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Abstract

A brief discussion of recent met1ds using the Hat Matrix for

identifying leverage points, and clustering techniques for finding

groups of data points is presented. The problem of identifying leverage

groups is addressed, and a heuristic algorithm for identifying both leverage

points and leverage groups is proposed. Semi-portable FORTRAN code

implementing the algorithm, a sample terminal session, and a discussion of

the terminal session are included.
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Introduction

Of prinry concerTl in regression (least squares), y X + E, is

that the X utrix be non-singular and well-conditioned. A secondary

concern, sometimes neglected, is the distribution of data (sample)

points (rows of X) over the space spanned by the coluims of non-singular

X Although it is desirable, and frequently assumed to be true that the

data is norrrlly distributed (in each column), -this often is not the

case. Two issues then arise, the presence of leverage points, and

the presence of clusters (groups) of points.

Conceptually, a leverage point is far away (in some sense) from other

points and their centroid; it is an outlier in X. If p (for X, n by p)

is larger than, say, 3 it is hard to spot leverage points by eye or scatter

plot because the hyper-parallelopiped representing the observation

space has 2 vertices. Furtherrrore, leverage is a relative property involving

n(n-l)/2 interpoint relationships. What is needed is a metric under which

each data point can be assigued a number indicating its leverage.

Hoaglin and Welsch [5] present the use of the so called "Hat Matrix",

H, to examine the distribution of data points. In particular, they use the

diagonal elements, of H as indicators of leverage, as is motivated

by the derivation of H: ietting xT stand for the transpose of X, (XTX)l

stand for the me-trix inverse of xTx, stand for the computed approximation

to , and y stand for the fit realized at the least squares solut ion

we have

xTx xTy, (XTX)_1XTy, X y = X(XTX)_lXTy.
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If we set H X(XTX)_1XT we have y = Hy ; H "puts the hat" on y.

The leverage of the th row of X, X, is seen in the influence of y on

the fit y., through h.. Since H is a symntric, idempotent matrix (a

proj ec-t ion matrix), the h lie between 0 and 1. In their recent paper,

Welsch and Kuh [8] develop the use of the h1 and related regression

statistics. They define a cutoff level of 2pm (for n > 2p) above which

an h1 is considered significant and row i is called a leverage point."

Andrews and Pregibon [1] have developed another technique in which points
Twith large h s are considered leverage points, and minors of X X

are computed in order to identify groups of leverage points (leverage groups).

The problem of identifying clusters, or groups, has been approached

in many ways. As in the leverage point problem, nonhierarchical cluster
** 2• analysis is multidimensional in nature, and seeks to reduce O(n )

interpoint relationships to n relationships, where each point is assigned

to a cluster on the basis of some specified criterion, often involving Euclidean

distance. Kendall and Stuart [] give a heuristic procedure using ranking

which is moderately successful in partitioning data into groups. Gnanadesii<an

[3], in his chapter, "Multidimensional Classification and Clustering," arid

Oliver [6] in his software documentation on Cluster Analysis routines

describe a number of different clustering criteria and clustering procedures,

but the complexity of the problem constrains the algorithm to be molded by

its context. Since we are interested only in leverage groups, we will want

to use criteria peculiar to assessing leverage.

*
See Appendices 1 and 2,

**
See Gnanadesikan [3].
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A Problem

As discussed by Welsch and Kuh [8],the h effectively reveal individual

leverage points, but may not reveal those leverage points that geometrically

form a group (are in close geometric proximity to one another). Proximity

to other data reduces the individual leverage, hence the h1, of any given

point.

A simple example mekes this clear. Consider X which

consists of a cloud of 20 points centered at the origin, uniformly randomly

distributed within a 5-space hypercube of side length 4, plus a point
at (10, 10, 10, 10, 10). The latter point has h21 of about . 951,

close to the maximum value of 1. When a 22nd point is added nearby, at

(10.1, 10.1, 10.1, 10.1, 10.1) we find that h21 and h22 are about .483 and

.492. A 23" point at (10.2, 10.2, 10.2, 10.2, 10.2) yields h21, h22
and h23 of .321, 328, and .334. These h1 contrast to others corresponding
to points within the cloud, which are as high as .340, .425, .469, and 482.

