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ASIAN OPTIONS 1
1 Introduction

Options on the average, or Asian options, have become ubiquitious in the financial world. An
Asian option is a path-dependent contingent claim whose payoff depends on the arithmetic
or geometric average value of the underlying’s price over some time period. This paper
develops an analytical approach based on expansion of the state-space for modelling these

derivative securities,

Asian options have several uses. For example: (1) Banks and corporations may use them
to hedge their financing costs over an extended period of time, rather than rely on more
traditional contracts such as caps, floors and collars. (ii) Corporations that have cash flows
over a period of time may use an Asian option instead of a series of conventional options
to hedge the risks associated with these cash flows. Asian options are often cheaper than
regular options, and this makes hedging more cost-effective. (iii) The writers of caps and
floors may use the Asian option to hedge their risk on these contracts over several maturities.
(iv) Interest differentials are known to follow mean-reverting processes, and Asian options
written on the average interest differential of two currencies may be used to hedge risk in a
portfolio of long term foreign currency options over a range of maturities. (v) Binary Asian
options may be used to cover ‘event risk’; such contracts pay off a fixed amount only if an
event occurs, An example of such contracts is one where two parties contract on whether the
EMS (European Monetary System) accord will occur or not. In this setting, the rationale
for the binary Asian option lies in the fact that interest rates will be in one of two regimes
(high or low) depending on the outcome of EMS. Since regimes are often difficult to detect
empirically, writing options on the average of a financial variable over a period of time is
more likely to ensure that a financial variable actually resides within a regime, than when
a variable is examined only at one point in time. (vi) Likewise, Asian options also offer
contracts that are less susceptible to market manipulation by the option’s parties, since it is

harder to manipulate a market over an extended period of time.

This paper develops a general approach to pricing average rate options based on expansion
of the state space. The idea, very simply, is to expand the state space from that of a
traditional Black-Scholes/Merton setup with just one state variable, the underlying, to two
state variables where the second is the average (i.e. arithmetic integral) of the underlying.
Using Fourier inversion methods such as those in Heston [16] and Eydeland and Geman [13],
we show that the resulting valuation equations have closed-form solutions for a variety of

underlying stochastic processes using arithmetic averaging. The advantage of the closed-
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form solution over numerical methods is that its speed is not impaired as we increase the
maturity of the options, while lattice or simulation approaches would need larger grids and
result in slower computational speeds to maintain required accuracy levels. The models in
the paper have been implemented and offer extremely rapid and accurate option valuation
for any maturity.

To demonstrate the technique, we develop closed form solutions for average-rate options
under three different models for the underlying price process. Two of these models deal with
mean-reverting processes, on which little work has thus far been done with regards to Asian
options. Mean-reverting processes are commonly used to model economic variables such as
interest rates, rate differentials, volatility, credit spreads, convenience yields, inflation, equity
premia, amongst several others. In addition, we use the techniques to develop a pricing model
for Asian options where the underlying is modelled using a CEV process, which would be
more appropriate for equities, commodities, etc. Thus, the models presented as examples
in this paper should have immediate applicability with a variety of underlying variables. In
addition, closed-form solutions for more complex instruments such as average range forwards
or instruments utilizing more complicated stochastic processes such as stochastic volatility,
stochastic mean, or Poisson processes are also readily obtained using the techniques in the

paper.

The work in this paper is related to the methods of Geman and Yor [15]. They implement
via Bessel processes an approach to Asian options involving the integral of an exponential
of Brownian motion. In contrast, the techniques in this paper may be used to price Asian
options involving the integral of both unexponentiated Brownian motion or the exponential
of Brownian motion. Therefore, it provides a more general framework for modelling the
Asian option problem.

In the existing literature on Asian options, very few closed-form solutions of the type
presented in this paper have been found. Analytical solutions exist for pricing Asian options
on a geometric Brownian motion process but only when geometric averaging, rather than
arithmetic averaging, is used.! The notable exception here is the model of Geman and Yor
[15], who provide a solution for the arithmetic average option when the underlying follows
a Bessel process. Most of the work done on techniques for pricing Asian options focuses on
numerical techniques such as Monte Carlo simulation or lattice-based methods. Examples

of interesting numerical techniques for the Asian option problem with geometric Brownian

! Analytic solutions also exist for arithmetic averaging when the underlying’s price process is modelled as
arithmetic Brownian motion, but this stochastic process allows the underlying’s price to become negative.
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motions include Dewynne and Wilmott [11], Yor [28], De-Schepper, Teunen, and Goovaerts
[10] and Barraquand and Pudet [1] In addition, the overwhelming majority of work has
focused on Asian options written on a stock price or a foreign exchange rate, where the
use of geometric Brownian motion may be deemed appropriate.? Examples include Kemna
and Vorst [17], Turnbull and Wakeman [24], Levy [18], Geman and Yor [15], Carverhill
and Clewlow [6], Ruttiens [21], Vorst [27], and Bouaziz, Briys and Crouhy [4]. In contrast,
the focus of this paper is on an analytical method for pricing Asian options that can be
used potentially with any underlying process, and therefore, applicable for a wider range of

underlying securities.

In order to fix ideas, we undertake the discussion of the solution technique primarily as
it would apply to Asian options on interest rates. 'The plan of the paper is as follows. First,
we demonstrate the technique in deriving an analytical formula for the binary option on
the average of a square-root diffusion, i.e. a binary Asian cap. We also develop a similar
equation for the binary option on the terminal interest rate, i.e. a simple binary cap. Using
a put-call parity relationship for binary options we present the formulae for pricing binary
floors. For completeness we also provide the solutions for the Ornstein-Uhlenbeck (O-U)
process in a paradigm similar to the one for the square-root diffusion (this complements the
work of Longstaff [19] who has developed a similar model using different methods). It is also
important to recognize here the models in Geman and Yor [15], where Bessel process methods
are used to value perpetuities in both the O-U and square-root process models®. On the other
hand, in our paper, alternative methods for finite time integrals of mean-reverting Brownian
motions are developed by means of state-space expansion. Numerical examples illustrate
option pricing under both the square-root and O-U processes. As an example of a complex
security, we also price range Asian options. We then show that the pricing technique can be
employed with equal success for stochastic processes without mean-reversion. Specifically
we develop closed-form solutions for an Asian option written on a CEV process. The final

section offers concluding comments.

2Actually, in the case of foreign exchange rates, geometric Brownian motion is probably not appropriate
gince exchange tates tend to display mean-reversion, especially over longer periods, a property not captured
by a geometric Brownian motion process.

3Perpetuities are also integrals of exponentials of a Brownian motion and hence are logically subsumed
within the framework of Geman and Yor [15]. This issue also connects with the work on perpetuities by
Dufresne [12].
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2 Stochastic Processes

The paper begins with an analysis of the Asian interest rate option for square-root processes.
We use this process to demonstrate the use of state-space expansion techniques in pricing
path-dependent contingent claims. In Section 6 of the paper, we develop analogous results
for the O-U process.

