View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Research Papers in Economics

NBER WORKING PAPER SERIES

A JACKKNIFE ESTIMATOR FOR TRACKING ERROR VARIANCE OF OPTIMAL
PORTFOLIOS CONSTRUCTED USING ESTIMATED INPUTS1

Gopal K. Basak
Ravi Jagannathan
Tongshu Ma

Working Paper 10447
http://www.nber.org/papers/w10447

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge, MA 02138
April 2004

We thank Torben Andersen, Wayne Ferson, J. K. Ghosh, Eric Jaquier, Mark Kamstra, Raymond Kan,
Nour Meddahi, Richard Roll, Pedro Santa-Clara, Rossen Valcanov, and seminar participants at CIRANO,
Harvard Business School, Norwegian School of Management BI, NHH: Norwegian School of Economics
and Business Administration, Northwestern University, University of California at Los Angeles, and
the University of North Carolina for helpful comments and suggestions. We alone are responsible
for any errors and omissions.

© 2004 by Gopal K. Basak, Ravi Jagannathan, and Tongshu Ma. All rights reserved. Short sections
of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full
credit, including © notice, is given to the source.


https://core.ac.uk/display/6716223?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Jackknife Estimator for Tracking Error Variance of Optimal Portfolios Constructed Using
Estimated Inputsl

Gopal K. Basak, Ravi Jagannathan, and Tongshu Ma

NBER Working Paper No. 10447

April 2004, Revised August 2007

JEL No. G11,G12

ABSTRACT

We develop a jackknife estimator for the conditional variance of a minimum-tracking- error-variance
portfolio constructed using estimated covariances. We empirically evaluate the performance of our
estimator using an optimal portfolio of 200 stocks that has the lowest tracking error with respect to
the S&P500 benchmark when three years of daily return data are used for estimating covariances.
We find that our jackknife estimator provides more precise estimates and suffers less from in-sample
optimism when compared to conventional estimators.

Gopal K. Basak Tongshu Ma

Indian Statistical Institute SUNY-Binghamton
Kolkata 700108 tma@binghamton.edu
India

gkb@isical.ac.in

Ravi Jagannathan

J.L. Kellogg Graduate School of Management
2001 Sheridan Road

Leverone/Anderson Complex

Evanston, IL 60208-2001

and NBER

rjaganna@northwestern.edu



1 Introduction

It has been observed in the literature that the in-sample estimate of the variance of an efficient
portfolio constructed using estimated inputs significantly understates the portfolio’s true (out of
sample) variance.! This downward bias, commonly referred to as in-sample optimism, increases
with the number of assets used to construct mean-variance efficient portfolios. We demonstrate
that in-sample optimism can be significantly large in certain cases, identify why that happens, and
develop a jackknife-type estimator that is not subject to that bias. Since our focus is in assessing
the risk associated with an efficient portfolio constructed using estimated inputs, we examine the
global minimum variance and minimum benchmark tracking-error variance portfolios. We refer to

such portfolios as sample minimum risk portfolios (SMRPs) in this paper.

It might be argued that by scaling up the in-sample estimator of the variance by the standard
degree-of-freedom related correction factor, we may be able to remove in-sample optimism. When
returns over time are drawn from an i.i.d. multivariate Normal distribution, and there are no
portfolio weight constraints, we show that scaling up the in-sample variance by the standard degrees-
of-freedom related factor provides an unbiased estimate of the variance of the population global
minimum risk portfolio. Since the out-of-sample variance of the sample minimum risk portfolio is
strictly larger, this procedure does not adequately correct for in-sample optimism. The intuition

for this is that the optimization procedure costs additional degrees of freedom.

The example in Table 1, Panel D, illustrates the inadequacy of the standard degrees-of-freedom
correction. There we report the properties of the minimum tracking-error variance portfolio con-
structed using the 200 largest stocks on the NYSE/AMEX/NASDAQ, with the S&P 500 as the
benchmark. The covariance matrices are estimated using three years daily returns, so the sample
size T is approximately 750. When the sample covariance matrix is used to construct the SMRP,
the average out-of-sample standard deviation is 1.46 percent whereas the corresponding in-sample

L462)

number is 0.94 percent, i.e., the ratio of the two variances is 2.41 (= (551 In contrast, the

classical degrees-of-freedom based scaling factor is (=), which is only 1.36 (= 7;82350). (N is

the number of assets.) Even though using a three-factor model to estimate the covariance matrix

!See Jobson and Korkie (1981), Frost and Savarino (1988),and Michaud (1989).



and then construct the optimal portfolio reduces in-sample optimism, it still remains large. The
in-sample estimate is 1.64 percent whereas the corresponding out-of-sample standard deviation is

1.93 percent. The ratio of the out-of-sample to in-sample variances is 1.38.

In fact, when returns are i.i.d. multivariate Normal and the global minimum risk portfolio is
constructed without portfolio weight constraints, we show that it is necessary to add approximately
twice the amount of the standard degree-of-freedom correction to the in-sample risk to arrive at a
good estimate of what the out-of-sample risk on average would be. For example, in the first row
of Table 1, Panel A, the degrees-of-freedom correction is 5.42% — 4.64%2 = 7.85. Adding twice this
amount to the in-sample variance gives us 4.642 +2 x 7.85 = 37.22, i.e., a standard deviation of 6.10

percent, not much different from the realized out-of-sample standard deviation of 6.29 percent.

In Sample Optimism with the Bayesian Covariance Matrixz Estimator

It might appear that we can avoid in-sample optimism through the use of a Bayesian approach
since it would take into account the uncertainty associated with estimates of means and covariances
of returns used in the optimization procedure. We find that, with standard diffuse priors commonly
used in empirical works, the variance of a minimum risk portfolio computed using the predictive

distribution is on average substantially below its true variance.

This should come as no surprise since with diffuse priors, the covariance matrix of returns

T+1
T—-N-2

under the predictive distribution is the sample covariance matrix multiplied by the factor
(see Section 3). This has two implications. First, the portfolio weights would be the same as those

obtained using the sample covariance matrix. Second, the variance of the global minimum tracking

T41
T—N-2

error variance portfolio under the predictive distribution is times the in-sample variance

computed using the sample covariance matrix under the Classical method. Notice that the factor,

T+1
T—-N-2°

is about the same as the standard degree-of-freedom correction, 77:_;]{,, mentioned earlier,

for the sample covariance matrix under the Classical method. Hence the variance of a minimum
tracking error variance portfolio computed using the predictive distribution with standard diffuse
priors will be almost the same as the standard degrees-of-freedom adjusted in-sample variance
under the Classical method. The inadequacy of standard diffuse priors and the need for modifying

them is discussed by Jacquier, Kane and Marcus (2002) in a related context.



Relation to the Literature on Testing the Mean-Variance Efficiency of a Portfolio

There is a large literature on testing the mean-variance efficiency of a given portfolio.? These
tests examine whether the distance between a given benchmark portfolio and a particular efficient
portfolio constructed using sample moments is zero after allowing for sampling errors. Although
these tests also involve constructing efficient portfolios based on estimated covariance matrices, the
sampling theory associated with these tests differ in important ways from that associated with the

estimate of the variance of the sample minimum risk portfolio developed in this paper.

To see why, consider forming the global minimum variance portfolio based on S, an estimate of
the unknown covariance matrix, ¥. The vector of portfolio weights is given by:

S
U= g W

We use 1 to denote the column vector of ones throughout the paper. The variance of this portfolio’s

return is,
1s-1xs-11

Since ¥ is unknown, the variance of w; is also unknown and has to be estimated.

In MacKinlay (1987) and Gibbons, Ross, and Shanken (1989), the test statistic — which pro-
vides a measure of the distance between a given benchmark portfolio and a particular sample
efficient portfolio — also involves the unknown covariance matrix of returns, 3. However, when the
unknown X is replaced with the sample covariance matrix S, the test statistic still has a known
finite sample distribution when returns are i.i.d. multivariate Normal. In contrast, if we replace the

unknown 3 with its estimate S we just get the in-sample variance,

1

/
wsS’U)S = m

This does not help since the in-sample variance provides a downward biased estimate of the popu-

lation variance.

2The list of papers include Jobson and Korkie (1982); Gibbons (1982); Stambaugh (1982); Kandel (1984); Shanken
(1985); Roll (1985); MacKinlay (1987); and Gibbons, Ross, and Shanken (1989).



Conditional vs. Unconditional Variance of a Given Sample Minimum Risk Portfolio

An investor would be interested in the variance of the sample minimum risk portfolio she
constructed, given by its conditional variance, w.Xws. We use the term conditional to emphasize
the fact that the elements of the portfolio weight vector, ws, depend on the estimated covariance
matrix used in forming the portfolio — therefore the variance of the portfolio will depend on the
history of returns used to form that covariance matrix even when returns are i.i.d. over time. When
the investor follows the same rule for forming minimum risk portfolios over time, the expected value
of the conditional variance, E(w,Xwy), is well defined and gives an estimate of what the conditional
variance would be when averaged across all possible realizations for the history of returns used to
construct the covariance matrix. Although the investor would care only about the conditional out-
of-sample variance, we first analyze what that variance on average would be under the i.i.d. Normal
case in order to get an insight into the issues involved. We then go on to develop a jackknife-type
estimator that provides a consistent estimate of the conditional variance when returns are i.i.d. but

not necessarily multivariate Normal.

