FINDING LEVERAGE GROUPS*

David E. Coleman
Working Paper 195
National Bureau of Economic Research, Inc, 575 Technology Square Cambridge, Massachusetts 02139

August 1977

[^0]
Abstract

A brief discussion of recent methods using the Hat Matrix for identifying leverage points, and clustering techniques for finding groups of data points is presented. The problem of identifying leverage groups is addressed, and a heuristic algorithm for identifying both leverage points and leverage groups is proposed. Semi-portable FORTRAN code implementing the algonithm, a sample terminal session, and a discussion of the terminal session are included.

Acknowledgements

The author, especially, would like to thank Steve Peters for many helpful discussions, a useful derivation, and for running the software on a 506 by 13 matrix. Virginia Klema, Roy Welsch, Ed Kuh, and Sally Coleman also provided useful insight. Sandra Moriarty gave extensive technical assistance.

Key Words and Phrases: leverage, outliers, least squares, cluster analysis, data analysis, hat matrix, mathematical software. CR Categories 5.14 and 5.5.
Page
Introduction 1
A problem. 3
The Data Point Algorithm 5
An Example 7
Appendix 1 10
Appendix 2 13
Appendix 3 14
Appendix 4 19
Appendix 5 23
References 24
Figures
Figure 1 4
Figure 2 11
Figure 3 11

Introduction

Of primary concern in regression (least squares), $y=X \beta+\varepsilon$, is that the X matrix be non-singular and well-conditioned. A secondary concern, sometimes neglected, is the distribution of data (sample) points (rows of X) over the space spanned by the colurns of non-singular X. Although it is desirable, and frequently assumed to be true that the data is normally distributed (in each column), this often is not the case. Two issues then arise, the presence of leverage points, and the presence of clusters (groups) of points.

Conceptually, a leverage point is far away (in some sense) from other points and their centroid; it is an outlier in X. If p (for X, n by p) is larger than, say, 3 it is hard to spot leverage points by eye or scatter plot because the hyper-parallelopiped representing the observation space has 2^{P} vertices. Furthermore, leverage is a relative property involving $n(n-1) / 2$ interpoint relationships. What is needed is a metric under which each data point can be assigned a number indicating its leverage.

Hoaglin and Welsch [5] present the use of the so called "Hat Matrix", H, to examine the distribution of data points. In particular, they use the diagonal elements, h_{i}, of H as indicators of leverage, as is motivated by the derivation of H : Letting X^{T} stand for the transpose of $X,\left(X^{T} X\right)^{-1}$ stand for the matrix inverse of $X^{T} X, \hat{\beta}$ stand for the computed approximation to β, and \hat{y} stand for the fit realized at the least squares solution $X \hat{\beta}$ we have

$$
x^{T} x \beta=x^{T} y, \quad \hat{\beta}=\left(x^{T} x\right)^{-1} x^{T} y, \quad \hat{\beta}=\hat{y}=x\left(x^{T} x\right)^{-1} x^{T} y
$$

If we set $H=X\left(X^{T} X\right)^{-1} X^{T}$ we have $\hat{y}=H y ; H$ "puts the hat" on y. The leverage of the $i^{\text {th }}$ row of X, X_{i}, is seen in the influence of y_{i} on the fit \hat{y}_{i}, through h_{i}. Since H is a symmetric, idempotent matrix (a projection matrix), the h_{i} lie between 0 and 1 . In their recent paper, Welsch and Kuh [8] develop the use of the h_{i} and related regression statistics. They define a cutoff level of $2 p / n$ (for $n>2 p$) above which an h_{i} is considered significant and row i is called a leverage point.* Andrews and Pregibon [1] have developed another technique in which points with large h_{i} 's are considered leverage points, and minors of $X^{T} X$ are computed in order to identify groups of leverage points (leverage groups).

The problem of identifying clusters, or groups, has been approached in many ways. As in the leverage point problem, nonhierarchical cluster analysis** is multidimensional in nature, and seeks to reduce $0\left(n^{2}\right)$ interpoint relationships to n relationships, where each point is assigned to a cluster on the basis of some specified criterion, often involving Euclidean distance. Kendall and Stuart [4] give a heuristic procedure using renking which is moderately successful in partitioning data into groups. Gnanadesikan [3], in his chapter, "Multidimensional Classification and Clustering," and Oliver [6] in his software documentation on Cluster Analysis routines describe a number of different clustering criteria and clustering procedures, but the complexity of the problem constrains the algorithm to be molded by its context. Since we are interested only in leverage groups, we will want to use criteria peculiar to assessing leverage.

[^1]
A Problem

As discussed by Welsch and Kuh [8], the h_{i} effectively reveal individual leverage points, but may not reveal those leverage points that geometrically form a group (are in close geometric proximity to one another). Proximity to other data reduces the individual leverage, hence the h_{i}, of any given point.

A simple example makes this clear. Consider X which consists of a cloud of 20 points centered at the origin, uniformily randomly distributed within a 5 -space hypercube of side length 4, plus a point at ($10,10,10,10,10$). The latter point has h_{21} of about.951, close to the maximum value of 1 . When a $22^{\text {nd }}$ point is added nearby, at (10.1, 10.1, $10.1,10.1,10.1$) we find that h_{21} and h_{22} are about . 483 and .492. A $23^{\text {rd }}$ point at $\left(10.2,10.2,10.2,10.2,10.2\right.$) yields h_{21}, h_{22}, and h_{23} of $.321,328$, and .334 . These h_{i} contrast to others corresponding to points within the cloud, which are as high as . $340, .425, .469$, and 482.