We assume that interest rates r(¢),¢ € [0, oc] follow a square-root diffusion as in Cox-
Ingersoll-Ross [9]:

dr(t) = k[0 — r(t)] dt + m/r(t)dz(t), r(0) = ro. (1)

The long run mean of the interest rate is #, and the interest rate reverts to this mean at
rate k. The diffusion has square-root volatility with coeflicient 5, and z(t) is the standard
Wiener shock. We now expand the state-space by introducing the state variable X(7') which
represents the average of the underlying. To do so, we define the average interest rate over
the interval [0, T as

1 4T
X(T) = = [ r(w)d
(@)= [ r(w)de
By expanding the state-space, the valuation equation which governs the price of an average-

rate option will depend only on the current values of state variables rather than both current

and past values.

It is easier to work with the sum of the interest rate over [0, 7] which we denote

which in differential form may be written as
dY(t) = r(t)dt, Y(0) =Yo. (2)

We assume the existence of a risk-neutral equivalent martingale measure ¢ under which the
discounted value of interest rate dependent securities follow martingales. The interest rate

process under this measure has a risk-adjusted drift and is re-expressed as

dr(t) = (k[0 — r()] — ér(1)) dt +m/r(B)dz(t), (0) = ro. (3)

The risk adjustment (as derived in Cox-Ingersoll-Ross [9]) is proportional to the level of
~ the interest rate r(t), and depends on coefficient ¢. Further analysis will be undertaken
employing the risk neutral interest rate process in equation (3) and the cumulative interest

rate process in equation (2).
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3 Binary Asian Options

3.1 Definition

We first derive the equation for pricing binary (i.e. digital) Asian options. The pricing of
pure (non-Asian) digital options is undertaken in Turnbull [25].* The technique for this
requires the derivation of the density function of X (7'} which is simply the density function
for Y (7). The derivation of this density function is original. We shall then employ the
approach developed in Heston [16] to value this digital option. Employing this as a building

block, we then derive the pricing model for regular Asian options on interest rates.

The simplest form of binary option is a cash or nothing option. A cash or nothing call
option (F') with strike rate K and maturity 7" on the average interest rate X (7') pays off
a fixed amount Mif X(T) > K, else it expires worthless. A cash or nothing put option
(F’)with strike rate K and maturity T on the average interest rate X (7T') pays off a fixed
amount M if X(T') < K, else it expires worthless. We use the terms ‘calls’ and ‘caps’ inter-
changeably here. Likewise, ‘puts’ and ‘floors’ are synonymous. We restrict our exposition
to calls, and develop the pricing of puts in Section 5 by exploiting binary put-call parity.
Define the value of the binary option as t = 0 as:

F o= M/:e‘foT’”(s)dsf[X(T)]dX(T)
= M [T eTOF [X(T)dX(T)
- M /;e'Y(T)f[Y(T)]dY(T), (4)

where K’ = KT, and f[Y(T)] is the density function for ¥ (T) given Y(0). Hence, if we
derive the density function for Y(T'), i.e. f[Y(T")], then we would be in a position to compute
the value of this option via simple integration. However, the integral itself may be expressed
as the solution to a partial differential equation, which we shall derive, and then solve. With

this set up, we proceed to derive an analytical expression for the value of the entire integral.

4A digital option pays off a constant amount if the option ends up in the money, else pays off nothing.
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3.2 Derivation

Here, we now develop the pricing algorithm to exploit the equation (4) above. The price of

the Asian binary call may be re-written as
Fo= M [ @ fy(r)dy(T)
- ME, [e" N ”)d”dY(T)]
e~ fDT r{u)du
AGHED

e~ fOT r{u)du

EQ (6_ fUT T(u)du)

= MP(T’(),T) H(T’O,}rg,T)

T
= MEQ [G_ fO T(u)du] EQr

= M P(To, T) EQ:

where Eg[.] and Eg/[.] stand for the expectations operator over the support [0, co] and [K’, 0]
respectively, and line 3 of the equation above obtains from the law of iterated expectations.
P(rg,T) is simply the CIR bond pricing equation because Fgle -J5 9] s simply the
expectation of the line integral over the interest rate sample path, leading to the solution

below:

P(ro,T) = exp[C(T)+rD(T)]

C(T) = 1a[C'(T)]
, Syl b+IT/2 e
¢ [(k+¢+7) [e*T—1]+27} @)
—2 T — 1]
D(T) =

(k+é+7)[eT — 1] + 2y
v = J(k+ o)+ 22

Recognize that TI(rp, Y5, T') is a conditional cumulative probability. It may be interpreted
as the probability under the martingale measure that the option expires in the money condi-
tional on (rg, Yp) which forms the expanded state spaces. We shall solve for the characteristic
function of TI(.) and then employ Fourier inversion to obtain the required probability.

For simplicity, normalize M = 1, i.e. the binary option has a unitary payoff! The call
option then takes value Fy = P(rg,T) II(rq,Ys,T'). By the Fundamental theorem of Asset
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Pricing (i.e. an exploitation of no-arbitrage), it is easy to show that the call price must

satisfy the following partial differential equation:

1 82F 8F BF oF

subject to the boundary condition Fp = 1y(T)2K1. Since F' = PII, we rewrite equation (6)
as
1., 9*P BP oI 1 %11
0 = Gt gt e
apP oIl
RO —r) = Gr]lo-+ [k(0 —r) — ér] P
Al apP @

+7’P8—Y—Hﬁ Pa_T T'.PH

This equation can then be re-arranged to

1 , 0°P oP oP
0 = 62+[k( ) qﬁr]—r——a—‘ff—TP H
oP oIl 1 | oIl o1l
e e L e

The expression in parenthesis in the first line of the equation above is identical to the PDE
obtained in deriving the Cox-Ingersoll-Ross bond pricing model (see page 393 of [9], equation

22). Hence, it 1s zero, and this reduces our PDE to

1, o oP 1| ol ol o1l
0 = —2—an82+[16(9 r) — gér—l—nra P]Pg Pgi/- Pﬁ
1, 0 gp1lolm oIl ol
= Enraz-l-{k(ﬂ-r) qﬁr—l—nra }ar_l_r@Y a7 (7)

Note that equation (7) is similar to equation (6) with the additional time-varying term
(nzr%P;,) which make the PDE in (7) difficult to solve. As explained above, 1l is a
conditional probability. Therefore, the boundary condition for equation (7) is given by
I{r7, Y7,0) = ly,>x. We do know that the solution for Pis given by P = exp [C' + r D] with
the form expressed in equation (5). However, we do need to obtain the solution for II. We

guess a solution of the form

_ L e p 1 e
H_2—|—W/0 Re[ife H(Y)]dg

which represents 1I{.) as the Fourier inversion of the function H{.):

H(r,Y,T)=exp {(C— C)+ (D - D)r + Y|,
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with boundary condition
HrY,T=0)=¢Y, s=if i=+-1

where H(r,Y,T) is the characteristic function for the probability function II(r, Y, 7). H(.)
must also satisfy equation (7). This transforms equation (7) to

0 = %n%(E—D)Z’—i— k(B—r)—gﬁr—l—nzr%I_:ﬂ% (D~ D)+rs
d — o
—a—T(D—D)T— a—T(C'—~C).

