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Abstract

A brief discussion of recent methods using the Hat Matrix for
identifying leverage points, and clustering techniques for finding
groups of data points is presented. The problem of identifying leverage
groups is addressed, and a heuristic algorithm for identifying both leverage
points and leverage groups is proposed. Semi-portable FORTRAN code
implementing the algorithm, a sample terminal session, and a discussion of

the terminal session are included.
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Introduction

Of primary concern in regression (least squares), y = XB + ¢, is
that the X matrix be non-singular and well-conditioned. A secondary
concern, sometimes neglected, is the distribution of data (sample)
points (rows of X) over the space spanned by the colums of non-singular
¥X. Although it is desirable, and frequently assumed to be true that the
data is normally distributed (in each colum), this often is not the
case. Two issues then arise, the presence of leverage points, and
the presence of clusters (groups) of points.

Conceptually, a leverage point is far away (in some sense) from other
points and their centroid; it is an outlier in X. If p (for X, n by p)
is larger than, say, 3 it is hard to spot leverage points by eye or scatter
plot because the hyper-parallelopiped representing the observation
space has oP vertices. Furthermbre, leverage is a relative property involving
n(n-1)/2 interpoint relationships. What is needed is a metric under which
each data point can be assigned a number indicating its leverage.

Hoaglin and Welsch [5] present the use of the so called "Hat Matrix",

H, to examine the distribution of data points. In particular, they use the
diagonal elements, hi’ of H as indicators of leverage, as is motivated
by the derivation of H: Letting XL stand for the transpose of X, (XTX)—l

stand for the matrix inverse of XTX, B stand for the computed approximation

to B, and y stand for the fit realized at the least squares solution

A

XB  we have

A

T _ A A -
X'XB = XTy, B = (XTX) lXTy, B =y-= X(XTX) lXTy.



A

If we set H = X(XTX)—lXT we have y = Hy ;3 H '"puts the hat" on vy.

The leverage of the ith

row of X, Xi’ is seen in the influence of y; on
the fit ;iathrough hi' Since ‘H is a symmetric, idempotent matrix (a
projection matrix), the h; lie between 0 and 1. In their recent paper,
Welsch and Kuh [8] develop the use of the hi énd related regression
statistics. They define a cutoff level of 2p/n (for n > 2p) above which
an hi is considered significant and row 1 1is called a leverage point.*
Andrews and Pregibon [1] have developed another technique in which points
with large hi's are considered leverage points, and minors of XX
are computed in order to identify groups of leverage points (leverage groups).
The problem of identifying clusters, or groups, has been approached
in many ways. As in the leverage point problem, nonhierarchical cluster
analysis** is multidimensional in nature, and seeks to reduce O(n2)
interpoint relationships to n vrelationships, where each point is assigned
to a cluster on the basis of some specified criterion, often involving Euclidean
distance. Kendall and Stuart [u4] give a heuristic procedure using ranking
which is moderately successful in partitioning data into groups. Gnanadesikan
[3]1, in his chapter, "Multidimensional Classification and Clustering," and
Oliver [6] in his software documentation on Cluster Analysis routines
describe a number of different clustering criteria and clustering procedures,
but the complexity of the problem constrains the algorithm to be molded by

its context. Since we are interested only in leverage groups, we will want

to use criteria peculiar to assessing leverage.

®
See Appendices 1 and 2.

%%
See Gnanadesikan [3].



A Problem

As discussed by Welsch and Kuh [8], the hi effectively reveal individual
leverage points, but may not reveal those leverage points that geometrically
form a group (are in close geometric proximity to one another). Proximity
to other data reduces the individual 1leverage, hence the hi’ of any given
point.

A simple example makes this clear. Consider X which
consists of a cloud of 20 points centered at the origin, uniformly randomly
distributed wifhin a 5-space hypercube of side length 4, plus a point

at (10, 10, 10, 10, 10). The latter point has h of about .951,

21
close to the maximum value of 1. When a 22"d point is added nearby, at

(10.1, 10.1, 10.1, 10.1, 10.1) we find that h21 and h22

492, A 2374 point at (10.2, 10.2, 10.2, 10.2, 10.2) yields h

are about .483 and
21> Doy,
and h23 of .321, 328, and .334. These hi contrast to others corresponding

to points within the cloud, which are as high as .3u40, .425, .469, and 482.