Sequential row deletion is unreliable because it is hard to

determine what constitutes a group, and a group could collectively have

high leverage, while the h1 of its members might be rroderate. The

sequential procedure proposed by Andrews and Pregibon El] can also

encounter difficulties for the same reasons. Welsch and Kuh [8] mention

the possibility of identifying groups through the correlation matrix of

the residuals, but as they note, this requires the computation of the
n(n -1)12 elements, which requires either considerably

nore storage or an 0 (n2p2 ) -operations algorithm, If groups can be identified,

we might prefer to replace row deletion with the substitution of a group by

the mean (or some other summary measure) of its members, This way,

crucial or expensive data is not lost, and the h convey nore information.

Welsch and Kul-i [8] discuss other possible remedies.
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The a]x)ve comprises the ntivation for a heuristic algorithm which

can be used to help identify leverage points and leverage groups. The

"Data Point Algorithm" (DPA) is O(n2p) operations, and requires little

extra storage beyond that of the X matrix, and thus is comparable

in cost to obtaining the h's and less expensive than obtaining the

or RP.<'s proposed by Andrews and Pregibon [1]:

Data Point Algorithm

1. Given X, n by p with all constant columns deleted.

2. Center the data; X ÷ X - X, where the rows of X are identically

the coluirn means of X. (The origin is now the centroid).

3. Normalize each column by dividing by its nor times 2(pL'2)

(The main diagonal of the observation space hypercube is now of length 1).

4. Compute and store t1e £2 of each point (row).

5. Compute for each point the "normal" distance to all other points,

that is, distance parallel to its normal vector, (see Figure la). Talj those points

further out in the normal direction (those with negative parallel distances).

Sum the (scaled) inverses of these distances for each point, to obtain a

measure of local density.

6.. Single out those points with outdistance (further out) tallies of 0,

particularly those that have large £2 norms (relative to the others,

arid to the maximum, 0.5). We call these points "outdistaHcers" (see

Figure ib).

* Giv vector x (x , x2, ... )T the £ nori of x, ix! L ixj!1

21/2
Given vector x

(x1, x2, . . . ,x)', the £2 norm of x, I lxi 12 x)
T

1/2

(xx)
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7. Each outdistancer is a leverage point, or the point furthest out

in a leverage group. A relatively low "density" value means a

point is isolated, a high value indicates the proximity (in the

normal direction) of other points.

8. Get a sorted listing (possibly via Tukey [7], and Hoaglin and Wasserman's

"Stem-and-Leaf" display) of all points and their normal distance to each

outdistancer. Establish a cutoff level for normal distances, below

which points form a leverage group "headed" by the outdistancer (see Figure lc).

A listing of a semi-portable interactive driver, DPA FORTRAN, and

the initialization routine, MATRIX FORTRAN, which implement the DPA

algorithm can be found in Appendix 3.

By centering and normalizing the data, norms and distances can be

compared. The further out a given point is from the origin (the centroid)

and the fewer points are further out - the nre leverage it exerts. The

point furthest out in any normal direction exerts the nost leverage in

that direction. Any such point may be isolated, part of a tight group,

or anywhere on the continuum in-between. Again, we emphasize that the

group-inclusion function imposes a discrete, binary set of relationships

on a complex, continuous configuration, so there always is some arbitrariness

and simplification. For our purposes, we uld seem to reduce complexity

by measuring distances only in the normal directions (perpendicular distances

are not used), but we increase complexity because normal distances are non-

symmetric, d1Rd2-1÷ d2 Rd1, unlike
Euclidean distances. Thus leverage groups

are "headed" by outdistancing leverage points. An exanpie makes the above

discussion clearer.



—7—

An Exair1e

We return to the example discussed aixve, X coirised of twenty points
in a cloud about the origin and three points around (10, 10, 10, 10, 10).

Appendix 4 contains the terminal session with DPA FORTRAN, to which the

reader should refer. *

DPA FORTRAN carries out steps 1) -5) of the Data Point Algorithm.