When returns are not i.i.d. but instead exhibit persistence in their second moments, as in
the data, we suggest two approaches.®> The first approach is based on the Dynamic Conditional
Correlation Model of Engle (2002). We find that empirically this approach provides an accurate
estimate of risks in the SMRPs constructed using one- and three-factor models. However, in our
sample, SMRPs constructed using one- and three-factor models have a significantly higher risk
when compared to SMRPs constructed using the sample covariance matrix. This suggests that
three factors are insufficient to account for the correlation among returns, and further work is
needed to model what a dynamic three factor model misses in the covariance structure of asset
returns. In the second approach, we develop a modification of the jackknife-type estimator that

weights more recent observations more heavily than those in the distant past.

Kan and Smith (2005) derive the exact distribution of the sample mean-variance efficient frontier
of returns when there are no portfolio weight constraints and returns are drawn from an i.i.d

multivariate Normal distribution. In contrast our focus is limited to global minimum variance

3Some theoretical support for such an approach can be found in Foster and Nelson (1996), Flemming et al. (2003),

and Liu (2003) and the mixed data sampling approach based estimator in Ghysels et al. (2003, 2004a, 2004b).



and global minimum tracking error portfolios. However, we do not require returns to be normally
distributed or independent over time, and allow for the presence of portfolio weight constraints
that are commonly encountered in practice. We focus on the global minimum variance portfolio
and minimum tracking error portfolio for two reasons. First, minimizing tracking error variance is
widely use for fund managers. Second, it is well-known in the literature that sample mean is a very

poor estimate of the corresponding population mean return for portfolio optimization purposes.

In the next section, we develop some theoretical results that help understand why in-sample
optimism occurs. We demonstrate in Section 3 that in-sample optimism would continue to exist
even when the Bayesian approach is used to construct efficient portfolios. We develop a jackknife-
type estimator of the conditional out-of-sample variance in Section 4 that is valid when returns are
i.i.d. over time. In Section 5 we propose two methods for estimating the conditional out-of-sample
variance when returns do not satisfy the i.i.d. assumption and empirically evaluate these methods

in Section 6, and conclude in section 7. Technical derivations are provided in the Appendix.

2 Relation Between In-sample and Out-of-sample Variances of

Sample Minimum Risk Portfolios

We use the following notation: R; is the N x 1 vector of date ¢ returns (or returns in excess of some
benchmark return when the objective is to minimize the tracking-error variance) on N primitive
assets; X = Cov(R;) (may depend on the information set at date T'); and S is an unbiased estimate

of ¥ based on T observations on returns, { Ry, Ra, ..., Rp}.

We make the unbiasedness assumption for analytical convenience. Even though some covari-
ance matrix estimators do not satisfy this assumption, the results based on that assumption helps
understand why in-sample optimism occurs. The jackknife estimator we derive in the next section

does not require the unbiasedness assumption.

With these notations, our analysis applies to both portfolio variance minimization and tracking-
error variance minimization. For brevity, we will use the term “return” to mean both raw return and

excess return in excess of the benchmark, and the term “portfolio variance minimization” to mean



both portfolio variance minimization and tracking-error variance minimization in our analysis.

Let w, denote the global minimum risk portfolio (i.e., the vector of portfolio weights) constructed
using an estimated covariance matrix, and w,, the corresponding minimum risk portfolio constructed
from the population moments of the returns. That is, ws denotes a sample minimum risk portfolio
and w, denotes the corresponding population minimum risk portfolio. Then w/,Swy is the in-sample
variance of wg, w,Xws is its out-of-sample variance, and wl’)Ewp is the variance of the population

minimum risk portfolio, w,,.

The population global minimum risk portfolio, w,, solves the following problem:

w, = argmin,, {w'Sw} (3)
subject to wl=1,
w; < w; < w;, for some constants, w;, w;, i =1,...,N.

Replacing 3 with its estimate based on historical return data, S, in Equation (3), we obtain the
sample global variance minimization problem. We have the following Proposition that character-
izes the relation among the expected in-sample variance of the sample global minimum variance

portfolio, wy, its expected population variance, and the variance of population counterpart, w,, :

PROPOSITION 1: Let ws denote the global minimum variance portfolio constructed using an unbi-
ased estimate of the covariance matriz. Then, the in-sample estimate of the variance of ws will on
average be strictly smaller than the variance of the true (i.e., population) global minimum variance

portfolio, which on average will be strictly smaller than the out-of-sample variance of ws. That is,

E(w,Sws) < w,Yw, < E(w,Xws). (4)

We now characterize the difference between the adjacent terms in Inequality (4). Let ¢; denote
the difference between the first two terms, and g2 denote the difference between the last two terms,

ie., q1 = w,Ywp — E(wiSw;s) and g2 = E(wiXws) — wy,Xwp.

PROPOSITION 2:  Let ws denote the global minimum variance portfolio constructed using an un-



biased estimate of the covariance matrix without additional portfolio weight constraints. Then on
average the out-of-sample variances of ws equals its in-sample variance plus two strictly positive

terms as given below.

E(w,Xws) = E(w,Sws) + q1 + g2, (5)

where
@ = wSw, — B(w,Sws) = El(w, — ws)'S(w)p — ws)], (6)
Q@ = E(ngws) - w;,Ewp = E[(wp — ws)/E(wp — ws)], (7)

are two positive numbers.

Recall that the optimization problem we are discussing now only has one constraint: w'l = 1.
We might think that the optimal portfolio has N — 1 degrees of freedom because of this constraint.

However, the proof of Proposition 2 shows that the optimal portfolio ws also satisfies

/ o
waws = wawp.

That means there are only N — 2 degrees of freedom in the IV vector ws — minimizing the objective
function costs one more degree of freedom. That is why the standard degrees of freedom adjustment

is not sufficient to get an unbiased estimate of the out-of-sample variance.

When returns are drawn from an i.i.d. multivariate Normal distribution and the covariance

matrix used is the sample covariance matrix, we have the following characterization of ¢; and gs.

PROPOSITION 3:  Assume that returns are drawn from an i.i.d. multivariate Normal distribution.
Let wy denote the global minimum variance portfolio constructed using the sample covariance matriz

without additional portfolio weight constraints. Then the quantities q1 and qa in Proposition 2 are:

N -1
0= N Bl Sw,), Q
N -1



Since, by definition, w,Sws is the in-sample variance, we can rewrite the expression for ¢; in

Proposition 3 to get:

T-1
T—-N

¢1 + E(in-sample variance) = x E(in-sample variance). (10)
By definition, the left side of the above equation equals w;Ewp, the variance of the population global
minimum risk portfolio. The right side of the above equation is the expected value of the standard

degrees of freedom adjusted in-sample variance. Clearly, multiplying the in-sample variance by the

T-1
T—-N?

standard degrees of freedom related factor, is inadequate to correct for in-sample optimism.

From the above three equations we have

N-1
- Ny
2 TN —1"»="
N—-1 T-1
- Ew.S
TN 17— wSws)
T-1 N-1
= E!
ToN 17— N CwsSws)
T
- N1
2T —N—-2

Therefore, the total correction, ¢ + ¢o, is times the standard degrees of freedom correc-

T—-N—-1
tion, ¢1. This factor is slightly larger than 2 when the number of observations is reasonably large.
Hence the in-sample estimate of the variance plus twice the standard degrees of freedom related

correction is likely to provide a more precise estimate of the out-of-sample variance.

A natural question that arises at this stage is whether the use of Bayesian covariance matrix
estimator would provide an unbiased estimate of the out-of-sample variance of minimum variance
portfolios. In the next section we show that this is unlikely to be the case when standard diffuse

priors are used.



3 In-sample Optimism with Bayes Estimator of the Covariance

Matrix

The setup of the problem and the notation are the same as in Section 2. In addition, we assume

that returns are i.i.d. multivariate Normal.

Diffuse priors are often used in empirical studies in finance. Therefore, we assume the investor
has the standard diffuse prior about © and X, the vector of expected returns and return covariance
matrix, given by:

p(u, £) o [£|7NHD2,

where < means “positively proportional to.”

The investor’s objective is to choose the vector of portfolio weights, w, that minimizes the
variance of the portfolio’s return during the next period, var(w’Rpy1), where Ry is the next
period’s return, and var(-) denotes the variance under the predictive distribution. We have the

following result.