Further simplification leads to:
1, = — = -
577%1)2 +{k(O0—r)—¢r)D—rDy —Cr +rs
1
= §n2rD2 + k(0@ —r)—¢r)D —rDy — Cr

and the RHS of the above equation simply equates to r (as in CIR) so that

%nzrﬁz + [k(ﬁ' —r)— ¢r] D-—-rDr—Cr= (1 —s)r.

Collecting terms in r this resolves into 2 ordinary equations using standard separability

arguments:
dﬁ _ 1 2—2 Y D) —
o7 = gt D = (k4D - (1—s), D(0) =0,
dC —
— = kO = 0.
7T D, C0)=0

As shown in the appendix, the solution to this set of ODEs is

H(rY,T) = exp[(C—C)+ (D~ D)r+sY},
c(r) = h[C(T)],

2k6

) _ 276(k+¢5+’v)T/2 ] 2
“m = Lk+¢+vaT~u+27 ’
—2 [e"’T - 1]
D(T)

(k+o+ [T —1]+2y

7 = b+ o)+,
— 2k0 ™ —Teg
CT) = —In [ rlT] ,

n rienT — roe
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_ 9 1Ty (e”T - e"QT)

D(T) = ,n_z |: TlerzT _TzerlT ] ?
o= %k+¢ +\/k+¢ +2(1 ~ s)p?
re = %(k-l—qﬁ) \/(k+¢)2-l-2(1—.5)n2

Using Fourier inversion to transform from H(.) to II(.), the Asian binary call (ABC)
option 1s then written as

F = MP(?"(),T) H(TO, 1/0.,,T I{)
= M P(ry,T) (% + % f Re l 7% “RRTH (?”oaYmT)] d&)

= M P(ro,T ( /mRe[ ~iK' (rU,YD,T)]d‘f)

where K is the strike price of the option relative to X, and enters the expression above as
K' = KT since we are working with Y(T'), and not X (7T") and we know that Y (T') = TX(T).

It the option is being priced at inception, the value for ¥ will be ¥; = 0 in the equation
above. If the option is being priced midway through its life (say, t years after inception) the
current average of the interest rate since inception (denoted X) is used and we set Yy = tX'.
The expression above is extremely easy to evaluate using standard mathematical software,

and pricing takes a few seconds.

4 Pricing Binary Interest Rate Caps

So far, we have priced binary average rate options. In this section we develop a model for
simple binary interest rate caps (i.e. non-average rate options, with payoffs determined only
by the terminal interest rate). For consistency, we employ the same methodology as we did
with the Asian option. Once again, we assume the interest rate process in equation (1). The

binary cap with a nominal value of $1 at a strike rate K,and maturity 7" is as follows

J = Am exp l— fUT rT(u)du] f(rr)dry

where 77 is the uncertain terminal interest rate, f(rr) is the probability density of rr given

an initial value of the interest rate rp at time 0. It is required that J satisfy the fundamental
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PDE

62 8J aJ

subject to the boundary condition Jr = 1, >x.

We can write the expression for J as

J = By [e_faTT(“)d“dr(T)-

e ng r(u}du

EQ (8_ fOT T(u)du)

T
e J; r{u)du

P (8_ fOT r(u)du)

= P(?"o,T) Q(?"D,T)

T
= Bo|emh ] kg

= P(T’O, T) EQI

and Fg[.] and Fg[.]stand for the expectations operator over the support [0, oo]and [K, o]
respectively, and P(rg,T)is the CIR bond pricing equation given in (5). It is clear that Q(.)
is a probability, and we can solve for its characteristic function, which we shall denote G(.).
‘Then, by Fourier inversion we can evaluate the probability. We guess a solution to {2 as the
Fourier inversion of its characteristic function G = exp[A(T) + rB(T')]. We already know
the solution to P = exp [C(T') + rD(T)] [see equation (5)]. Rewriting the PDE in equation
(8), (using J = PG, since G must also satisly the PDE) we obtain

0 = [k{(8~r)—¢r] [P%—G + G%—P] + %?}27" lP?;T -|-2%£Q_q 4 G%_f]
Pg—g - GZ—T —rPG,
which we rewrite as
0 = G[[k(a r) — q,’n"]— —n r%—f_%-;_rp]
0 =) - 1P 2 + e [ PS5 4258 - pSE

and since the first line in the equation above contains the CIR partial differential equation

and must equal zero, this expression simplifies to

oG 1 8*G dP 0G oG

0 = [k(6—r)—¢rlP"+5 [P—az-l—Z——ar——ar]—P-a—T
_ 1, {8°G 18PQ_Q _@
= [FO=) = M“*ﬁ [arz+2"ﬁ5;“ar] a7
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Using the posited solutions for P,G we further obtain

1
0=[k(6—r)—¢r]B+ §n2r32 +n*rDB — Ay — rBr.

By separation of variables we arrive at

0=r %fBZ —(k+ ¢ —n*D)B — BT] + [—Ar + k6B],

which results in two ordinary differential equations. The solution to the two ODEs is derived

in the Appendix and is presented below:

G(r,T) = exp[A(T)+rB(T)]

A(T) = _sfg In [%nst + 1]
—2sD

BT) = 5= D
DT —2[eT — 1]

= (k+é+)e” —1]+2y

~T /2 2
DI — B_D — m472 €
aT (k+7) (e —1)+ 27

v o= \J(k+y+ )+ 2

Using Fourier inversion to transform G{.) to £2(.), the binary call option with face value
M is then written as

J = MP(ro,T) Qro, T; K)
= M P(T'Oa T) (1 + lf"o Re [Tl"emigKG(TﬂvT):] df)
0 £

2 7 i

where K is the strike price of the option relative to ». Once again, this expression is evaluated

in a few seconds on a personal computer.

5 Pricing Floors using Binary Parity

Pricing binary puts is extremely easy employing a simple parity relationship that exists
between binary calls and puts. Since the binary Asian call was denoted F', we shall denote
the binary Asian put as F'. The parity relationship that holds is as follows:

Fro, Yo, T, K) + F'{ro, Yo,T, K) = P(ro,T)
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Similarly for the simple (i.e. non-Asian) binary options a parity relationship is applicable:

J(ro, T, K) + J'(ro, T, K) = P(ro, T)

6 Equations for the Ornstein-Uhlenbeck Process

In this section, we provide solutions to the prices of binary Asian options and caps on the
interest rate when the interest rate process follows a mean-reverting Ornstein-Uhlenbeck
process as in [26]. For yields, Longstaff [19] also provides a model using the Vasicek process.