Sequential row deletion is unreliable because it is hard to determine what constitutes a group, and a group could collectively have high leverage, while the h_{i} of its members might be moderate. The sequential procedure proposed by Andrews and Pregibon [l] can also encounter difficulties for the same reasons. Welsch and Kuh [8] mention the possibility of identifying groups through the correlation matrix of the residuals, but as they note, this requires the computation of the $n(n-1) / 2$ elements, $h_{i j}$, which requires either considerably more storage or an $O\left(n^{2} \mathrm{p}^{2}\right)$-operations algorithm, If groups can be identified, we might prefer to replace row deletion with the substitution of a group by the mean (or some other summary measure) of its members, This way, crucial or expensive data is not lost, and the h_{i} convey more information. Welsch and Kuh [8] discuss other possible remedies.

1a)

1b)

Figure 1
la) Measuring the parallel distance of point j from poirt i .
ib) Finding outdistancers.
lc) Finding leverage groups headed by outdistancers.

The above comprises the motivation for a heuristic algorithm which can be used to help identify leverage points and leverage groups. The "Data Point Algorithm" (DPA) is $O\left(n^{2} p\right.$) operations, and requires little extra storage beyond that of the X matrix, and thus is comparable in cost to obtaining the h_{i} 's, and less expensive than obtaining the $h_{i j}{ }^{\text {'s or }} \mathrm{R}_{\mathrm{ij}}^{(\mathrm{k})}$'s proposed by Andrews and Pregibon [l]:

Data Point Algorithm

1. Given X, n by p with all constant columns deleted.
2. Center the data; $X \leftarrow X-\bar{X}$, where the rows of \bar{X} are identically the column means of X. (The origin is now the centroid).
3. Normalize each column by dividing by its l_{∞} norm* times $2\left(\mathrm{p}^{1 / 2}\right)$ (The main diagonal of the observation space hypercube is now of length 1).
4. Compute and store the ℓ_{2} norm** of each point (row).
5. Compute for each point the "normal" distance to all other points, that is, distance parallel to its normal vector, (see Figure la). Tallythose points further out in the normal direction (those with negative parallel distances). Sum the (scaled) inverses of these distances for each point, to obtain a measure of local density.
6.. Single out those points with outdistance (further out) tallies of 0 , particularly those that have large l_{2} norms (relative to the others, and to the maximum, 0.5). We call these points "outdistancers" (see Figure lb).
```
\({ }^{*}\) Given vector \(x=\left(x_{1}, x_{2}, \ldots x_{n}\right)^{T}\), the \(\ell_{\infty}\) normi \(o^{f} x,\|x\|_{\infty}=\max _{l \leq i \leq n}\left|x_{i}\right|\)
*** Given vector \(x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}\), the \(\ell_{2}\) norm of \(x,\|x\|_{2}=\left(\sum_{i} \underline{\underline{E}}_{1} x_{i}^{2}\right)^{1 / 2}\)
\[
=\left(\mathrm{x}_{\mathrm{x}}^{\mathrm{T}}\right)^{1 / 2}
\]
```

7. Each outdistancer is a leverage point, or the point furthest out in a leverage group. A relatively low "density" value means a point is isolated, a high value indicates the proximity (in the normal direction) of other points.
8. Get a sorted listing (possibly via Tukey [7], and Hoaglin and Wasserman's "Stem-and-Leaf" display) of all points and their normal distance to each outdistancer. Establish a cutoff level for normal distances, below which points form a leverage group "headed" by the outdistancer (see Figure lc).

A listing of a semi-portable interactive driver, DPA FORTRAN, and the initialization routine, MATRIX FORTRAN, which implement the DPA algorithm can be found in Appendix 3.

By centering and normalizing the data, norms and distances can be compared. The further out a given point is from the origin (the centroid) and the fewer points are further out - the more leverage it exerts. The point furthest out in any normal direction exerts the most leverage in that direction. Any such point may be isolated, part of a tight group, or anywhere on the continuum in-between. Again, we emphasize that the group-inclusion function imposes a discrete, binary set of relationships on a complex, continuous configuration, so there always is some arbitrariness and simplification. For our purposes, we would seem to reduce complexity by measuring distances only in the normal directions (perpendicular distances are not used), but we increase complexity because normal distances are nonsymmetric, $\mathrm{d}_{1} \mathrm{Rd}_{2} \nrightarrow \mathrm{~d}_{2} \mathrm{Rd}_{1}$, unlike Euclidean distances. Thus leverage groups are "headed" by outdistancing leverage points. An example makes the above discussion clearer.

An Example

We return to the example discussed above, X comprised of twenty points in a cloud about the origin and three points around (10, 10, 10, 10, 10). Appendix 4 contains the terminal session with DPA FORTRAN, to which the reader should refer. *

DPA FORTRAN carries out steps 1) -5) of the Data Point Algorithm. Examining the OUTDIS colurm, we see that points $8,10,17,18$, and 23 are outdistancers. Point 23 especially catches our eye because its norm is listed as .5 , the highest possible value. We now proceed to sequentially examine the 5 points singled out by step 6), using the Stem-and-Leaf display (SLD) [7]. The SLD for point 8 is done in units of 10^{-2}, first of all indicating that all but the three points isolated at the bottom of the display are relatively close to point 8 (. 01 is small relative to .5). Nonetheless, the SLD does show a well defined break in distances, at about . 04. DPA identifies points 17 and 19 to be part of the indicated group. We adopt a convenient notation for levenage groups: (norm, cutoff value, cutoff separation, outdistancer: other points in group), so we list the first leverage group identified as (.134, .04, .02, 8: 17, 19). The norm indicates the extent of leverage, (low in this case). The cutoff distance indicates the approximate minimum normal-distance radius used to define (contain) the group, (small, in this case). The cutoff separation indicates the extent to which the group is isolated from the other points (also small, in this case). Lastly, the header (outdistancer) of the group, and the group members are listed.