PROPOSITION 4:  Let returns be drawn from an i.i.d. multivariate Normal distribution and S be

the sample covariance matriz. Let wsp be the portfolio that minimizes var(w’'Rry1). Then:

1. wsp is the same as wg, the global minimum variance portfolio constructed using the sample

covariance matriz;

2. var(w,gRyrq1) = %wésws-

Comparing the right side of the above equation with the degrees of freedom adjusted in-sample

variance in (10), we see that

T+1 T—-N
whvar(Rry)ws = ( T ><T—N—2)

x (DF adjusted in-sample variance). (11)

The factor % Ti;\f\i 5 will close to 1 when N is large and 7' is larger, but not large enough for

10



in-sample optimism to be negligible. For example, when N = 200 and 7" = 750 as in our empirical

study, % TTR/A,T 5 = 1.0050 Hence, the variance of the global minimum variance portfolio under

the predictive distribution will be close in magnitude to the degree-of-freedom adjusted in-sample
variance, and in-sample optimism will continue to be an issue even when we use the predictive
distribution under standard diffuse prior. We reach a similar conclusion when returns have a factor

structure. We omit the derivation here for brevity. It is available from the authors.

4 Jackknife-type Estimator of the Out-of-sample Variance

In the earlier sections we examined the relation between the unconditional out-of-sample and in-
sample variances of a minimum risk portfolio, in order to develop an insight into the issues involved.
The estimator for the out-of-sample variance we obtained there provides a natural benchmark for
the other estimators we consider. In this section we develop a jackknife-type estimator (hereafter
called jackknife estimator for short) for the conditional out-of-sample variance of a given sample
minimum risk portfolio when returns are i.i.d but not necessarily Normal. We will consider the

non-i.i.d. case in Section 5.

4.1 Portfolio Holding Period Equals the Return Observation Interval

For expositional convenience, we first consider the special case where the investor estimates covari-
ance matrices and recomputes optimal portfolio weights at the end of each period. As before we
assume that the investor has time series data for T periods in the immediate past, and estimates
the return covariance matrix using these T observations. Let St denote that estimate and wp
denote the portfolio weights formed using S7. Here, unlike in Sections 2 and 3, St can be any
covariance matrix estimator, including the shrinkage estimator of Ledoit and Wolf (2003a, 2003b).
Further, any optimization procedure may be used to construct wr based on St, even though in this
paper we only consider wr that minimizes the portfolio variance. Let w/. R denote the return
on the portfolio, wr, during the period 7'+ 1. For notational convenience, let Var(w/.Rr41) denote

the conditional variance of the portfolio return, w/-Rry1. We have dropped the subscript T' from

11



Varp(wipRry1) for notational convenience, although the variance of the portfolio will in general

depend on the history of realized returns even when returns are i.i.d. over time.

We first drop the ¢'th return observation, for an arbitrary ¢ between 1 and T, and re-estimate
the return covariance matrix. Let S(7_; ;) denote that covariance matrix, i.e., the one obtained
using data {Ri,...,Ri—1, Rit1,..., Rr}. We then construct the global minimum variance portfolio
using S(7_1), using the same method that gave us wr from Sr. Denote the resulting portfolio as
w(r_1,)- For large enough 7', the return, wET—l,i)Ri’ will have approximately the same distribution
as the out-of-sample return, w/, Ry, that the investor is interested in, if the time series of returns
on the primitive assets are independently and identically distributed over time. Hence a natural
estimator of the out-of-sample variance, Var (w}Rp1), would be the sample variance of the T'
portfolio returns, [wET_Ll)Rl, wéT_LQ)RQ, ceey wET_LT)RT]. With daily data, we can ignore the
effect of sample mean return on the calculation of the sample variance, and hence the jackknife

estimator is

1 2
T = TZ(WETAJ)RQ : (12)

In Appendix A we show that this jackknife estimator and the one in the next sub-section provide

consistent estimates of the conditional variance.

While the validity of the jackknife also requires 1" to be large, it need not be as large as what
may be required for the standard central limit theorem to provide a consistent estimate of the
conditional variance of the return, w’TRT+1. That is because we only need u/T_MRZ- and ’U/TRT+1
to have approximately the same distribution. In Appendix A we show that wr_;; converges to wr
at the rate O(1/T'). Even though the estimate of the variance of Ry itself converges only at the
standard asymptotic rate, i.e., O(1/ VT ), as we will see later, the jackknife estimator provides a

good estimate of the conditional variance even for moderately large values of 7.

Jagannathan and Ma (2003) show that using daily return data instead of monthly return data
improves the performance of minimum risk portfolios. The empirical findings of Liu (2003) suggest
that there may not be much advantage to using higher-frequency return data (higher than daily)
if the holding period is one month or longer, when a year or more of historical daily return data

are available. In view of this, in our empirical analysis we form minimum risk portfolios based

12



on covariance matrices estimated using the past three years of daily return data and hold the
portfolio for one month. At the end of each month, we recompute the portfolio weights based
on the most recent three years of historical daily returns. Revising portfolio holdings once every
month instead of once every day would be more reasonable when transactions costs are nontrivial.
In what follows we therefore modify the estimator of the out-of-sample variance we discussed to

allow for the holding period to be longer than the interval over which returns are measured.

4.2 Portfolio Holding Period Is Longer Than Return Observation Interval

We now consider the case where returns are measured more frequently, say once a day, but the
investor revises the holdings once every few days, say once a month, with there being [ days in
a month. Let T denote the number of days of daily return data used to estimate the covariance
matrix, S, and form the optimal portfolio weights, wr; and m = T/l denote the number of
months of observation. Let ¢r; denote the conditional expectation of the sample variance of the [
post-formation daily returns on the minimum risk portfolio, i.e., the conditional expectation of the

sample variance of (w Rr1,...,wy Rpyy). Our objective is to estimate g7.

As before, for each month 1 <1 < m, we estimate the covariance matrix Sp_; ;) by deleting the
return data for the [ days in month ¢ and construct the global minimum variance portfolio using
S(r-1,4)- Let the resulting portfolio be w(r_;;. Compute the sample variance of the sequence of
[ returns on the minimum risk portfolio, (wl‘piu R 1yig1s- - W Ril>. Let g7,;(i) denote this

sample variance.

Note that S7_; ;) will have approximately the same distribution as Sp, for moderately large
T, and so each w_y, ;) will also have approximately the same distribution as wr. Hence, each
sequence, (wif_l,i R ygs- - w0y, Ril) , will have approximately the same distribution as the
sequence (w7 Ry41, ..., wh Rryy), and the average of the m such variances, ¢r;(i),7 = 1,2,...,m,
provides a consistent estimate of g7, the object of our interest. This gives us the following jackknife

estimator:

1 m

———JK .

= — E . 13
qr,l m = QT,l(Z) ( )

13



As we mentioned earlier, even though the estimator has only asymptotic validity, we expect the

convergence to be faster than the standard v/T asymptotic theory.

5 Time Varying Covariances

The jackknife estimator we derived in Section 4 assumes that returns are independently and iden-
tically distributed over time. However, there is ample evidence in the literature that the first and
second moments of returns vary over time in a systematic stochastic fashion, violating the i.i.d. as-
sumption. We therefore consider the following two additional estimators of the out-of-sample

variance of SMRPs.

5.1 Multivariate GARCH

For computational feasibility and statistical reliability we assume that the stock returns have a
k-factor structure:

Ry = ag + a1 Dy + BoFy + BrFi—1 + PaFi—o + &, (14)

where R; is defined before, F} is the column-vector of returns of k factors in period ¢, the 3’s are
N x k matrices of factor loadings, and ¢; is the residual vector and is i.i.d. over time. Because we are
using daily returns, we allow lagged factor returns to affect the current asset returns. In addition to
the factors, we also allow a weekend-and-holiday dummy, D;, which is one if the previous day has
no trading and zero otherwise. We use this dummy variable to catch the weekend and holiday effect
in daily stock returns. In our empirical work, we will use a one-factor model and a three-factor
model. (That is, k is either 1 or 3.) In the former, the factor is the daily excess return on the stock

index portfolio; in the latter, the factors correspond to the three Fama and French (1993) factors.

We model the evolution of the factor returns using a VAR model with error terms following the

14



DCC multivariate GARCH process given below:

p

F = ¢0+¢1Dt+z¢kFt—k+5t, (15)
k=1

d; ~ DCC multivariate GARCH, (16)

where ¢g and ¢; are k vectors, the ®;’s are k x k matrices, d; is a k vector of error term and
DCC multivariate GARCH denotes the Dynamic Conditional Correlation multivariate GARCH
model developed in Engle (2002) and Tse and Tsui (2002). Details of this model and its esti-

mation are described in Appendix B.

We use daily data, with optimal portfolios re-formed every month. As in the previous sections,

assume that the optimal portfolio weight, wr, is already constructed. So our task is to estimate,

Sample Variance of (WpRpi1, WpRryo, ..., wpRriy). (17)

the sample variance of the optimal portfolio’s returns in the [ days of the next month.

To do that we can, using the estimated model parameters, simulate forward the sample paths of
Friq, ..., Fpy. Then we use (14) to generate the sample path of future returns, Ry, Rrio, ..., Ry,
and calculate (17). When simulating the future factor returns, the standardized residuals in the
multivariate GARCH model are drawn from i.i.d. standard normal distributions. When generat-
ing the future asset returns from factor returns, the error terms in (14) are generated using the
bootstrap method. Specifically, given the parameter estimates of (14), we calculate the realized
residuals, €1,...,ép. When we use (14) to forecast the returns from the factors, the error terms
€741, .., €74 are randomly drawn (with replacement) from these T' realized residuals. We use this
bootstrap method to catch any non-Normality and any covariance structure in the asset returns

that is left out of the factor model.

