of factor estimates, namely, f̂t and ĝt, we consider a systematic search of the relevant

predictors, including an out-of-sample criterion to guard against overfitting the predictive

regression with too many factors. We also assess the stability of the relation between excess

bond returns and the factors over the sample.

An appeal of FAR is that when N and T are large and
√
T/N tends to zero, the estimated

factors in the FAR can be treated as though they are the true but latent factors. There is no

need to account for sampling error incurred when the factors are estimated. Numerous papers

have studied the properties of the (static and dynamic) principal components estimators in

a forecasting context.2 To date, little is known about the properties of the FAR estimates

when
√
T/N is not negligible. We show that principal components estimation may induce a

bias in the parameter estimates of the predictive regression and suggest how a bias correction

can be constructed. For our application, this bias is very small.

Our main finding is that macro factors have strong predictive power for excess bond

returns and that this result holds up regardless of which method is used to estimate the

factors. The reason is that both methods are capable of isolating the factor for real activity,

which contributes significantly to variations in excess bond returns. However, the prior in-

formation that permits us to easily give names to the factors also constrains how information

in the large panel is used. Thus, as far as predictability is concerned, the factors estimated

from the large panel tend to be better predictors than the factors estimated from the eight

blocks of data, for the same total number of series used in estimation. Recursive estimation

of the predictive regressions finds that the macroeconomic factors are statistically significant

throughout the entire sample, even though the degree of predictability varies over the 45

years considered. While the estimated bond and yield risk premia without the macro factors

are acyclical, these premia are counter-cyclical when the estimated factors are used to fore-

cast excess returns. This implies that investors must be compensated for risks associated

with recessions.

Our empirical work is based on a macroeconomic panel of 131 series. This panel extends

2See, for example, Boivin and Ng (2005).

3



the one used in Stock and Watson (2005), which has since been used in a number of factor

analyses.3 The original data set consists of monthly observations for 132 macroeconomic

time series from 1959:1-2003:12. We extend their data to 2007:12 and our panel consists of

131 series. Our empirical work uses data from 1964:1 to 2007:12.

2 Predictive Regressions

For t = 1, . . . T , let rx
(n)
t+1 denote the continuously compounded (log) excess return on an

n-year discount bond in period t + 1. Excess returns are defined rx
(n)
t+1 ≡ r

(n)
t+1 − y(1)

t , where

r
(n)
t+1 is the log holding period return from buying an n-year bond at time t and selling it as

an n− 1 year bond at time t+ 1, and y
(1)
t is the log yield on the one-year bond. That is, if

p
(n)
t is log price of n-year discount bond at time t, then the log yield is y

(n)
t ≡ − (1/n) p

(n)
t .

A standard approach to assessing whether excess bond returns are predictable is to select

a set of K predetermined conditioning variables at time t, given by the K× 1 vector Zt, and

then estimate

rx
(n)
t+1 = β′Zt + εt+1 (1)

by least squares. For example, Zt could include the individual forward rates studied in Fama

and Bliss (1987), the single forward factor studied in Cochrane and Piazzesi (2005), or other

predictor variables based on a few macroeconomic series. Such a procedure may be restrictive

when the number of eligible predictors is quite large. In particular, suppose we observe a

T ×N panel of macroeconomic data with elements xt = (x1t, x2t, . . . xNt)
′, t = 1, ..., T , where

the cross-sectional dimension, N , is large, and possibly larger than the number of time

periods, T . The set of eligible predictors consists of the union of xt and Zt. With standard

econometric tools, it is not obvious how a researcher could use the information contained

in the panel because unless we have a way of ordering the importance of the N series in

forming conditional expectations (as in an autoregression), there are potentially 2N possible

combinations to consider. The regression

rx
(n)
t+1 = γ′xt + β′Zt + εt+1 (2)

quickly run into degrees-of-freedom problems as the dimension of xt increases, and estimation

is not even feasible when N +K > T .

The approach we consider is to posit that xit has a factor structure so that if these factors

were observed, we would have replaced (2) by the following (infeasible) ‘factor augmented

3See, for example, Bai and Ng (2006b) and DeMol, Giannone, and Reichlin (2006).
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regression’

rx
(n)
t+1 = α′Ft + β′Zt + εt+1, (3)

where Ft is a set of k factors whose dimension is much smaller than that of xt but has good

predictive power for rxt+1. Equation (1) is nested within the factor-augmented regression,

making (3) a convenient framework to assess the importance of xit via Ft, even in the presence

of Zt. The Zt that we will use as benchmark is the forward rate factor used in Cochrane and

Piazzesi (2005). This variable, hereafter referred to as CP , is a simple average of the one

year yield and four forward rates.. These authors find that the predictive power of forward

rates, yield spreads, and yield factors are subsumed in CPt. To implement the regression

given by (3), we need to resolve two problems. First, Ft is latent and we must estimate it

from data. Second, we need to isolate those factors with predictive power for our variable of

interest, rx
(n)
t+1.

3 Estimation of Latent Factors

The first problem is dealt with by replacing Ft with an estimated value F̂t that is close

to Ft in some well defined sense, and this involves making precise a model from which Ft

can be estimated. We will estimate two factor models, one static and one dynamic, using

data retrieved from the Global Insight database and the Conference Board. The data are

collected to incorporate as many series as that used in Stock and Watson (2005). However,

one series (ao048) is no longer available on a monthly basis after 2003. Accordingly, our new

dataset consists of 131 series from 1959:1 to 2007:12, though our empirical analysis starts in

1964:1 because of availability of the bond yield data. As in the original Stock and Watson

data, some series need to be transformed to be stationary. In general, real variables are

expressed in growth rates, first differences are used for nominal interest rates, and second

log differences are used for prices. The data description is given in Appendix A. This

data can be downloaded from our website http://www.econ.nyu.edu/user/ludvigsons/

Data&ReplicationFiles.zip.

3.1 Static Factors

Let N be the number of cross-section units and T be the number of time series observations.

For i = 1, . . . N, t = 1, . . . T , a static factor model is defined as

xit = λ′ift + eit. (4)
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In factor analysis, eit is referred to as the idiosyncratic error and λi are the factor loadings.

This is a vector of weights that unit i put on the corresponding r (static) common factors

ft. In finance, xit is the return for asset i in period t, ft is a vector of systematic risk, λi

is the exposure to the risk factors, and eit is the idiosyncratic returns. Although the model

specifies a static relationship between xit and ft, ft itself can be a dynamic vector process

that evolves according to

A(L)ft = ut

where A(L) is a polynomial (possibly of infinite order) in the lag operator. The idiosyncratic

error eit can also be a dynamic process, and eit can also be cross-sectionally correlated.

We estimate ft using the method of asymptotic principal components (PCA) originally

developed by Connor and Korajzcyk (1986) for a small T large N environment. Letting

“hats” denote estimated values, the T × r matrix f̂ is
√
T times the r eigenvectors corre-

sponding to the r largest eigenvalues of the T ×T matrix xx′/(TN) in decreasing order with

f̂ ′f̂ = Ir. The normalization is necessary as the matrix of factor loadings Λ and f are not

separately identifiable. The normalization also yields Λ̂ = x′f̂/T . Intuitively, for each t, f̂t

is a linear combinations of each element of the N × 1 vector xt = (x1t, ..., xNt)
′, where the

linear combination is chosen optimally to minimize the sum of squared residuals xt − Λft.

Bai and Ng (2002) and Stock and Watson (2002a) showed that the space spanned by ft can

be consistently estimated by f̂t defined as above when N, T → ∞. The number of static

factors in xt can be determined by the panel information criteria developed in Bai and Ng

(2002). For the panel of 131 series under investigation, the IC2 criterion finds 8 factors over

the full sample of 576 observations (with the maximum number of factors set to 20).

A common criticism of the method of principal components estimator is that the factors

can be difficult to interpret. Our interpretation of the factors is based on the marginal R2s,

obtained by regressing each of the 131 series on the eight factors, one at a time. Because the

factors are mutually uncorrelated, the marginal R2 is also the explanatory power of the factor

in question holding other factors fixed. Extending the sample to include three more years of

data did not change our interpretation of the factors. Figures 1 through 8 show the marginal

R-square statistics from regressing the series number given on the x-axis onto the estimated

factor named in the heading. As in Ludvigson and Ng (2007), f̂1 is a real activity factor that

loads heavily on employment and output data. The second factor loads heavily on interest

rate spreads, while the third and fourth factors load on prices. Factor 5 loads on interest

rates (much more strongly than the interest rate spreads). Factor 6 loads predominantly on

the housing variables while factor 7 loads on measures of the money supply. Factor 8 loads
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on variables relating to the stock market. Thus, loosely speaking, factors 5 to 8 are more

strongly related to money, credit, and finance.

While knowing that there are eight factors in the macroeconomic panel is useful infor-

mation in its own right, of interest here are not the N variables xt = (x1t, . . . xNt)
′, but the

scalar variable rxt+1 which is not in xt. Factors that are pervasive for the large panel of data

need not be important for predicting rx
(n)
t+1. For this reason, we make a distinction between

Ft ⊂ ft and ft. The predictive regression of interest is

rx
(n)
t+1 = α′F F̂t + β′FZt + εt+1, (5)

which has a vector of generated regressors, F̂t.

Consistency of α̂F follows from the fact that the difference between f̂t and the space

spanned by ft vanishes at rate min[N, T ], a result established in Bai and Ng (2002).4 Bai

and Ng (2006a) showed that if
√
T/N → 0 as N, T → ∞, the sampling uncertainty from

first step estimation is negligible. The practical implication is that standard errors can be

computed for the estimates of αF as though the true Ft were used in the regression. This is

in contrast to the case when F̂t is estimated from a first step regression with a finite number

of predictors. As shown in Pagan (1984), the standard errors for α̂F in such a case are

incorrect unless they are adjusted for the estimation error incurred in the first step of Ft.

3.2 Dynamic factors

An advantage of the method of principal components is that it can handle a large panel

of data at little computation cost, one reason being that little structure is imposed on

the estimation. To be convinced that factor augmented regressions are useful in analyzing

economic issues of interest, we need to show that estimates of the FAR are robust to the

choice of the estimator and to the specification of the factor model. To this end, we consider

an alternative way of estimating the factors with two fundamental differences.

First, we use prior information to organize the data into 8 blocks. These are (1) output,

(2) labor market, (3) housing sector, (4) orders and inventories, (5) money and credit (6)

bond and forex, (7) prices and (8) stock market. The largest block is the labor market which

has 30 series, while the smallest group is the stock market block, which only has 4 series.

The advantage of estimating the factors (which will now be denoted gt) from blocks of data

is that the factor estimates are easy to interpret.

4It is useful to remark that the convergence rate established in Stock and Watson (2002a) is too slow to
permit consistent estimation of the parameters in (5).
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Second, we estimate a dynamic factor model specified as

xit = β′i(L)gt + exit (6)

where βi(L) = (1− λi1L− . . .− λisLs) is a vector of dynamic factor loadings of order s and

gt is a vector of q ‘dynamic factors’ evolving as

ψg(L)gt = εgt,

where ψg(L) is a polynomial in L of order pG, εgt are iid errors. Furthermore, the idiosyncratic

component exit is an autoregressive process of order pX so that

ψx(L)exit = εxit.

This is the factor framework used in Stock and Watson (1989) to estimate the coincident

indicator with N = 4 variables. Here, our N can be as large as 30.

The dimension of gt, (which also equals the dimension of εt), is referred to as the number

of dynamic factors. The main distinction between the static and the dynamic model is best

understood using a simple example. The model xit = βi0gt + βi1gt−1 + eit is the same as

xit = λi1f1t + λi2f2t with f1t = gt and f2t = gt−1. Here, the number of factors in the static

model is two but there is only one factor in the dynamic model. Essentially, the static model

does not take into account that ft and ft−1 are dynamically linked. Forni, Hallin, Lippi,

and Reichlin (2005) showed that when N and T are both large, the space spanned by gt can

also be consistently estimated using the method of dynamic principal components originally

developed in Brillinger (1981). Boivin and Ng (2005) finds that static and dynamic principal

components have similar forecast precision, but that static principal components are much

easier to compute. It is an open question whether to use the static or the dynamic factors

in predictive regressions though the majority of factor augmented regressions use the static

factor estimates. Our results will shed some light on this issue.