[^2]Continuing with the example, DPA finds (.112, .01, .02, 10:17, 18) which means that two weak leverage groups overlap at point 17, (.147, -, -, 17:-)which has no well-defined cutoff value, and (.114, .01, .03, 18:10). DPA clearly identifies the leverage group near ($10,10,10,10,10$) in this contrived example: (.500, .02, .38, 23:21, 22).

Turning to some "reel" data, the example considered by Welsch and Kuh [8] taken from an econometric study of life-cycle savings rates) serves as a good case for comparison of the use of the h_{i}, and the Data Point Algorithm." The h_{i} identify points $49,44,23$, and 21 to be leverage points (in order of decreasing h_{i}) and $37,6,47,14$, and 39 to be "contenders". DPA FORTRAN indicates that of $49,44,23$, and 21 , only 49 is an outdistancer; 44 is outdistanced by 39,23 by 28 , and 21 by $2,3,14,25,34,40$ and 43 . No clear leverage groups are indicated; 18, 37, 39, and 49 are all outdistancers, but SLD's reveal no significant breaks in the sorted normal distances. The design of DPA FORTRAN allows the user to identify "secondary" leverage groups those headed by a point outdistanced by only a few other points. We call such points " k-outdistancers" where k is the number of outdistancing points. DPA FORTRAN lists as l-outdistancers points $14,23,25,43,44$, and 50. By defining a new generalized data structure for leverage groups headed by k-outdistancers: (norm, cutoff value, cutoff separation, k-outdistancer : (outdistancing points), other points in group) we can conveniently display the fact that point 25 has a norm of . 311 , is a l-outdistancer (outdistanced by point 39) and with cutoff value of .05 and cutoff separation of .03 it heads a group containing points $2,3,11,14,15,40$, and 43:
(.311, .05, .03, 25:(39), 2, 3, 11, 14, 15, 40, 43).

[^3]We also have
(.320, .05, .03, 43:(39), 2, 3, 11, 14, 25, 40).

The other l-outdistancers are uninteresting,
In conclusion, DPA FORTRAN shows points 39, 49, 18, and 37 (in onder of decreasing norm) to be outdistancers, each with a roughly uniformly distributed set of neighbors in the direction towards the origin (centroid). Loosely speaking, points 25 and 43 head up a leverage group outdistanced only by point 39 , and containing points $2,3,11,14$, and 40 . This set of data does not appear to contain any remarkable features in the way of leverage points or groups.

Appendix 1

X and Aumented X

An issue in the leverage point (group) problem is whether to search for leverage points in X, or in X augmented by the right-hand side; y : $x \mid y$. The appeal of using $x \mid y$ is that it contains all input data, and a leverage measure, such as h_{i}^{*} (the diagonal of the hat matrix for $x \mid y$) can be computed for each point $x_{i} \mid y_{i}$. The crucial disadvantage of using $X \mid Y$ is that such a measure as h_{i}^{*} can blur what are two distinct cases: leverage points in X, and outliers in y. A leverage point in X, X_{j}, is a point that (because of its position relative to other points in X) has considerable influence on the fit, regardless of the value y_{j}. An outlier in $x \mid y$ is a point, $x_{j} \mid y_{j}$, with a y_{j} significantly deviant from the fit at X_{j} obtained by fitting with all but point j.

Some indication of the distinction between these two cases in evident in the relation: $h_{i}^{*}=h_{i}+r_{i}^{2} /$ SSR $^{+}$, where SSR is the Sum of the Squared Residuals. The h_{i}^{*} measure leverage in $x \mid y$ space. The h_{i} measure leverage in X space. The $r_{i}^{2} / S S R$ depend upon X and y, but for moderate h_{i} they can provide an indication of outliers in y.

Two examples contrast the use of the h_{i}^{*}, and the h_{i} and $r_{i}^{2} /$ SSR. First, consider the data, in (x, y) pairs: ($1, .5$), (2,1), ($3,1.5$), (.5, 1), (1,2) , ($1.5,3$), and $(2.49,3.5$) (see Figure 2). Point 7 is clearly an outlier in $X \mid y$ though not a leverage point in X. We find $h_{7}^{*}=.609$, higher than any other h_{i} by .031, so h_{7}^{*} reveals the isolation of point 7 in x / y space. This contrasts to $h_{7}=.419$, less than $h_{3}=.424$, and $r_{7}^{2} / \operatorname{SSR}=.190$, less than $r_{6}^{2} / S S R=.300$, revealing that point 7 is second in leverage in X, and second in the list of outliers in y (though h_{7} is large enough to cause

[^4]

Figure 2

Figune 3
us to perhaps consider $r_{7}^{2} /$ SSR more significant $^{+}$).
As a second example, consider the data: ($i,(i / 2)+\varepsilon_{i}$) for $i=1,2, \ldots, 7$ and ε_{i} is a random variable of uniform distribution in the interval ($0, .1$); plus the points (4, 25) and (15, 7.5) (see Figure 3). Points 8 and 9 are both outliers in $x \mid y$, but point 8 is an outlier in y, not x, and point 9 is a leverage point in X, not an outlier in y. We find $h_{8}^{*}=.999989$ and $h_{9}^{*}=.817$, followed by $h_{l}^{*}=.268$, so the h_{i}^{*} distinguish points 8 and 9 from the other points, but not from each other. However, $\mathrm{h}_{8}=.122$, $h_{9}=.816, r_{8}^{2} / S S R=.878$, and $r_{9}^{2} / S S R=.001$. Clearly, the h_{i} and $r_{i}^{2} / S S R$ distinguish the leverage point in X from the outlier in y.