Sequential row deletion is unreliable because it is hard to
determine what constitutes a group, and a group could collectively have
high leverage, while the hi of its members might be moderate. The
Sequential procedure proposed by Andrews and Pregibon [1] can also
encounter difficulties for the same reasons. Welsch and Kuh [8] mention
the possibility of identifying groups through the correlation matrix of
the residuals, but as they note, this requires the computation of the
n(n-1)/2 elements, hij’ which requires either considerably
more storage or an O(nzpz)-operations algorithm, If groups can be identified,
we might prefer to replace row deletion with the substitution of a group by
the mean (or some other summary measure) of its members, This way,

crucial or expensive data is not lost, and the hi convey more information.

Welsch and Kuh [8] discuss other possible remedies.
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. The above comprises the motivation for a heuristic algorithm which
can be used to help identify leverage points and leverage groups. The
"Data Point Algorithm" (DPA) is O(nzp) operations, and requires little
extra storage beyond that of the X matrix, and thus is comparable

in cost to obtaining the hi's, and less expensive than obtaining the

h..'s or R(]jd'

i3 ;5 's proposed by Andrews and Pregibon [1]:

Data Point Algorithm

1. Given X, n by p with all constant colums deleted.

2. Center the data; X « X - )_(, where the rows of )_( are identically
the column means of X. (The origin is now the centroid).

3. Normalize each column by dividing by its 2 norm* times 2(pl/2)
(The main diagonal of the observation space hypercube is now of length 1).

‘ 4. Compute and store the 2.2 norm** of each point (row).

5. Compute for each point the "normal" distance tc all other points,
that is, distance parallel to its normal vector, (see Figure la). Tallythose points
further out in the normal direction (those with negative parallel distances).
Sum the (scaled) inverses of these distances for each point, to obtain a
measure of local density.

6.. Single out those points with outdistance (further out) tallies of 0,

particularly those that have large - &, norms (relative to the others,

2
and to the maximum, 0.5). We call these points "outdistamcers" (see

Figure 1b). ’
'
Given vector x = (x5 X, +.- %)T, the g4 norm of %, |[x||, = max |x;]|
’ 1<isn
‘ Given vector x = (xy5 Xp5 --+»% )", the &, norm of x, | |x] |2 =4, ¥
T 1/2



7. Each outdistancer is a leverage point, or the point furthest out
in a leverage group. A relatively low "density" value means a
point is isolated, a high value indicates the proximity (in the
normal direction) of other points.

8. Get a sorted listing (possibly via Tukey [7], and Hoaglin and Wasserman's
"Stem-and-Leaf" display) of all points and their normal distance to each
outdistancer. Establish a cutoff level for normal distances, below

which points form a leverage group "headed" by the outdistancer (see Figure lc).

A listing of a semi-portable interactive driver, DPA FORTRAN, and
the initialization routine,MATRIX FORTRAN, which implement the DPA
algorithm can be found in Appendix 3.

By centering and normalizing the data, norms and distances can be
compared. The further out a given point is from the origin (the centroid)
and the fewer points are further out - the more leverage it exerts. The
point furthest out in any normal direction exerts the most leverage in
that direction. Any such point may be isolated, part of a tight group,
or anywhere on the continuum in-between. Again, we emphasize that the
group~inclusion function imposes a discrete, binary set of relationships
on a complex, continwus configuration, so there always is some arbitrariness
and simplification. For our purposes, we would seem to reduce complexity
by measuring distances only in the normal directions (perpendicular distances
are not used), but we increase complexity because normal distances are non-
symmetric, led2++ d2 Rdl?unlike Fuclidean distances. Thus leverage groups
are "headed" by outdistancing leverage points. An example makes the above

discussion clearer.



An Example

We return to the example discussed above, X comprised of twenty points
in a cloud about the origin and three points around (10, 10, 10, 10, 10).
Appendix 4 contains the terminal session with DPA FORTRAN, to which the
reader should refer.*

DPA FORTRAN carries out steps 1) —5) of the Data Point Algorithm.
Examining the OUIDIS column, we see that points 8, 10, 17, 18, and 23
are outdistancers. Point 23 especially catches our eye because its norm
is listed as .5, the highest possible value. We now proceed to sequentially
examine the 5 points singled out by step 6), using the Stem-and-Leaf
display (SLD) [7]. The SILD for point 8 is done in units of 10_2, first of all
indicating that all but the three points isolated at the bottom of the display
are relatively close to point 8 (.01 is small relative to .5). Nonetheless,
the SLD does show a well defined break in distances, at about .04. DPA
identifies points 17 and 19 to be part of the indicated group. We
adopt a convenient notation for leverage groups: (norm, cutoff value,
cutoff separation, outdistancer: other points in group), so we list
the first leverage group identified as (.134, .04, .02, 8: 17, 19). The
norm indicates the extent of leverage, (low in this case). The cutoff
distance indicates the approximate minimum normal-distance radius used
to define (contain) the group, (small, in this case). The cutoff separation
indicates the extent to which the group is isolated from the other points
(also small, in this case). Lastly, the header (outdistancer) of the

group, and the group members are listed.