The interest rate is assumed to be governed by the following stochastic differential equation:
dr(t) = k[0 —r(t)] dt + ndz(t), r(0) =ry.

where the coeflficients are as defined before. Under the martingale measure, the interest rate

dynamics are given by:

where ¢ represents the coeflicient of the market price of risk. The price P(ro,T) at time 0

of a zero-coupon bond maturing at time T is then given by

P(ro.T) = exp[C(T)+ D(T)r]

o) = (1 —enr) ¢ LK or ) T2y
D(T) = %(e'”—l) (9)
¢ = kO —no

6.1 Binary Asian Options

As before define V(T) = [T r(u) du. Then, the price F at time 0 of a binary Asian option

with strike K satisfies the following partial differential equation:

1 ,8%F 8F OF OF
o7 gz FIRO=T) menl Gt ey~ ar

with the boundary condition Fr = M x ly(1)>x. As before, we assume that the op-

—rF =0 (10)

tion has a unitary payoff, i.e., M = 1. The price of the option then takes the form
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F = P(ry, T)I(ro, Yo, T) where Il{ro, Y5, 71") can be interpreted as the probability under
the martingale measure that the option expires in the money. Following a process similar to
that used earlier, this solution form may be substituted into equation (10) and simplified to
yield the following partial differential equation for II{re, Yo,T'):

1,01 aP 1101l oIl oIl

T2 _ _ 27 T Dt
0=cnga t|MO—r) =t p-pl 5ty — 5F

Since [I(ro, Yo, T') is a risk-neutral probability, the boundary condition is given by II(rr, Y7,0) =
ly(m)>k+. Alternatively, we can solve for the Fourier transform, H (r,Y,T), of Il. The Fourier
transform satisfies the same partial differential equation as II, but the boundary condition
is given by

H(rr,Yr,0) = e, s =1, i = /1.

The solution for the Fourier transform of II is® given by

A

A(r,Y,T) = exp|C(T)~C(T)+ (D(T) - D(T)) r + sY]

C(r) = o’ (1 — e‘ZkT) + o'y’ —ac (e‘kT — 1) + (%aznz - ac) T

4k k
D)y = a(e?—1)
_ l—3s
“ T Ty
c = kO—no

and C(T) and D(T) are given in the Vasicek bond pricing formula in equation (9). Conse-
quently, the formula for II(ry, Yy, T') can be calculated as

1 1 fe= 1 g
= — - o UK
{re, Yo, T) = 2-|—ﬂ_[) Re L{e H(T‘g,Yﬁ,T)} d€
where K’ = KT'. Thus, the price of a binary Asian option with a unitary payoff is given by

Fg = P(T‘(),T) (% + ';r“/ooo Re |%e—iEK’H(T‘D,Y0,T):| dﬁ)

6.2 Binary Interest Rate Caps

In this section, we develop the pricing formulae for binary interest rate caps for the O-U
process. As with the binary Asian options in the previous section, we follow a procedure

5The proof is omitted and is available on request.
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stmilar to that used above for the square-root process. Let J represent the price at time 0 of
a binary interest rate cap with a unitary payoff if the interest rate is above the strike price.
The cap satisfies the fundamental partial differential equation
2

S+ (0 =) — gl G — 9L =0, (1)
with the boundary condition Jr = 1,,5x. We again assume that the price of the option
takes the form Jo = P(ro,T)ry, T) where Q(rg,T) has the interpretation of being the
probability under the martingale measure that the option expires in the money. Substituting

this solution form into equation (11) and simplifying results in a partial differential equation
for Q(ry, T).
_1,0%0 L, 1 0P 00 30
0=3" g T RO =) ot e ~ o

Since 2 may be thought of as a conditional probability, the boundary condition for this
equation is given by Q(rz,0) = 1,,.>x. Rather than solving for Q directly, we can solve for
its Fourier transform, (3(ro, T). The Fourier transform satisfies the same partial differential
equation as 2 but with the boundary condition G(rr,0) = €. Therefore, the solution for

A

G(ro,T) is given by®

~

G(ro, T) = exp [O(T) - C(TYy+ (D(T) — D(T)) r]
(

A _ @ _wry | O —ack o noc
o) = (1= S T ) ¢ (5 )
" 1
DT — 7
(1) ae P
L
« = s+
c = kB —no

Using Fourier inversion of é(rg, T), we obtain the price of the cap as

J = P(ro, T) (5 41 [ [%e-iéKG(ro, T)] dg)

2 = 1

7 Probability density functions

Fourier inversion also provides the probability density functions (h and fz) for the two average

interest rate processes, i.e. when the interest rate follows (i) a square-root process and (ii)

%Once again, the proof is omitted.
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an Ornstein-Uhlenbeck process. The equation for obtaining the density function for the

square-root process is

h(ro, Yo, T:¥) = — [ Relexp(—i€Y)H (ro, Yo, T)] de

“w o
The equation for obtaining the density function for the O-U process is

A

Ao, Yo, T5¥) = — [ Relexp(—~i€¥ ) A (ro, Yo, )] de

The plots for the square-root density and O-U density are provided in Figures 1 and 2
respectively.

8 Numerical Examples

While the procedure provided above 1s accurate and fast, it is also of interest to examine how
Asian interest rate options behave for different parameter values. So far, the pricing models
in the paper have discussed only binary options: the Asian binary call ('), and simple binary
call (J). We now introduce formulae for non-binary (regular) options, which are derived by
employing the binary options as raw material, and integrating over a continuum of strike
prices. We price four different types of options: (i) Asian binary call (or cap), (ii) Non-Asian
binary call, i.e. a simple digital option on the interest rate, (iii) Asian non-binary (regular)
call, i.e. a non-digital call on the average interest rate, and (iv) Regular (non-Asian) call
on the interest rate. Thus, we consider Asian vs non-Asian options and their combinations

with binary vs non-binary forms.

8.1 Regular (non-binary) Options

The formula for the Asian call (F}) at a strike price X is simply a sum of Asian binary calls
(I') at ascending strikes AX apart:

F =Y F(,X, +nAX)AX

n=0

which in the limit is

A= : F(,X)dX
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Likewise, the formula for the regular call (J;) at a strike price X is a sum of Asian binary

calls (J) at ascending strikes AX apart:
Ji= S J(, X +nAX)AX
n=0
which in the limit is
Ji = /X J(., X)dX

This simple exploitation of the building block property of digital options extends the use of
the derived results in the paper to standard options.

8.2 Range-Asian Options

Apart from the four types of opiions introduced above, a second set of results looks at the
valuation of “range-Asian” options (denoted by the value R). These are options that have
daily pay offs which are based on whether the average interest rate up to time ¢ lies within
a prespecified range [a(t),d(t)], a(t) < b(¢),Vt € [0,T]. In the paper we assume that a(t) = a
and b(t) = b, without loss of generality. The value of these options is simply

Rla(t),b(0,7] = = 30Q(a(t), 1)~ Q((0), 1)

=1

d = Flr(T * 365)
_
b= 365

where Flr(z) is a function that returns the greatest integer less than or equal to z. Our

analyses utilize both, the square-root and the O-U process models.