We estimate a dynamic factor model for each of the eight blocks. Given the definition

of the blocks, it is natural to refer to g1t as an output factor, g7t as a price factor, and so

on. However, as some blocks have a small number of series, the (static or dynamic) princi-

pal components estimator which assumes that N and T are both large will give imprecise

estimates. We therefore use the Bayesian method of Monte Carlo Markov Chain (MCMC).

MCMC samples a chain that has the posterior density of the parameters as its stationary

distribution. The posterior mean computed from draws of the chain are then unbiased for

gt. For factor models, Kose, Otrok, and Whiteman (2003) uses an algorithm that involves
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inversion of N matrices that are of dimension T ×T , which can be computationally demand-

ing. The algorithms used in Aguilar and West (2000), Geweke and Zhou (1996) and Lopes

and West (2004) are extensions of the MCMC method developed in Carter and Kohn (1994)

and Fruhwirth-Schnatter (1994). Our method is similar and follows the implementation in

Kim and Nelson (2000) of the Stock-Watson coincident indicator closely. Specifically, we

first put the dynamic factor model into a state-space framework. We assume pX = pG = 1

and sg = 2 for every block. For i = 1, . . . Nb (the number of series in block b), let xibt be the

observation for unit i of block b at time t. Given that pX = 1, the measurement equation is

(1− ψbiL)xbit = (1− ψbiL)(βbi0 + βbi1L+ βbi2L
2)gbt + εXbit

or more compactly,

x∗bit = β∗i (L)gbt + εXbit.

Given that pG = 1, the transition equation is

gbt = ψgbgbt−1 + εgbt.

We assume εXbit ∼ N(0, σ2
Xbi) and εgb ∼ N(0, σ2

gb). We use principal components to initialize

gbt. The parameters βb = (βb1, . . . βb,Nb), ψXb = ψXb1, . . . ψXb,Nb are initialized to zero.

Furthermore, σXb = (σXb1, . . . σXb,Nb
), ψgb, and σ2

gb are initialized to random draws from the

uniform distribution. For b = 1, . . . 8 blocks, Gibbs sampling can now be implemented by

successive iteration of the following steps:

i draw gb = (gb1, . . . gbT )′ conditional on βb, ψXb, σXb and the T ×Nb data matrix xb.

ii draw ψgb and σ2
gb conditional on gb.

iii for each i = 1, . . . Nb, draw βbi, ψXbi and σ2
Xbi conditional on gb and xb.

We assume normal priors for βbi = (βi0, βi1, βi2), ψXbi and ψgb. Given conjugacy,

βbi, ψXbi, ψgb, are simply draws from the normal distributions whose posterior means and

variances are straightforward to compute. Similarly, σ2
gb and σ2

Xbi are draws from the inverse

chi-square distribution. Because the model is linear and Gaussian, we can run the Kalman

filter forward to obtain the conditional mean gbT |T and conditional variance PbT |T . We then

draw gbT from its conditional distribution, which is normal, and proceed backwards to gen-

erate draws gbt|T for t = T − 1, . . . 1 using the Kalman filter. For identification, the loading

on the first series in each block is set to 1. We take 12,000 draws and discard the first 2000.
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The posterior means are computed from every 10th draw after the burn-in period. The ĝts

used in subsequent analysis are the means of these 1000 draws.

As in the case of static factors, not every gbt need to have predictive power for excess

bond returns. Let Gt ⊂ gt = (g1t, . . . g8t) be those that do. The analog to (5) using dynamic

factors is

rx
(n)
t+1 = α′GĜt + β′GZt + εt+1, (7)

We have now obtained two sets of factor estimates using two distinct methodologies. We

can turn to an assessment of whether the estimates of the predictive regression are sensitive

to how the factors are estimated.

3.3 Comparison of f̂t and ĝt

Table 1 reports the first order autocorrelation coefficients for ft and gt. Both sets of factors

exhibit persistence, with f̂1t being the most correlated of the eight f̂t, and ĝ3t being the

most serially correlated amongst the ĝt. Table 2 reports the contemporaneous correlations

between f̂ and ĝ. The real activity factor f̂1 is highly correlated with the ĝt estimated from

output, labor and manufacturing blocks. f̂2, f̂4, and f̂5 are correlated with many of the ĝ, but

the correlations with the bond/exchange rate seem strongest. f̂3 is predominantly a price

factor, while f̂8 is a stock market factor. f̂7 is most correlated with ĝ5, which is a money

market factor. f̂8 is highly correlated with ĝ8, which is estimated from stock market data.

The contemporaneous correlations reported in Table 2 does not give a full picture of the

correlation between f̂t and ĝt for two reasons. First, the ĝt are not mutually uncorrelated,

and second, they do not account for correlations that might occur at lags. To provide a

sense of the dynamic correlation between f̂ and ĝt, we first standardize f̂t and ĝt to have

unit variance. We then consider the regression

f̂rt = a+ Ar.0ĝt +

p−1∑
i=1

Ar.i∆ĝt−i + eit

where for r = 1, . . . 8 and i = 0, . . . p − 1, Ar.i is a 8 × 1 vector of coefficients summarizing

the dynamic relation between f̂rt and lags of ĝt. The coefficient vector Ar.0 summarizes

the long run relation between ĝt and f̂t. Table 3 reports results for p = 4, along with the

R2 of the regression. Except for f̂6, the current value and lags of ĝt explain the principal

components quite well. While it is clear that f̂1 is a real activity factor, the remaining f̂s

tend to load on variables from different categories. Tables 2 and 3 reveal that ĝt and f̂t reduce

the dimensionality of information in the panel of data in different ways. Evidently, the f̂ts
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are weighted averages of the ĝts and their lags. This can be important in understanding the

results to follow.

4 Predictive Regressions

Let Ĥt ⊂ ĥt, where ĥt is either f̂t or ĝt. Our predictive regression can generically be written

as

rx
(n)
t+1 = α′Ĥt + β′CPt + εt+1. (8)

Equation (8) allows us to assess whether Ĥt has predictive power for excess bond returns,

conditional on the information in CPt. In order to assess whether macro factors Ĥt have

unconditional predictive power for future returns, we also consider the restricted regression

rx
(n)
t+1 = α′Ĥt + εt+1. (9)

Since F̂t and Ĝt are both linear combinations of xt = (x1t, . . . xNt)
′, say Ft = q′Fxt and

Gt = q′Gxt, we can also write (8) as

rx
(n)
t+1 = α∗′xt + β′CPt + εt+1

where α∗′ = α′F q
′
F or α′Gq

′
G. The conventional regression (1) puts a weight of zero on all but

a handful of xit. When Ĥt = F̂t, qF is related to the k eigenvectors of xx′/(NT ) that will

not, in general, be numerically equal to zero. When Ĥt = Ĝt, qG and thus α∗ will have many

zeros since each column of Ĝt is estimated using a subset of xt. Viewed in this light, a factor

augmented regression with PCA down-weights unimportant regressors. A FAR estimated

using blocks of data sets put some but not all coefficients on xt equal to zero. A conventional

regression is most restrictive as it constrains almost the entire α∗ vector to zero.

As discussed earlier, factors that are pervasive in the panel of data xit need not have

predictive power for rx
(n)
t+1, which is our variable of interest. In Ludvigson and Ng (2007),

Ĥt = F̂t was determined using a method similar to that used in Stock and Watson (2002b).

We form different subsets of f̂t, and/or functions of f̂t (such as f̂ 2
1t). For each candidate set

of factors, F̂t, we regress rx
(n)
t+1 on F̂t and CPt and evaluate the corresponding in-sample BIC

and R̄2. The in-sample BIC for a model with k regressors is defined as

BICin(k) = σ̂2
k + k

log T

T

where σ̂2
k is the variance of the regression estimated over the entire sample. To limit the

number of specifications we search over, we first evaluate r univariate regressions of returns

11



on each of the r factors. Then, for only those factors found to be significant in the r

univariate regressions, we evaluate whether the squared and the cubed terms help reduce

the BIC criterion further. We do not consider other polynomial terms, or polynomial terms

of factors not important in the regressions on linear terms.

In this paper, we again use the BIC to find the preferred set of factors, but we perform

a systematic and therefore much larger search. Instead of relying on results from prelimi-

nary univariate regressions to guide us to the final model, we directly search over a large

number models with different numbers of regressors. We want to allow excess bond re-

turns to be possibly non-linear in the eight factors and hence include the squared terms

as candidate regressors. If we additionally include all the cubic terms, and given that we

have eight factors and CP to consider, we would have over thirteen million (227) poten-

tial models. As a compromise, we limit our candidate regressor set to eighteen variables:

(f̂1t, . . . f8t, f̂
2
1t, . . . f

2
8t, f̂

3
1t, CPt). We also restrict the maximum number of predictors to eight.

This leads to an evaluation of 106762 models.5

The purpose of this extensive search is to assess the potential impact on the forecasting

analysis of fishing over large numbers of possible predictor factors. As we show, the factors

chosen by the larger, more systematic, search are the same as those chosen by the limited

search procedure used in Ludvigson and Ng (2007). This suggests that data-mining does

not in practice unduly influence the findings in this application, since we find that the same

few key factors always emerge as important predictor variables regardless of how extensive

the search is.

It is well known that variables found to have predictive power in-sample do not necessar-

ily have predictability out-of-sample. As discussed in Hansen (2008), in-sample overfitting

generally leads to a poor out-of-sample fit. One is less likely to produce spurious results

based on an out-of-sample criterion because a complex (large) model is less likely to be cho-

sen in an out-of-sample comparison with simple models when both models nests the true

model. Thus, when a complex model is found to outperform a simple model out of sample,

it is stronger evidence in favor of the complex model. To this end, we also find the best

amongst 106762 models as the minimizer of the out-of-sample BIC. Specifically, we split

the sample at t = T/2. Each model is estimated using the first T/2 observations. For

t = T/2 + 1, . . . T , the values of predictors in the second half of the sample are multiplied

into the parameters estimated using the first half of the sample to obtain the fit, denoted

5This is obtained by considering C18,j for j = 1, . . . 8, where Cn,k denotes choosing k out of n potential
predictors.
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r̂xt+12. Let ẽt = rxt+12− r̂xt+12 and σ̃2
k = 1

T/2

∑T
t=T/2+1 ẽ

2
t be the out-of-sample error variance

corresponding to model j. The out-of-sample BIC is defined as

BICout(j) = log σ̃2
j +

dimj log(T/2)

T/2

where dimj is the size of model j. By using an out-of-sample BIC selection criterion, we

guard against the possibility of spurious overfitting. Regressors with good predictive power

only over a subsample will not likely be chosen. As the predictor set may differ depending

on whether the CP factor is included (ie. whether we consider (8) or (9)), the two variable

selection procedures are repeated with CP excluded from the potential predictor set. Using

the predictors selected by the in- and the out-of-sample BIC, we re-estimate the predictive

regression over the entire sample. In the next section, we show that the predictors found by

this elaborate search are the same handful of predictors found in Ludvigson and Ng (2007)

and that these handful of macroeconomic factors have robust significant predictive power

for excess bond returns beyond the CP factor.

We also consider as predictor a linear combination of ĥt along the lines of Cochrane and

Piazzesi (2005). This variable, denoted Ĥ8t is defined as γ̂′ĥ+
t where γ̂ is obtained from the

following regression:

1

4

5∑
n=2

rxnt+1 = γ0 + γ′ĥ+
t , (10)

with ĥ+
t = (ĥ1t, . . . ĥ8t, ĥ

3
1t). The estimates are as follows:

ht = f̂t ht = ĝt
γ̂ tbγ γ̂ tbγ

h1 -1.681 -4.983 0.053 0.343
h2 0.863 3.009 -1.343 -2.593
h3 -0.018 -0.203 -0.699 -1.891
h4 -0.626 -2.167 0.628 1.351
h5 -0.264 -1.463 -0.001 -0.012
h6 -0.720 -2.437 -0.149 -0.691
h7 -0.426 -2.140 -0.018 -0.210
h8 0.665 3.890 -0.418 -2.122
h3

1 0.115 3.767 0.049 1.733
cons 0.900 2.131 0.764 1.518
R̄2 0.261 0.104

Notice that we could also have replaced ĥt in the above regression with Ĥt, where Ĥt is

comprised of predictors selected by either the in- or the out-of-sample BIC. However, Ĥ8t is

13



a factor-based predictor that is arguable less vulnerable to the effects of data mining because

it is simple a linear combination of all the estimated factors.