We repeat this procedure M times and use the average of the M estimates of (17) as our final

estimate of the optimal portfolio’s out-of-sample variance.

When choosing the number of lags for the VAR model in (15), we first did some experiments

15



using the AIC and BIC criteria. With the Fama-French three factors, we found that over the sample
period, the AIC tended to choose the maximum lag length of 20, while the BIC tended to choose
very low lag lengths such as one, two, and at most four. With only the market factor, the results
are qualitatively similar. Therefore, we decided to choose the order of the VAR (or AR when using
only one factor) to be five as a compromise. We allow for five lags also because there are usually
as many trading days in a week, and we hope five lags will be sufficient to catch the dynamics of

the daily factor returns while avoiding the use of too many parameters.

5.2 Weighted Jackknife

In this subsection, we modify the jackknife estimator in Section 4 to take into account the persistence

in the covariance structure.

Recall that when the interval over which returns are measured and the holding period match,
the jackknife estimator for i.i.d. data is given by equation (12). If returns do not satisfy the i.i.d.
assumption, specifically, if returns have persistent covariance structure, it would make intuitive
sense to use a weighted average instead of straight average in (12), giving more weight to the recent
observations. One such estimator is given by:

K it eai(wET—l,i)Ri)2

- : , (18)
ZZT:I eot

for some positive a. Since the covariance matrix, Sp_; ;, is computed by deleting the i'th observation
as before, the corresponding vector of portfolio weights, wr_1; will be close to wr for moderately
large values of T'; and the return, wi[_LiRi will be almost the same as the the return,w/.R;.
Therefore, based on the results in Foster and Nelson (1996), we believe that the realized sample
variance of the sequence [w/TfLiRi,i = 1,2,...T] computed by weighting those observations with 4
closer to T'4+ 1 more than those observations that are farther away using an exponentially declining

weighting scheme as given above will provide a better estimate of the conditional variance of

4Choosing the optimal number of lags for a VAR is described in Liitkepohl (1993). The AIC and BIC criteria are:
In|S| +2/T - K and In|%| + In(T)/T - K, respectively, where T is the number of observations, 3 is the estimated

covariance matrix of the error term, K is the number of freely estimated parameters.
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’U)TRT+1 .

When the optimal weights are recomputed once every month using historical daily returns
data, the jackknife estimator under the i.i.d. assumption is given by (13). When variances and
covariances vary over time in a systematic stochastic fashion, we modify the average in (13) into a

weighted average, yielding the weighted jackknife estimate of the out-of-sample variance:

gk _ i €ar(i) (19
qT,l - Zm 1 eai ) )
1=

for some positive a.

6 Empirical Evaluation of the Estimators

6.1 Data and Methodology

We evaluate the performance of the jackknife and other estimators by examining the mean and
standard deviation of the forecast errors as well as the mean absolute forecast error over a large
number of out-of-sample holding periods, as in Chan, Karceski, and Lakonishok (1999), Ledoit and
Wolf (2003a, 2003b) and Jagannathan and Ma (2003). These papers compare the out-of-sample
risks of SMRPs constructed from different covariance matrix estimators. In contrast, we compare
how well the jackknife, the in-sample variance, and other estimators perform in estimating the out-
of-sample risk of the SMRPs. Therefore, there are two types of estimators in our empirical work:
One type consists of the covariance matrix estimators. Different covariance matrix estimators will
give rise to different SMRPs. The second type consists of estimators of the out-of-sample risk of the

SMRPs. Our focus is on evaluating the relative performance of different estimators of the second
type.

Starting from the end of April, 1967, we choose 200 stocks with the largest market capitalization
from all common domestic stocks traded on the NYSE, the AMEX and NASDAQ, and with monthly

return data for all the immediately proceeding 36 months. We estimate the covariance matrix of

the 200 stocks using daily return of the proceeding 36 months, and form the global minimum
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variance and minimum tracking-error variance portfolios. When a daily return is missing, the

equally weighted market return of that day is used instead.

When portfolio variance minimization is the objective, we form two global minimum variance
portfolios using each covariance matrix estimator. The first portfolio is constructed without im-
posing any restrictions on portfolio weights, the second is subject to the constraint that portfolio
weights should be nonnegative.” We then estimate the out-of-sample variance of these portfolios
using the jackknife and other estimators. The optimal portfolios are held for one month. Their
daily returns are recorded, and the daily return sample standard deviations within that month are
calculated. At the end of the next month, the same process is repeated. This gives a time series
of post-formation daily return standard deviations for each of the 396 nonoverlapping one month
intervals during the period May 1967 to April 2000 for each portfolio, as well as estimates of these

out-of-sample standard deviations according to the different estimators.

For tracking-error minimization, following Chan, Karceski, and Lakonishok (1999), we assume
the investor tracks the return of the S&P 500 index. Again, we construct two tracking-error
minimizing portfolios for each covariance matrix estimator, one with and one without portfolio

weight constraints.

6.2 Covariance Matrix Estimators

The first estimator is the sample covariance matrix:

T
1 _ _
SN = T-1 Z(Rt — ) (R — ),
t=1

where [ is the vector of average returns.

The second estimator assumes that returns are generated according to Sharpe’s (1963) one-

5We also formed a third global minimum variance portfolio, which also faces the restriction that no more than
five percent (i.e., 10 times of the equal weight) of the investment can be in any one stock. But the results for this

portfolio are very similar to those of the second one and hence are omitted.
SFor convenience of interpretation, we work with standard deviations instead of variances.
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factor model:

rit = o + BiTmt + €it,

where 7,,; is the period t return on the value-weighted portfolio of stocks traded on the NYSE,
AMEX, and NASDAQ. Then the covariance estimator is

Sy =s2 BB’ + D. (20)

Here B is the N x 1 vector of 3’s, s2, is the sample variance of 7,,,;, and D has the sample variances

of the residuals in its diagonal, and zeros elsewhere.

The third estimator is the Fama and French (1993) three-factor model, which is similar to the

one-factor model.

We also examined the shrinkage estimator proposed by Ledoit et al. (2003a). The Ledoit
covariance matrix is a weighted average of the sample covariance matrix and the one-factor model
based covariance matrix. With three years of daily return data we find that the optimal weight
assigned to the sample covariance matrix is in excess of 0.95. Hence the results for the Ledoit
covariance matrix are almost the same as those for the sample covariance matrix and therefore not

reported.

6.3 Examining the Performance of the Estimators Using Simulated Data

We first examine how the different estimators of out-of-sample risks perform when returns are
i.i.d. multivariate Normal, by working with synthetic return data generated by simulation using

Monte Carlo methods.

For that purpose, we first read in the real returns (or excess returns for the case of tracking error
minimization) on the 200 stocks over a given three-year calibration period, and then read in the
realized values of the corresponding three Fama and French (1993) factors. We estimate the betas
for all the 200 stocks with respect to the factors, calculate the stocks’ residual variances and the

factors’ covariance matrix. By assuming that returns have an exact three-factor structure and using
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the stocks’ betas and residual variances and the factor-covariance matrix, we generate the factor
returns and stock returns for each day in the three years plus one month period (the total time
length of in-sample and out-of-sample) from an i.i.d. multivariate Normal distribution. We then
use the simulated data as though they were the historical data and apply the different estimators
to form the covariance matrices, optimal portfolio weights, and estimate out-of-sample variances of
these SMRPs. We then move forward by one month, and recalibrate using the most recent three
years of daily data, and repeat the procedure. This gives one out-of-sample variance and one set
of estimates of it, based on simulated data, for each hypothetical month over the 1967/5 to 2000/4
period. We then examine how the different estimators perform by comparing the realized out-of

sample variance with the corresponding estimates.

Next, we repeat the exercise using realized historical returns instead of simulated returns over

the 1967/5 to 2000/4 period, and compare the results with the i.i.d. multivariate Normal case.

6.4 Empirical Results

Panels A and B of Tables 1-2 and Table 3 display the empirical results for the simulated data.
Panels C and D of Tables 1-2 and Tables 4 and 5 give the results obtained using historical data.
Different covariance matrix estimators result in different sample minimum risk portfolios (SMRPs).
These are displayed on different rows. We also have different estimators that estimate the SMRPs’
out-of-sample standard deviations. These are displayed on different columns, along with the realized

out-of-sample standard deviations.
Variance Minimization

Table 1 panels A and C give the result for the global minimum variance portfolios. The *’s in

the last two columns indicate that the corresponding numbers are significantly smaller than one.”