8.3 Analysis

Tables 1 thru 4 present option prices for the square-root model. Tables 5 thru 6 present
option prices for the O-U model. Table 7 presents values for the range-Asian option. The
notional values underlying all the options is a dollar. Several results emanate from the
numerical analysis. Binary options are worth more than regular options. This is because
the binary options always pay off a dollar. The regular options would most likely never pay
off more than 30 cents on the dollar, and would require terminal interest rates of over 100%

to pay off a dollar.
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It is useful to obtain a visual feel for the probability distribution of the average interest
rate. This provides a means to directly compare Asian and non-Asian option values. In
Figures 1 and 2, we present the probability density functions for the average interest rate
and terminal interest rate. Figure 1 is for the square-root model and Figure 2 for the O-U
model. The density of the terminal interest rate is fatter-tailed than that of the average
interest rate. These density representations are quite intuitive since it is reasonable that the
average of the interest rate will display a tighter density function, as it has less variability.
For the square-root model the terminal interest rate density tends to be negatively skewed
relative to that of the average rate density, which may explain why at-the-money simple
digital options are priced cheaper than the comparable Asian digital options. This effect
appears to be reversed for the O-U model where the terminal interest rate density does not

display this negative tendency.

How does the moneyness of the option affect the comparison of Asian and non-Asian
options? Here we may refer to Tables 1 thru 6. When the exercise price X is below the
interest rate r, the Asian binary option is worth more than the non-Asian binary option.
This is because an option which is in-the-money at the outset is more likely to sustain that
value if 1t is an Asian option than a non-Asian option, since even if interest rates fall, the
average of the interest rate will not fall as fast. Likewise, when the exercise price X is above
the interest rate r, the Asian binary option is worth less than the non-Asian binary option.
This is because an option which is out of the money at the outset is more likely to remain
out of the money if it is an Asian option than a simple option, since even if interest rates

rise, the average of the interest rate will not rise as fast.

Is the effect of volatility any different from that with equity options? When volatility
increases (as in Table 2 versus Table 1), the options that are out-of-the-money increase in
value, since the likelihood of the options finishing in-the-money increases when volatility
increases. Conversely, the in-the-money options decline in value when volatility increases.
This effect holds for both the digital Asian option and the simple digital option. This matches

the features we observe when pricing equity options.

Since mean reversion is a feature that distinguishes interest rate dependent securities
from equity dependent securities, it is instructive to look at the parameter 8, the long-run
mean of the interest rate. In the presence of mean reversion, the location of the long run
mean is critical for the pricing of options. A comparison of Tables 1,3 and 4 reveals that
the location of the mean rate () impacts options values quite severely. When the mean is

low (8 = 0.05) option values drop substantially. This is especially true for the non-Asian
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options and the effect is less marked for the Asian options. This is because when pricing
calls, if the mean rate is low, then mean-reversion drags down the value of the terminal
interest rate and the average interest rate. likewise, when the mean is high (8 = 0.15),
option values are substantially higher. Hence, unlike with equity options, even if the option
is deep in-the-money, the interest rate option may still not offer much value, if the interest

rate quickly reverts to a mean level which is quite low.

One question of importance when pricing Asian options on interest rates, is that of model
choice. Are the values of Asian options very sensitive to the specific choice of stochastic
process for interest rates? To answer this question, we compare prices from the O-U model
with those of the square-root diffusion, taking care to ensure that the average volatility in
both models is held constant. Tables 5 and 6 provide results for the O-U process. They are
analogous to Tables 1 and 2 for the square-root process. The average volatility of the O-U
process has been set approximately equal to that of the square-root process by means of
the following equation: nov = nsqr+/7o, Where oy is the O-U process volatility coefficient,
nsgr 1s the coefficient for the square-root process, and rg = . Therefore, in Table 5 we
use oy = 0.20/0.1 = 0.063246. In Table 6, the value is noy = 0.30+/0.1 = 0.094868. In
general, the prices from the O-U model are fairly close to, though higher than that of the
square-root model. We can thus conclude that the choice of interest rate model does not
substantially impact Asian option prices. One reason for this is that mean-reversion makes
the level-dependent volatility of the square-root diffusion likely to be quite stable, and hence,
especially for the Asian option, this average volatility will be quite close to the constant level
of volatility in the O-U model.

From the analysis so far, it is clear that one of the most interesting differences between
equity options and interest rate options is the feature of mean-reversion. Mean-reversion
tends to reduce average volatility over time, reducing option values in most cases. However,
it also affects the direction (skewness) of the interest rate depending on where the current
rate of interest is relative to its long-run mean level. Depending on how strong the rate of
mean reversion is, it may cause away from the money options to demonstrate interesting
behavior. For example, if the rate of mean reversion (k) is high, out-of-the-money options
become more likely to swing into-the-money, and vice versa for in-the-money options. Mean
reversion (k) has an interesting impact on option prices as time to maturity (T) varies. As
T increases, options prices increase at first and then decline as the effect of mean reversion
begins to negate the effect of volatility. To understand mean reversion, we decided to explore

a more exotic option, the range-Asian. The range-Asian is an interesting option to analyze
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because it offers a good setting in which the joint effects of the mean rate #, and the rate
of mean-reversion k, may be examined. In general, an Asian option is one which pays off
a certain amount each day if the value of the underlying variable lies within a pre-specified
range. The range-Asian pays off each day that the current average up to that date remains
within pre-specified limits. In Table 7 we present prices of range- Asian options. These prices
increase when the range widens. When the mean rate € lies inside the range, increases in
mean reversion (k) drive the price upwards. This is because, as k rises, the likelihood of the
interest rate remaining within the range increases, thereby raising value. When the mean
lies outside the range, option prices decrease when % increases because the interest rate is
less likely to remain in the desired range. This i1s true of both cases, when the mean is above

and below the range, i.e. # = 0.15 and € = 0.05 respectively.

9 Asian Options on Equities

While the pricing formulas thus far developed have been for mean-reverting processes, the
techniques are equally effective in developing pricing formulas for stochastic processes that
do not display mean-reversion. Such processes are important for modelling equity and com-
modity prices. In this section, we demonstrate the use of the pricing techniques developed

above for the case of binary Asian options when the underlying is a CEV process.

Let S, represent the price of a stock, for example. We assume that the price process for

the stock is given by the CEV process
dSt = j.LSg dt + 0o St dWs

Empirical evidence has shown that the CEV process may be a better descriptor of stock
and commodity price behavior than the more commonly used lognormal model” because the
CEV process allows for a non-zero elasticity of return variance with respect to price. The
market price of risk in this model is given by £7+/5;, which unlike the lognormal model,

depends on the price level of the stock. The interest rate, ry, is assumed to be constant.

As before, we expand the state-space by introducing the state variable ¥

t
Y,,:/ S, dv
0

See, for example, Campbell and Hentschel [5], Christie [8], French, Schwert, and Stambaugh [14] and
Schwert [23]. See also Schroder [22], Beckers [2], and Choi and Longstaff [7] for pricing regular options with
the CEV process.