Tables 4 to 7 report results for maturities of 2, 3, 4, and 5 years. The first four columns

of each table are based on the static factors (ie. Ĥt = F̂t) , while columns 5 to 8 are based on

the dynamic factors (ie. Ĥt = Ĝt). Of these, columns 1, 2, 5, and 6 include the CP variable,

while columns 3, 4, 7, and 8 do not include the CP. Columns 9 and 10 report results using F̂8

with and without CP and columns 11 and 12 do the same with Ĝ8 in place. Our benchmark

is a regression that has the CP variable as the sole predictor. This is reported in last column,

ie. column 13.

4.1 Two Year Returns

As can be seen from Table 4, the CP alone explains .309 of the variance in the two year

excess bound returns. The variable F̂8 alone explains 0.279 (column 10), while Ĝ8 alone

explains only .153 of the variation (column 12). Adding F̂8 to the regression with the CP

factor (column 9) increases R̄2 to .419, and adding Ĝ8 (column 11) to CP yields an R̄2 of

.401. The macroeconomic factors thus have non trivial predictive power above and beyond

the CP factor.

We next turn to regressions when both the factors and CP are included. In Ludvigson and

Ng (2007), the static factors f̂1t, f̂2t, f̂3t, f̂4t, f̂8t and CP are found to have the best predictive

power for excess returns. The in-sample BIC still finds the same predictors to be important,

but adds f̂6t and f̂ 2
5t to the predictor list. It is however noteworthy that some variables

selected by the BIC have individual t statistics that are not significant. The resulting model

has an R̄2 of 0.460 (column 1). The out-of-sample BIC selects smaller models and finds

f̂1, f̂8, f̂
2
5 , f̂

3
1 and the CP to be important regressors (column 2).

Amongst the dynamic factors, ĝ2 (labor market), ĝ8 (stock market), ĝ2
6 (bonds and foreign

exchange) along with CP are selected by both BIC procedures as predictors (columns 5 and

6). Interestingly, the output factor ĝ1 is not significant when the CP is included. The out-

of-sample BIC has an R̄2 of 0.407, showing that there is a substantial amount of variation

in the two-year excess bond returns that can be predicted by macroeconomic factors. The

in-sample BIC additionally selects ĝ3t, ĝ6t and some higher order terms with an R̄2 of 0.477.

Thus, predictive regressions using f̂t and ĝt both find a factor relating to real activity (f̂1t

or ĝ1t) and one relating to the stock market (f̂8t or ĝ18) to have significant predictive power

for two-year excess bond returns.

Results when the regressions do not include the CP variable are in columns 3, 4, 7, and
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8. Evidently, f̂2 is now important according to both the in- and out-of-sample BIC, showing

that the main effect of CP is to render f̂2 redundant. Furthermore, the out-of-sample BIC

now selects a model that is only marginally more parsimonious than that selected by the

in-sample BIC. The regressions with F̂ alone have an R̄2 of 0.283 and 0.258 respectively,

slightly less than what is obtained with CP as the only regressor.

Regressions based on the dynamic factors are qualitatively similar. The factors ĝ1, ĝ3, and

ĝ4, found not to be important when CP is included are now selected as relevant predictors

when CP is dropped. Without CP, the dynamic factors selected by the in-sample BIC explain

0.2 of the one-year-ahead variation in excess bond returns, while the more parsimonious

model selected by the out-of-sample BIC has an R̄2 of 0.192 These numbers are lower than

what we obtain in columns (3) and (4) using F̂t as predictors.

It is important to stress that we consider the two sets of factor estimates not to perform a

horse race of whether the PCA or the Bayesian estimator is better. The purpose instead is to

show that macroeconomic factors have predictive power for excess bond returns irrespective

of the way we estimate the factors. Although the precise degree of predictability depends

on how the factors are estimated, a clear picture emerges. At least twenty percent of the

variation in excess bound returns can be predicted by macroeconomic factors even in the

presence of the CP factor.

4.2 Longer Maturity Returns and Overview

Table 5 to 7 report results for returns with maturity of three, four, and five years. Most of

the static factors found to be useful in predicting rx
(2)
t+1 by the in-sample BIC remain useful

in predicting the longer maturity returns. These predictors include f̂1t, f̂4t, f̂6t, f̂7t, f̂8t, f̂
3
1t,

and CP. Of these, f̂1t, f̂8t, and CP are also selected by the out-of-sample BIC procedure. The

non-linear term f̂ 3
1t is an important predictor in equations for all maturity returns except the

five year. The factors add at least ten basis points to the R̄2 with CP as the sole predictor.

The dynamic factors found important in explaining two year excess return are generally

also relevant in regressions for longer maturity excess returns. The in-sample BIC finds ĝ2t,

ĝ3t, ĝ8t, ĝ
2
4t, ĝ

2
6t along with the CP to be important in regressions of all maturities. The

output factor is again not significant in regressions with three and four year maturities. It

is marginally significant in the five year maturity, but has the wrong sign. While ĝ8 was

relevant in the two year regression, it is not an important predictor in the regressions for

longer maturity returns. The out-of-sample BIC finds dynamic factors from the labor market

(ĝ2t), the bond and foreign exchange markets (ĝ6t). Together, these factors have incremental
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predictive power for excess bond returns over CP, improving the R̄2 by slightly less than 10

basis points.

The relevance of macroeconomic variables in explaining excess bond returns is reinforced

by the results in columns 10 and 12, which show that a simple linear combination of the eight

factors still adds substantial predictive power beyond the CP factor. This result is robust

across all four maturities considered, noting that the coefficient estimate on Ĥ8 increases

with the holding period without changing the statistical significance of the coefficient.

To see if the predictability varies over the sample, we also consider rolling regressions.

Starting with the first regression that spans the sample 1964:1-1974:12, we add twelve

monthly observations each time and record the R̄2. Figure 9 shows the R̄2 for regressions with

CP included. Apart from a notable drop around the 1983 recession, R̄2 is fairly constant.

Figure 10 depicts the R̄2 for regressions without CP. Notice that the R̄2 that corresponds

to F̂8t tends to be 15 basis points higher than Ĝ8t. As noted earlier, each of the eight f̂t is

itself a combination of the current and lags of the eight ĝt. This underscores the point that

imposing a structure on the data to facilitate interpretation of the factors comes at the cost

of not letting the data find the best predictive combination possible.

The results reveal that the estimated factors consistently have stronger predictive power

for one- and multi-year ahead excess bond returns. The most parsimonious specification has

just two variables - Ĥ8 and CPt - explaining over forty percent of the variation in rxnt+1 of

every maturity. A closer look reveals that the real activity factor f̂1t is the strongest factor

predictor, both numerically and statistically. As ĝ1t tends not to be selected as predictor,

this suggests that the part of f̂1t that has predictive power for excess bond returns is derived

from real activity other than output. However, the dynamic factors ĝ2t (labor market) and

ĝ3t (housing) have strong predictive power. Indeed, f̂1t is highly correlated with ĝ2t and the

coefficients for these predictors tend to be negative. This means that excess bond returns

of every maturity are counter-cyclical, especially with the labor market. This result is in

accord with the models of Campbell (1999) and Wachter (2006), which posit that forecasts

of excess returns should be counter-cyclical because risk aversion is low in good times and

high in recessions. We will subsequently show that yield risk premia, which are based on

forecasts of excess returns, are also counter-cyclical.

5 Inference Issues

The results thus far assume that N and T are large and that
√
T/N tends to zero. In this

section, we first consider the implication for factor augmented regressions when
√
T/N may
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not be small as is assumed. We then examine the finite sample inference issues.

5.1 Asymptotic Bias

If excess bond returns truly depend on macroeconomic factors, then consistent estimates

of the factors should be better predictors than the observed variables because these are

contaminated measures of real activity.6 An appealing feature of PCA is that if
√
T/N → 0

as N, T → ∞, then F̂t can be treated in the predictive regression as though it were Ft. To

see why this is the case, consider again the infeasible predictive regression, dropping the

observed predictors Wt for simplicity. We have

rxnt+1 = α+′
F Ft + εt+1

= α′F F̂t + α′F (HFt − F̂t) + εt+1

where αF = αH−1, and H is a r × r matrix defined in Bai and Ng (2006a). Let S bF bF =

T−1
∑T

t=1 F̂tF̂
′
t . Then

√
T (α̂F − αF ) = Ŝ−1bF bF

(
1√
T

T∑
t=1

F̂tεt+1

)
+ S−1bF bF

(
1√
T

T∑
t=1

F̂t(HFt − F̂t)
)
αF . (11)

But T−1F̂ ′(FH ′ − F̂ ) = Op(min[N, T ]−1), a result that follows from Bai (2003). Thus if√
T/N → 0, the second term is negligible. It follows that

√
T (α̂F − αF )

d−→N(0, Avar(α̂F )

)
where

Avar(α̂F ) = plim S−1bF bF Âvar(gt)S−1bF bF ,
Âvar(gt) is an estimate of the asymptotic variance of gt+1 = ε̂t+1F̂t.

Consider now the case when
√
T is comparable to N . Although the first term on the

right hand size of (11) is mean zero, the second term is a Op(1) random variable that may

not be mean zero. This generates a bias in the asymptotic distribution for α̂F .

Proposition 1 Suppose Assumptions A-E of Bai and Ng (2006a) hold and let F̂t ⊂ f̂t,

where f̂t are the principal component estimates of ft, xit = λ′itft + eit. Let α̂F be obtained

6Moench (2008) finds that factors estimated from a large panel of macroeconomic data explain the short
rate better than output and inflation.
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from least squares estimation of the FAR yt+h = α′F F̂t + et+h. An estimate of the bias in α̂F

is

B̂1 ≈ −S−1bF bF
(

1

NT

T∑
t=1

̂
Avart(F̂t)

)
α̂F

where Avart(Ft) = V −1ΓtV
−1, V is a r×r diagonal matrix of the eigenvalues of (N ·T )−1xx′,

and Γt =
∑

N→∞N
−1
∑N

i=1

∑N
j=1E(λiλ

′
jeitejt). Let α̂BF = α̂F − B̂1 be the biased corrected

estimate. Then √
T (α̂BF − αF )

d−→N
(

0, Avar(α̂F )

)
.

The asymptotic variance for the bias corrected estimator is the same as α̂F .

Proposition 1 makes use of the fact that

1

T

T∑
t=1

F̂t(HFt − F̂t)′ =
1

T

T∑
t=1

(F̂t −HFt)(HFt − F̂t)′ +HFt(HFt)− F̂t)

= −E
[

1

T

T∑
t=1

(F̂t −HFt)(HFt − F̂t)′
]

+ op(1)

= − 1

NT

T∑
t=1

Avar(F̂t) + op(1).

The estimation of Avart(F̂t) was discussed at in Bai and Ng (2006a). If E(e2it) = σ2 for all i

and t, Avart(Ft) is the same for all t. Although Γt will depend on t if eit is heteroskedastic, a

consistent estimate of Γt can be obtained for each t when the errors are not cross-sectionally

correlated, ie. E(eitejt) = 0. Alternatively, if E(eitejt) = σij 6= 0 for some or all t, panel

data permit an estimate of Avar(F̂t) that does not depend on t even when the eit are cross-

sectionally correlated. This estimator of Γt, referred to as CS-HAC in Bai and Ng (2006a),

will be used below.

As this result on bias is new, we consider a small Monte Carlo experiment to gauge the

magnitude of the bias as N and T changes. We consider a model with r = 1 and 2 factors.

We assume λi ∼ N(0, 1) and Ft ∼ N(0, 1). These are only simulated once. Samples of

xit = λiFt+ eit and yt = α′Ft+ εt are obtained by simulating eit ∼ σN(0, 1) and εt ∼ N(0, 1)

for i = 1, . . . N, t = 1, . . . T . We let α = 1 when r = 1 and α = (1, 2) when r = 2. We

consider three values of σ. The smaller σ is, the more informative are the data for the factors.

The results are as follows:
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Estimated Bias for α̂1

DGP: yt = F ′tα + εt, xit = λiFt + eit
σ = 1 σ = 4

T=50 100 200 500 50 100 200 500
r = 1
N=50 -0.025 -0.020 -0.022 -0.019 -0.171 -0.156 -0.210 -0.242
100 -0.009 -0.009 -0.009 -0.012 -0.107 -0.107 -0.115 -0.138
200 -0.004 -0.004 -0.005 -0.004 -0.058 -0.058 -0.068 -0.071
500 -0.002 -0.002 -0.002 -0.002 -0.024 -0.030 -0.031 -0.034
r = 2

50 0.014 -0.035 0.026 0.017 0.002 -0.244 -0.077 -0.124
100 -0.020 0.003 -0.018 -0.020 0.116 -0.170 -0.056 -0.158
200 -0.010 0.001 0.007 -0.009 -0.104 -0.036 0.077 -0.092
500 -0.005 0.002 -0.004 0.001 -0.047 -0.043 0.028 0.031

As the true value of α is one, the entries can also be interpreted as percent bias. For

large N and T , the bias is quite small and ignoring the sampling error in F̂t should be

inconsequential. Bias is smaller when T/N = c than when N/T = c for the same c >

1, confirming that the factors are more precisely estimated when there are more cross-

section units to wash out the idiosyncratic noise. However, when σ is large and the data are

uninformative about the factors, the bias can be well over 10% and as large as 20%. In such

cases, the bias is also increasing in the number of estimated factors.