The above serves as motivation to search for leverage points (or more generally, leverage groups) strictly in the X matrix, using the scaled residuals to identify outliers in y. If hat matrix diagonals are being used to identify leverage points, this appnoach has the added advantage that the h_{i}, unlike the h_{i}^{*}, are directly computable from the $Q R$ decomposition of X - which can be used to solve $X^{T} X=X^{T} \beta$.

FSee Welsch and Kuh [8] for the possibly more useful statistic, the studentized residual, $r_{i}^{*}=r_{i} /\left(s_{(i)}\left(1-h_{i}\right) l / 2\right)$, where $s_{(i)}$ is the estimated error variance

Appendix 2

H is most reliably computed via the QR decomposition of X [2], which uses Householder transformations (forming orthogonal Q) to reduce X to upper-triangular R. QR decomposition by Householder transformations, with column pivoting, is more stable than Gram-Schmidt orthogonalization, and yeilds a more nearly orthogonal Q than Modified Gram-Schimidt in the event of rank degeneracy.

To compute H, we have $H=X\left(X^{T} X\right)^{-1} X^{T}, X=Q R$. Therefore, $H=Q R\left(R^{T} Q^{T} Q R\right)^{-1} R^{T} Q^{T}=Q Q^{T}$ (Q is m by n here). The $Q R$ decomposition routine used need not store Q explicitly, storing instead the u 's which define the Householder transformations, I-uu ${ }^{T}$ (the u 's can be stored in a lower triangular matrix). Each h_{i} is computed by applying the Householder transformations to a vector representing the $i^{\text {th }}$ column of I_{n}, then setting h_{i} to the dot product of the vector (the first p elements) with itself. The $h_{i j}$ are more cheaply computed (at the price of extra storage) by forming Q explicitly.