ASIAN OPTIONS 20

This can be written in differential form as
dY, = 5,dt

Therefore, the partial differential equation governing the price of an Asian call option, F,
whose terminal payoff is M if Y7 > K is given by
1 O°F oF oF OF

_2 PU— _ —_— e — =
S0 ST 1S ae + S g — mm =1 F (12)

where the boundary condition is simply Fr = M X ly,»>g+ where K’ = K1'. We can rewrite

F' using the Feynman-Kac functional representation

F, = /: e S M (V) dYe
= MeT(S0, Y5, T)

where 1l represents the risk-neutral probability that the option ends up in the money. By
substituting this expression back into (12), it is easy to show that II; satisfies the following

PRE 9%l oll all oIl

1,

l i g T

27 955 T™%5 Ty ~ar =0
subject to the boundary condition II{Yr,T) = 1y, >k+. The solution to this equation is given
by

1 | |

_ = - = —#K
I1(So, Yo, T) = 5 + 7?/0 Re L,Ee H(Sy, Yo, T)| d€
where 7 = +/—1 and '

H(So,Yo,T) = exp[A(T)S0 + iwko]
2uv(e®’ — )

oue’l — g2yerd

1 1 .
u = T + 5\/1‘2 — 2two?

AT) =

Thus, the price of a binary Asian option is given by

1 joo T _epe
FO = MG—‘TT (% + -7;](; Re [;EE—“EK H(So, %,T):‘ dﬁ)



ASIAN OPTIONS 21
10 Concluding Comments

This paper extends the considerable literature on average rate option pricing by introducing
a state-space expansion approach to developing Asian option models, in particular for mean-
reverting processes. Models are built for the two most popular processes employed in the
financial engineer’s arsenal: the square-root diffusion and the O-U process. We also develop a
model for the constant-elasticity of volatility (CEV) diffusion for stock options. By exploiting
the particle-like nature of Asian digital options, we are able to price more standard options,
such as regular calls and range notes. The existence of mean reversion results in interesting
pricing characteristics for Asian interest rate options, and we provide numerical analyses to

explore this feature.

The results in this paper would be useful for a wide range of applications, such as hedging
interest rate options books containing a range of maturities, hedging long dated foreign
currency positions using options on average interest differentials, and for event risk contracts
keying off varying economic regimes. The methods here also do not suffer from accuracy

problems which is a concern when employing numerical procedures such as simulation.
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Appendix

A Proof of the equation for H(r,Y,T):

The solution for the Fourier transform, H(r, Y, T), of Il is given by exp [(? ~C)+(D—D)r+ SY] ,
where C' and D solve the following ordinary differential equations:

dD | — —

a7 = "D —(k+e)D-(1-s), D(0)=0,
dC — =

5 = kD, T(o)=0.

To solve the equation for D, we first employ the transformation

De__ 2 d¥
T T EW(T) dT

The resulting differential equation is a homogeneous, second-order differential equation with
constant coefficients.

d*W (h+ ) dWw 1—s
arr * a2

This equation can be solved using well-known methods, i.e., by substituting in the guess

n* =0

CreT 4+ Cye™T, where Cy and C, are constants to be solved using the boundary condition,
and r; and ry are simply the roots to the characteristic equation of the differential equation.
This yields the solution

D) - 2 [mrz (e”T — e’""’T)] |

n2 T16T2T _— .,4267'1'1"
roo= —%(k+¢)+ﬁ+¢)2+2(1—8)n2
o=~ (k4 d) =+ o 4201 — 9

With D known, it is a simple matter of integration to solve for C.

C = f k9D(T) dT
[t
= g2 U renT —ppenT
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B Proof of the equation for G(r,T):

First, the ODE for B(T).
=0 B —(k—n"D)B,

dT ~ 2
which is solved subject to  G(0) = e*” which implies B(0) = 5. Let
2 dX
B= - 13
n?X dT (13)

Then, using

dB_ 2 £X 2 (dX :
dT ~  n?X dT* ' p2X2 \ dT

we can transform the equation to

d*X 54X
—n*DYy—— = 0.
T +(k+¢—n )dT
Let
dX
= 14
y =X (19
then Iy
—_— p— 2 = =
A (k= rPB)Y =0, Y(0)=Y
The solution is
e’yT/2 2
Y(T)=Y; .
(T)=" [(k+¢+v)(e’”—1)+2v}

Notice that

D , T/ ’
a - [(k+¢+v)(eﬂ~—l)+2v} ’
therefore \NdD  dx
Y(T) =Y, (W) == (15)
Integrating to get X(7) from equation (15), we get
X(T) = —%D(T) + ¢, (16)
42

where ¢; is simply the integration constant. Substituting equations (15, 16) into equation
(13) results in

—2dX
n?X dT
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-2 1 —YodD
n? ey — %"TTD 442 dT

Yo dD 1
20242 dT |y — otol

42

P
n? dT 4}9%72—19'

Apply the boundary condition (D(0) =0, D’(0) = —1)

This gives

B(0)

I
]
L — |

24D
T

2

7?—2

<1

¢ = —2sn%4".

Substituting this back into equation (17),

B(T)

2 dD[ 1 }
n? dl’ 4;}7'}'2— D

2 dD 1

Y
T :I i C, = _0
452 C2

7t dlf 1y (23;21'1!2) —-D
—2s dD
YD aT
—2sD’
2+ n2sD’

Now we solve the second ODE for A(T):

which implies

dA
— = k8B
dT k0B,

A:k@/BdTﬂs,

where ¢s is the integration constant. Now using equation (13)

2 dX

B = _anﬁ

| /Bdt - %/%dX.

24
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Therefore,

A(D) =

Then using equation (16) we get

25

Which eventually gives, employing equations (18) and (19), and noting that ¢; = Yy/c; =

"23772723

A(T) =

—2k0

ln

7

2

—2k0

In

7

2

—2k0
n?
—2k0

n

2

In

In

—2k0

7

2

In

—2k0

7

2

In
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Table 1: Options Prices for the square-root model (at inception, n = 0.20)
This table presents the values of four options: (i) Asian binary call,

(i1) Regular binary call, (iii) Asian call and (iv) Regular call. The
parameters that are varied are: (a) exercise price (X), (b) time to
maturity (7). The base parameters used are: volatility (5 = 0.2),
initial interest rate (r¢ = 0.1), mean reversion (k = 1.5), mean rate