5.1.1 Bias When the Predictors are Functions of f̂t

Our predictive regression has two additional complications. First, some of our predictors are

powers of the estimated factors. Second, F̂8t is a linear combination of a subset of f̂t and f̂ 3
1t,

which is a non-linear function of f̂1t. To see how to handle the first problem, consider the

case of the scalar predictor, m̂t = m(f̂1t) and let mt = m(Hf1t) where m takes its argument

to the power b. The factor augmented regression becomes

yt = α′F m̂t + α′F (mt − m̂t) + εt

where αF = αH−b. The required bias correction is now of the form

B2 = S−1bmbm′

(
1

T

T∑
t=1

m̂

(
mt − m̂t

)′
αF

)
.

But since m is continuous in f̂1t,

m(f̂1t) = m(ft) +m bf1,t(f̂1t −Hf1t)
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where m bf,t = ∂ bmt

∂ bf1t
| bf1t=Hf1t

. We have

m̂t −mt = b(Hf1t)
b−1(f̂1t −Hf1t) = Op(min[N, T ]−1).

Given the foregoing result, it is then straightforward to show that

T−1

T∑
t=1

m̂t(mt − m̂t)
′ =
[
T−1

T∑
t=1

m bf1,tAvar(f̂1t)m
′bf1,t
]

+ op(1).

Extending the argument to the case when mt is a vector leads to the bias correction

B̂2 = −S−1bmbm′

(
T−1

T∑
t=1

m bF ,tAvar(F̂1t)m
′bF ,t
)
αF .

Finally, consider the predictive regression

yt = α′FM̂t + εt

where M̂t = γ̂0 + γ̂′m̂t. The bias can be estimated by

B̂3 = γ̂′B̂2γ̂.

In our application, γ̂ is obtained from estimation of (10).

While in theory, these bias corrections are required only when
√
T/N does not tend to

zero, in finite samples, the bias correction might be desirable even when
√
T/N is small. We

calculate the biased corrected estimates for two specifications of the predictive regressions.

The first is when the predictors are selected by the in-sample BIC (column 1 of Tables 4-7).

As this tends to lead to a larger model, the bias is likely more important. The second is

when F̂8t is used as predictor (column 9 of Table 4-7), which is the most parsimonious of

our specifications. Note that the observed predictor CP is not associated with first step

estimation error. As such, this predictor does not contribute to bias.

Reported in Table 8 are results using the CS-HAC, which allows the idiosyncratic errors

to be cross-sectionally correlated. Results when the errors are heteroskedastic but cross-

sectionally uncorrelated are similar. The results indicate that the bias is quite small. For

the present application, the effect of the bias correction is to increase the absolute magnitude

of the coefficient estimates in the predictive regressions. The t statistics (not reported) are

correspondingly larger. The finding that the macroeconomic factors have predictive power

for excess bond returns is not sensitive to the assumption underlying the asymptotically

validity of the FAR estimates.
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5.2 Bootstrap Inference

According to asymptotic theory, heteroskedasticity and autocorrelation consistent standard

errors that are asymptotically N(0, 1) can be used to obtain robust t-statistics for the in-

sample regressions. Moreover, provided
√
T/N goes to zero as the sample increases, the

F̂t can be treated as observed regressors, and the usual t-statistics are valid (Bai and Ng

(2006a)). To guard against inadequacy of the asymptotic approximation in finite samples,

we consider bootstrap inference in this section.

To proceed with a bootstrap analysis, we need to generate bootstrap samples of rx
(n)
t+1,

and thus the exogenous predictors Zt (here just CPt), as well as of the estimated factors F̂t.

Bootstrap samples of rx
(n)
t+1 are obtained in two ways: first by imposing the null hypothesis

of no predictability, and second, under the alternative that excess returns are forecastable

by the factors and conditioning variables studied above. The use of monthly bond price data

to construct continuously compounded annual returns induces an MA(12) error structure in

the annual log returns. Thus, under the null hypothesis that the expectations hypothesis is

true, annual compound returns are forecastable up to an MA(12) error structure, but are

not forecastable by other predictor variables or additional moving average terms.

Bootstrap sampling that captures the serial dependence of the data is straightforward

when, as in this case, there is a parametric model for the dependence under the null hypoth-

esis. In this event, the bootstrap may be accomplished by drawing random samples from the

empirical distribution of the residuals of a
√
T consistent, asymptotically normal estimator

of the parametric model, in our application a twelfth-order moving average process. We use

this approach to form bootstrap samples of excess returns under the null. Under the alterna-

tive, excess returns still have the MA(12) error structure induced by the use of overlapping

data, but estimated factors F̂t are presumed to contain additional predictive power for excess

returns above and beyond that implied by the moving average error structure.

To create bootstrapped samples of the factors, we re-sample the T ×N panel of data, xit.

For each i, we assume that the idiosyncratic errors eit and the errors ut in the factor process

are AR(1) processes. Least squares estimation of êit = ρiêit−1+vit yields the estimates ρ̂i and

v̂it, t = 2, . . . T , recalling that êit = xit− λ̂
′
if̂t. These errors are then re-centered. To generate

a new panel of data, for each i, v̂it is re-sampled (while preserving the cross-section correlation

structure) to yield bootstrap samples of êit. In turn, bootstrap values of xit are constructed

by adding the bootstrap estimates of the idiosyncratic errors, êit, to λ̂
′
iF̂t. Applying the

method of principal components to the bootstrapped data yields a new set of estimated

factors. Together with bootstrap samples of CPt created under the assumption that it is an
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AR(1), we have a complete set of bootstrap regressors in the predictive regression.

Each regression using the bootstrapped data gives new estimates of the regression coeffi-

cients. This is repeated B times. Bootstrap confidence intervals for the parameter estimates

and R̄2 statistics are calculated from B = 10, 000 replications. We compute 90th and 95th

percentiles of β̂F and α̂F , as well as the bootstrap estimate of the bias. This also allows us

to compare the adequacy of our calculations for asymptotic bias considered in the previous

subsection. The exercise is repeated for two-, three-, four- and five-year excess bond returns.

To conserve space, results are only reported for the largest model (corresponding to

column 1 of Tables 4 to 7). The results based on bootstrap inference are consistent with

asymptotic inference. In particular, the magnitude of predictability found in the historical

data is too large to be accounted for by sampling error of the size we currently have. The

coefficients on the predictors and factors are statistically different from zero at the 95% level

and are well outside the 95% confidence interval under the null of no predictability. The

bootstrap estimate of the bias on coefficients associated with the estimated factors are small,

and the R̄2 are similar in magnitude to what was reported in Tables 4 to 7.

5.3 Posterior Inference

In Tables 4 to 7, we have used the posterior mean of Gt in the predictive regression computed

from 1000 draws (taken from a total of 25000 draws) from the posterior distribution of Gt.

The α̂ do not reflect sampling uncertainty about Gt. To have a complete account of sampling

variability, we estimate the predictive regressions for each of the 1000 draws of Gt. This gives

us the posterior distribution for α as well as the corresponding t statistic.

Reported in Table 10 are the posterior mean of αG along with the 5 and 95% percentage

points of the t statistic. The point estimates reported in Tables 4 to 7 are very close to the

posterior means. Sampling variability from having to estimate the dynamic factors has little

effect on the estimates of the factor augmented regressions.

So far we find that macroeconomic factors have non-trivial predictive power for bond

excess returns and that the sampling error induced by F̂t or Ĝt in the predictive regressions

are numerically small. Multiple factors contribute to the predictability of excess returns, so

it is not possible to infer the cyclicality of return risk premia by observing the signs of the

individual coefficients on factors in forecasting regressions of excess returns. But Tables 4-7

provide a summary measure of how the factors are related to future excess returns by showing

that excess bond returns are high when the linear combinations of all factors, F̂8t and Ĝ8t,

are high. Figures 11 and 12 show that F̂8t and Ĝ8t are in turn high when real activity (as

22



measured by industrial production growth) is low. The results therefore imply that excess

returns are forecast to be high when economic activity is slow or contracting. That is, return

risk premia are counter-cyclical. This is confirmed by the top panels of Figures 13 and 14,

which plot return risk premia along with industrial production growth. The bottom panels

of these figures show that the factors contribute significantly to the countercyclicality of risk-

premia. Indeed, when factors are excluded (but CPt is included), risk-premia are a-cyclical.

Of economic interest is whether yield risk-preimia are also counter-cyclical. We now turn to

such an analysis.

6 Counter-cyclical Yield Risk Premia

The yield risk premium or term premium, should not be confused with the term spread,

which is simply the difference in yields between the n-period bond and the one-period bond.

Instead, the yield risk premium is a component of the the n-period yield:

y
(n)
t =

1

n
Et

(
y

(1)
t + y

(1)
t+1 + · · ·+ y

(1)
t+n−1

)
︸ ︷︷ ︸

expectations component

+ κ(n)
t︸︷︷︸

yield risk premium

. (12)

Under the expectations hypothesis, the yield risk premium, κ(n)
t , is assumed constant.

It is straightforward to show that the yield risk premium is identically equal to the average

of expected future return risk premia of declining maturity:

κ(n)
t =

1

n

[
Et

(
rx

(n)
t+1

)
+ Et

(
rx

(n−1)
t+2

)
+ · · ·+ Et

(
rx

(2)
t+n−1

)]
. (13)

To form an estimate of the risk premium component in yields, κ(n)
t , we need estimates of

the multi-step ahead forecasts that appear on the right-hand-side of (13),. Denote estimated

variables with “hats.”˙Then

κ̂(n)
t =

1

n

[
Êt

(
rx

(n)
t+1

)
+ Êt

(
rx

(n−1)
t+2

)
+ · · ·+ Êt

(
rx

(2)
t+n−1

)]
, (14)

where Êt (·) denotes an estimate of the conditional expectation Et (·) formed by a linear

projection. As estimates of the conditional expectations are simply linear forecasts of excess

returns, multiple steps ahead our earlier results for the FAR have direct implications for risk

premia in yields.

To generate multi-step ahead forecasts we estimate a monthly pth-order vectorautoregres-

sion (VAR). The idea behind the VAR is that multi-step ahead forecasts may be obtained
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by iterating one-step ahead linear projections from the VAR. The VAR vector contains ob-

servations on excess returns, the Cochrane-Piazzesi factor, CPt and Ĥt, where Ĥt are the

estimated factors (or a linear combination of them). Let

ZU
t ≡

[
rx

(5)
t , rx

(4)
t , ..., rx

(2)
t , CPt, Ĥ8t

]′
where Ĥ8 is either F̂8 or Ĝ8. For comparison, we will also form bond forecasts with a

restricted VAR that excludes the estimated factors, but still includes CPt as a predictor

variable:

ZR
t ≡

[
rx

(5)
t , rx

(4)
t , ..., rx

(2)
t , CPt

]′
.

We use a monthly VAR with p = 12 lags, where, for notational convenience, we write the

VAR in terms of mean deviations:7

Zt+1/12 − µ = Φ1 (Zt − µ) + Φ2

(
Zt−1/12 − µ

)
+ · · ·+ Φp

(
Zt−11/12 − µ

)
+ εt+1/12. (15)

Let k denote the number of variables in Zt. Then (15) can be can be expressed as a

V AR (1):

ξt+1/12 = Aξt + vt+1/12, (16)

where,

ξt+1/12
(kp×1)

≡


Zt − µ

Zt−1/12 − µ
·
·
·

Zt−11/12 − µ

 vt
(kp×1)

≡


εt+1/12

0
·
·
·
0



A
(kp×kp)

=



Φ1 Φ2 Φ3 · · Φp−1 Φp

In 0 0 · · 0 0
0 In 0 · · 0 0
· · · · · · ·
· · · · · · ·
· · · · · · ·
0 0 0 · · In 0


.