Examining the OTJTDIS coluim, we see that points 8, 10, 17, 18, and 23

are outdistancers. Point 23 especially catches our eye because its norm

is listed as .5, the highest possible value. We now proceed to sequentially

examine the 5 points singled out by step 6), using the Stem-and-Leaf

display (SLD) [7]. The SW for point 8 is done in units of lO_2, first of all

indicating that all but the three points isolated at the bottom of the display

are relatively close to point 8 (.01 is small relative to .5). Nonetheless,

the SW does show a well defined break in distances, at about .04. DPA

identifies points 17 and 19 to be part of the indicated group. We

adopt a convenient notation for leverage groups: (norm, cutoff value,

cutoff separation, outdistancer: other points in group), so we list

the first leverage group identified as (.134, .04, .02, 8: 17, 19). The

norm indicates the extent of leverage, (low in this case). The cutoff

distance indicates the approximate minimum normal-distance radius used

to define (contain) the group, (small, in this case). The cutoff separation

indicates the extent to which the group is isolated from the other points

(also small, in this case). Lastly, the header (outdistancer) of the

group, and the group members are listed.

Execution was on an IBM VM37 0/158 computer, FORTRAN H(OPT(2)) compiler.
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Ontinuing with the example, DPA finds (.112, .01, .02, 10:17, 18) —

which meansthat to weak leverage groups overlap at point 17, (.147, -, -, 17:-)-.
which has no wi-defined cutoff value, and (.114, . 01, . 03, 18:10). DPA

clearly identifies the leverage group near (10, 10, 10, 10, 10) in this contrived

example: (.500, .02, .38, 23:21, 22).

Turning to some "real" data, the example considered by Welsch and Kuh [8]

taken from an econometric study of life-cycle savings rates) serves as a good

*case for comparison of the use of the h1, and the Data Point Algorithm.

The h1 identify points 49, 44, 23, and 21 to be leverage points (in order

of decreasing h1) and 37, 6, 147, 14, and 39 to be "contenders". DPA FORTRAN

indicates that of 49, 44, 23, and 21, only 49 is an outdistancer; 44 is

outdistanced by 39, 23 by 28, and 21 by 2, 3, 14, 25, 314, 40 and 43. No

clear leverage groups are indicated; 18, 37, 39, and 49 are all outdistancers,

but SLD's reveal no significant breaks in the sorted normal distances, The

design of DPA FORTRAN allows the user to identify "secondary" leverage groups -

those headed by a point outdistanced by only a few other points. We call

such points "k-outdistancers" where k is the number of outdistancing points.

DPA FORTRAN lists as l—outdistancers points 114, 23, 25, 43, 414, and 50.

By defining a new generalized data structure for leverage groups headed by k-out-

distancers: (norm, cutoff value, cutoff separation, k-outdistancer : (outdistancing

points), other points in group) we can conveniently display the fact that

point 25 has a norm of .311, is a l-outdistancer (outdistanced by point 39) and with

cutoff value of .05 and cutoff separation of .03 it heads a group containing

points 2, 3, 11, 114, 15, 40, and 43

(.311, .05, .03, 25:(39), 2, 3, 11, 114, 15, 40, 43).

*
See Appendix 5.
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We also have

(.320, .05, .03, 43:(39), 2, 3, 11, 1'4, 25, '.1.0).

The other 1-outdistancers are uninteresting.

In conclusion, DPA FORTRAN shows points 39, '49, 18, and 37 (in order

of decreasing norm) to be outdistancers, each with a roughly uniformly distributed

set of neigh]x)rs in the direction towards the origin (centroid). Lcosely speaking,

points 25 and '43 head up a leverage group outdistanced only by point 39, and

containing points 2, 3, 11, lIt, and '40. This set of data does not appear to

contain any remarkable features in the way of leverage points or groups.
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Appendix 1

X and Aunted X
An issue in the leverage point (group) problem is whether to search

for leverage points in X, or in X augmented by the right-hand side;

y: Xy. The appeal of using Xy is that it contains all input data,
*

and a leverage measure, such as h (the diagonal of the
hat matrix for X y) can be computed for each point X y1 . The crucial

disadvantage of using X y is that such a measure as h can blur what are

two distinct cases: leverage points in X, and outliers in y. A leverage

point in X, X, is a point that (because of its position relative to

other points in X) has considerable influence on the fit, regardless of the

value An outlier in X y is a point, X I
y5,

with a y5 significantly
deviant from the fit at X obtained by fitting with all but point j.