®
Execution was on an IBM VM370/158 computer, FORTRAN H(OPT(2)) compiler.



. Continuing with the example, DPA finds (.112, .01, .02, 10:17, 18) -
which means that two weak leverage groups overlap at point 17, (.147, -, -, 17:-)-
which has nowdl-defined cutoff value, and (.114, .01, .03, 18:10). DPA
clearly identifies the leverage group near (10, 10, 10, 10, 10) in this contrived

| example: (.500, .02, .38, 23:21, 22).
Turning to some "rezl" data, the example considered by Welsch and Kuh [8]

taken from an econometric study of life-cycle savings rates) serves as a good
case for comparison of the use of the hi’ and the Data Point Algorithm.*
The h; identify points 49, 44, 23, and 21 to be leverage points (in order
of decreasing hi) and 37, 6, 47, 14, and 39 to be "contenders". DPA FORTRAN
indicates that of 49, 44, 23, and 21, only 49 is an outdistancer; 44 is
outdistanced by 39, 23 by 28, and 21 by 2, 3, 14, 25, 34, 40 and 43. No
clear leverage groups are indicated; 18, 37, 39, and 49 are all outdistancers,

. but SLD's reveal no significant breaks in the sorted normal distances. The
design of DPA FORTRAN allows the user to identify "sSecondary" leverage groups -
those headed by a point outdistanced by only a few other points. We call
such points "k-outdistancers" where k is the number of outdistancing points.
DPA FORTRAN lists as l-outdistancers points 14, 23, 25, 43, 44, and 50.
By defining a new generalized data structure for leverage groups headed by k-out-
distancers: (norm, cutoff value, cutoff separation, k-outdistancer : (outdistancing
points), other points in group) we can conveniently display the fact that
point 25 has a norm of .311, is a l-outdistancer (outdistanced by point 39) and with
cutoff value of .05 and cutoff separation of .03 it heads a group containing
points 2, 3, 11, 14, 15, 40, and 43

(.311, .05, .03, 25:(39), 2, 3, 11, 14, 15, 40, 43).

%
' See Appendix 5.



We also have
(.320, .05, .03, 43:(39), 2, 3, 11, 14, 25, 40).
The other l-outdistancers are uninteresting.

In conclusion, DPA FORTRAN shows points 39, 49, 18, and 37 (in order
of decreasing norm) to be outdistancers, each with a roughly uniformly distributed
set of neighbors in the direction towards the origin (centroid). lcosely speaking,
points 25 and 43 head up a leverage group outdistanced only by point 39, and
containing points 2, 3, 11, 14, and 40. This set of data does not appear to

contain any remarkable features in the way of leverage points or groups.
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Appendix 1
X and Augmented X

An issue 1in the leverage point (group) problem is whether to search
for leverage points in X, or in X augmented by the right-hand side;
y: X|y. The appeal of using X|y is that it contains all input data,

and a leverage measure, such as h; (the diagonal of the

hat matrix for X|y) can be computed for each point X.|y; . The crucial
disadvantage of using X|y is that such a measure as h: can blur what are
two distinct cases: leverage points in X, and outliers in y. A leverage
point in X, Xj’ is a point that (because of its position relative to

other points in X) has considerable influence on the fit, regardless of the
value Vs An outlier in X|y is a point, leyj’ with a 2 significantly
deviant from the fit at Xj obtained by fitting with all but point Jj.

Some indication of the distinction between these two cases in evident
in the relation: hﬁ = h; + ri/SSR+, where SSR is the Sum of the Squared
Residuals. The hﬁ measure leverage in le space.’ The h; measure
leverage in X space. The ri/SSR depend upon X and y, but for
moderate hi they can provide an indication of outliers in y .