(¢ = 0.1), market price of risk (¢ = 0).
Maturity { Option Type X=008|X=009|X=010|X=011] X =0.12
T = 0.10 | Asian Binary call 0.9303 0.7426 0.4914 0.2420 0.0585
T =0.10 | Regular Binary call | 0.8528 0.6852 0.4753 0.2804 0.1403
T =0.10 | Asian call 0.2093 0.1596 0.1007 0.0471 0.0108
T = 0.10 | Regular call 0.1918 0.1473 0.0974 0.0546 0.0259
T = 0.50 | Asian Binary call 0.8018 0.6377 0.4452 0.2718 0.1458
T = 0.50 | Regular Binary call | 0.6759 0.5563 0.4360 0.3261 0.2333
T = 0.50 | Asian call 0.1804 0.1371 0.0912 0.0530 0.0269
T = 0.50 | Regular call 0.1520 0.1196 0.0893 0.0635 0.0431
T = 1.00 | Asian Binary call 0.7300 0.5779 0.4124 0.2661 0.1565
T =1.00 | Regular Binary call | 0.6162 0.5097 0.4055 0.3112 0.2311
T = 1.00 | Asian call 0.1642 0.1242 0.0845 0.0519 0.0289
T =1.00 | Regular call 0.1386 0.1085 0.0831 0.0607 0.0427
T = 2.00 | Asian Binary call 0.6643 0.5193 0.3633 0.2291 0.1316
T = 2.00 | Regular Binary call 0.5507 0.4553 0.3630 0.2797 0.2090
T = 2.00 | Asian call 0.1494 0.1116 0.0744 0.0446 0.0243
T = 2.00 | Regular call 0.1239 0.0979 0.0744 0.0545 0.0386
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Table 2: Options Prices for the square-root model (at inception, = 0.30)
This table presents the values of four options: (i) Asian binary call,

(i1) Regular binary call, (iii) Asian call and (iv) Regular call. The
parameters that are varied are: (a) exercise price (X), (b) time to
maturity (I'). The base parameters used are: volatility (n = 0.3),
initial interest rate (ro = 0.1), mean reversion (k¥ = 1.5), mean rate

(# = 0.1), market price of risk (¢ = 0).
Maturity | Option Type X=008|X=0097X=010{X=011}|X=0.12
T =0.10 | Asian Binary call 0.8662 0.6950 0.4832 0.2769 0.1189
T = 0.10 | Regular Binary call 0.7444 0.6087 0.4655 0.3328 0.2229
T =0.10 | Asian call 0.1948 0.1494 0.0990 0.0540 0.0220
T = 0.10 | Regular call 0.1675 0.1308 0.0954 0.0649 0.0412
T = 0.50 | Asian Binary call 0.6907 0.5605 0.4299 0.3127 0.2165
T = 0.50 | Regular Binary call || 0.5800 0.4958 0.4159 0.3431 0.2786
T = 0.50 | Asian call 0.1554 0.1205 0.0881 0.0609 0.0400
T = 0.50 | Regular call 0.1305 0.1065 0.0852 0.0669 0.0515
T = 1.00 | Asian Binary call 0.6204 0.5039 0.3924 0.2942 0.2132
T =1.00 | Regular Binary call | 0.5251 0.4510 0.3820 0.3197 0.2646
T =1.00 | Asian call 0.1395 0.1083 0.0804 0.0573 0.0394
T = 1.00 | Regular call 0.1181 0.0969 0.0783 0.0623 0.0489
T = 2.00 | Asian Binary call 0.5594 0.4464 0.3408 0.2503 0.1780
T = 2.00 | Regular Binary call || 0.4677 0.4015 0.3402 0.2851 0.2365
T =2.00 | Asian call 0.1258 0.0959 0.0698 0.0488 0.0329
T = 2.00 | Regular call 0.1052 0.0863 0.0697 0.0555 0.0437
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Table 3: Options Prices for the square-root model (at inception, n = 0.20, @ = 0.05)

This table presents the values of four options: (i) Asian binary call,
(ii) Regular binary call, (iii) Asian call and (iv} Regular call. The
parameters that are varied are: (a) exercise price (X), (b} time to
maturity (7).
initial interest rate (ro = 0.1), mean reversion (k = 1.5), mean rate
(8 = 0.05), market price of risk (¢ = 0).

The base parameters used are: volatility (n = 0.2),

Maturity | Option Type X=008|X=009|X=010| X=011] X=0.12
T = 0.10 | Asian Binary call 0.8750 0.6530 0.3983 0.1655 0.0151
T = 0.10 | Regular Binary call | 0.7474 0.5409 0.3321 0.1720 0.0755
T = 0.10 | Asian call 0.1968 0.1414 0.0816 0.0322 0.0028
T =0.10 | Regular call 0.1681 0.1163 0.0680 0.0335 0.0139
T = 0.50 | Asian Binary call 0.5523 0.3537 0.1966 0.0958 0.0414
T = 0.50 | Regular Binary call | 0.3545 0.2484 0.1661 0.1066 0.0658
T = 0.50 | Asian call 0.1242 0.0760 0.0403 0.0186 0.0076
T = 0.50 | Regular call 0.0797 0.0534 0.0340 0.0207 0.0121
T = 1.00 | Asian Binary call 0.3474 0.2049 0.1097 0.0539 0.0245
T = 1.00 | Regular Binary call |} 0.2108 0.1419 0.0927 0.0390 0.0367
T =1.00 | Asian call 0.0781 0.0440 0.0224 0.0105 0.0045
T =1.00 | Regular call 0.0474 0.0305 0.0190 0.0115 0.0067
T = 2.00 | Asian Binary call 0.1692 0.0842 0.0336 0.0166 0.0067
T = 2.00 | Regular Binary call | 0.1253 0.0794 0.0491 0.0298 0.0177
T =2.00 | Asian call 0.0380 0.0181 0.0079 0.0032 0.0012
T = 2.00 | Regular call 0.0282 0.0170 0.0100 0.0038 0.0032
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Table 4: Options Prices for the square-root model (at inception, = 0.20, # = 0.15)

This table presents the values of four options: (i) Asian binary call,

(i1) Regular binary call, (it1) Asian call and (iv) Regular call. The

parameters that are varied are: (a) exercise price (X), (b) time to

maturity (1').

initial interest rate (ro = 0.1), mean reversion (k = 1.5), mean rate

(@ = 0.15), market price of risk (¢ = 0).

The base parameters used are: volatility (n = 0.2),

Maturity | Option Type X=008|X=009|X=010]|X=011| X =0.12
T =0.10 | Asian Binary call 0.9728 0.8183 0.5841 0.3267 0.1145
T =0.10 | Regular Binary call || 0.9214 0.8041 0.6211 0.4136 0.2350
T =0.10 | Asian call 0.2188 0.1759 0.1197 0.0637 0.0211
T'=0.10 | Regular call 0.2073 0.1728 0.1273 0.0806 0.0434
T = 0.50 | Asian Binary call 0.9129 0.8410 0.7082 0.5321 0.3531
T = 0.50 | Regular Binary call || 0.8709 0.5066 0.7198 0.6166 0.5064
T = 0.50 | Asian call 0.2054 0.1808 0.1451 0.1037 0.0653
T = 0.50 | Regular call 0.1959 0.1734 0.1475 0.1202 0.0936
T =1.00 | Asian Binary call 0.8672 0.8255 0.7406 0.6140 0.4660
T =1.00 | Regular Binary call || 0.8346 0.7911 0.7303 0.6547 0.5692
T =1.00 | Asian call 0.1951 0.1774 0.1518 0.1197 0.0862
T =1.00 | Regular call 0.1877 0.1700 0.1497 0.1276 0.1053
T =2.00 | Asian Binary call 0.7627 0.7496 0.7107 0.6340 0.5224
T = 2.00 | Regular Binary call | 0.7341 0.7045 0.6618 0.6065 0.5413
T =2.00 | Asian call - 0.1716 0.1611 0.1457 0.1236 0.0966
T = 2.00 | Regular call 0.1651 0.1514 0.1356 0.1182 0.1001
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Table 5: Options Prices for the O-U model (at inception, n = 0.063246)
This table presents the values of four options: (i} Asian binary call,