Some indication of the distinction between these two cases in evident

in the relation: h h. + r?/SSR, where SSR is the Sum of the Squared

Residuals. The h measure leverage in Xy space. The h1 measure

leverage in X space. The r/SSR depend upon X and y, but for

rroderate h. they can provide an indication of outliers in y

Two examples contrast the use of the h, and the h and r/SSR.
First, consider the data, in (x,y) pairs: (1, .5), (2, 1), (3, 1.5), (.5, 1),

(1, 2), (1.5, 3), and (2.'49, 3.5) (see Figure 2). Point 7 is clearly an

outlier in xly though not a leverage point in X. We find h .609, higher

than any other h1 by .031, so h reveals the isolation of point 7 in xly

space. This contrasts to h7 .1419, less than h3 = .14214,and rISSR .190,

less than r/SSR .300, revealing that point 7 is second in leverage in X,

and second in the list of outliers in y (though h7 is large enough to cause

The author is indebted to Steve Peters for deriving this inporant relationship.
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us to perhaps consider rISSR mare significant).

As a second example, consider the data: (1, (i/2) + e1) for I 1, 2,... ,7

and is a random variable of unifonn distribution in the interval (0, .1);

plus the points (4, 25) and (15, 7.5) (see Figure 3). Points 8 and 9 are

both outliers in X!Y, but point 8 is an outlier in y, not X, and point 9

is a leverage point in X, not an outlier in y. We find h . 999989 and

= .817, followed by h .268, so the h distinguish points 8 and 9

from the other points, but not from each other. However, h8 .122,

h9 .816, r/SSR .878, and r/SSR .001. Clearly,the h1 and r?/SSR

distinguish the leverage point in X from the outlier in y.

The above serves as niotivation to search for leverage points (or

nore generally, leverage groups) strictly in the X matrix, using the

scaled residuals to identify outliers in y. If hat matrix diagonals are

being used to identify leverage points, this approach has the added advantage

that the h1, unlike the h, are directly computable from the QR decomposition
of X - which can be used to solve xTx = xT.

See Welsch nd Kuh [8] for the possibly more useful statistic , the studentized
residual, r. r./(s(. (1-h. )1/2), where s, . . is the estimated error variance
for the "nt i"'fit1'

1
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Appendix 2

H is most reliably computed via the QR decomposition of X [2],

which uses Householder transfoniations (fonming orrLthogonal Q) to reduce

X to upper-triangular R. QR decomposition by Householder transformations, with

coluiru-i pivoting, is more stable than Grain-Schmidt orthogonalization, and yeilds a more

nearly orthogonal Q than MDdified Gram-Schimidt in the event of rank degeneracy.

To compute H, we have H x(xTx)_lxT, X QR. Therefore,

H QR(RTQTQR)_l RTQT QQT (Q is m by n here). The QR decomposition

routine used need not store Q explicitly, storing instead the u's which

define the Householder transformations, 1_T (the u's can be stored in a

lower triangular matrix). Each h1 is computed by applying the Householder

transformations to a vector representing the 1th column of 'n' then setting

h1 to the dot product of the vector (the first p elements) with itself.

The h. are more cheaply computed (at the price of extra storage) by forming

Q explicitly.
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Appendix 3

DPA FORTRAN

INTEGER NM,MN,N,P,I,J,K,OUT,IN,IPLUS1,IERR,IV1(300),OUTDIS(510) DPA0001O
INTEGER 1V2(300) ,IV(300) DPA0002O
DOUBLE PRECISION X(510,15),NORMS(510),DENSE(510),TEMP,DFP 11PA00030
DOUBLE PRECISION MAX,NRM1 NRM2,DIFF,T1 ,T2,DIST,EPSRV1 (510) DPA0004O
DOUBLE PRECISION DFLOATE'SORTDABS DPA000SO
LOGICAL SORTOR LIPA0006O

DF A 00070
DATA NM/510/,MN/15/ DPA0008O

B PA 00090
C:::::GET DATA MATRIX AND PARAMETER VALUES, DPAOO100

DPAOO1 10
CALL MATRIX(NM,MNi'N,P,X,EPSrSORTORpOUT,IN) DPAOO12O
11FF = 2.0110 * DSORT(DFLOAT(P)) DPAOO13O

B PA 00140
c:u::cENTER THE DATA. DFAOO1SO

0 PA 00160
DO 20 I=1,P DPAOO17O

TEMP = 0.01,0 DPAOO18O
DO 10 J=1,N BPAOO19O

TEMP = TEMP + X(J,I) DPAOO200
10 CONTINUE OPAOO21O

TEMP = TEMP / DFLOAT(N) t'PA00220
MAX = 0.0110 LIPAOO23O
DO 15 J=1,N 11PA00240

X(J,I) = X(J,I) — TEMP 11PA00250
IF (BABS(X(JI)) .GT. MAX) MAX = DABS(X(J,I)) DPAOO26O

15 CC)NTINUE DPAOO27O
OP A0 0280

c:::UN0RMALIzE THE DATA SUCH THAT THE OBSERVATION SPACE IS SCALED INTO 0PA00290
C:::.UA HYPERCUBE OF MAIN DIAGONAL LENGTH 1. E1PAOO300