Two examples contrast the use of the h:, and the h., and ri/SSR.
First, consider the data, in (x,y) pairs: (1, .5), (2, 1), (3, 1.5), (.5, 1),
(1, 2>, (1.5, 3), and (2.49, 3.5) (see Figure 2). Point 7 is clearly an

*
outlier in X|y though not a leverage point in X. We find h7 = .609, higher
&
7

space. This contrasts to h, = .419, less than h

than any other h. by .031, so h, reveals the isolation of point 7 in X|y

g = -424, and T7/SSR = .190,
less than rg/SSR = .300, revealing that point 7 is second in leverage in X,

and second in the list of outliers in y (though h, is large enough to cause

+ .. .. .. . .
The author 1s indebted to Steve Peters for deriving this important relationship.
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us to perhaps consider P?/SSR more significant+).

As a second example, consider the data: (i, (i/2) + ei) for i =1, 2,...,7
and € is a random variable of uniform distribution in the interval (0, .1);
pPlus the points (4, 25) and (15, 7.5) (see Figure 3). Points 8 and 9 are
both outliers in X|y, but point 8 is an outlier in y, not X, and point 9
is a leverage point in X, not an outlier in y. We find h; = .999989 and
hg = .817, followed by h;f = .268, so the h} distinguish points 8 and 9
from the other points, but not from each other. However, h8 = .122,
hg = .816, rg/SSR = .878, and rg/SSR = .00l. Clearly,the h, and r:?L/SSR
distinguish the leverage point in X from the outlier in vy.

The above serves as motivation to search for leverage points (or
more generally, leverage groups) strictly in the X matrix, using the
scaled residuals to identify outliers in y. If hat matrix diagonals are
being used to identify leverage points, this approach has the added advantage
that the h;, unlike the h;, are directly computabie from the QR decomposition

of X - which can be used to solve XTX = XTB.

+See Welsch and Kuh [8] for the p0331bly more useful statistic , the studentized
residual, r: = r, /(s( ) (l—h )1/2) | where 5¢1) is the estimated error variance
for the "not i"fit.
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Appendix 2

H is most reliably computed via the QR decomposition of X [2],
which uses Householder transformations (forming orthogonal Q) to reduce
X to upper-triangular R. QR decomposition by Householder transformations, with
column pivoting, is more stable than Gram-Schmidt orthogonalization, and yeilds a more
nearly orthogonal Q than Modified Gram-Schimidt in the event of rank degeneracy.

To compute H, we have H = x (x %) 1T

-1 RTQT = QQT (Q is m by n here). The QR decomposition

, X = QR. Therefore,
H = QR(R'QTQR)
routine used need not store Q explicitly, storing instead the u's which
define the Householder transformations, I-uuT (the u's can be stored in a
lower triangular matrix). Each h; is computed by applying the Householder

transformations to a vector representing the ith

colum of In’ then setting
hi to the dot product of the vector (the first p elements) with itself.
The hij are more cheaply computed (at the price of extra storage) by forming

Q explicitly.
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Appendix 3

DFA FORTRAN

INTEGER NMyMNyNsFPyIyJyKyOUT»INyIFLUS1yIERRyIV1(300),0UTDIS(S510)
INTEGER IVZ(300),IV3(300)

DOUBLE FRECISION X(510s15)sNORMS(510)yDENSE(S510)yTEMFDFF
DOUBLE FRECISION MAXyNRM1syNRM2yDIFF»T1yT2yDISTsEFSYRV1(510)
DOURLE FRECISION DFLOAT»DSQRT»DABS

LOGICAL SORTOR
c
DATA NM/S510/9MN/15/
c
CILELIGET DATA MATRIX AND FARAMETER VALUES,
c

CALL MATRIX(NMsyMNsNsFsXsEPS»SORTORyOUTy IN)
DFF = 2,000 % DSART(DFLOAT(F))

$11ICENTER THE DATA.

o6

DO 20 I=1ysF
TEMF = 0.0D0
DO 10 J=1sN
TEMF = TEMP 4+ X(JsI)
10 CONTINUE
TEMF = TEMP / DFLOAT(N)
MAX = 0.0D0

‘ [0 15 J=1sN
X(JyI) = X(JyI) — TEMFP

IF (DARS(X(JryI)) GT. MAX) MAX = DARS(X(JsI))
15 CONTINUE

ORMALIZE THE DATA SUCH THAT THE OBSERVATION SFACE IS SCALED INTO
HYFERCUBE OF MAIN DIAGONAL LENGTH 1.