DF'A FORTRAN

```
    INTEGER NM,MN,N,F,I,JyK,OUT,IN,IFLUS1,IERR,IU1(300),OUTDIS(510)
    INTEGEF IV2(300),IU3(300)
    IOUBLE FRECISION X(510,15),NORMS(510), DENSE(510),TEMP,DFF
    IOUBLE FRECISION MAX,NFM1,NRM2,DIFF,T1,T2,DIST,EFS,RU1(510)
    IOUBLE FRECISION DFLOAT,DISQRT,DABS
    LOGICAL SORTOR
C
    IIATA NM/510/gMN/15/
C
C:::::GET IIATA MATFIX ANL FARAMETER UALUES.
C
    CALL MATFIX(NM,MNyN,F;X,EPS,SORTOR,OUT,IN)
    LFF =: 2.OLO * DSQFT(LIFLOAT(F))
C
C::::!CENTEF THE INATA.
C
    LO 20 I=1,F
        TEMF = 0.OIIO
        10 10 J=1,N
                TEMF = TEMF + X(JyI)
    10 CONTINUE
        TEMF = TEMF / IFLOAT(N)
        MAX = 0.0пO
        IO 15 J=1,N
                            X(J,I) = X(J,I) - TEMF
                            IF (DAES(X(J,I)) ,GT. MAX) MAX = IIAES(X(J,I))
        15 CONTINUE
C
C::::{NORMALIZE THE DATA SUCH THAT THE OBSERUATION SFACE IS SCALED INTO
    C:::::A HYFERCUBE OF MAIN IIIAGONAL LENGTH 1.
    C
        10 20 J=1gN
                            X(J,I)=(X(J,I)/MAX)/ IFF
    20 CONTINUE
        LO 30 I=1,N
        DENSE(I) = 0.OLO
        OUTIIS(I) = 0
    30 CONTINUE
C
C:::::COMFUTE ROW L2 NORMS.
C
    LO 50 I=1,N
        TEMF = 0.ODO
        IO 40 J=1,F
            TEMF = TEMF + X(I,J)*X(I,J)
        40 CONTINUE
        NOFMS(I) = IISQRT(TEMF)
        50 CONTINUE
C
            1: : COMFUTE IISTANCES SQUAREN.
        LIO 10S I=1,N
        IF (I EQ. N) GOTO 105
        IPLUSI = I + 1
        NFMM1 = NORMS(I)
        IO 100 J=IFLUSSI,N
            IIST = 0.0DO
                IF'AO
```

```
                NO }70\textrm{K}=1,P\mathrm{ INPA00580
                        DIFF = X(I,K) -X(J,K) ILFA00590
                        DIST = DIST + DIFF*DIFF
                            CONTINUE
    ::::COMFUTE NORMAL (PARALLEL) IISTANCES.
    75 NRM2 = NORMS(J)
        T1 = (DIST + NRM1*NRM1 - NRM2*NRM2) / (2.ODO*NRM1)
        T2 = (DIST + NRM2*NRM2 - NRM1*NRM1) / (2.ODO*NRM2)
        DENSE(I) = DENSE(I) + 1.0DO / (EPS + DABS(T1))
        DENSE(J) = DENSE(J) + 1.0DO / (EFS + IABS(T2))
C
    C:::::TALLY OUTDISTANCING POINTS.
    C
                IF (T1 LEE. O.ODO) OUTHIS(I) = OUTDIS(I) + 1
                IF (T2 .LE. 0.OLIO) OUTDIS(J) = OUTDIS(J) + 1
    100 CONTINUE
    105 CONTINUE
        WFITE(OUT,1001)
        LO 110 I=1,N
            WFITE(OUT,1002) I,NORMS(I),DENSE(I),OUTDIS(I)
    110 CONTINUE
C
C:::::CHECK INIIUIIUAL FOINTS OF INTEREST.
C
    120 WFITE(OUT,1003)
C
C:::::GET FOINT INDEX.
C
    FEAD(IN,1004) K
    IF (K゙*(2*N + 1 - 2*K゙)) 130,200,150
    130 WFITE(OUT,1006) N
    GO TO 120
C
C:::: :COMPUTE IIISTANCES.
C
    150 NRM1 = NORMS(K)
    DENSE(K゙) = 0.OLO
    FV1(K) = 0.OLIO
    IO 170 I=1,N
            OUTDIS(I) = I
            IF (I .EQ. K) GO TO 170
            DIST = O.OHO
            DO 160 J=1,F
                LIFF = X(K,J) - X(I,J)
                IIST = IIST + IIFF*LIFF
    160 CONTINUE
            NFM2 = NORMS(I)
            T1 = (IIST + NFM1*NRM1 - NRM2*NRM2) / (2.ONO*NRM1)
            LIENSE(I) = T1
            RV1(I) = T1
    170 CONTINUE
        IF (.NOT. SORTOR) GOTO 175
C
C:::::SORT ANI FRINT NORMAL IIISTANCES TO FOINT K.
C
    CALL ISORT1(N,OUTDIS,DENSE)
    WRITE(OUT,1010)
    LO 172 I=1,N
        J= OUTDIS(I)
        WFITE(OUT,1011) I,J,LIENSE(J)
    172 CONTINUE
    GO TO 120
C
C:::::DO STEM & LEAF IISPLAY OF NORMAL IISTANCES TO POINT K.
LIPA
.C
    175 WRITE(OUT, 1008) K
    CALL SLDSPY(RU1,IU1,IU2,IU3, OUTDIS, 80,N, 300,IERR,OUT)
    CALL IERRIO(IERF,OUT,16,16H STEM \& LEAF )
    \(\ddagger:: \ddagger\) ESTABLISH CUTOFF IIISTANCE .
        WFITE (OUTy 1012)
        REAI (IN,1013) IIST
        WRITE (OUT, 1009) K
        DO \(180 \mathrm{I}=1 \mathrm{~g} \mathrm{~N}\)
            IF (I .EQ. K) GO TO 180
            IF ([IABS (NENSE(I)) .LE. DIST) WRITE (OUT,1004) I
            IF (DENSE (I) .LE . O.ODIO) WRITE (OUT,1005) I
        180 CONTINUE:
            GO TO 120
C
    200 STOP
C
    1001 FORMAT(/4OH I NORMS DENSITY OUTIIS )
    1002 FORMAT (I4,2M12.3,2I8)
    1003 FOFMAT (/35H POINT CHECKING (TYPE 0 TO STOP): /)
    1004 FORMAT (I4)
    1005 FOFMMAT (I8)
    1006 FORMAT (/25H INDEX MUST BE FROM 1 TO , I4)
    1007 FORMAT (I12,3[112.3)
    1008 FORMAT (/18H STEM \& LEAF FOR y I4)
    1009 FORMAT (/15H NEB OUT FOR ,I4)
    1010 FORMAT (/2OH I PT DIST /)
    1011 FOFMAT (2I4, 112.3)
012 FORMAT ( \(/ 20 H\) INPUT CUTOFF VALUE )
1013 FORMAT (F10.2)
C
                        )
    ENLI
DPA01240
        DPAO1240
        DPA01250
                            DPAO1260
DPAO1270
DPAO1280
[IPAO1290
IIPAO1300
LIPA01310
LIPAO1320
IIPAO1330
LIPAO1340
DPAO1350
IPAO1360
LPAO1370
LIPAO1380
IPAO1390
DF'A01400
IIPAO1410
IPPA01420
IIPAO1430
DPA01440
IPAO1450
IIPAO1460
LIPAO1470
DPAO1480
IPAO1490
DPA01500
IPAO1510
IIFAO1520
IIPAO1530
IPAO1540
LF'AO1550
DPA01560
DPA01570
```