" In this section, we often report that the average of x1,xa,...,xn is significantly smaller than the average of
Yy1,%Y2, ..., YN, where both sequences are usually measures of standard deviations. For example, the x’s may be in-
sample standard errors, and the y’s may be out-of-sample standard deviations. N will be 396 since the various
estimators are evaluated over 396 months. To test this hypothesis, we test whether the mean of the sequence

log(z1/y1), ..., log(zn/yn) is significantly smaller than zero using a one-tailed test. We use Newey-West standard
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When returns have an exact three-factor structure and are i.i.d. multivariate Normal (Panel A),
the in-sample risk accurately reflects the out-of-sample risk provided a three-factor model is used
to estimate covariance matrices. However, when the sample covariance matrix or the one-factor
model based covariance matrix estimator is used to construct the minimum risk portfolios, the
in-sample risk is substantially smaller than its out-of-sample counterpart. Neither the use of the
standard degrees of freedom based correction nor the correction based on the Bayesian estimate
leads to a sufficient reduction in the in-sample optimism. In all cases the jackknife estimator of the

out-of-sample risk is reasonably accurate.

In Section 2 we showed that when returns are generated from an i.i.d. multivariate Normal
distribution and the optimal portfolio is constructed from the sample covariance matrix with no
portfolio weight constraints, the right correction is likely to be about twice as large as the standard
degrees of freedom based correction. In Panel A we see that the standard degrees-of-freedom
correction for the variance is 5.42%2 — 4.64%> = 7.85. If we add twice of this correction to the in-
sample variance, we get 4.642 + 2 x 7.85 = 37.22, i.e., a standard deviation of 6.10, not much

different from the average out-of-sample standard deviation of 6.29.

When portfolio weights are constrained to be nonnegative, the out-of-sample risks of the mini-
mum variance portfolios associated with the three covariance matrix estimators are about the same,
as observed by Jagannathan and Ma (2003). However, the in-sample optimism comes down sub-
stantially with portfolio weight constraints. While the use of constraints imposes a penalty—the
out of sample variance goes up—the investor is able to more accurately assess the out-of-sample

risk.

Panel C of Table 1 gives the results when historical daily return data on stocks traded on NYSE,
AMEX and NASDAQ are used. In that case, the sample covariance matrix outperforms the one-
and three-factor models—the out-of-sample risk as well as the in-sample optimism are the least for

the sample covariance matrix.® These results suggest the inadequacy of the three factor model to

deviations with 6 and 12 lags for this test. Unless indicated, the use of 6 or 12 lags does not change the conclusion.
8Standard ¢ test shows that the average out-of-sample standard deviation of the unconstrained optimal portfolio

from the one-factor model is significantly higher than that from the sample covariance matrix. Or loosely speaking,
the difference between the two numbers in the table, 9.16 and 8.44, is significant. See footnote 7 for the method of

test used.
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capture the correlation structure in historical returns and the non i.i.d. nature of the data.

As we expected, in-sample optimism comes down substantially with portfolio weight constraints.
Neither the standard degrees-of-freedom correction nor the use of the Bayesian estimator of the
covariance matrix help much in reducing the in-sample optimism, while the jackknife estimator
performs better. In fact, t-tests show that the average jackknife estimates are not significantly lower
than the average realized out-of-sample standard deviations (see footnote 7). However, the fact that
the numbers in the last column are all smaller than one indicates that, unlike with simulated data,
the jackknife too exhibits some in-sample optimism, supporting our earlier observation regarding
the non-i.i.d. nature of the return data. The estimate that we obtain by adding twice the standard
degrees of freedom based correction to the in-sample estimate is also dominated by the jackknife

estimates.
Tracking Error Variance Minimization

Panel B gives the results for tracking-error-variance minimization with simulated data. The
patterns are similar to the variance minimization case in Panel A. In-sample optimism is most
pronounced for the sample covariance matrix. Adding twice the degree of freedom correction to
the in-sample variance gives us 1.45% + 2 x (1.692 — 1.45%) = 3.61, i.e., an estimate of 1.90%
for the out-of-sample standard deviation, not much different from the average realized standard
deviation of 1.93%. Jackknife estimates are also equally accurate. The three-factor-model based
covariance matrix estimator performs the best in terms of both lowest out-of-sample risk and
absence of in-sample optimism. This is probably because on the one hand, the data is simulated
using a three-factor model, hence there is no specification error when we use a three-factor model
to estimate the covariance matrix of returns. On the other hand, the sampling error is also very low
when estimating a factor model, because factor models have far less parameters than the sample
covariance matrix. Unlike the results in Panel A, imposing portfolio weight constraints has little

effect.

Panel D gives the results for tracking-error minimization with daily return data. The patterns
are quite different from what we observed when simulated data were used (i.e., Panel B). The sample

covariance matrix provides the lowest out-of-sample risk as measured by the standard deviation
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of the tracking-error. However, it has the most in-sample optimism. The out-of-sample standard
deviation for the three-factor model is 1.32 (= 1.93/1.46) times that for the sample covariance
matrix. Statistical tests (see footnote 7) show that the average out-of-sample risk for the factor
models are significantly higher than that of the sample covariance matrix. Hence there is substantial
benefit to using the sample covariance matrix if tracking-error minimization is the objective. This

is true with or without portfolio weight constraints.

The results in Panels C and D show that, with historical return data, adding twice the degrees of
freedom adjustment to the in-sample risk still underestimates the out-of-sample risk. For example,
in Panel C, doing that will only give us (5.562 + 2 x (6.492 — 5.562))"” = 7.30% for an estimate of
the out-of-sample standard deviation, which is still smaller than its average realized value of 8.44%.

This is because the historical return data are not i.i.d. multivariate Normal.

The results in Panels C and D suggest that the one- and three-factor models do not capture the
full covariance structure of the returns. Indeed, standard likelihood ratio tests using nonoverlapping
three-year periods consistently reject the hypothesis that the residuals from the factor models have
diagonal covariance matrix. Furthermore, over the sample period, for the residuals from the one-
factor model, the sum of all the variances and covariances is 2.52 times as large as the sum of all
the variances. This ratio is 1.95 for the residuals from the three-factor model. Clearly there is

nontrivial correlation among the residuals from the factor models.

Further, these results also suggest that although the jackknife type estimator (based on the
assumption that returns are i.i.d.) performs rather surprisingly well compared to other estimators

of out-of-sample risks, there is scope for improvement through relaxing the i.i.d. assumption.
Tracking the Realized Out of Sample Variances

While Table 1 compares the averages of various estimates of the out-of-sample standard devia-
tion with the average realized out-of-sample standard deviation, Table 2 reports the mean absolute
difference between the various estimates of the out-of-sample standard deviation and the realized
out-of-sample standard deviation. The * in the last three columns indicates the associated number
is significantly larger than the corresponding number in the first column (see footnote 7 for test

method).
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As in Table 1, there are four panels in Table 2: the first two panels are for the simulated return
data, and the last two the real return data. Panel A indicates that the jackknife method often
leads to significant improvement compared to the in-sample and other alternatives when there are
no portfolio weight constraints. As is to be expected, when the covariance matrix is estimated
using a three-factor model, there is little difference between the in-sample and jackknife estimates,
since the simulated data indeed has an exact three-factor structure. Panel B, which reports the

tracking-error variance minimization results using simulated data, has essentially the same pattern.

Panels C and D report the results for historical return data. Again, the mean absolute difference
is less for the jackknife estimator when compared to the in-sample estimator with and without the
degrees-of-freedom correction, and the differences are often statistically significant. Note that with
historical data (Panels C and D), the performance becomes significantly worse when compared to
estimates made using simulated data (Panels A and B), i.e., the mean absolute differences between
the various estimates and realized out of sample variances increased signficantly. This suggests that

relaxing the i.i.d. assumption may be important.
Estimating the Conditional Variance

Table 3 shows a simulation study where the true covariance matrix is fixed, and not matched
to the most recent three years of data every month. We first estimate the covariance matrix of the
200 largest stocks using their daily return from 1963/05 to 1968/04, together with the daily Fama-
French three-factor returns, and assuming the covariance matrix has a strict three-factor structure.
We use the estimated covariance matrix as the true covariance matrix for the simulation. We
simulate i.i.d. Normal daily return data over a three-year plus one month period (number of days
set to that over the 1963/05-1968/05 period). Then we use the first three years’ simulated data
to estimate the covariance matrix and form the optimal portfolios, and examine these portfolios’
performance over the last month of the simulated data. This procedure is repeated 396 times and

Table 3 shows some summary statistics.

Panels A and B report the results of the global minimum variance portfolios. Several patterns
are worth noting. First, the in-sample standard deviation with the standard degree of freedom cor-

rection is 3.20, which is exactly the standard deviation of the population global minimum variance
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portfolio. This verifies the theoretical results presented earlier. Second, on average,the in-sample
standard deviation with twice of the degree-of-freedom correction is 3.65, which is almost the corre-
sponding true standard deviation of the sample optimal portfolio of 3.73, again verifying our earlier

analysis.

Panel B shows that jackknife tracks the true standard deviation of the sample optimal portfolio
much better than the in-sample estimate, with the mean absolute difference of the former being
only a fraction of the latter. The last column of Panel B shows that the standard deviation
(calculated over the 396 repetitions) of the risk of sample optimal portfolio is quite small. This
means the dependency of the sample optimal portfolio’s risk on the particular realized returns
used in estimating the covariance matrix is rather small. Hence the twice-of-the-degree-of-freedom-
correction rule which was derived for the unconditional out-of-sample risk should work well for the
conditional one as well (i.e., the one conditional on a particular realized sample of returns used to

estimate the covariance matrix), when returns satisfy the i.i.d multivariate Normality assumption.