D> Z

Do 20 J=1sN
X(JeI) = (X(JrI) / MAX) / DFF
20 CONTINUE
DO 30 I=1sN
DENSE(I) = 0.000
OUTDIS(I) = O
30 CONTINUE

$$3ICOMPUTE ROW L2 NORMS.

aon

DO 50 I=1sN
TEMF = 0.,0DO
DO 40 J=1,F
TEMF = TEMP + X(IsJIKX(Ird)
40 CONTINUE
NORMS(I) = DSQRT(TEMF)
50 CONTINUE
C
Dt ¢ {COMFUTE DISTANCES SQUARED.

O 105 I=1:N
IF (I .EQ. N) GOTO 105
IFLUSL = I + 1
NRM1 = NORMS(I)
DO 100 J=IFLUS1sN
nIST = 0,0DO

DFAQO010
DFA00020
DFAQ0030
LFA00040
DFAO00S0
DFA000&60
DFAQ0070
DFA00080
LFAQ00090
DFA00100
DFAO0110
DFA00120
DFA00130
DFA00140
IFAOO1S0
DFA00160
DFA00170
DFA00180
DFA00190
DFA00200
DFAO0210
DFAQ0220
LIFA00230
IFA00240
DFAQO2ZS0
DFA00260
DFPAO0270
DFAQ0280
DFAQO290
DFA00300
DFA00310
DFAO0320
IIFA00330
DFA00340
DFA00350
DFA003460
DFAQO370
DFA00380
DFA00390
DFA00400
DFA00410
DFA00420
DFAQC0430
DFA00440
DFPAQ0ASO
DFAQC0460
DFA00470
DFA00480
DFA00490
DFA0OS00
DFAOOS10
DFA00S20
DFAQ0S30
DFA00S540
DFAOOSS0
DFAO0S60
DFA00S70



DO 70 K=1sP

DIFF = X(I+K) - X(JsK)
DIST = DIST + DIFFXDIFF
70 CONTINUE

‘ ¢ ICOMFUTE NORMAL (PARALLEL) DISTANCES.
c

75 NRM2 = NORMS(J)
Tl = (DIST + NRM1XNRM1 — NRM2XNRM2) / (2.0DOXNRM1)
T2 = (DIST + NRM2XNRM2 - NRM1XNRM1) / (2.0DOXNRM2)
DENSE(I) DENSE(I) + 1.0D0 / (EPS + DABS(T1))
DENSE(J) = DENSE(J) + 1.0D0 / (EPS + DABS(T2))

C
C:id3:TALLY OUTDISTANCING POINTS.
C

IF (T1 .LE. 0.0D0) QUTDIS(I)
IF (T2 .LE. 0.0000) QUTDIS(J)
100 CONTINUE
105 CONTINUE
WRITE(OUT»1001)
DO 110 I=1sN
WRITECOUT»1002) IsNORMS(I)sDENSEC(I)»OUTDIS(I)
110 CONTINUE

OUTDIS(I) + 1
OUTDISC(J) + 1

$$3ICHECK INDIVIDUAL FOINTS OF INTEREST.,
120 WRITE(OUT»1003)

$$3IGET FOINT INDEX.

aooo aooon

READ(IN,1004) K

IF (KX(2%N + 1 - 2%K)) 13052005150
130 WRITE(OUT»1006) N

GO TO 120

¢ $3ICOMPUTE DISTANCES.

oo

150 NRM1 = NORMS(K)
DENSE(K) = 0.0D0
RVI(K) = 0,000
DO 170 I=1sN
OUTDIS(I) = I
IF (I .EQ. K) GO TO 170
DIST = 0.0D0
DO 160 J=1,P
DIFF = X(KyJd) - X(Is»J)
DIST = DIST + DIFFXDIFF
160  CONTINUE
NRM2 = NORMS(I)
Tl = (DIST + NRM1XNRM1 — NRM2XNRM2) / (2.0DOXNRM1)
DENSE(I) = T1
RV1(I) = T1
170 CONTINUE
IF (.NOT. SORTOR) GOTO 175

$333ISORT AND PRINT NORMAL DISTANCES TO POINT K.

OO

CALL ISORT1(NsOUTDISsDENSE)
‘ WRITE(OUT»1010)
0 172 I=14N
J = 0UTDIS(I)
WRITEC(OUT»1011) I»JsDENSEC(J)
172 CONTINUE
GO TO 120

$313:D0 STEM & LEAF DISPLAY OF NORMAL DISTANCES TO POINT K.