 SUBROUTINE MATRIX(NM,MN,N,P,X,EFS,SORTOR,OUT,IN)
 INTEGER NM,MN,N,F,OUT,IN
 IOOUBLE PRECISION X(NM,MN),EFS
 LOGICAL SORTOF
 C
C:::::PARAMETER IIECRIPTION:
C
C ON INPUT:
c
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
EFSS = 1.001-6
SORTOR = .FALSE.
OUT = 6
IN = 5
C
C:::::USER SHOULD SUPFLY THE IESIREI MATRIX CALL HERE.
C
CALL GETMAT(NM,MN,N,F,X)
C
RETURN
ENI
NM IS THE DECLAREN ROW DIMENSION OF X.
MN IS THE IECLAREI COLUMN DIMENSION OF }X\mathrm{ .
ON OUTPUT:
N IS THE NUMBER OF ROWS IN X.
F IS THE NUMEER OF COLUMNS IN X.
X IS THE IAATA MATRIX (WITH NO CONSTANT COLUMNS).
EFS IS A SMALL SCALING CONSTANT USEI IN COMPUTING
THE IENSITY UALUES FOR EACH POINT.
SORTOR IS A LOGICAL FLAG WHICH CONTROLS THE
FOINT-CHECKING FROCEDUURE:
IF SORTOR IS .TRUE, SORTEI IISTANCES ARE IISFLAYEII.
IF SORTOR IS .FALSE, STEM \& LEAF AND A USER-SPECIFIEII
CUTOFF FOINT IS USEII.
OUT IS THE UNIT OUTFUT LEUICE.
IN IS THE UNIT INFUT DEUICE.
N IS THE NUMEER OF ROWS IN X.
F IS THE NUMBER OF COLUMNS IN X.
X IS THE DATA MATRIX (WITH NO CONSTANT COLUMNS).
EfS IS A SMALL SCALING CONSTANT USEII IN COMPUTING THE IIENSITY UALUES FOR EACH POINT.
SORTOR IS A LOGICAL FLAG WHICH CONTROLS THE FOINT-CHECKING FROCEDURE:
IF SORTOR IS .TRUE, SORTEI IISTANCES ARE IISFLAYEI. IF SORTOR IS .FALSE. STEM \& LEAF AND A USER-SPECIFIEII CUTOFF FOINT IS USEI.
OUT IS THE UNIT OUTFUT LEUICE.
IN IS THE UNIT INFUT DEUICE.
N $=5$

```

\section*{CALL GETMAT(NM,MN,N,F,X)}
```

C
RETURN
ENI

```
    MAT00010
MAT00020
MAT00030
MATOOO4O
MATOOOSO
MAT00060

MATOOO7O
MAT0008O
MAT00090
MAT00100
MAT00110
MAT00120
MAT00130
MAT00140
MATOO150
MAT00160
MATOO170
MAT00180
MAT00190
MAT00200
MAT00210
MAT00220
MATOO230
MAT00240
MATOO250
MAT00260
MATOO270
MATOO28O
MAT00290
MATOOSOO
MAT00310
MATOO320
MATOO330
MAT00340
MAT00350
MAT00360
MATOO370
MATO0380
MAT00390
MATOO400
MAT00410
MAT00420
MATOO430
MATOO440
MAT00450

\section*{Appendix 3 (cont.)}

Other FORTRAN Routines
Used by DPA FORTRAN

ISORTI sorts N real values in increasing onder through an integer index vector.

SLDSPY is part of a FORTRAN package implementing Tukey's Stem-and-Leaf Display [7].

It was written by D. Hoaglin and S. Wasserman and appears in ROSEPACK version 0.4 , developed at NBER/CRC.

IERRIO is also in ROSEPACK version 0.4. It prints an integer error return code along with a message. It can be replaced by a WRITE statement and FORMAT statement.
-XECUTION BEGINS...
\begin{tabular}{|c|c|c|c|}
\hline I & NOFMS & DENSITY & Qutnis \\
\hline 1 & 0.4541-01 & \(0.207 \mathrm{D}+04\) & 14 \\
\hline 2 & 0.937[1-01 & \(0.1141+04\) & 3 \\
\hline 3 & \(0.114 \mathrm{~L}+00\) & \(0.5601+03\) & 1 \\
\hline 4 & 0.96611-01 & \(0.669 \mathrm{D}+03\) & 2 \\
\hline 5 & 0.6971-01 & \(0.36611+04\) & 5 \\