Panels C and D report the simulation results for the minimum tracking error variance portfolios.
We reach qualitatively similar conclusions here as in Panels A and B. The twice-the-degrees-of-

freedom correction rule performs rather well for the tracking error minimization problem as well.
Dynamic Conditional Correlation Model and Weighted Jackknife

In Sections 5.5.1 and 5.5.2, we proposed a multivariate GARCH-based method and a weighted-
jackknife method to estimate the out-of-sample standard deviations of the sample minimum risk
portfolios to allow for time variations in variances and covariances of returns. Tables 4 and 5
report the performance of these methods. In using the weighted-jackknife, we choose the decay
rate a = 0.21 in Equation (19), which corresponds to about 0.01 per day since there are on average

about 21 trading days per month.”

The layout of Tables 4 and 5 is similar to that of Tables 1 and 2, except we only examine

9When using the optimal rolling sample variance estimators, people generally uses decay rate between 0.01 per day
to 0.05 per day (see Flemming et al. (2003), Liu (2003), and Ghysels et al. (2003, 2004a, 2004b)). We feel numbers
in the higher end of the range may be too high for our purpose. For example, a daily decay rate of 0.04 would imply
a monthly decay rate of 0.84, meaning the second-to-the-last month is only given a weight that is 16% of the last

month in (19).
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the results with historical data. That is because our purpose here is to see how these estimators

perform when the return data exhibits persistence in variances and covariances across time.

Table 4 shows that the weighted-jackknife method out-performs the alternatives when the sam-
ple covariance matrix is used to construct optimal portfolios. In all other cases, the performance of
the weighted-jackknife is about the same as the multivariate GARCH method. This suggests that
the multivariate GARCH does a good job of capturing the temporal dependence in factor return
variances and covariances. The limitation is that we cannot implement the multivariate GARCH
process for the sample covariance matrix because the dimensions involved are too large making
computations difficult. Since the use of the sample covariance matrix leads to lower tracking-error

variance on average, the weighted-jackknife has advantages.

Table 5 reports mean absolute differences between the various estimators and the realized out-of-
sample standard deviation. As in Table 2, a * in the last two columns indicates that the associated
number is statistically larger than the corresponding number in the first column (see footnote
7 for test method). Under this criterion, the weighted-jackknife often gives significantly smaller
mean absolute tracking error. Considering both the unconditional bias in Table 4 and the mean
absolute difference here, the weighted-jackknife method performs better than the other methods

we considered.

7 Conclusion

It has been observed in the literature that the in-sample variance of a mean-variance efficient
portfolio constructed using estimated inputs typically understates its true variance, i.e., there is in-
sample optimism. In this paper we identify why in-sample optimism occurs and suggest a jackknife
type estimator for the out-of-sample conditional variance of minimum risk portfolios constructed

using estimated inputs.

We empirically demonstrate the need to correct for in-sample optimism by considering an opti-
mal portfolio of 200 stocks that has lowest tracking error when the S&P500 is the benchmark. We

consider three covariance matrix estimators constructed using three years of historical daily return
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data: the sample covariance matrix, Sharpe’s single-index model and the Fama and French (1993)
three-factor model. We find that the in-sample estimate of the tracking-error standard deviation is
on average about 64 percent of the out-of-sample standard deviation. The corresponding number

is 92 percent for the jackknife-type estimator.

The use of one- and three-factor models lead to increased-tracking error variance suggesting
the presence of nontrivial correlation among the residuals in the three-factor model that needs to
be taken into account when the objective is to construct efficient portfolios. An alternative to
increasing the number of factors to capture the correlation structure of returns would be to identify
the block diagonal structure of the covariance matrix of the residuals in a three-factor model using

cluster analysis as in Ahn, Conrad and Dittmar (2003).

An advantage of using factor models is that they have smaller in-sample optimism when com-
pared to the sample covariance matrix. With the use of the jackknife-type estimator for assessing

the out-of-sample tracking-error variance, the value of this advantage of factor models comes down.

The performance of the jackknife-type estimator worsens when evaluated using realized histori-
cal data instead of synthetic data obtained through simulation from a suitably calibrated i.i.d. mul-
tivariate Normal distribution. This is probably due to volatility persistence in the historical return
data. We show that the use of the Dynamic Conditional Correlation Model of Engle (2002) or a

weighted-jackknife method to account for such persistence leads to substantial improvement.
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Appendix. Mathematical Derivations

A. Proofs
PROOF OF PROPOSITION 1.

Since wy, is the global minimum variance portfolio with respect to the population covariance
matrix X, obviously

/ !/
wpXwp < wXws

for any portfolio w, that satisfies the same constraint as w,,, and the inequality becomes strict when
w, is different from w,. Since wy is the optimal portfolio constructed from the sample covariance
matrix, wg # w, with probability one. Taking expectations on both sides of the above, we get the

second half of (4).

Similarly, we have

/ /
wySws < wpSwp

with probability one. Taking expectations on both sides, and noticing that E(S) = X, we get the
first half of (4).

PROOF OF PROPOSITION 2. Equation (5) and the first part of Equations (6) and (7) are obvious

from Proposition 1. So we only need to prove the second part of (6) and (7).

With no portfolio weight constraints, the sample minimum risk portfolio, ws, is given by (1).

The out-of-sample variance of this portfolio, w.Xws, can be written as:

weXws = wy,Xwy + 2(w)pX) (ws — wp) + (ws — wp) B(ws — wp).

Using the fact that,

1 L i S|
Y-S vry-lirs-i1 vx-11

/ _ _ /
wpXws = = wyXwp,
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we get:

wiYws = w,XNwy, + (ws — wp) X(ws — wp).

Taking expectation on both sides, we get:
E(wXws) = wyYw, + E[(ws — wp) B(ws — wp)]. (A1)

This proves the second part of (7). The proof for the second part of (6) is similar.

PrROOF OF PROPOSITION 3: With no portfolio weight constraints, the in-sample variance of wjy is

1

17g-17> here S is the sample covariance matrix. The average in-sample variance of this portfolio is

1

We know that (T'—1)S is a N dimensional Wishart distribution with degree of freedom (7'— N)

and parameter matrix . That is,
(T —1)S ~Wn(T — N, %).

[Here we follow the notation of Muirhead (1982)]. From Theorem 3.2.11 of Muirhead (1982), it
follows that,

('(T-1)s "1} P~ Wy (T—N, ('S ')

When a scalar random variable = has a Wishart(T— N, ¢2) distribution, -7 hasa X%y distribution

(Muirhead (1982), p. 87). Since the expectation of a x%_, distribution (T — N), we get,

p(WI DTNy gy,

(1'z-11)-1
ie.,
T-1 1 1 ,
g <T -N 1/511> BRI (42)
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Therefore,

N-—-1
¢ = w,Yw, — E(w;Sw,) = mE(w;Sws).

To get the expression for go, we first simplify F(w,Yws), by following Kan and Zhou (2005).
Define A as A = ([v, QW [v,Q])~" where W = X£~1/28%~1/2 (with TW following a Wishart dis-
tribution with (T'—1) d.f.) and [v, Q] is a N x N orthogonal matrix with v = (X~1/21)/(1/2~11)1/2.

From equation (A48) of Kan and Zhou (2005), it follows that,
wYws = (1+ 2/ A5 2)/(1'271)

where z = —A;21/ 2A21 and A;j is the ijth sub-matrix of A. From Theorem 3.2.10 of Muirhead
(1982) z and Ay are independent. From Theorem 3.2.12 of Muirhead (1982) 2/Ay'z = vy /vy

where v; ~ X?Vfl and vy ~ X%L ~+1 and they are independent. Therefore,
E(Y Ay 2) = E(vi/v2) = (N —1)/(T — N — 1)

since for v ~ x2, E(1/v) = 1/(p — 2). Hence

E(w.Yw,) = L+ (V _11,)2/_(1T1_ VoD _ (14 (N = 1)/(T = N —1))w,Sw,

It follows that,
N -1 ,

qo = E(’UJ;EU)S) — w;Ewp = mwpxwp.

PROOF OF PROPOSITION 4. It is well-known that the predictive distribution for Ry is multi-

variate Student ¢ (Zellner (1971), p.235-236) given by:

p(RT—i-l‘Rla (EXE} RT)

x [1 D Ry — I~ 1S (Brss — )

—T/2
T+1 }

(T+1)(T -1 I

—1
x [(T'=N)+ (Rr41—f) T(T - N) )5] (Rry1 — ﬂ),] )
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where the o sign means positively proportional. This is a t (ﬂ, [%S]_l, T — N, N) dis-

tribution, using Zellner’s notation (Zellner (1971), p.383). So the posterior covariance matrix of

RT+1 is:

var(Rry1) = r-N T+1)T-1) S — T+1)(T-1)

" T-N-2 T(T-N) T(T — N —2)

S.