DFA00S580
DPAOOS590
DPA00&L00
DPAO0&10
DFA004620
DFA00630
DPA00640
DPA00650
DFAQ006460
DPAO0&L70
DFA004680
DPA00L90
DFAO0O700
DPA00O710
DFA00720
IFA00730
DFA00740
DPAOO750
I'PAO0760
DPAOO770
DFA00780
DFA00790
DFA00800
DFA00810
IFA00820
DFAOOB30
DFA00840
DFA008S0
IIFA00840
DFA00870
DFAOO880

DFA00B90

DPAOOP00
DPAOO?10
DFA00920
DPAOOP30
DPAO00240
DFA00950
DFAO00%260
DFA00970
DFA00980
LFA00990
LIPA01000
[IFA01010
DFA01020
DFA01030
LFA01040
DFA01050
DFA01060
LPAO1070
DFA01080
LPAO01090
DFA01100
DFAO1110
DFAO1120
DPAO1130
DPAO1140
DFA01150
PAO1160
DPAO1170
DFAO1180
DFA01190
LFA01200
DPAO1210
DFAO1220
DFAO1230



.C

175 WRITE(OUT»1008) K

CALL SLDSFY(RV1,IV1,IV2yIV3,0UTDIS»80sNy300syIERROUT)
CALL IERRIO(IERRsOUT»16s16H STEM & LEAF

‘t ¢t {ESTABLISH CUTOFF DISTANCE.

C

c

C

WRITE(OUT»1012)
READ (IN»1013) DIST
WRITE(OUT»1009) K
DO 180 I=1/sN
IF (I

IF (DABS(DENSE(I))

+EQ.

K) GO TO 180

IF (DENSE(I)
180 CONTINUE

GO 710

200 STOP

120

1001 FORMAT(/40H

I

+LE.

+LE.

)

DIST) WRITE(OUT»1004) I

0.0D0) WRITE(OUTy»1005) I

NORMS
1002 FORMAT(I4»2DN12,3,21I8)

DENSITY

OuUTDIS

1003 FORMAT(/35H POINT CHECKING (TYPE O TO STOP):

1004 FORMAT(I4)

1005 FORMAT(IS8)
1006 FORMAT(/25H INDEX MUST BE FROM 1 TO
1007 FORMAT(I12,3D12.3)

1008 FORMAT(/18H STEM & LEAF

1009 FORMAT(/15H NEER OUT
1010 FORMAT(/20H
1011 FORMAT(2I4,D12,3)

012 FORMAT(/20H INPUT CUTOFF VALUE

13 FORMAT(F10.2)

ENI!

I

PT

FOR
FOR
DIST

v I4)

vI4)

/)

)

vI4)

/)

DFA01240
DFAO1250
DFA012460
DFA01270
DFA01280
DFA01290
DFA01300
DFAO1310
DFA01320
IIFA01330
DFA01340
DFAO01350
DFAO1360

- DPA01370

DPA01380
DPA01390
DFA01400
DPA01410
DPA01420
DPA01430
DPAO1440
DPA01450
DPAO1460
DPA01470
DPA01480
DPA01490
DPAO1S00
DFAO1510
DFAO1520
DPA01530
IIPA01540
DFA01550
DPAO1540
DPA01570



‘ SUBROUTINE MATRIX(NMsMNsNsPsXsEFPSySORTORyOUT,IN)
INTEGER NMsMNsNsF,0UT,IN
DOUBLE PRECISION X(NMsMN)sEFS
LLOGICAL SORTOR

a0
L 2
e
>®

$ {PARAMETER DECRIPTIONS
ON INPUT?$
NM IS THE DECLARED ROW DIMENSION OF X.

MN IS THE DECLARED COLUMN DIMENSION OF X.

Q
=z

OUTPUT

N IS THE NUMBER OF ROWS IN X.

F IS THE NUMBER OF COLUMNS IN X.

X IS THE DATA MATRIX (WITH NO CONSTANT COLUMNS).

EFS IS A SMALL SCALING CONSTANT USED IN COMPUTING
THE DENSITY VALUES FOR EACH POINT.

SORTOR IS A LOGICAL FLAG WHICH CONTROLS THE
FOINT-CHECKING PROCEDURE !
IF SORTOR IS .TRUE. SORTED DISTANCES ARE DISFPLAYED.
IF SORTOR IS .FALSE. STEM &% LEAF ANDI A USER-SPECIFIED
CUTOFF FOINT IS USEL.

OUT IS THE UNIT OUTPUT DREVICE.

IN IS THE UNIT INPUT DEVICE.