['PA 00310
DO 20 J=1,N DPAOO32O

X(J,I) = (X(J,I) / MAX) / DFP BPAOO33O
20 CONTINUE DFAOO34O

['0 30 I=1,N [1PA00350
DENSE(I) = 0.0110 DPAOO36O
OUTDIS(I) = 0 DPAOO37O

30 CONTINUE BPAOO38O
C DPAOO39O
c:::::coMpuTE ROW L2 NORMS. DPAOO400
C DPAOO41O

DO 0 I=1,N [1PA00420
TEMP = 0.000 DPAOO43O
['0 40 J=i,P DPAOO44O

TEMP = TEMP + X(IrJ)*X(I,J) LIPAOO45O
40 CONTINUE DPAOO46O

NORMS(I) = DSORT(TEMP) DPAOO47O
50 CONTINUE 0PA00480

11PA00490
c:uCOMFUTE DISTANCES SQUARED. DPAOO500

DPAOO51O
['0 105 I=1,N DPAOO52O

IF (I .EQ. N) GOTO 105 ['PAOOS3O
IPLUS1 = I + 1 0PA00540
NRM1 = NORMS(I) DPAOOS5O
DO 100 J=IPLUS1,N DPA00560

[lIST = 0.0110 DPAOO57O



DO 70 K1,P DPAOO5BO
01FF = X(I,K) — X(J,K) DPAOO59O
01ST = 01ST + DIFF*DIFF DPAOO600

70 CONTINUE DPAOO61O

. DPAOO62O
U::COMPUTE NORMAL (PARALLEL) DISTANCES, 0PA00630

C DPAOO64O
75 NRM2 NORMS(J) DPAOO6SO

Ti = (01ST + NRM1*NRM1 — NRM2*NRM2 / (2.000*NRM1) 0PA0066012 = (0191 + NRM2*NRM2 — NRM1*NRM1) / (2.ODO*NRM2) DPAOO67O
DENSE(I) = DENSECI) + 1.000 / (EPS + DABS(T1)) DPAOO6SO
DENSE(J) DENSE(J) + 1.000 / (EPS + DABS(T2)) 0PA00690C DPAOO700

c:::::TALLY OUTDISTANCING POINTS. DPAOO71O
C DPA00720

IF (Ti •LE. 0.000) OUTDIS(I) = OUTDIS(I) + 1 0PA00730
IF (12 .LE. o,or'o) OUTDISJ) = OUTDISJ + 1 DPAOO74O

100 CONTINUE DPAOO75O
103 CONTINUE t'PA00760

WRITE(OUT,1001) DPAOO77O
DO 110 I=1,N DPAOO78O

WRITE(OUT,1002) I,NORMS(I),EIENSE(I),QUTDIS(I) t'FA00790
110 CONTINUE DPAOO800

C DPAOOB1O
C:::::cHEC1c INDIVIDUAL POINTS OF INTEREST. DPAOO82O
C DPAOOB3O

120 WRITE(OUT,1003) DPAOO84O
C DPAOO85O
c:n::GET POINT INDEX. DPAOOB6O
C

DPAOOG7O
READ(IN,1004) K 0PA00880
IF (K*(2*N + 1 — 2*1<)) 130v200,150 DPAQOG9O

130 WRITE(OUT,1006) N DPAOO900
GO TO 120 DPAOO91O

C DPAOO92O
C:::: :C0MPuTE DISTANCES. DPAOO93O
C DPAOO94O

150 NRM1 NORMS(K) DPAOO95ODENSE(K) = 0.000 DPAOO96ORV1(K) = 0,000 0PA00970
riO 170 I=1,N DPAOO98O

OUTDIS(I) = I t'PA00990
IF (I .EO. K) GO TO 170 DPAO10000151 = 0.000 DPAO1O1O
DO 160 J=1,P t'PAO1O2O01FF = X(K,J) — X(I,J) DFA01030