Multi-step ahead forecasts are straightforward to compute using the first-order VAR:

Etξt+j/12 = Ajξt.

7This is only for notational convenience. The estimation will include the means.
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When j = 12, the monthly VAR produces forecasts of one-year ahead variables, Etξt+1 =

A12ξt; when j = 24, it computes two-year ahead forecasts, and so on. Define a vector ej

that picks out the j-th element of ξt, i.e., e1′ξt ≡ rx
(5)
t . In the notation above, we have

e1(kp×1) = [1, 0, 0, ...0]′ , e2(kp×1) = [0, 1, 0, ...0]′, analogously for e3 and e4. Thus, given

estimates of the VAR parameters A, we may form estimates of the conditional expectations

on the right-hand-side of (14) using the VAR forecasts of return risk premia. For example, the

estimate of the expectation of the five-year bond, one year ahead, is given by Êt

(
rx

(5)
t+1

)
=

e1′A12ξt; the estimate of the expectation of the four-year bond, two years ahead, is given by

Êt

(
rx

(4)
t+2

)
= e2′A24ξt, and so on.

Letting Ĥt = F̂5t where F̂5t is a linear combination of f̂1t, f̂
3
1t, f̂3t, f̂4t and f̂8t. we showed

in Ludvigson and Ng (2007) that both yield and return risk premia are more countercyclical

and reach greater values in recessions than in the absence of Ĥt. Here, we verify that this

result holds up for different choices of Ĥt. To this end, we let Ĥt be the static and dynamic

factors selected by the out-of-sample BIC. These two predictor sets embody information in

fewer factors than the ones implied by the in-sample BIC, Ĥ8, or F5t used in Ludvigson and

Ng (2007). The point is to show that a few macroeconomic factors are enough to generate

an important difference in the properties of risk premia. Specifically, without F̂t in ZU
t , the

correlation between the estimated return risk premium and IP growth is -0.014. With F̂t in

ZU
t , the correlation is -0.223. These correlations are -0.045 and -0.376 for yield risk premia.

With Ĝt in ZU
t , the correlation of IP growth with return and yield risk premium are -0.218

and -0.286 respectively. Return and yield risk premia are thus more countercyclical when

the factors are used to forecast excess returns.

Figure 15 shows the twelve month moving-average of risk-premium component of the

five-year bond yield. As we can see, yield risk premia were particularly high in the 1982-83

recession, as well as shortly after the 2001 recession. Figure 16 shows the yield risk premia

estimated with and without using F̂t to forecast excess returns, while Figure 17 shows a

similar picture with and without Ĝt. The difference between the risk premia estimated with

and without the factors is largest around recessions. For example, the yield risk premium

on the five-year bond estimated using the information contained in F̂t or Ĝt was over 2% in

the 2001 recession, but it was slightly below 1% without Ĝt. The return risk premia (not

reported) show a similar pattern.

When the economy is contracting, the countercyclical nature of the risk factors con-

tributes to a steepening of the yield curve even as future short term rates fall. Conversely,

when the economy is expanding, the factors contribute to a flattening of the yield curve even
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as expectations of future short-term rates rise. This implies that information in the factors

is ignored. Too much variation in the long term yields is attributed to the expectations

component in recessions. Information in the macro factors are thus important in accurate

decomposition of risk premia, especially in recessions.

7 Conclusion

There is a good deal of evidence that excess bond returns are predictable by financial vari-

ables. Yet, macroeconomic theory postulates that it is real variables relating to macroeco-

nomic activity that should forecast bond returns. This paper presents robust evidence in

support of the theory. Macroeconomic factors, especially the real activity factor, has strong

predictive power for excess bond returns even in the presence of financial predictors. Our

analysis consists of estimating two sets of factors and a comprehensive specification search.

We also account for sampling uncertainty that might arise from estimation of the factors.

While the estimated risk premia without using the macro factors to forecast excess returns

are acyclical, both bond returns and yield risk premia are counter-cyclical when the factors

are used. The evidence indicate that investors seek compensation for macroeconomic risks

associated with recessions.
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Table 1: First Order Autocorrelation Coefficients
f̂t t ĝt t

1 0.767 20.589 -0.361 -6.298
2 0.748 18.085 0.823 22.157
3 -0.239 -2.852 0.877 32.267
4 0.456 7.594 0.660 14.385
5 0.362 6.819 -0.344 -1.635
6 0.422 4.232 0.448 4.552
7 -0.112 -0.672 0.050 0.609
8 0.225 4.526 0.157 2.794

Table 2: Correlation between f̂t and gt

ĝ1 ĝ2 ĝ3 ĝ4 ĝ5 ĝ6 ĝ7 ĝ8
output labor housing mfg money finance prices stocks

f̂1 0.601 0.903 0.551 0.766 -0.067 0.489 0.126 -0.092
f̂2 0.181 -0.120 0.376 0.269 0.095 -0.462 -0.227 0.449
f̂3 0.037 0.027 -0.150 -0.010 -0.148 0.144 -0.800 -0.067
f̂4 -0.303 0.118 0.253 -0.128 0.185 -0.417 -0.194 0.092
f̂5 0.306 0.179 -0.365 0.026 0.046 -0.474 -0.009 0.183
f̂6 0.103 -0.140 0.321 0.179 -0.398 0.008 0.050 0.177
f̂7 0.064 -0.023 0.125 0.004 0.743 0.088 -0.078 0.100
f̂8 -0.241 0.073 -0.023 0.111 -0.057 0.119 -0.052 0.689

Table 3: Long run correlation between f̂t and ĝt.

ĝ1 ĝ2 ĝ3 ĝ4 ĝ5 ĝ6 ĝ7 ĝ8 R2

output labor housing mfg money finance prices stocks
f̂1 0.447 0.536 0.215 0.066 -0.008 0.140 -0.002 -0.038 0.953
f̂2 0.548 -0.466 0.296 0.299 0.031 -0.536 -0.135 0.266 0.689
f̂3 0.100 0.026 -0.152 -0.036 -0.007 0.211 -0.390 -0.026 0.935
f̂4 -0.925 0.699 0.491 -0.242 0.004 -0.444 -0.077 -0.064 0.723
f̂5 0.682 0.417 -0.624 -0.135 -0.000 -0.488 0.018 0.146 0.790
f̂6 0.070 -0.357 0.467 -0.098 -0.294 0.144 0.061 0.100 0.490
f̂7 0.226 -0.252 0.136 -0.095 0.540 0.325 -0.080 0.180 0.692
f̂8 -0.986 0.447 -0.224 0.167 0.025 0.313 -0.049 0.905 0.797

Reported are estimates of Ar.0, obtained from the regression: f̂rt = Ar.0ĝt +
∑p−1

i=1
Ar.i∆gt−i + et with p = 4.



Table 4: Regressions rx(2)
t+1 = a+ α′Ĥt + β′CPt + εt+1

Ĥ Ĥ = F̂ Ĥ = Ĝ Ĥ = F̂ Ĥ = Ĝ
in out in out in out in out
1 2 3 4 5 6 7 8 9 10 11 12 13

Ĥ1 -0.761 -0.793 -0.935 -0.931 - - 0.147 0.170 - - - - -
tstat -5.387 -4.848 -5.748 -5.449 - - 2.947 2.623 - - - - -
Ĥ2 - - 0.325 0.326 -0.494 -0.627 -0.699 -0.646 - - - - -
tstat - - 2.663 2.520 -3.151 -3.623 -2.905 -3.062 - - - - -
Ĥ3 - - - - -0.492 - -0.532 -0.487 - - - - -
tstat - - - - -4.813 - -2.889 -3.012 - - - - -
Ĥ4 -0.291 - -0.399 -0.399 - - 0.186 - - - - - -
tstat -2.716 - -3.103 -2.974 - - 1.039 - - - - - -
Ĥ6 -0.151 - -0.281 -0.280 0.137 - -0.163 - - - - - -
tstat -1.322 - -1.949 -1.795 1.679 - -1.594 - - - - - -
Ĥ7 -0.128 - -0.143 -0.144 - - - - - - - - -
tstat -1.577 - -1.517 -1.365 - - - - - - - - -
Ĥ8 0.240 0.241 0.302 - -0.136 - -0.164 - - - - - -
tstat 2.981 3.297 3.575 - -1.562 - -1.997 - - - - - -
Ĥ2

2 - - - - - -0.100 - - - - - - -
tstat - - - - - -2.147 - - - - - - -
Ĥ2

4 - - - - -0.074 - -0.121 -0.118 - - - - -
tstat - - - - -3.165 - -3.167 -3.076 - - - - -
Ĥ2

5 -0.080 -0.110 - - - - - - - - - - -
tstat -2.468 -2.925 - - - - - - - - - - -
Ĥ2

6 - - - - -0.086 -0.083 -0.084 -0.080 - - - - -
tstat - - - - -6.245 -6.804 -3.642 -3.176 - - - - -
Ĥ3

1 0.044 0.047 0.057 0.056 0.019 - - - - - - - -
tstat 2.912 2.887 3.081 3.338 2.254 - - - - - - - -
CP 0.385 0.411 - - 0.452 0.433 - - 0.336 - 0.413 - 0.455
tstat 5.647 6.981 - - 7.488 7.738 - - 4.437 - 6.434 - 8.836
Ĥ8 - - - - - - - - 0.332 0.482 0.427 0.544 -
tstat - - - - - - - - 4.336 7.212 3.880 3.493 -
R̄2 0.460 0.430 0.283 0.258 0.477 0.407 0.200 0.192 0.419 0.279 0.401 0.153 0.309

Notes: The table reports estimates from OLS regressions of excess bond returns on the lagged variables named in column 1.

The dependent variable rxn
t+1 is the excess log return on the n year Treasury bond. Ĥt denotes a set of regressors formed from

consisting of functions of f̂t or ĝt where f̂t is a set of eight factors estimated by the method of principal components, and ĝt is

a vector of eight dynamic factors estimated by Bayesian factors. The panel of data used in estimation consists of 131 individual

series over the period 1964:1-2007:12. Ĥ8t is the single factor constructed as a linear combination of the eight estimated factors

and f̂3
1 . CPt is the Cochrane and Piazzesi (2005) factor that is a linear combination of five forward spreads. Newey and West

(1987) corrected t -statistics have lag order 18 months and are reported in parentheses. A constant is always included in the

regression even though its estimate is not reported in the Table.



Table 5: Regressions rx(3)
t+1 = a+ α′Ĥt + β′CPt + εt+1

Ĥ Ĥ = F̂ Ĥ = Ĝ Ĥ = F̂ Ĥ = Ĝ
in out in out in out in out
1 2 3 4 5 6 7 8 9 10 11 12 13

Ĥ1 -1.232 -1.280 -1.624 -1.592 - - - - - - - - -
tstat -5.079 -4.581 -5.553 -5.479 - - - - - - - - -
Ĥ2 -0.028 - 0.694 0.703 -0.782 -1.094 -1.259 -1.056 - - - - -
tstat -0.147 - 2.851 2.982 -2.805 -3.773 -2.983 -3.092 - - - - -
Ĥ3 - - - - -0.807 - -0.843 -0.734 - - - - -
tstat - - - - -4.297 - -2.667 -2.548 - - - - -
Ĥ4 -0.423 - -0.588 -0.592 - - 0.421 - - - - - -
tstat -2.193 - -2.518 -2.496 - - 1.225 - - - - - -
Ĥ6 -0.433 - -0.598 -0.590 - - -0.356 - - - - - -
tstat -1.890 - -2.294 -2.269 - - -2.006 - - - - - -
Ĥ7 -0.338 - -0.360 -0.342 - - - - - - - - -
tstat -2.138 - -2.109 -1.989 - - - - - - - - -
Ĥ8 0.389 0.428 0.550 0.553 -0.308 - -0.329 - - - - - -
tstat 2.593 3.190 3.718 3.738 -2.018 - -2.143 - - - - - -
Ĥ2

1 - - 0.156 - - - - - - - - - -
tstat - - 0.854 - - - - - - - - - -
Ĥ2

2 - - - - - -0.208 - - - - - - -
tstat - - - - - -2.668 - - - - - - -
Ĥ2

3 0.111 - - - - - - - - - - - -
tstat 1.999 - - - - - - - - - - - -
Ĥ2

4 - - - - -0.190 - -0.250 -0.275 - - - - -
tstat - - - - -3.925 - -3.005 -3.622 - - - - -
Ĥ2