Since the posterior covariance matrix is proportional to S, the global minimum portfolio weights are
the same as ws, the portfolio weights constructed using the sample covariance matrix S. Therefore,
the variance of the portfolio under the predictive distribution is:

(T'+1)(r-1) , (T—-1)(T+1) 1

/
g= o T T ) Sy = . A
wevar(RrJws = par oy S = Ty g (A3)

This proves Proposition 4.
CONSISTENCY OF THE JACKKNIFE ESTIMATORS.

We first prove a lemma on the closeness of w; 7 and wr. To simplify the notation, we use w;

to denote wr_; ;) and S; 1 to denote Sir_ ;).
LEMMA 1:  Assume that monthly returns (i.e., blocks of | returns) follow a stationary process, so
that all sample variances computed from them are finite random variables. Let the portfolios (wr
and w; ) be constructed from the sample covariance matrices (St and S; T resp.). Assume further
that St and its population counterpart are positive definite. Then, for anyi=1,...,m, wr —w;T
is O(1/m), in the sense that, for every e > 0, there exists N, such that

P(m|wr —w;r| > N) <e.
(Le., m(wr —w; ) is a finite random variable for any m.)

PRrROOF. The Lagrangian function of the variance minimization problem with respect to S is:

Fow) = %w/Sw ('l —1) — (w — w6 + (w — 1) b, (A4)
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Taking the derivative of fs(w) with respect to w in (A4) and equating with zero we obtain

0 = gradfs(w) = Sw — 61 — 61 + 5. (A5)

Observe that wr is a solution to the above equation. By the same token, w; 7 would also solve
the above equation when S (or, St) is replaced by S; 7, where the ‘4’ in the subscripts indicates
that the ith block (month) is omitted. For the full sample problem, let us denote the solution of
the parameters corresponding to wr as o7, 61,7, and 0 7, respectively, and for the reduced sample
problem (i.e., with the ith block deleted) the solution of the parameters corresponding to w; 1 as

di, 0151 and 02 ; 7, respectively. Thus,

0 = Spwp— 0671 — 6017+ 07 — [Sipwir — 071 — 61,7+ 02,7]

= (St —Sir)wir + St(wr —w;T)

—(07 = 67)1 — (01,0 — O1i7) + (B2 — O2,i7). (A6)
Therefore,
St(wir —wr) = (St —Sir)wir
—(0p = 6i)1 — (010 — O1i7) + (B2 — O2i.7). (AT)

We first observe that

(—1)8; | (m—1I XX, (m—1DI (RirX]+XiR )

St = Sit ml — 1 + (ml —1)m (ml—1)m
(m—DI RixRiz 1 S;r (48)
(ml —1)m ml—1’

B, ml il v il
where R;r = (1/[(m — 1)”)(23':1 Rj — Zj:(z;l)lJrl Rj)7 Xi = (1/1) Zj:(z;l)lJrl Rj and 5; =
(/11 —1)) Z;l:(ifl)lH(Rj — X;)(R; — X;)'. These notations will be used in Proposition 5 below.
Defining ||Blls = (Trace(BB'))Y/? and ||z| = (> x?)l/Q for any matrix B and vector xz and

observing that || X;||, ||S:||¢r HRzTH and ||.S; 1

|4 all are finite random variable, from (A8) one gets
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Sr — Sir = O(1/m).

Now, observe that,

(wir —wr) (0170 — 61:7) = (Wit —w)' 017 — (Wi —w) 6017 — (Wr —w)' 017 + (wr —w) 01,7

since (w; 7 —wr) = (wir —w) — (wr —w). Also, since

(wiT —w)' 01,7 =0=(wr —w) b7 (A9)

one obtains
(wir —wp) (01,0 — 01,i7) = (wir —w) 017 + (wpr —w)'01,7 >0 (A10)
since (w; 7 —w), (wr —w), 61,7 and 6 7 are all non-negative vectors.

Similarly,

(wir —wr) (b2 —b2:7) = —(0—wir) b1+ (0 —wir) 021+ (0—wr)bar — (0 —wr)ba;r

= —(w—wir) b7 — (W—wr)be;r

IN

0. (A11)

The second equality follows, since

(w— wz'7T)/92’i,T =0=(w— UJT)IQQ’T (A12)

and the last inequality follows, since (w — w; 1), (@0 — wr), 62,7 and @ 7 are all non-negative

vectors.
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Thus, observing w; 1 = 1 = w1, one obtains from (A7)

(wir —wr) Sr(wir —wr) = (wir —wr) (St — Sir)wiT
—(wir —w)b 7

—(wr —w)' 0117 — (0 —wir) O — (0 — wr) a1

IN

(wi,p — wr)' (ST — Si,/7)wi . (A13)

Here we used the complementary slackness conditions (A9) and (A12) in the first equality, and

(A10) and (A11) in the next inequality.

Therefore,

Csllwi,r — wr|)?

< Nlwir —wrll Jwizll 1St = Sizlle (A14)

where Cj is the minimum eigenvalue of St and is therefore positive. Now, using (A8) and the fact
that ||w; || and |Jwr|| are all O(1) random variables whereas C will be uniformly bounded from 0

since they will be close to their population counterparts for large samples one gets

1
ol |wi |l 157 — Sirller
S
1

= O(—). (A15)

m

|wir —wr| <

Hence the proof.

REMARK 1: The Lemma assumes that the portfolios are constructed from the sample covariance
matrices of the returns. However, it is clear from the above proof that any estimator ¥ of ¥ that
satisfies:

Sp—Sir = O0(—
T = Zir=0()

with S and its population counterpart being positive definite matrices, will give rise to portfolios

(wr, and w; T resp.) that would satisfy the Lemma, i.e., wr —w; 7 = O(1/m).
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We now consider the general case discussed in Section 4.4.2.

PROPOSITION 5:  Assume that monthly returns (i.e., blocks of | returns) follow a stationary process,
so that all sample variances computed from them are finite random variables. Let the portfolios (wr
and w; ) be constructed from the sample covariance matrices (St and S; resp.), where St and
its population counterpart are positive definite. Assume further that the returns and portfolios
have finite fourth moment. (Assumption of fourth moment on portfolios are immediate whenever
they are constructed subject to some lower bounds as they add up to one.) For a fized wy, the
conditional expectation of the sample variance of {w}Rp1, ..., whRry} is consistently estimated
by (%) > imy aw; pSiw; T, provided (S—X7) converges to zero in mean (or mean square), where
S; is the sample covariance matriz estimated using the daily data of month i (i.e., S; = (1/[l —
1]) Z;l:(i_l)lH(Rj — X;)(R; — X;)' ), and S is the conditional expectation of sample covariance
matriz of {Rr41,. .., Rry} (i-e., conditional expectation of Sy11) given returns up to time T, and
S = (%) Yoty a;iSi, where {a;} are a sequence of positive numbers. The convergence in mean

i=1 i

is of order O(1//m), whenever the order of the convergence of (S — X7) is O(1//m).

PROOF.

Observe that,

m m
2 : / 2 : /
aiwinSiwi,T — ainETwT
=1 i=1

.
Il

m

ai(wir —wr) (Si — Br) (wir — wr) + 2 Z a;wyp(S; — X)) (wir — wr)
i1

I
MS;MS

7

m
+ Y aj(wir —wr) Sr(wir —wr) + 2 Z a;wp X7 (wir — wr)

1 i=1

]

+ aiwép(Si — ET)’(UT (Alﬁ)

s

=1

After dividing throughout by >, a;, we will show each term goes to zero in the mean and establish
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our consistency result. Observe that the first term,

m

1
E m ; ai(wi,T - wT>,(Si - ET)(wz',T - wT)

< [t aBllwir - wr|]? ||S; — ETHtr]]

L eril a;
- 1 1

o |2z ai(Elllwir — wrl]*)z x E[||S; — r[|7]2

N i Zgl aq
_ 1 1

< Diny az’EHLiUi,T - wTW] 2 y [221 aiELUSi - ETHtZT:| ? (A17)
L D is G Die @

The last inequality follows from Cauchy-Schwarz inequality using a;/(> ;" a;) as probability for
outer expectation. Using Lemma 1 above and the assumption of the moments of portfolios and

returns in this Proposition one gets

1/2
[ Zaz [lw;,r — wr|] ] —0
2 1 a;

=1

in the order of O(1/m?). Now the second term of (A17) is bounded by

1/2
[ Zaz [l15: — ETHtr]] ,
7‘121'1

which is bounded by a constant. Thus the first term of (A16) is of order O(1/m?).

Now the next term in (A16)

QE‘EZ 1ale(S ET)(sz_wT)
Dimy @

< 9 [2111 a; E [||wrl| |wir —wrl|| ||S; —ETHtr]}
B Doty G
1 1
S aE [lwr| Jwir — wrl]? | S aE (S - 2r)lw)? |
< 9 & x Ik (A18)
Dt @ D @

Since E[|wr| |Jwir — wrl]? < (B|lwr||)Y? (BE[|wir — wrl]*)'/? both term in (A18) can be

bounded by arguing exactly as in (A17) and the order of convergence is O(1/m).
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Observe that the third term in (A16)

B ‘ Yoiey ai(wi — wr) L (wsp — wr)
Doty @
>im GE [Jlwir —wr|? |27 ler]
Dty @i ]
< lzzf;l ai(Elllwir — wr|1)? (B[22
Dty @i

—_

and it converges to zero as in (A17) in the order of O(1/m?).