0181 01ST + DIFF*DIFF EIPAO1O4O
160 CONTINUE DPAO1OSONRM2 = NORMS(I) DPAO1O6OTi = ([lIST + NRM1*NRM1 — NRM2*NRM2) / (2.000*NRM1) DPAO1O7ODENSE(I) = ri DPAO1OBORV1(I) = Ti t'PAO1O9O
170 CONTINUE

t'PAOilOO
IF (.NOT. SORTOR) 0010 173 DPAO111O

DPAO1 120
C:::::soRl- ANtI PRINT NORMAL DISTANCES TO POINT K. DPAO113Oc

DPAO114O
CALL ISORT1(N,OUTDIS,DENSE) DPAO115O

. WRITE(OUT,lOio) DPAO116O
00 172 I=1,N DPAO117OJ = OUTt'IS(I) IIPAO118O

WRITE(OUT,loii) IJDENSEJ) DPAO119O
172 CONTINUE DPAO1200

GO TO 120 t'PAO121O
C

11PA01220
cu:::r'o STEM LEAF DISPLAY OF NORMAL DISTANCES TO POINT K. DPAQ123O



DPAO124O
175 WRITE(OUT,1008) K 0PA01250

CALL SLDSPY(RV1,IV1,1V2,1V3,OUTrpIS,Bo,N,300,IERR,OUT) DPAO126O
CALL IERRIO(IERR,OUT,16,16H STEM & LEAF ) DPAO127O

. DPAO128O
::::ESTABLISH CUTOFF DISTANCE, 0PA01290

C EIPAO1300
WRITE(OUT,1012) DPAO131O
READ (IN,1013) 01ST DPA01320
WRITE(OUT,1009) K t'PA01330
DO 180 I=1,N 0PA01340

IF (I •EQ. K) GO TO 180 0PA01350
IF (DABS(DENSE(I)) •LE. 01ST) LdRITE(OLJT,1004) I DPAO136O
IF (DENSE(I) •LE. 0.000) WRITE(OUT,1005) I DPAO137O

180 CONTINUE 0PA01380
GO TO 120 0PA01390

C 0PA01400
200 STOP DPAO141O

C DPAO142O
1001 FORMAT(/40H I NORMS DENSITY OUTE'IS ) 0PA01430
1002 FORMAT(14,2t112,3,218) 0PA01440
1003 FORMAT(/35H POINT CHECKING (TYPE 0 TO STOP: I) DPAO145O
1004 FORMAT(14) DPAO146O
1005 FORMAT(I8) DPAO147O
1006 FORMAT(/25H INDEX MUST BE FROM 1 TO I4) DPAO148O
1007 FORMAT(112,3012,3) 0PA01490
1008 FORMAT(/18H STEM & LEAF FOR ,14) DPAO1500
1009 FORMAT(/15H NEB OUT FOR p14) DPAO151O
1010 FORMAT(/20H I PT 01ST I) DPA01520
1011 FORMAT(2I4,012,3) 0PA01530
012 FORMAT(/20H INPUT CUTOFF VALUE ) DPAO154O
13 FORMAT(F1O.2) DPAO1SSO

C DPAO156O
END DPAO1S7O



SUBROUTINE MATRIX(NM,MN,N,P,X,EPS,SORTOR,OUT,IN) MAT0001O
INTEGER NMMN,N,P,OUT,IN MAT0002O
DOUBLE PRECISION X(NM,MN) pEPS MAT0003O
LOGICAL SORTOR MAT0004O

C MAT0005O
c:::::PARAMETER tIECRIPTION: MAT0006O
C MAT0007O
C ON INPUT MAT0008O
C MAT0009O
C NM IS THE DECLARED ROW DIMENSION OF X. MATOO100
C MATOO11O
C MN IS THE DECLARED COLUMN DIMENSION OF X. MATOO12O
C MATOO13O
C ON ouipui: MATOO14O
C MATOO15O
C N IS THE NUMBER OF ROWS IN X. MATOO16O
C MATOO17O
C P IS THE NUMBER OF COLUMNS IN X. MATOO18O
C MATOO19O
C X IS THE DATA MATRIX (WITH NO CONSTANT COLUMNS). MATOO200
C MATOO21O
C EPS IS A SMALL SCALING CONSTANT USED IN COMPUTING MATOO22O
C THE DENSITY VALUES FOR EACH POINT. MATOO23O
C MATOO24O