5 - -0.161 - - - - - - - - - - -
tstat - -2.179 - - - - - - - - - - -
Ĥ2

6 - - - - -0.152 -0.147 -0.140 -0.127 - - - - -
tstat - - - - -7.130 -6.883 -3.307 -2.551 - - - - -
Ĥ2

7 - - - - 0.089 - - - - - - - -
tstat - - - - 2.687 - - - - - - - -
Ĥ3

1 0.095 0.086 0.141 0.106 0.032 - 0.031 - - - - - -
tstat 3.235 3.204 2.922 3.445 2.233 - 1.942 - - - - - -
CP 0.760 0.784 - - 0.847 0.821 - - 0.644 - 0.786 - 0.856
tstat 5.329 6.885 - - 7.516 7.770 - - 4.661 - 6.381 - 8.301
Ĥ8 - - - - - - - - 0.588 0.877 0.710 0.931 -
tstat - - - - - - - - 4.494 7.133 3.624 3.256 -
R̄2 0.455 0.424 0.268 0.267 0.475 0.418 0.182 0.167 0.432 0.277 0.404 0.135 0.328



Table 6: Regressions rx(4)
t+1 = a+ α′Ĥt + β′CPt + εt+1

Ĥ Ĥ = F̂ Ĥ = Ĝ Ĥ = F̂ Ĥ = Ĝ
in out in out in out in out
1 2 3 4 5 6 7 8 9 10 11 12 13

Ĥ1 -1.521 -1.521 -2.011 -2.050 - - - - - - - - -
tstat -5.138 -4.149 -5.013 -5.290 - - - - - - - - -
Ĥ2 - - 1.069 1.069 -0.952 -1.342 -1.619 -1.601 - - - - -
tstat - - 3.028 3.095 -2.680 -3.754 -2.812 -2.848 - - - - -
Ĥ3 - - - - -1.036 - -1.080 -1.078 - - - - -
tstat - - - - -4.127 - -2.486 -2.401 - - - - -
Ĥ4 -0.436 - -0.689 -0.681 - - 0.590 0.452 - - - - -
tstat -1.595 - -1.957 -1.978 - - 1.221 0.927 - - - - -
Ĥ5 - - -0.321 - - - - - - - - - -
tstat - - -1.475 - - - - - - - - - -
Ĥ6 -0.668 - -0.889 -0.889 - - -0.605 - - - - - -
tstat -2.160 - -2.522 -2.449 - - -2.333 - - - - - -
Ĥ7 -0.534 - -0.535 -0.541 - - - - - - - - -
tstat -2.401 - -2.222 -2.209 - - - - - - - - -
Ĥ8 0.578 0.636 0.820 0.822 -0.474 - -0.521 - - - - - -
tstat 2.820 3.365 3.935 3.914 -2.344 - -2.277 - - - - - -
Ĥ2

1 - -0.146 - - - - - - - - - - -
tstat - -0.770 - - - - - - - - - - -
Ĥ2

2 - - - - - -0.284 - - - - - - -
tstat - - - - - -2.934 - - - - - - -
Ĥ2

3 0.177 - - - - - - - - - - - -
tstat 2.527 - - - - - - - - - - - -
Ĥ2

4 - - - - -0.262 - -0.354 -0.367 - - - - -
tstat - - - - -3.692 - -2.976 -3.552 - - - - -
Ĥ2

5 - -0.228 - - - - - - - - - - -
tstat - -2.309 - - - - - - - - - - -
Ĥ2

6 - - - - -0.231 -0.227 -0.219 -0.189 - - - - -
tstat - - - - -6.923 -9.811 -4.375 -3.248 - - - - -
Ĥ2

7 - - - - 0.148 0.104 - - - - - - -
tstat - - - - 3.258 2.233 - - - - - - -
Ĥ3

1 0.131 0.081 0.142 0.148 0.037 - 0.036 - - - - - -
tstat 3.436 1.483 3.938 3.602 1.964 - 1.599 - - - - - -
CP 1.115 1.158 - - 1.238 1.219 - - 0.955 - 1.150 - 1.235
tstat 6.077 7.028 - - 7.821 8.197 - - 4.765 - 6.417 - 8.224
Ĥ8 - - - - - - - - 0.777 1.204 0.864 1.188 -
tstat - - - - - - - - 4.474 7.247 3.388 3.061 -
R̄2 0.473 0.441 0.263 0.260 0.496 0.445 0.171 0.155 0.452 0.273 0.416 0.114 0.357



Table 7: Regressions rx(5)
t+1 = a+ α′Ĥt + β′CPt + εt+1

Ĥ Ĥ = F̂ Ĥ = Ĝ Ĥ = F̂ Ĥ = Ĝ
in out in out in out in out
1 2 3 4 5 6 7 8 9 10 11 12 13

Ĥ1 -1.653 -1.373 -2.214 -2.277 0.308 - 0.326 - - - - - -
tstat -4.723 -3.686 -4.503 -4.819 1.701 - 2.049 - - - - - -
Ĥ2 - - 1.355 1.355 -1.145 -1.573 -1.928 -1.609 - - - - -
tstat - - 3.111 3.195 -2.653 -3.691 -2.760 -2.994 - - - - -
Ĥ3 - - - - -1.161 - -1.199 -1.003 - - - - -
tstat - - - - -3.615 - -2.224 -2.021 - - - - -
Ĥ4 -0.516 - -0.818 -0.805 - - 0.654 - - - - - -
tstat -1.478 - -1.861 -1.881 - - 1.128 - - - - - -
Ĥ5 - - -0.523 - - - - - - - - - -
tstat - - -1.969 - - - - - - - - - -
Ĥ6 -0.856 - -1.120 -1.120 - - -0.678 - - - - - -
tstat -2.150 - -2.566 -2.462 - - -2.049 - - - - - -
Ĥ7 -0.686 - -0.685 -0.694 - - - - - - - - -
tstat -2.479 - -2.321 -2.299 - - - - - - - - -
Ĥ8 0.702 0.725 0.985 0.988 -0.563 - -0.608 - - - - - -
tstat 2.756 3.292 3.956 3.907 -2.217 - -2.156 - - - - - -
Ĥ2

1 - -0.563 - - - - - - - - - - -
tstat - -3.037 - - - - - - - - - - -
Ĥ2

2 - - - - - -0.339 - - - - - - -
tstat - - - - - -2.955 - - - - - - -
Ĥ2

3 0.204 - - - - - - - - - - - -
tstat 2.327 - - - - - - - - - - - -
Ĥ2

4 - - - - -0.357 - -0.465 -0.466 - - - - -
tstat - - - - -4.429 - -3.497 -3.684 - - - - -
Ĥ2

6 - - - - -0.269 -0.279 -0.253 -0.234 - - - - -
tstat - - - - -6.235 -9.685 -4.407 -3.596 - - - - -
Ĥ2

7 - - - - 0.179 - - - - - - - -
tstat - - - - 3.221 - - - - - - - -
Ĥ3

1 0.150 - 0.160 0.170 - - - - - - - - -
tstat 3.310 - 3.893 3.440 - - - - - - - - -
CP 1.316 1.394 - - 1.457 1.413 - - 1.115 - 1.359 - 1.453
tstat 5.603 6.985 - - 7.237 7.409 - - 4.370 - 5.969 - 7.576
Ĥ8 - - - - - - - - 0.938 1.437 0.955 1.338 -
tstat - - - - - - - - 4.542 7.281 3.078 2.854 -
R̄2 0.435 0.392 0.251 0.245 0.453 0.408 0.152 0.135 0.422 0.259 0.377 0.097 0.330



Table 8: Biased Corrected Estimates: rx(n)
t+1 = a+ α′F̂t + β′CPt + εt+1

F̂ n = 2 n = 3 n = 4 n = 5
Ĥ1 -0.761 - -1.232 - -1.521 - -1.653 -
α̃ -0.785 - -1.277 - -1.576 - -1.724 -

bias 0.024 - 0.045 - 0.054 - 0.072 -

Ĥ2 - - -0.028 - - - - -
α̃ - - -0.059 - - - - -

bias - - 0.032 - - - - -

Ĥ4 -0.291 - -0.423 - -0.436 - -0.516 -
α̃ -0.307 - -0.454 - -0.472 - -0.564 -

bias 0.016 - 0.031 - 0.036 - 0.048 -

Ĥ6 -0.151 - -0.433 - -0.668 - -0.856 -
α̃ -0.168 - -0.468 - -0.710 - -0.912 -

bias 0.018 - 0.035 - 0.042 - 0.055 -

Ĥ7 -0.128 - -0.338 - -0.534 - -0.686 -
α̃ -0.145 - -0.372 - -0.573 - -0.737 -

bias 0.017 - 0.034 - 0.039 - 0.051 -

Ĥ8 0.240 - 0.389 - 0.578 - 0.702 -
α̃ 0.225 - 0.355 - 0.542 - 0.654 -

bias 0.016 - 0.033 - 0.036 - 0.048 -

Ĥ2
3 - - 0.111 - 0.177 - 0.204 -
α̃ - - 0.114 - 0.181 - 0.209 -

bias - - -0.004 - -0.004 - -0.006 -

Ĥ2
5 -0.080 - - - - - - -
α̃ -0.078 - - - - - - -

bias -0.003 - - - - - - -

Ĥ3
1 0.044 - 0.095 - 0.131 - 0.150 -
α̃ 0.045 - 0.096 - 0.133 - 0.153 -

bias -0.001 - -0.002 - -0.002 - -0.003 -

CP 0.385 0.336 0.760 0.644 1.115 0.955 1.316 1.115
α̃ 0.381 0.343 0.760 0.660 1.108 0.980 1.306 1.147

bias 0.004 -0.007 - - -0.016 0.007 -0.026 0.010 -0.032

Ĥ8 - 0.332 - 0.588 - 0.777 - 0.938
α̃ - 0.342 - 0.607 - 0.802 - 0.972

bias - -0.010 - -0.019 - -0.025 - -0.035

Note: The bias unadjusted estimates are reported in Columns 1 and 9 of Tables 4 to 7, respectively.



Table 9: Bootstrap Estimates when Ĥt = F̂t: Regression rx
(n)
t+1 = α′F̂t + β′CPt + εt+1

Bootstrap Bootstrap under the Null

α̂ bias 95% CI 99% CI 95% CI 99% CI

n = 2

Ĥ1 -0.761 0.012 ( -1.143 -0.343) ( -1.071 -0.399) ( -0.021 -0.015) ( -0.021 -0.016)

Ĥ4 -0.291 -0.006 ( -0.554 -0.031) ( -0.508 -0.073) ( -0.003 0.003) ( -0.002 0.003)

Ĥ6 -0.151 -0.002 ( -0.467 0.166) ( -0.408 0.100) ( -0.015 0.016) ( -0.015 0.016)

Ĥ7 -0.128 -0.004 ( -0.285 0.027) ( -0.258 -0.010) ( -0.008 0.011) ( -0.007 0.009)

Ĥ8 0.240 0.004 ( 0.054 0.425) ( 0.088 0.404) ( -0.011 0.010) ( -0.010 0.008)

Ĥ2
5 -0.080 0.003 ( -0.187 0.040) ( -0.170 0.015) ( -0.010 -0.003) ( -0.009 -0.003)

Ĥ3
1 0.044 -0.001 ( 0.010 0.076) ( 0.016 0.071) ( -0.000 0.000) ( -0.000 0.000)

CP 0.385 -0.003 ( 0.262 0.516) ( 0.276 0.490) ( 0.003 0.009) ( 0.003 0.008)

R̄2 0.460 ( 0.237 0.523) ( 0.261 0.500) ( 0.019 0.045) ( 0.021 0.042)

n = 3

Ĥ1 -1.232 0.027 ( -1.914 -0.506) ( -1.797 -0.655) ( -0.021 -0.015) ( -0.021 -0.016)

Ĥ2 -0.028 -0.017 ( -0.574 0.505) ( -0.486 0.426) ( -0.001 0.005) ( -0.000 0.005)

Ĥ4 -0.423 -0.004 ( -0.881 0.030) ( -0.811 -0.050) ( -0.003 0.003) ( -0.003 0.003)

Ĥ6 -0.433 0.012 ( -0.969 0.093) ( -0.870 0.024) ( -0.014 0.015) ( -0.013 0.014)

Ĥ7 -0.338 -0.002 ( -0.585 -0.094) ( -0.549 -0.140) ( -0.009 0.010) ( -0.007 0.009)

Ĥ8 0.389 -0.002 ( 0.082 0.669) ( 0.140 0.632) ( -0.009 0.008) ( -0.008 0.007)

