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ABSTRACT

It has become standard practice in the cross-sectional asset-pricing literature to evaluate models
based on how well they explain average returns on size- and B/M-sorted portfolios, something many
models seem to do remarkably well. In this paper, we review and critique the empirical methods used
in the literature. We argue that asset-pricing tests are often highly misleading, in the sense that
apparently strong explanatory power (high cross-sectional R2s and small pricing errors) in fact
provides quite weak support for a model. We offer a number of suggestions for improving empirical
tests and evidence that several proposed models don’t work as well as originally advertised.
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1. Introduction 
 
The finance literature has proposed a wide variety of asset-pricing models in recent years, motivated by 

evidence that small, high-B/M stocks have positive CAPM-adjusted returns.  The models – formal 

equilibrium theories and reduced-form econometric models – suggest new risk factors to help explain 

expected returns, including labor income (Jagannathan and Wang, 1996; Heaton and Lucas, 2000), 

growth in real investment, GDP, and future consumption (Cochrane, 1996; Vassalou, 2003; Li, Vassalou, 

and Xing, 2005; Parker and Julliard, 2005; Hansen, Heaton, and Li, 2005), housing prices (Kullman 

2003), innovations in assorted state variables (Campbell and Vuolteenaho 2004; Brennan, Wang, and Xia, 

2004; Petkova, 2006), and liquidity risk (Pastor and Stambaugh, 2003; Acharya and Pedersen, 2005).  

The literature also proposes a host of new conditioning variables to summarize the state of the economy, 

including the spread between low- and high-grade debt (Jagannathan and Wang, 1996), the aggregate 

consumption-to-wealth ratio (Lettau and Ludvigson, 2001), the housing collateral ratio (Lustig and Van 

Nieuwerburgh, 2004), the expenditure share of housing (Piazzesi, Schneider, and Tuzel, 2006), and the 

labor income to consumption ratio (Santos and Veronesi, 2005). 

 

Empirically, many of the proposed models seem to do a good job explaining the size and B/M effects, an 

observation at once comforting and disconcerting:  comforting because it suggests that rational 

explanations for the anomalies are readily available, disconcerting because it provides an embarrassment 

of riches.  Reviewing the literature, one gets the uneasy feeling that it seems a bit too easy to explain the 

size and B/M effects.  This is especially true given the great variety of factor models that seem to work, 

many of which have very little in common with each other. 

 

Our paper is motivated by that suspicion.  Specifically, our goal is to explain why, despite the seemingly 

strong evidence that many proposed models can explain the size and B/M effects, we remain unconvinced 

by the evidence.  We offer a critique of the empirical methods that have become popular in the asset-

pricing literature, a number of prescriptions for improving the tests, and evidence that several of the 

proposed models don’t work as well as originally advertised. 

 

The heart of our critique is that the literature has often given itself a low hurdle to meet in claiming 

success:  high cross-sectional R2s (or low pricing errors) when average returns on the Fama-French 25 

size-B/M portfolios are regressed on their factor loadings.  This hurdle is low because size and B/M 

portfolios are well-known to have a strong factor structure, i.e., Fama and French’s (1993) three factors 

explain more than 90% of the time-series variation in portfolios’ returns and more than 75% of the cross-

sectional variation in their average returns.  Given those features, obtaining a high cross-sectional R2 is 
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easy because almost any proposed factor is likely to produce betas that line up with expected returns; 

essentially all that’s required is for a factor to be (weakly) correlated with SMB or HML but not with the 

tiny, idiosyncratic three-factor residuals of the size-B/M portfolios. 

 

The problem we highlight is not just a sampling issue, i.e., it is not solved by getting standard errors right.  

In population, if returns have a covariance structure like that of size-B/M portfolios, loadings on a 

proposed factor will line up with true expected returns so long as the factor correlates only with the 

common sources of variation in returns.  The problem is also not solved by using an SDF approach.  

Under the same conditions that give a high cross-sectional R2, the true pricing errors in an SDF 

specification will be small or zero, a result that follows immediately from the close parallel between the 

regression and SDF approaches (see, e.g., Cochrane, 2001). 