Now the next term of (A16)

Yoy WY (wi T — wr)

2F
Doiny @

<9 [22"1 ail [|wr|| lwir — wr| X
D ity i

Since Bl|wr| |[wir—wr|| [Srle] < (Elllwir—wrll*)*(Ellwr] || Zrle]?)'/? arguing as in (A18)

one gets order of the 4th term of (A16) is O(1/m).

Finally, the last term of (A16),

> iy aiwp(S; — Er)wr

Doty a

E FE ‘w'T(S’ — ET)U}T‘

< E(Jwrl* IS = S1ler)

N|=

(Ellwrl]*)? (BlIS = Srllu]?)?

IA

where the first term is bounded by a constant and the second term converges to zero in the order

of O(1/y/m).
Hence the proof as the lowest order of convergence is O(1/y/m).

REMARK 2: ;From Lemma 1 it is important to observe that, since wy — w;r = O(1/m), all but
the last term converge at least in the order of O(1/m) (the first and third terms of (A16) are of
(1/m?)). The last term converges in the order of O(1/y/m) because the convergence of S to ¥
is in the order of O(1/y/m). Further, any estimator by of ¥ and i of u satisfying the conditions

stated in Remark 1 give rise to portfolios (wr, and w;r respectively) that satisfy the Lemma, i.e.,
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wr —w;r = O(1/m). Thus, the conclusion of Proposition 5 also holds for such cases as well.

REMARK 3: For i.i.d. returns, we can set a; = 1 for all i, then the assumption of convergence

of (S — 1) holds. For returns that follow GARCH type models, we can set a; = e** for certain

positive decay rate o, and the assumption of convergence of (S — Y1) holds.
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B. The DCC Multivariate GARCH Model and Its Estimation

The Dynamic Conditional Correlation (DCC) multivariate GARCH model was proposed by
Engle (2002) and Tse and Tsui (2002). Here we follow Engle and Sheppard (2001). Let {d;} be
a k-variate zero mean and conditionally normal time series, and H; be the conditional covariance

matrix of §;. The DCC model describes the evolution of H; over time.

The covariance matrix H; is decomposed into variances and correlations:
Hy = Ay P Ay,

where A; is the diagonal matrix of standard deviations of d;, and P; is the correlation matrix.

Each diagonal element of A; is assumed to follow the well-known univariate GARCH process.
So different elements of A; will have different persistences and unconditional means. The dynamic

correlation structure is given by:

I J I J
Qr = (1- Z%’ - Zﬂj)Q + Z%‘(St—igé_i) + ZUth—gw (A19)
i=1 =1 i=1 =1

P = Q' (A20)

Here each element of &; is the corresponding element of d; standardized by its conditional standard
deviation, so it has unit variance. ) is the unconditional covariance of the standardized residuals,

and

var 00 - 0

Q: - . . . | ..‘ . ’ (A21)

0 0 0 - Var |

so the normalization in (A20) guarantees that P, is a matrix of correlations.
Following Engle and Sheppard (2001), we set the lags I and J to one.

We assume that the parameter estimates in Equation (15) and those in Equation (16) are
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asymptotically uncorrelated and first estimate Equation (15) using OLS (i.e., ignoring the condi-
tional heterskedasticity in &;), and get the residuals {d;}. We then we use {d;} as if they are the

true {0;} to estimate the parameters in the DCC multivariate GARCH model.

To estimate a DCC multivariate GARCH model for {d;}, we first estimate a univariate GARCH(1,1)
process for each component, given that our choice of number of lags I and J are both one. This
is achieved using the standard maximum likelihood method. The estimated GARCH(1,1) process
produces estimates of the conditional variances for each component at every ¢. For each ¢, we stan-
dardize each component of §; by the square root of its conditional variance, and this gives us the

standardized residual vector 5,5.

To estimate the parameters that govern the evolution of the conditional correlation metrix P;,

we can use the maximum likelihood method. The log likelihood is given by:

_

T
Lm.m) = —5 > (0g(|P) + 8P4y, (A22)
t:l

Notice that @ in Equation (A19) can be estimated by the sample covariance matrix of &’s. Also,
asymptotically the estimate of (v1,71) does not depend on the initial value of Q. So in practice
we use the sample covariance matrix of the first few standardized residuals as the value of Qy. We
then calculate L(v1,7n1) using Equations (A19) - (A22). Maximizing the log likelihood is achieved

using Newton-Ralphson method with numerical derivatives.
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Table 2
Mean absolute difference
from out-of-sample standard deviations

Jackknife In-sample DF adjusted Bayesian KS

Panel A. Global minimum variance portfolio: Simulated i.i.d. normal data

Sample covariance matrix 0.851 1.669* 1.076%* 1.071*%  0.789
Sample covariance matrix C 1.034 1.001

One-factor model 0.879 2.016* 2.010%*
One-factor model C 1.088 1.262*

Three-factor model 0.703 0.730 0.726
Three-factor model C 1.038 1.004

Equally-weighted portfolio 1.687

Panel B. Minimum tracking error variance portfolio: Simulated i.i.d. normal data

Sample covariance matrix 0.263 0.490* 0.314* 0.313*  0.239
Sample covariance matrix C 0.258 0.432%*

One-factor model 0.255 0.270%* 0.269%*
One-factor model C 0.255 0.270*

Three-factor model 0.235 0.224 0.225
Three-factor model C 0.236 0.224

Equally-weighted portfolio 0.291
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Table 2—continued

Jackknife In-sample DF adjusted Bayesian KS

Panel C. Global minimum variance portfolio: Real data

Sample covariance matrix 2.29 3.06%* 2.53 2.53 2.24
Sample covariance matrix C 2.61 2.73

One-factor model 2.81 4.76* 4.76*
One-factor model C 2.87 3.22

Three-factor model 2.64 3.79* 3.78%
Three-factor model C 2.78 2.95

Equally-weighted portfolio 4.50

Panel D. Minimum tracking error variance portfolio: Real data

Sample covariance matrix 0.352 0.533* 0.421 0.420 0.355
Sample covariance matrix C 0.346 0.487*

One-factor model 0.635 0.757 0.756
One-factor model C 0.635 0.757

Three-factor model 0.536 0.550 0.550
Three-factor model C 0.536 0.550

Equally-weighted portfolio 0.740

FEach month 200 stocks with the largest market capitalization are selected. Thirty-six months of
daily data are used to estimate the covariance matrices and form the global minimum variance
portfolios or minimum tracking error portfolios, which are held for one month. This procedure
is repeated every month. We report the summaries of the difference between the out-of-sample
standard deviations of the optimal portfolios and the estimates of the out-of-sample standard
deviations. Results are based on 396 months of out-of-sample returns from 1967/5 to 2000/4.
Standard deviations are annualized and expressed in percentage points. The degree-of-freedom
adjustment factors are computed using the formula in Section 2 The Bayesian covariance matrix
estimators are described in Section 3. KS refers to the Kan and Smith (2005) estimate of the
out-of-sample standard deviation. Panels A and B are for simulated i.i.d. normal data (see Section
6.6.3). Panels C and D are for the real return data. The letter C after each covariance matrix
estimator denotes the optimal portfolio is constructed subject to nonnegativity constraint. The x
in the last three columns indicates the related number is significantly larger than the corresponding

number in the first column.
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Table 5
Mean absolute difference from out-of-sample standard deviations
when real return data are used

Weighted One-factor Three-factor KS
Jackknife model model

Panel A. Global minimum variance portfolio

Sample covariance matrix 2.07 3.20* 3.12%* 2.24
Sample covariance matrix C 2.30 2.49 2.53
One-factor model 2.51 2.83 2.74
One-factor model C 2.50 2.72 2.80
Three-factor model 2.29 2.64* 2.62
Three-factor model C 2.42 2.64%* 2.66

Panel B. Minimum tracking error variance portfolio

Sample covariance matrix 0.306 0.543* 0.548* 0.355
Sample covariance matrix C 0.302 0.497* 0.500*
One-factor model 0.488 0.639%* 0.614*
One-factor model C 0.488 0.639* 0.614*
Three-factor model 0.427 0.550%* 0.542%*
Three-factor model C 0.426 0.550%* 0.542%*

Each month 200 stocks with the largest market capitalization are selected. Thirty-six months of
daily data are used to estimate the covariance matrices and form the global minimum variance
portfolios, which are held for one month. This procedure is repeated every month. We compare the
out-of-sample standard deviations of the optimal portfolios with the estimates of the out-of-sample
standard deviations. Results are based on 396 months of out-of-sample returns from 1967/5 to
2000/4. KS refers to the Kan and Smith (2005) estimate of out-of-sample standard deviations.
Standard deviations are annualized and expressed in percentage points. The letter C after each
covariance matrix estimator denotes the optimal portfolio is constructed subject to nonnegativity
constraint. The * in the last two columns indicates the related number is significantly larger than

the corresponding number in the first column.
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