\hline 6 & 0.903I-01 & \(0.4051+04\) & 1 \\
\hline 7 & 0.24811-01 & \(0.1541+05\) & 5 \\
\hline 8 & \(0.13411+00\) & \(0.2731+03\) & 0 \\
\hline 9 & \(0.86411 \cdots 01\) & \(0.302 n+04\) & 4 \\
\hline 10 & \(0.1121+00\) & \(0.700 \mathrm{n}+03\) & 0 \\
\hline 11 & 0.924D-01 & \(0.11311+04\) & 2 \\
\hline 12 & 0.7971-01 & \(0.2931+04\) & 8 \\
\hline 13 & \(0.117 \mathrm{~L}+00\) & \(0.4181+03\) & 1 \\
\hline 14 & 0.912口-01 & \(0.2461+04\) & 2 \\
\hline 15 & \(0.102 \mathrm{~L}+00\) & \(0.8381+03\) & 2 \\
\hline 16 & \(0.672 \mathrm{LI}-01\) & \(0.56311+04\) & 7 \\
\hline 17 & \(0.1471+00\) & \(0.2711+03\) & 0 \\
\hline 18 & \(0.11411+00\) & \(0.412 \mathrm{~L}+03\) & 0 \\
\hline 19 & \(0.1001+00\) & \(0.90411+03\) & 1 \\
\hline 20 & \(0.7421-01\) & \(0.12011+04\) & 1 \\
\hline 21 & \(0.489 \mathrm{~L}+00\) & \(0.30311+03\) & 2 \\
\hline 22 & \(0.494 \mathrm{D}+00\) & \(0.392 n+03\) & 1 \\
\hline 83 & \(0.500 \mathrm{~L}+00\) & \(0.3031+03\) & 0 \\
\hline
\end{tabular}

FOINT CHECKING (TYPE O TO STOP):
\(>\quad 8\)

STEM \& LEAF FOK 8

1
1
2
3
3
5
8
9
3
11
8
8
6
\begin{tabular}{lll}
0 & \(I\) & 0 \\
1 & \(I\) & \\
2 & \(I\) & 7 \\
3 & \(I\) & 5 \\
4 & \(I\) & \\
5 & \(I\) & 47 \\
6 & \(I\) & 178 \\
7 & \(I\) & 3 \\
8 & \(I\) & 348 \\
9 & \(I\) & 169 \\
10 & \(I\) & \\
11 & \(I\) & 26 \\
12 & \(I\) & 359
\end{tabular}
IERR = O STEM ..... LEAF
infut cutoff value
\(>.04\)
OUT FOR ..... 198
FOINT CHECKING (TYPE O TO STOP):
\(\geqslant\) ..... 10
STEM LEAF FOR ..... 10
STEM-ANLI-LEAF IIISFLAY, \(N=\) ..... 23
( UNIT = 0.1000I-02 )
3 ..... \(0 \quad 1057\) ..... 6
8 ..... 11
3 ..... 9
8
4
4
4
4 ..... 1 I
21019
\(3 \quad 189\)
41456
5 I 666 ..... 6 I 3
7 I 1245
8 I
9 I
10 I ..... 11 I 3
3 HI I 0.5431 0.5480 ..... 0.5530
IERF = 0 STEM LEAF
INFUT CUTOFF ..... value
>. 01
NEB OUT FOR ..... 10
17
18
POINT CHECKING (TYFE 0 TO STOF):
\(>\) ..... 17
STEM \& LEAF ..... FOR ..... 17
STEM-ANI-LEAF IIISFLAY, \(N=\) ..... 23
0 I 0
    T I 3
    F I 455
    S I 6667777
    0. I 8889
    1 I 011
    T I
    FI 5
3
0.6150
0.6203
IERR \(=0\) STEM \& LEAF
INPUT CUTOFF UALUE

\(>0\)
NEB OUT FOR ..... 17
POINT CHECKING (TYPE O TO STOF):
\(>\) ..... 18
STEM \& LEAF FOR ..... 18
STEM-AND-LEAF IIISPLAY, \(N=\) ..... 23
( UNIT \(=0.1000 \mathrm{I}-02\) )
\begin{tabular}{rrll}
2 & 0 & \(I\) & 09 \\
2 & 1 & \(I\) & \\
2 & 2 & \(I\) & \\
3 & 3 & \(I\) & 7 \\
6 & 4 & \(I\) & 066 \\
10 & 5 & \(I\) & 1236 \\
2 & 6 & \(I\) & 48 \\
11 & 7 & \(I\) & 0457 \\
7 & 8 & \(I\) & 7 \\
6 & 9 & \(I\) & 04 \\
4 & 11 & \(I\) & \\
4 & & 1 & 8
\end{tabular}
\begin{tabular}{llllll}
3 & \(H I\) & 0.4677 & 0.4718 & 0.4759
\end{tabular}
IERF \(=0\) STEM \& LEAF
INPUT CUTOFF UALUE
8.01
NEE OUT FOR ..... 18
10
FOINT CHECKING (TYPE O TO STOF):
\(>\) ..... 23
```