(1i) Regular binary call, (i) Asian call and (iv) Regular call. The
parameters that are varied are: (a) exercise price (X), (b) time to
maturity (7T'). The base parameters used are: volatility (n = 0.1),
initial interest rate (ro = 0.1), mean reversion (k = 1.5), mean rate

(6 = 0.063246), market price of risk (¢ = 0).
Maturity | Option Type X=008|X=00{X=010]|X=011] X =0.12
T = 0.10 | Asian Binary call 0.9306 0.7449 0.4947 0.2445 0.0591
T = 0.10 | Regular Binary call || 0.8502 0.6973 0.4946 0.2920 0.1393
T =0.10 | Asian call 0.2093 0.1601 0.1014 0.0476 0.0109
T = 0.10 | Regular call 0.1913 0.1499 0.1014 0.0569 0.0257
T = 0.50 | Asian Binary call 0.7997 0.6556 0.4718 0.2889 0.1470
T = 0.50 | Regular Binary call || 0.6947 0.5888 0.4727 0.3568 0.2517
T = 0.50 | Asian call 0.1799 0.1409 0.0967 0.0563 0.0271
T = 0.50 | Regular call 0.1563 0.1266 0.0969 0.0695 0.0465
T =1.00 | Asian Binary call 0.7318 0.6015 0.4444 0.2889 0.1624
T = 1.00 | Regular Binary call | 0.6405 0.5474 0.4470 0.3471 0.2552
T =1.00 | Asian call 0.1646 0.1293 0.0911 0.0563 0.0300
T = 1.00 | Regular call 0.1441 0.1176 0.0916 0.0677 0.0472
T = 2.00 | Asian Binary call 0.6632 0.5419 0.3955 0.2519 0.1375
T =2.00 | Regular Binary call || 0.5742 0.4913 0.4025 0.3143 0.2329
T =2.00 | Asian call 0.1492 0.1165 0.0810 0.0491 0.0254
T = 2.00 | Regular call 0.1291 0.1056 0.0825 0.0612 0.0430
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Table 6: Options Prices for the O-U model (at inception, n = 0.094868)
This table presents the values of four options: (i) Asian binary call,

(ii) Regular binary call, (iii) Asian call and (iv) Regular call. The
parameters that are varied are: (a) exercise price (X), (b) time to
maturity (7). The base parameters used are: volatility (n = 0.1),
initial interest rate (ro == 0.1), mean reversion (k = 1.5), mean rate

(8 = 0.094868), market price of risk (¢ = 0).
Maturity | Option Type X=008{X=00|X=010|X=011|X=0.12
1'=0.10 | Asian Binary call 0.8675 0.7030 0.4944 0.2860 0.1217
T = 0.10 | Regular Binary call 0.7553 0.6331 0.4944 0.3558 0.2338
T = 0.10 | Asian call 0.1952 0.1511 0.1013 0.0557 0.0225
T =0.10 | Regular call 0.1699 0.1361 0.1013 0.0693 0.0432.
T =0.50 | Asian Binary call 0.7080 0.5953 0.4700 0.3452 0.2342
T =0.50 | Regular Binary call || 0.6244 0.5494 0.4712 0.3933 0.3188
T'=10.50 | Asian call 0.1593 0.1280 - 0.0963 0.0673 0.0433
T =0.50 | Regular call 0.1405 0.1181 0.0966 0.0766 0.0589
T =1.00 | Asian Binary call 0.6458 0.5472 0.4405 0.3349 0.2392
T =1.00 | Regular Binary call | 0.5772 0.5118 0.4445 0.3774 0.3128
T =1.00 | Asian call 0.1453 0.1176 0.0903 0.0653 0.0442
T =1.00 | Regular call 0.1298 0.1100 0.0911 0.0735 0.0578
T = 2.00 | Asian Binary call 0.5808 0.4883 0.3888 0.2913 | 0.2042
T = 2.00 | Regular Binary call 0.5171 0.4590 0.3994 0.3401 0.2831
T =2.00 | Asian call 0.1306 0.1050 0.0797 0.0568 0.0377
T =2.00 | Regular call 0.1163 0.0987 0.0818 |. 0.0663 0.0523
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This table presents the values of the range Asian option. This option
is written over a fixed number of days. Every day the option pays off if
the average interest rate up to that day lies within a range (a,b). The
payoff is a dollar divided by the number of days the option is written
for. The values in this table are for a range asian option with maturity
T = 0.2 years, i.e. 73 days. The parameters that are varied are: (a)
mean reversion (k), (b) lower range limit (a) (c) upper range limit (5).
The base parameters used are: initial interest rate (ro = 0.1), time to
maturity (7 = 0.2), mean rate (§ = 0.1), market price of risk (¢ = 0),

Table 7: Range Asian Option Prices

volatility (y = 0.2).

g = 0.05

‘Range k=051k=15|k=25
a=0.09,6=0.11 || 0.3718 | 0.3539 | 0.3075
a=0.08,b=0.12 || 0.6631 | 0.6461 | 0.5923
a=0.07,b6=0.13 || 0.8388 | 0.8353 | 0.8066

# =0.10

Range k=05 |k=15]k=25
a=10.09,6=011 | 0.3818 | 0.4120 | 0.4424
a=0.085b=0.12} 06741 | 0.7132 | 0.7488
a=0.07,6=0.13 | 0.8435 | 0.8714 | 0.8922

8=0.15

Range k=05 |k=15|k=25
a=0.09,6=0.11 | 0.3823 | 0.3810 | 0.3406
¢=0.08,6=0.12 | 0.6717 i 0.6646 | 0.6150
a=0.07,6=0.13 || 0.8374 | 0.8265 | 0.7938
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Figure 1: Probability Density Functions for the Square-root Process
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The plots below depict the probability density functions for the average
interest rate and terminal interest rate at time t. The parameters on
which these densities are conditioned are: mean reversion (k = 1.5),
interest rate mean (8 = 0.10), volatility (n = 0.2), initial interest rate
(ro = 0.10). The plots provide a comparison of the density for pricing
Asian interest rate options versus the density for pricing regular (non-
Asian) options. The left hand side plot is for ¢t = 0.5 years, and the
right hand side plot is for { = 1.0 years.
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Figure 2: Probability Density Functions for the O-U Process
The plots below depict the probability density functions for the average

interest rate and terminal interest rate at time {. The parameters on
which these densities are conditioned are: mean reversion (k = 1.5),
interest rate mean (8 = 0.10), volatility (n = 0.08), initial interest rate
(ro = 0.10). The plots provide a comparison of the density for pricing
Asian interest rate options versus the density for pricing regular (non-
Asian) options. The left hand side plot is for ¢ = 0.5 years, and the
right hand side plot is for ¢t = 1.0 years.
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