Ĥ2
3 0.111 -0.003 ( -0.046 0.250) ( -0.006 0.221) ( 0.000 0.002) ( 0.000 0.002)

Ĥ3
1 0.095 -0.002 ( 0.034 0.145) ( 0.046 0.136) ( 0.000 0.001) ( 0.000 0.001)
CP 0.760 -0.001 ( 0.546 0.980) ( 0.582 0.935) ( 0.003 0.009) ( 0.003 0.008)

R̄2 0.455 ( 0.280 0.559) ( 0.303 0.533) ( 0.013 0.035) ( 0.014 0.032)

n = 4

Ĥ1 -1.521 0.047 ( -2.488 -0.480) ( -2.323 -0.617) ( -0.021 -0.015) ( -0.021 -0.016)

Ĥ4 -0.436 0.001 ( -1.048 0.178) ( -0.958 0.090) ( -0.004 0.003) ( -0.003 0.003)

Ĥ6 -0.668 -0.002 ( -1.410 0.131) ( -1.297 0.002) ( -0.014 0.015) ( -0.013 0.014)

Ĥ7 -0.534 0.004 ( -0.942 -0.178) ( -0.849 -0.230) ( -0.009 0.010) ( -0.007 0.008)

Ĥ8 0.578 0.004 ( 0.119 1.022) ( 0.206 0.957) ( -0.010 0.009) ( -0.009 0.007)

Ĥ2
3 0.177 -0.001 ( -0.031 0.375) ( 0.002 0.339) ( 0.000 0.002) ( 0.000 0.002)

Ĥ3
1 0.131 -0.003 ( 0.055 0.206) ( 0.068 0.189) ( 0.000 0.001) ( 0.000 0.001)

CP 1.115 -0.006 ( 0.820 1.401) ( 0.861 1.348) ( 0.003 0.009) ( 0.003 0.009)

R̄2 0.473 ( 0.277 0.567) ( 0.303 0.545) ( 0.014 0.036) ( 0.016 0.034)

n = 5

Ĥ1 -1.653 0.026 ( -2.832 -0.429) ( -2.648 -0.606) ( -0.021 -0.015) ( -0.021 -0.016)

Ĥ4 -0.516 -0.004 ( -1.306 0.321) ( -1.190 0.169) ( -0.003 0.003) ( -0.003 0.003)

Ĥ6 -0.856 0.011 ( -1.870 0.190) ( -1.666 0.012) ( -0.014 0.014) ( -0.013 0.014)

Ĥ7 -0.686 0.012 ( -1.182 -0.119) ( -1.071 -0.244) ( -0.007 0.010) ( -0.006 0.009)

Ĥ8 0.702 -0.004 ( 0.139 1.286) ( 0.224 1.160) ( -0.009 0.008) ( -0.009 0.007)

Ĥ2
3 0.204 0.000 ( -0.059 0.491) ( -0.017 0.419) ( 0.000 0.002) ( 0.001 0.002)

Ĥ3
1 0.150 -0.001 ( 0.051 0.242) ( 0.069 0.232) ( 0.000 0.001) ( 0.000 0.001)

CP 1.316 -0.009 ( 0.896 1.723) ( 0.945 1.663) ( 0.003 0.009) ( 0.003 0.008)

R̄2 0.435 ( 0.225 0.518) ( 0.251 0.488) ( 0.015 0.036) ( 0.016 0.033)



Table 10: Posterior Mean: rx
(n)
t+1 = a+ α′Ĝt + β′CPt + εt+1

F̂ n = 2 n = 3 n = 4 n = 5

Ĥ1 - - - - - - 0.288 -
t.05 - - - - - - 1.275 -
t.95 - - - - - - 1.912 -

Ĥ2 -0.506 - -0.801 - -0.976 - -1.159 -
t.05 -3.676 - -3.239 - -3.140 - -3.099 -
t.95 -2.942 - -2.622 - -2.477 - -2.397 -

Ĥ3 -0.456 - -0.746 - -0.959 - -1.074 -
t.05 -5.335 - -4.749 - -4.616 - -3.302 -
t.95 -4.050 - -3.637 - -3.482 - -3.374 -

Ĥ6 0.139 - - - - - - -
t.05 1.819 - - - - - - -
t.95 1.712 - - - - - - -

Ĥ8 -0.139 - -0.309 - -0.473 - -0.561 -
t.05 -1.872 - -2.366 - -2.622 - -2.523 -
t.95 -1.332 - -1.732 - -1.994 - -1.863 -

Ĥ2
4 -0.070 - -0.183 - -0.253 - -0.348 -

t.05 -2.395 - -2.982 - -2.920 - -3.713 -
t.95 -2.787 - -3.319 - -3.089 - -3.681 -

Ĥ2
6 -0.086 - -0.154 - -0.235 - -0.274 -

t.05 -5.427 - -6.109 - -6.109 - -5.559 -
t.95 -6.629 - -7.223 - -6.838 - -6.138 -

Ĥ2
7 - - 0.087 - 0.146 - 0.178 -

t.05 - - 2.408 - 2.866 - 2.852 -
t.95 - - 2.404 - 3.006 - 2.914 -

Ĥ3
1 0.019 - 0.032 - 0.037 - - -

t.05 2.092 - 2.090 - 1.836 - - -
t.95 2.346 - 2.357 - 2.095 - - -

CP 0.452 0.416 0.845 0.790 1.236 1.155 1.456 1.365
t.05 7.200 6.334 7.285 6.300 7.568 6.348 7.012 5.900
t.95 7.566 6.919 7.641 6.770 7.926 6.760 7.331 6.262

Ĥ8 - 0.428 - 0.712 - 0.867 - 0.959
t.05 - 3.330 - 3.096 - 2.888 - 2.610
t.95 - 4.316 - 4.033 - 3.803 - 3.489

R̄2
0.95 0.471 0.399 0.469 0.403 0.489 0.415 0.448 0.377

R̄2
0.05 0.469 0.397 0.467 0.401 0.488 0.413 0.446 0.375

Note: Reported are the mean estimates when a predictive regression is run for each draw of Gt. Estimates when the

regressors are the posterior mean of the Gt are reported in Columns 5 and 10 of Tables 4 to 7, respectively.



Figure 1: Marginal R-squares for F1
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Notes: Chart shows the R-square from regressing the series number given on the x-axis onto the estimated factor named in the 
heading. See the appendix for a description of the numbered series. The factors are estimated using data from 1964:1-2007:12.   



Figure 2: Marginal R-squares for F2
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Notes: See Figure 1. 



Figure 3: Marginal R-squares for F3
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Notes: See Figure 1. 



Figure 4: Marginal R-squares for F4

0

0.05

0.1

0.15

0.2

0.25

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126 131

R
-s

qu
ar

es

Output Emp.&Hrs Orders & Housing Money, Credit & Finan Prices

Notes: See Figure 1. 



Figure 5: Marginal R-squares for F5
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Notes: See Figure 1. 



Figure 6: Marginal R-squares for F6

0

0.05

0.1

0.15

0.2

0.25

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126 131

R
-s

qu
ar

e

Output Emp.&Hrs Orders & Housing Money, Credit & 
Finan

Prices

Notes: See Figure 1. 



Figure 7: Marginal R-squares for F7
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Notes: See Figure 1. 



Figure 8: Marginal R-squares for F8
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Figure 9:
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Fin and Gin are the R̄2 from rolling estimation of (8), with predictors selected by the in-sample BIC. Fout and Gout use

predictors selected by the out-of-sample BIC. F8 and G8 use a linear combination of eight factors as predictors, where the

weights are based on (10).



Figure 10:
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Fin and Gin are the R̄2 from rolling estimation of (8), with predictors selected by the in-sample BIC. Fout and Gout use

predictors selected by the out-of-sample BIC. F8 and G8 use a linear combination of eight factors as predictors, where the

weights are based on (10).



Figure 11:

F8 and IP Growth

Year

12
 M

on
th

 M
ov

in
g 

A
ve

ra
ge

 

 

Correlation:
−0.731022

1970 1975 1980 1985 1990 1995 2000 2005
−4

−3

−2

−1

0

1

2

3 F8
IP growth



Figure 12:
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Figure 13:

Return Risk Premia Including F and IP Growth − 5 yr bond
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Figure 14:

Return Risk Premia Including G and IP Growth − 5 yr bond
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Figure 16:
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Figure 17:
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1 Data Appendix
This appendix lists the short name of each series, its mnemonic (the series label used in the source data-
base), the transformation applied to the series, and a brief data description. All series are from the Global
Insights Basic Economics Database, unless the source is listed (in parentheses) as TCB (The Conference
Board’s Indicators Database) or AC (author’s calculation based on Global Insights or TCB data). In the
transformation column, ln denotes logarithm, ∆ ln and ∆2 ln denote the first and second difference of the
logarithm, lv denotes the level of the series, and ∆ lv denotes the first difference of the series. The data are
available from 1959:01-1997:12.

Group 1: Output and Income

No. Gp Short Name Mnemonic Tran Descripton
1 1 PI ypr ∆ln Personal Income (AR, Bil. Chain 2000 $) (TCB)
6 1 IP: total ips10 ∆ln Industrial Production Index - Total Index
7 1 IP: products ips11 ∆ln Industrial Production Index - Products, Total
8 1 IP: final prod ips299 ∆ln Industrial Production Index - Final Products
9 1 IP: cons gds ips12 ∆ln Industrial Production Index - Consumer Goods
10 1 IP: cons dble ips13 ∆ln Industrial Production Index - Durable Consumer Goods
11 1 IP: cons nondble ips18 ∆ln Industrial Production Index - Nondurable Consumer Goods
12 1 IP: bus eqpt ips25 ∆ln Industrial Production Index - Business Equipment
13 1 IP: matls ips32 ∆ln Industrial Production Index - Materials
14 1 IP: dble matls ips34 ∆ln Industrial Production Index - Durable Goods Materials
15 1 IP: nondble matls ips38 ∆ln Industrial Production Index - Nondurable Goods Materials
16 1 IP: mfg ips43 ∆ln Industrial Production Index - Manufacturing (Sic)
17 1 IP: res util ips307 ∆ln Industrial Production Index - Residential Utilities
18 1 IP: fuels ips306 ∆ln Industrial Production Index - Fuels
19 1 NAPM prodn pmp lv Napm Production Index (Percent)
20 1 Cap util utl11 ∆lv Capacity Utilization (SIC-Mfg) (TCB)



Group 2: Labor Market

No. Gp Short Name Mnemonic Tran Descripton
21 2 Help wanted indx lhel ∆lv Index Of Help-Wanted Advertising In Newspapers (1967=100;Sa)
22 2 Help wanted/emp lhelx ∆lv Employment: Ratio; Help-Wanted Ads:No. Unemployed Clf
23 2 Emp CPS total lhem ∆ln Civilian Labor Force: Employed, Total (Thous.,Sa)
24 2 Emp CPS nonag lhnag ∆ln Civilian Labor Force: Employed, Nonagric.Industries (Thous.,Sa)
25 2 U: all lhur ∆lv Unemployment Rate: All Workers, 16 Years &
26 2 U: mean duration lhu680 ∆lv Unemploy.By Duration: Average(Mean)Duration In Weeks (Sa)
27 2 U < 5 wks lhu5 ∆ln Unemploy.By Duration: Persons Unempl.Less Than 5 Wks (Thous.,Sa)
28 2 U 5-14 wks lhu14 ∆ln Unemploy.By Duration: Persons Unempl.5 To 14 Wks (Thous.,Sa)
29 2 U 15+ wks lhu15 ∆ln Unemploy.By Duration: Persons Unempl.15 Wks + (Thous.,Sa)
30 2 U 15-26 wks lhu26 ∆ln Unemploy.By Duration: Persons Unempl.15 To 26 Wks (Thous.,Sa)
31 2 U 27+ wks lhu27 ∆ln Unemploy.By Duration: Persons Unempl.27 Wks + (Thous,Sa)
32 2 UI claims claimuii ∆ln Average Weekly Initial Claims, Unemploy. Insurance (Thous.) (TCB)
33 2 Emp: total ces002 ∆ln Employees On Nonfarm Payrolls: Total Private
34 2 Emp: gds prod ces003 ∆ln Employees On Nonfarm Payrolls - Goods-Producing
35 2 Emp: mining ces006 ∆ln Employees On Nonfarm Payrolls - Mining
36 2 Emp: const ces011 ∆ln Employees On Nonfarm Payrolls - Construction
37 2 Emp: mfg ces015 ∆ln Employees On Nonfarm Payrolls - Manufacturing
38 2 Emp: dble gds ces017 ∆ln Employees On Nonfarm Payrolls - Durable Goods