SORTOR IS A LOGICAL FLAG WHICH CONTROLS THE MATOO25O
POINT—CHECKING PROCEDURE: MATOO26O
IF SORTOR IS •TRUE. SORTED DISTANCES ARE DISPLAYED, MATOO27O
IF SORTOR IS •FALSE. STEM & LEAF AND A USER—SPECIFIED MATOO28O

CUTOFF POINT IS USED. MAT00290
MATOO300

C OUT IS THE UNIT OUTPUT DEVICE. MATOO31O
C MATOO32O
C IN IS THE UNIT INPUT DEVICE. MATOO33O
C MATOO34O

EPS = 1.OD—6 MATOO35O
SORTOR = •FALSE, MATOO36O
OUT = 6 MATOO37O
IN = 5 MATOO3BO

MATOO39O
c:::::usER SHOULD SUPPLY THE DESIRED MATRIX CALL HERE. MATOO400
C MATOO41O

CALL OETMAT(NM,MN,N,P,X) MATOO42O
MATOO43O

RETURN MATOO44O
END MATOO45O
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Appendix 3 (cont.)

Other FORTRAN Routines
Used by DPA FORTRAN

ISORU sorts N real values in increasing

order through an integer index vector.

SLDSFY is part of a FORTRAN package implementing

Tukey's Stem-and-Leaf Display [7].

It was written by D. Hoaglin and S. Wasserman

and appears in ROSEPACK version 0.1, developed at NBERJCRC.

IERRIO is also in ROSEPACK version 0.11. It prints an integer error

return code along with a message. It can be replaced by a

WRITE statement and FORMAT statement.
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NORMS
o • 45411—01
o .93711-01
0.11411+00
o • 96611—01
0 •69711—01
0 • 90311—01
0 • 24811-01
0.13411+00
0.86411—01
0.11211+00
0.92411—01
0 • 79711—01
0. 11711+00
0.9 1211—01
0.10211+00
0 • 67211—01
0.14711+00
0. 11411+00
0.10011+00
0 • 74211—01
0. 48911+00
0. 49411+00
0.50011+00

DENSITY
0. 20711+04
0.11411+04
0 • 560D+03
0. 66911+03
0. 36611+04
0. 40511+04
0. 15411+05
0. 27311+03
0. 30211+04

0.700D+03
0.11311+04
0 •29311+04
0,41811+03
0. 24611+04
0. 83811+03
0. 56311+04
0. 27111+03
0. 41211+03
0. 90411+03
0.12011+04
0. 30311+03
0. 39211+03
0.30311+03

OUTDIS
14
3
1

2
5
1

5
0
4
0
2
8
1

2
2
7
0
0
1

1

2
1

0

3 HI I 0.4893 0.4934 0.497A

I

1

2
3
4
5
6
7
a
9

10
11
12
13
14
15
16
17
18
19
20
21

POINT CHECKING (TYPE 0 TO s1op:

:::. 8

STEM & LEAF FOR 8

STEM-AND—LEAF DISPLAY, N =

( UNIT = 0.100011—02 )

23

1 0 10
1 11
2 2 17
3 3 15
3 41
5 5 147
8 61178
9 7 13. 3
11
8
8
6

8 1348
9 I 169
10 I
11 126
12 1359



IERR = 0 STEM & LEAF

INPUT CUTOFF VALUE
>.04

OUT FOR 8

POINT CHECKING (TYPE 0 TO STOP)

:: 10

STEM & LEAF FOR 10

STEM—AND--LEAF DISPLAY, N = 23

UNIT = 0,1000D--02 )

3 0 1057
3 11
6 2 1019
8 3 189

11 4 I 456
3 5 1666

11 13

3 HI I 0.5431 0.5480 0.5530

IERR = 0 STEM & LEAF

INPUT CUTOFF VALUE
:::. • 01

NEB OUT FOR 10
17
18

POINT CHECKING (TYPE 0 TO STOPS

:::. 17

STEM & LEAF FOR 17

STEM—AND—LEAF DISPLAY, N = 23

( UNIT = 0.10000—01 )



1 0 10
2 T13
5 F1455

S S I 6667777
11 0. I 8889
7 1 lOll
4 TI
4 F15

3 HI I 0.6097 0.6150 0,6203

IERR = 0 STEM & LEAF

INPUT CUTOFF VALUE
>0

NEB OUT FOR 17

POINT CHECKING (TYPE 0 TO STOP):