0000000’0000000000000000000

EFS = 1.0D-6
SORTOR = .FALSE,
ouT = 6

IN = 5

$$3IUSER SHOULD SUPPLY THE DESIRED MATRIX CALL HERE.

oo
>

CALL GETMAT(NMsMNsNsFsX)

]

RETURN
END

MATO0010
MATO00020
MATO00030
MAT00040
MATO00050
MATO0060
MAT00070
MAT00080
MAT000%90
MAT00100
MATOO0110
MAT00120
MATO0130
MAT00140
MATOO150
MATOO0140
MAT00170
MAT00180
MAT00190
MAT00200
MATO00210
MAT00220
MAT00230
MATO00240
MATO00250
MATO00260
MATO00270
MATO0280
MAT002%90
MATO00300
MATO00310
MATO00320
MAT00330
MATO00340
MATO00350
MATO00360
MATO00370
MATO0380
MAT00390
MAT00400
MATO00410
MAT00420
MATO00430
MATO00440
MAT00450
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Appendix 3 (cont.)

Other FORTRAN Routines
Used by DPA FORTRAN

ISORT1 sorts N real values in increasing

order through an integer index vector.

SLDSPY is part of a FORTRAN package implementing
Tukey's Stem-and-Leaf Display [7].
It was written by D. Hoaglin and S. Wasserman

and appears in ROSEPACK version 0.4, developed at NBER/CRC.

IERRIO is also in ROSEPACK version 0.4, It prints an integer error
return code along with a message. It can be replaced by a

WRITE statement and FORMAT statement.



Appendix 4

start

Q(ECUTION BEGINS..,.

VONOUD OGN - -

@

NORMS
0.454D-01
0.937D0-01
0.114D0400
0.9660-01
0.697D-01
0.903D0-01
0.2480-01
0.1340400
0.864D-01
0.1120400
0.924D-01
0.7970-01
0.117D400
0.9120-01
0.102D0+400
0.6720-01
0.147D400
0.114D0400
0.100I1400
0.742D-01
0.4890400
0.494D400
0.500I14+00

DENSITY
0.207D404
0.1140404
0.560D+03
0.669D+03
0.3646D+04
0.405D+04
0.154D405
0.273D0+403
0.302D+04
0.700D+403
0.113D404
0.2930404
0.418N403
0.24460404
0.838D0+03
0.5630404
0.271D0403
0.4120403
0.9040+403
0.1200404
0.303D+4+03
0.3920403
0.303D0403
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OuUTDIS

FOINT CHECKING (TYPE O TO STOP):

.
o

STEM & LEAF

-

DO Gl DU GG -

8

STEM-AND-LEAF

¢ UNIT

FOR

-, .

T

8

DISP

il

47
178

348
169

O VONOCNDLN-O

26
359

Pt bt bl b b b b bl b b b i

-3

b o
-

I

LAY

0.4893

14

OFHMNFHEFHMROONNNFORODOU R UIN - G

N

0.1000D-02 )

23

0.4934

0.4974



IERR = 0 STEM & LEAF

INPUT CUTOFF VALUE
>.04

‘B ouT FOR 8
7
19

FOINT CHECKING (TYPE O TO STOP)!

» 10

STEM & LEAF FOR 10

STEM-AND-LLEAF DISFLAYs» N = 23
( UNIT =  0,10000~02 )
3 0 I 057
3 1 I
6 2 I 019
8 3 I 89
11 4 1 456
3 5 1 666
9 6 I 3
‘ 8 7 1 1245
4 8 I
4 ? I
4 10 1
4 11 1 3
3 HI I 0.5431 0.5480 0.5530
IERR = O STEM & LEAF
INFUT CUTOFF VALUE
,.01
NEB OUT FOR 10
17
18

POINT CHECKING (TYFE O TO STOF):
> 17

STEM & LEAF FOR 17

. STEM-ANI-LEAF DISFLAYy N = 23

¢ UNIT = 0.10000-01 )



1 0 I0
2 TI3
5 F I 455
7 S I 6667777
‘ 11 0., I 8889
7 1 I 011
4 T I
4 FIS
3 HI I 0.6097 0.6150 0,6203
IERR = 0 STEM & LEAF

INFUT CUTOFF VALUE
>0

NEB OUT FOR 17
POINT CHECKING (TYPE O TO STOP):?
> 18

STEM & LEAF FOR 18

STEM-AND—-LEAF DISPLAYs N

i
[
Ol

( UNIT =  0.,10000-02 )