No. Gp Short Name Mnemonic Tran Descripton
39 2 Emp: nondbles ces033 ∆ln Employees On Nonfarm Payrolls - Nondurable Goods
40 2 Emp: services ces046 ∆ln Employees On Nonfarm Payrolls - Service-Providing
41 2 Emp: TTU ces048 ∆ln Employees On Nonfarm Payrolls - Trade, Transportation, And Utilities
42 2 Emp: wholesale ces049 ∆ln Employees On Nonfarm Payrolls - Wholesale Trade.
43 2 Emp: retail ces053 ∆ln Employees On Nonfarm Payrolls - Retail Trade
44 2 Emp: FIRE ces088 ∆ln Employees On Nonfarm Payrolls - Financial Activities
45 2 Emp: Govt ces140 ∆ln Employees On Nonfarm Payrolls - Government
(46) 2 Emp-hrs nonag a0m048 ∆ln Employee Hours In Nonag. Establishments (AR, Bil. Hours) (TCB)
47 2 Avg hrs ces151 lv Avg Weekly Hrs of Prod or Nonsup Workers On Private Nonfarm Payrolls - Goods-Producing
48 2 Overtime: mfg ces155 ∆lv Avg Weekly Hrs of Prod or Nonsup Workers On Private Nonfarm Payrolls - Mfg Overtime Hours
49 2 Avg hrs: mfg aom001 lv Average Weekly Hours, Mfg. (Hours) (TCB)
50 2 NAPM empl pmemp lv Napm Employment Index (Percent)
129 2 AHE: goods ces275 ∆2ln Avg Hourly Earnings of Prod or Nonsup Workers On Private Nonfarm Payrolls - Goods-Producing
130 2 AHE: const ces277 ∆2ln Avg Hourly Earnings of Prod or Nonsup Workers On Private Nonfarm Payrolls - Construction
131 2 AHE: mfg ces278 ∆2ln Avg Hourly Earnings of Prod or Nonsup Workers On Private Nonfarm Payrolls - Manufacturing



Group 3: Housing

No. Gp Short Name Mnemonic Tran Descripton
51 3 Starts: nonfarm hsfr ln Housing Starts:Nonfarm(1947-58);Total Farm&Nonfarm(1959-)(Thous.,Saar)
52 3 Starts: NE hsne ln Housing Starts:Northeast (Thous.U.)S.A.
53 3 Starts: MW hsmw ln Housing Starts:Midwest(Thous.U.)S.A.
54 3 Starts: South hssou ln Housing Starts:South (Thous.U.)S.A.
55 3 Starts: West hswst ln Housing Starts:West (Thous.U.)S.A.
56 3 BP: total hsbr ln Housing Authorized: Total New Priv Housing Units (Thous.,Saar)
57 3 BP: NE hsbne* ln Houses Authorized By Build. Permits:Northeast(Thou.U.)S.A
58 3 BP: MW hsbmw* ln Houses Authorized By Build. Permits:Midwest(Thou.U.)S.A.
59 3 BP: South hsbsou* ln Houses Authorized By Build. Permits:South(Thou.U.)S.A.
60 3 BP: West hsbwst* ln Houses Authorized By Build. Permits:West(Thou.U.)S.A.

Group 4: Consumption, Orders and Inventories

61 4 PMI pmi lv Purchasing Managers’ Index (Sa)
62 4 NAPM new ordrs pmno lv Napm New Orders Index (Percent)
63 4 NAPM vendor del pmdel lv Napm Vendor Deliveries Index (Percent)
64 4 NAPM Invent pmnv lv Napm Inventories Index (Percent)
65 4 Orders: cons gds a1m008 ∆ln Mfrs’ New Orders, Consumer Goods And Materials (Mil. $) (TCB)
66 4 Orders: dble gds a0m007 ∆ln Mfrs’ New Orders, Durable Goods Industries (Bil. Chain 2000 $ ) (TCB)
67 4 Orders: cap gds a0m027 ∆ln Mfrs’ New Orders, Nondefense Capital Goods (Mil. Chain 1982 $) (TCB)
68 4 Unf orders: dble a1m092 ∆ln Mfrs’ Unfilled Orders, Durable Goods Indus. (Bil. Chain 2000 $) (TCB)
69 4 M&T invent a0m070 ∆ln Manufacturing And Trade Inventories (Bil. Chain 2000 $) (TCB)
70 4 M&T invent/sales a0m077 ∆lv Ratio, Mfg. And Trade Inventories To Sales (Based On Chain 2000 $) (TCB)
3 4 Consumption cons-r ∆ln Real Personal Consumption Expenditures (AC) (Bill $) pi031 / gmdc
4 4 M&T sales mtq ∆ln Manufacturing And Trade Sales (Mil. Chain 1996 $) (TCB)
5 4 Retail sales a0m059 ∆ln Sales Of Retail Stores (Mil. Chain 2000 $) (TCB)
132 4 Consumer expect hhsntn ∆lv U. Of Mich. Index Of Consumer Expectations(Bcd-83)



Group 5: Money and Credit

No. Gp Short Name Mnemonic Tran Descripton
71 5 M1 fm1 ∆2ln Money Stock: M1(Curr,Trav.Cks,Dem Dep,Other Ck’able Dep)(Bil$,Sa)
72 5 M2 fm2 ∆2ln Money Stock:M2(M1+O’nite Rps,Euro$,G/P&B/D & Mmmfs&Sav& Sm Time Dep(Bil$,Sa)
73 5 Currency fmscu ∆2ln Money Stock: Currency held by the public (Bil$,Sa)
74 5 M2 (real) fm2-r ∆ln Money Supply: Real M2, fm2 / gmdc (AC)
75 5 MB fmfba ∆2ln Monetary Base, Adj For Reserve Requirement Changes(Mil$,Sa)
76 5 Reserves tot fmrra ∆2ln Depository Inst Reserves:Total, Adj For Reserve Req Chgs(Mil$,Sa)
77 5 Reserves nonbor fmrnba ∆2ln Depository Inst Reserves:Nonborrowed,Adj Res Req Chgs(Mil$,Sa)
78 5 C&I loans fclnbw ∆2ln Commercial & Industrial Loans Outstanding + NonFin Comm. Paper (Mil$, SA) (Bci)
79 5 C&I loans fclbmc lv Wkly Rp Lg Com’l Banks:Net Change Com’l & Indus Loans(Bil$,Saar)
80 5 Cons credit ccinrv ∆2ln Consumer Credit Outstanding - Nonrevolving(G19)
81 5 Inst cred/PI ccipy ∆lv Ratio, Consumer Installment Credit To Personal Income (Pct.) (TCB)

Group 6: Bond and Exchange rates

86 6 Fed Funds fyff ∆lv Interest Rate: Federal Funds (Effective) (% Per Annum,Nsa)
87 6 Comm paper cp90 ∆lv Commercial Paper Rate
88 6 3 mo T-bill fygm3 ∆lv Interest Rate: U.S.Treasury Bills,Sec Mkt,3-Mo.(% Per Ann,Nsa)
89 6 6 mo T-bill fygm6 ∆lv Interest Rate: U.S.Treasury Bills,Sec Mkt,6-Mo.(% Per Ann,Nsa)
90 6 1 yr T-bond fygt1 ∆lv Interest Rate: U.S.Treasury Const Maturities,1-Yr.(% Per Ann,Nsa)
91 6 5 yr T-bond fygt5 ∆lv Interest Rate: U.S.Treasury Const Maturities,5-Yr.(% Per Ann,Nsa)
92 6 10 yr T-bond fygt10 ∆lv Interest Rate: U.S.Treasury Const Maturities,10-Yr.(% Per Ann,Nsa)
93 6 Aaa bond fyaaac ∆lv Bond Yield: Moody’s Aaa Corporate (% Per Annum)
94 6 Baa bond fybaac ∆lv Bond Yield: Moody’s Baa Corporate (% Per Annum)
95 6 CP-FF spread scp90F lv cp90-fyff (AC)
96 6 3 mo-FF spread sfygm3 lv fygm3-fyff (AC)
97 6 6 mo-FF spread sfygm6 lv fygm6-fyff (AC)
98 6 1 yr-FF spread sfygt1 lv fygt1-fyff (AC)
99 6 5 yr-FF spread sfygt5 lv fygt5-fyff (AC)
100 6 10 yr-FF spread sfygt10 lv fygt10-fyff (AC)
101 6 Aaa-FF spread sfyaaac lv fyaaac-fyff (AC)
102 6 Baa-FF spread sfybaac lv fybaac-fyff (AC)
103 6 Ex rate: avg exrus ∆ln United States;Effective Exchange Rate(Merm)(Index No.)
104 6 Ex rate: Switz exrsw ∆ln Foreign Exchange Rate: Switzerland (Swiss Franc Per U.S.$)
105 6 Ex rate: Japan exrjan ∆ln Foreign Exchange Rate: Japan (Yen Per U.S.$)
106 6 Ex rate: UK exruk ∆ln Foreign Exchange Rate: United Kingdom (Cents Per Pound)
107 6 EX rate: Canada exrcan ∆ln Foreign Exchange Rate: Canada (Canadian $ Per U.S.$)



Group 7: Prices

108 7 PPI: fin gds pwfsa ∆2ln Producer Price Index: Finished Goods (82=100,Sa)
109 7 PPI: cons gds pwfcsa ∆2ln Producer Price Index: Finished Consumer Goods (82=100,Sa)
110 7 PPI: int materials pwimsa ∆2ln Producer Price Index:I ntermed Mat.Supplies & Components(82=100,Sa)
111 7 PPI: crude materials pwcmsa ∆2ln Producer Price Index: Crude Materials (82=100,Sa)
112 7 Spot market price psccom ∆2ln Spot market price index: bls & crb: all commodities(1967=100)
113 7 PPI: nonferrous materials pw102 ∆2ln Producer Price Index: Nonferrous Materials (1982=100, Nsa)
114 7 NAPM com price pmcp lv Napm Commodity Prices Index (Percent)
115 7 CPI-U: all punew ∆2ln Cpi-U: All Items (82-84=100,Sa)
116 7 CPI-U: apparel pu83 ∆2ln Cpi-U: Apparel & Upkeep (82-84=100,Sa)
117 7 CPI-U: transp pu84 ∆2ln Cpi-U: Transportation (82-84=100,Sa)
118 7 CPI-U: medical pu85 ∆2ln Cpi-U: Medical Care (82-84=100,Sa)
119 7 CPI-U: comm. puc ∆2ln Cpi-U: Commodities (82-84=100,Sa)
120 7 CPI-U: dbles pucd ∆2ln Cpi-U: Durables (82-84=100,Sa)
121 7 CPI-U: services pus ∆2ln Cpi-U: Services (82-84=100,Sa)
122 7 CPI-U: ex food puxf ∆2ln Cpi-U: All Items Less Food (82-84=100,Sa)
123 7 CPI-U: ex shelter puxhs ∆2ln Cpi-U: All Items Less Shelter (82-84=100,Sa)
124 7 CPI-U: ex med puxm ∆2ln Cpi-U: All Items Less Midical Care (82-84=100,Sa)
125 7 PCE defl gmdc ∆2ln Pce, Impl Pr Defl:Pce (2000=100) (AC) (BEA)
126 7 PCE defl: dlbes gmdcd ∆2ln Pce, Impl Pr Defl:Pce; Durables (2000=100) (AC) (BEA)
127 7 PCE defl: nondble gmdcn ∆2ln Pce, Impl Pr Defl:Pce; Nondurables (2000=100) (AC) (BEA)
128 7 PCE defl: service gmdcs ∆2ln Pce, Impl Pr Defl:Pce; Services (2000=100) (AC) (BEA)

Group 8: Stock Market

No. Gp Short Name Mnemonic Tran Descripton
82 8 S&P 500 fspcom ∆ln S&P’s Common Stock Price Index: Composite (1941-43=10)
83 8 S&P: indust fspin ∆ln S&P’s Common Stock Price Index: & Industrials (1941-43=10)
84 8 S&P div yield fsdxp ∆lv S&P’s Composite Common Stock: Dividend Yield (% Per Annum)
85 8 S&P PE ratio fspxe ∆ln S&P’s Composite Common Stock: &Price-Earnings Ratio (%,Nsa)