:> 18

STEM & LEAF FOR 18

STEM—AND—LEAF DISPLAY, N = 23

( UNIT = 0.l000r'—o2 )

2 0 109
2 11
2 21
3 3 17
6 4 1066

10 511236
2 6 148

11 7 I 0457
7 8 17
6 9 104
4 10 I
4 11 lB

3 HI I 0.4677 0.4718 0.4759

IERR = 0 STEM & LEAF

INPUT CUTOFF VALUE
. .01

EB OUT FOR 18
10

POINT CHECKING (TYPE 0 TO STOP:

:> 23



STEM—AND--LEAF DISPLAY N = 23

3 LO I 0.0 0,0056 0.0112

( UNIT = 0.1000D—01 )

4 4.19
4 51
6 T133
8 F144
7 S I 6777777
8 5. I 88999
3 6 100
1 T13

IERR = 0 STEM & LEAF

INPUT CUTOFF VALUE

NEB OUT FOR 23
21
22

POINT CHECKING (TYPE 0 TO STOP):

R; 1=0.20/1.16 16:42:39
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Appendix 5

The Sterling 1)ata (X Matrix)

10.J TI UN LABEL

AUSTRALIA 29.35 2.87 2329.68 2.07
AUSTRIA 23,32 4.41 15i07,99 3.93

3 BELGIUM 23.11 4,43 2108.47 3,02
1 BOLIVIA 41,09 1.67 0.22
S BRAZIL 42.19 0.83 728,47 4.56
6 CANADA 31.72 2.85 2982.88 2.43
1 CHILE 39.74 1.34 662.86 2.67

CHINA(TAIWAN) 44.75 0.67 289.52 6.51
COLOMBIA 46.64 1.06 276.65 3.00

10 COSTA RICA 47.64 1.14 471.24 2.8
11 DENMARK 24,42 3.93 2496.53 3.99
12 ECUADOR 46,31 1.19 207,77 2.19
13 FINLAND 27.04 2.37 1681.25 4.32
14 FRANCE 25.06 4.7 2213.82 4.52
15 GERMANY F.R. 23.31 3.35 2457.12 3.44
16 GREECE 25.62 3.1 870.85 6.28
17 GUATEMALA 46.05 0.07 289.71 1.49
18 HONI'URAS 47.32 0.50 232,44 3.19
19 ICELAND 34.03 3,08 1900.1 1.12
20 INDIA 41.31 0.96 88.94 1.54
21 IRELAND 31,16 4.19 1139.95 2.99
22 ITALY 24.52 3.40 1390. 3'4
23 JAPAN 27.01 1.91 1257.20 8.21
24 KOREA 41.74 0.91 207.6325 LUXEMBOURG 21.0 3.73 2449.39 1.57
26 MALTA 32.54 2.47 601.05 8•12
2/ NORWAY 25.95 3.67 2231.03 3.62
28 NETHERLANDS 24.71 3.25 1740.7 7.66

NEW ZEALAND 32,61 3.17 1487.52 1.76
30 NICARAGUA 45.01 1.21 325.54 2.48
$1 PANAMA 43.56 1.2 560.56 3.61

PARAGUAY 41.10 1.05 220.56 1,03
PERU 44.19 1,28 400.06 0.67

34 PHILL1P1NES 46.26 1.12 152.01 2.
35 PORTUGAL 20.96 2.85 579.51 7.48

SOUTH AFRICA 31.94 2.28 P651.11 2.19
SOUTH RHOLIEgIA 31,92 1.52 250.96 2.
SPAIN 27.74 2.87 760.79
SWEDEN 21.44 4,54 3299.49 3,01
SWITZERLAND 23.49 3,73 2630.96 2.7

41 TURKEY 43.42 1.08 309,66 2.96
TUNISIA 46.12 1.21 249.07 1.13

43 UNITED KINGDOM 23.27 4.46 1813.93 2.01
UNITEr' STATES 29.01 3.43 4001.09 2,45
VENEZUELA 46,4 0.9 813.39 0.53

4/., ZAMBIA 45.2 0.56 138.33 5.14
JAMAICA 41.12 1,73 3110,47 10.23
URIJuLJAY 20.13 2.72 766.51 1.09
LIBY(, 43.69 2.07 123. 16,71

.0 MALAYSIA 47.2 0,66 242.6 5.011
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