2 0 I 09

2 1 I

2 2 I

3 3 17

é 4 I 066

10 5 I 1236

2 6 1 48

11 7 I 0457

7 8 I 7

b 9 I 04

4 10 I

4 11 I 8

3 HI I 0.4677 0.4718 0.4759
IERR = O STEM & LEAF

INFUT CUTOFF VALUE
e 01
QEB ouT FOR 18
10
FOINT CHECKING (TYPE O TO STOP):

> 23



STEM—-AND-LEAF DISPLAY» N = 23

3 Lo I 0.0 0.0056 0.0112
( UNIT = 0.,100001-01 )
4 4, 1 9
4 S I
é T1I 33
8 F I 44
7 S 1 6777777
8 5. I 88999
3 6 1 00
1 TI 3
IERR = 0 STEM & LEAF

INPUT CUTOFF VALUE

.02
NER QUT FOR 23
21
22
POINT CHECKING (TYPE O TO STOP):

>0
R¥ T=0,20/1.16 16:42:39

>
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Appendix 5

The Sterling Data (X Matrix)

FOSITION LAREL
1 AUSTRALIA 29,35 2,87 2329,48 2.87
o AUSTRIA 23.32 ' 4,41 1507.,99 3,93
3 RELGIUM 23.8 4,43 T 2108.47 3.82
1 EOLIVIA 41,09 1.67 189.13 0,22
4 ERAZIL 42,19 0.83 728,47 4.56
& CANADA 31,72 2.85 2982,84 2,43
7 CHILE 39.74 1,34 662,86 2,67
£ CHINA(TAIWAN) 44,75 0.67 289,52 6451
¥ COLOMEIA 46.64 1,06 276465 3.08
10 COSTA RICA 47,64 1.14 471,24 2.8
11 DENMARK 24,42 3.93 2496,53 3.99
12 ECUALOR 46,31 1,19 287,77 2,19
13 FINLAND 27.84 2,37 1681.25 4,32
14 ' FRANCE 25,06 4,7 2213.92 4,52
b GERMANY F.R. 23,31 3,35 2457.12 3,44
14 GREECE 25,62 3.1 870.85 6,28
17 GUATEMALNA ) 46,05 0.87 289.71 1.48
18 HONDURAS 47,32 0.58 232,44 3.19
19 1CELAND 34,03 3.08 1900.1 1.12
20 INLIA 41,31 0.96 88.94 1.54
21 IRELAND 31.16 4,19 1139.9%5 2,99
a2 ITALY 24,52 ' 3.48 1350, 3.54
23 JAFAN 27,01 1,91 1257,20 8,21
24 KOREA 41,74 0.91 207449 S.81
25 : LUXEMEDURG 21.8 3.73 2449,39 1.57
26 MALTA L 32.54 2,47 601 .05 8.12
27 NORWAY 25,95 3.67 2231,03 2,42
el NETHERLANLDS . 24,71 3.25 1740.7 7064
29 NEW ZEALAND 32,61 3.17 ¢ 1487.,52 1.76
30 NICARAGUA 45,04 1.21 325,54 2,48
31 FANAMA 43,54 1.2 568,56 3.61
a2 FARAGUAY 41,18 1.05 220,54 1.03
33 FERU ' 44,19 1.28 400.04 0.67
34 FHILLIFINES 46,24 1.12 152,01 2.
35 FORTUGAL 28,96 2,85 579.51 7448
36 SOUTH AFRICA 31.94 2.28 651411 2,19
37 SOUTH RHODESI 31,92 1.52 250,96 2
343 SFAIN : 27.74 2.87 769,79 4,35
534 SWEREN 21,44 4,54 3299,49 3.01
aG SWITZERLANL 23,49 3,73 2630.96 2.7
41 : TURKEY 43,42 1.08 389 .64 2,96
12 TUNISIA 46,12 1.21 249,87 1.13
43 UNITED KINGIOM 23,27 4,46 1813.,93 2.01
44 UNITED STATES 29,01 3,43 4001.89 2,45
At VENEZUELN 46,4 0.9 813,39 0.53
a6 ZAMBIA ' 45,25 0.54 138,33 S5.14
A7 JAMAICA : 41,12 1.73 390,47 10.23
At URUGUAY 28.13 2,79 266 .54 1.84
a0 LIEYS 43,69 2,07 123,50 16.71

5Ho MALAYSTA 47,2 0.66 242,69 S.o0
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