STEM-AND-LEAF IISPLAY, N = 23

```

3
LO I
0.0
0.0056
0.0112
( UNIT \(=0.1000 \mathrm{I}-01\) )
\begin{tabular}{|c|c|c|}
\hline 4 & 4. I & 9 \\
\hline 4 & 51 & \\
\hline 6 & T I & 33 \\
\hline 8 & F I & 44 \\
\hline 7 & \(S\) I & 6777777 \\
\hline 8 & 5. I & 88999 \\
\hline 3 & 61 & 00 \\
\hline 1 & T I & 3 \\
\hline
\end{tabular}
IERF \(=0\) STEM \& LEAF
INPUT CUTOFF UALUE
\(>.02\)
NEB OUT FOR ..... 23
2122
POINT CHECKING (TYPE O TO STOP):R; \(T=0.20 / 1.16\) 16:42:39

Appendix 5

The Sterling Data (X Matrix)
\begin{tabular}{|c|c|c|c|c|c|}
\hline rioistion & latel & & & & \\
\hline 1 & austialia & 29.35 & 2.87 & 2329.68 & 2.87 \\
\hline \(\because\) & aUsteina & 23.32 & 4.41 & 1507.98 & 3.93 \\
\hline 3 & melgium & 23.8 & 4.43 & 2108.47 & 3.82 \\
\hline 4 & gOLIUIA & 41.09 & 1.67 & 189.13 & 0.22 \\
\hline : & ERAAZIL & 42.19 & 0.83 & 728.47 & 4.55 \\
\hline 6 & Canalia & 31.72 & 2.85 & 2982.88 & 2.43 \\
\hline 7 & CHILEE & 39.74 & 1.34 & 662.86 & 2.67 \\
\hline \% & CHINA(TAIWAN) & 44.75 & 0.67 & 289.52 & 6.51 \\
\hline \% & colorimia & 46.64 & 1.06 & 276.65 & 3.08 \\
\hline 10 & costa risca & 47.64 & 1.14 & 471.24 & 2.8 \\
\hline 11 & LIENMAKK & 24.42 & 3.93 & 2496.53 & 3.99 \\
\hline 12 & ECUALIOK & 46.31 & 1.19 & 287.77 & 2.19 \\
\hline 13 & FINLANII & 27.84 & 2.37 & 1681.25 & 4.32 \\
\hline 14 & FFiANCE & 25.06 & 4.7 & 2213.92 & 4.52 \\
\hline 15 & gEEMANY F.R. & 23.31 & 3.35 & 2457.12 & 3.44 \\
\hline 16 & grieece & 25.62 & 3.1 & 870.85 & 6.29 \\
\hline 17 & cuatemalat & 46.0 '0, & 0.87 & 289.71 & 1.49 \\
\hline 18 & HONIURAS & 47.32 & 0.58 & 232.44 & 3.19 \\
\hline 19 & ICEl and & 34.03 & 3.08 & 1900.1 & 1.12 \\
\hline 20 & INIIA & 41.31 & 0.96 & 88.94 & 1.54 \\
\hline 21 & IFELAND & 31.16 & 4.19 & 1139.95 & 2.99 \\
\hline 2 & Italy & 24.52 & 3.48 & 1390. & 3.54 \\
\hline 23 & JAFPN & 27.01 & 1.91 & 1257.20 & 8.21 \\
\hline 24 & KOREA & 41.74 & 0.91 & 207.63 & 5.81 \\
\hline 25 & LUXEMBOUFig & 21.6 & 3.73 & 2449.39 & 1.57 \\
\hline 26 & Mal.ta & 32.54 & 2.47 & 801.05 & 8.12 \\
\hline ? & NOFWAY & 25.95 & 3.67 & 2231.03 & 3.62 \\
\hline 28 & NETHEFILANSIS & 24.71 & 3.25 & 1740.7 & 7.66 \\
\hline 29 & NEW Zealdani & 32.61 & 3.17 & 1487.52 & 1.76 \\
\hline 30 & NICAFAGUA & 45.04 & 1,21 & 325.54 & 2.48 \\
\hline 31 & FANAMA & 43.56 & 1.2 & 568.56 & 3.61 \\
\hline 32 & fakaguay & 41.18 & 1.05 & 220.56 & 1.03 \\
\hline 33 & FEETU & 44.19 & 1.28 & 400.0 s & 0.67 \\
\hline 34
35 & FHILLIFINES & 46.26 & 1.12 & 152.01 & 2. \\
\hline 35
36 & FGFETUGAL & 20.96 & 2.85 & 579.51 & 7.48 \\
\hline 36 & SOUTH AFEICA & 31.94 & 2.28 & . 651.11 & 2.19 \\
\hline 37 & SOUTH Fillotiesia & 31.92 & 1.52 & 250.96 & 2. \\
\hline 37 & SPAIN & 27.74 & 2.87 & 769.79 & 4.35 \\
\hline 34 & SUETEN & 21.44 & 4.54 & 3299.40 & 3.01 \\
\hline 40
41 & SWITzEELANI & 23.49 & 3.73 & 2630.96 & 2.7 \\
\hline 41
42
48 & TURNEY & 43.42 & 1.08 & 389.66 & 2.96 \\
\hline 42 & TUNISIA & 46.12 & 1.21 & 249.67 & 1.13 \\
\hline 4.3
14 & UNITEEI KIMGHOM & 23.27 & 4.46 & 1813.93 & 2.01 \\
\hline 44 & UNITEI STATES
UENEZUELA & 29.81
46.4 & 3.43 & 4001.89
813.39 & 2.45
0.53 \\
\hline 46 & zambila & 45.25 & 0.56 & 138.35 & 5.14 \\
\hline 17 & jamaita & 41.12 & 1.73 & 380.47 & 10.23 \\
\hline 111
.10 & UFEGGIAY & 28.13 & 2.72 & 766.5.1 & 1.89 \\
\hline \% & Litiym, & 43.69 & 2.07 & 123.56 & 16.71 \\
\hline \(\therefore 0\) & malaygia & 47.2 & 0.66 & 242.64 & 5.08 \\
\hline
\end{tabular}

\section*{References}
1. Andrews, D. F. and Pregibow, D., "Finding the Outliers that Matter," Technical Report No, l, University of Toronto, Graduate Department of Statistics, March 1977.
2. Businger, P. and Golub, G., "Linear Least Squares Solutions by Householder Transformations, in Wilkinson," T. and Reinsch, C., (Eds.), Handbook for Automatic Computation, V.2: Linear Algebra, Springer-Verlag, p. 111-118, 1971, Prepub. in Math. 7, p. 269-76, 1985.
3. Gnanadesikan, R., "Methods for Statistical Data Analysis of Multivariate Observations," John Wiley and Sons, New York, 177, p. 82-120, 258-284.
4. Kendall, M. G. and Stuart, A., "The Advanced Theory of Statistics," Vol. 3, Ed. 2, Hafner Publ. Co., New York, 1968, p. 338-9.
5. Hoaglin, D. C. and Welsch, R. E., "The Hat Matrix in Regression and ANOVA," WP 901-77, Alfred P. Sloan School of Management, MIT, Jan. 1977.
6. Oliver, D., "Troll Experimental Programs: CLUSTER ANALYSIS," Computer Research Center for Economics and Management Science, National Bureau of Economic Research, Inc., August 1975.
7. Tukey, J. W., "Exploratory Data Analysis," Addison-Wesley, 1977.
8. Welsch, R. E. and Kuh, E., "Linear Regression Diagnostics," MIT and NBER, Working Paper No. 173, March 1977.```


[^0]:    * 

    This work was supported by the National Science Foundation under Grant MCS76-11989 to the NBER Conputer Research Center.

[^1]:    * See Appendices 1 and 2 .
    ** See Gnanadesikan [3].

[^2]:    Execution was on an IBM VM370/158 computer, FORTRAN H(OPT(2)) compiler.

[^3]:    See Appendix 5.

[^4]:    ${ }^{+}$The author is indebted to Steve Peters for deriving this important relationship.