 

This is not to say that sampling issues aren’t important.  Indeed, the covariance structure of size-B/M 

portfolios also means that, even if we do find factors that have no ability to explain the cross section of 

true expected returns, we are still reasonably likely to estimate a high cross-sectional R2 in sample.  As an 

illustration, we simulate artificial factors that, while correlated with returns, are constructed to have zero 

true cross-sectional R2s for the size-B/M portfolios.  We find that a sample adjusted R2 might need to be 

as high as 44% to be statistically significant in models with one factor, 62% in models with three factors, 

and 69% in models with five factors.  Further, with three or five factors, the power of the tests is 

extremely small:  the sampling distribution of the adjusted R2 is almost the same when the true R2 is zero 

and when it is as high as 70% or 80%.  In short, the high R2s reported in the literature aren’t nearly as 

impressive as they might appear. 

 

The obvious question then is:  What can be done?  How can we improve asset-pricing tests to make them 

more convincing?  We offer four suggestions.  First, since the problems are caused by the strong factor 

structure of size–B/M portfolios, one simple solution is to expand the set of test assets to include other 

portfolios, for example, industry or beta-sorted portfolios.  Second, since the problems are exacerbated by 

the fact that empirical tests often ignore theoretical restrictions on the cross-sectional slopes, another 

simple solution is to take the magnitude of the slopes seriously when theory provides appropriate 

guidance.  For example, zero-beta rates should be close to the riskfree rate, the risk premium on a factor 

portfolio should be close to its average excess return, and the cross-sectional slopes in conditional models 

should be determined by the volatility of the conditional risk premium (as we explain later; see also 

Lewellen and Nagel, 2006).  Third, we argue that the problems are likely to be less severe for GLS than 

for OLS cross-sectional regressions, so another (imperfect) solution is to report the GLS R2.  An added 
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benefit is that the GLS R2 has a useful economic interpretation in terms of the relative mean-variance 

efficiency of a model’s factor–mimicking portfolios (this intepretation builds on and generalizes the 

results of Kandel and Stambaugh, 1995). 

 

Finally, since the problems are exacerbated by sampling issues, a fourth ‘solution’ is to report confidence 

intervals for test statistics, not rely just on point estimates and p-values.  We describe how to do so for the 

cross-sectional R2 and other, more formal statistics based on the weighted sum of squared pricing errors, 

including Shanken’s (1985) cross-sectional T2 (or asymptotic χ2) statistic, Gibbons, Ross, and Shanken’s 

(1989) F-statistic, and Hansen and Jagannathan’s (1997) HJ-distance.  For the latter three statistics, the 

confidence intervals again have a natural economic interpretation in terms of the relative mean-variance 

efficiency of a model’s factor-mimicking portfolios. 

 

Our suggestion to report confidence intervals has two main benefits.  The first is that confidence intervals 

can reveal the often high sampling error in the statistics – by showing the wide range of true parameters 

that are consistent with the data – in a way that is more direct and transparent than p-values or standard 

errors (since the statistics are generally biased and skewed).  The second advantage of confidence 

intervals over p-values is that they avoid the somewhat tricky problem of deciding on a null hypothesis.  

In economics, researchers typically set up tests with the null hypothesis being that a model doesn’t work, 

or doesn’t work better than existing theory, and then look for evidence to reject the null.  (In event 

studies, for example, the null is that stock prices do not react to the event.)  But asset-pricing tests often 

reverse the idea:  the null is that a model works perfectly – zero pricing errors – which is ‘accepted’ as 

long as we don’t find evidence to the contrary.  This strikes us as a troubling shift in the burden of proof, 

particularly given the limited power of many tests.  Confidence intervals avoid this problem because they 

simply show the full range of true parameters that are consistent with the data. 

 

We apply these prescriptions to a handful of proposed models from the recent literature.  The results are 

disappointing.  None of the five models that we consider performs well in our tests, despite the fact that 

all seemed quite promising in the original studies. 

 

The paper proceeds as follows.  Section 2 formalizes our critique of asset-pricing tests, Section 3 offers 

suggestions for improving the tests, and Section 4 applies these prescriptions to several recent models.  

Section 5 concludes. 
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2. Interpreting asset-pricing tests 
 
Our analysis uses the following notation.  Let R be the vector of excess returns on N test assets (in excess 

of the riskfree rate) and F be a vector of K risk factors that perfectly explain expected returns on the 

assets, i.e., μ ≡ E[R] is linear in the N × K matrix of stocks’ loadings on the factors, B ≡ cov(R, F) var-1(F).  

For simplicity, and without loss of generality, we assume the mean of F equals the cross-sectional risk 

premium on B, implying μ = B μF.  Thus, our basic model is 
 
 R = B F + e, (1) 
 
where e are mean-zero residuals with cov(e, F) = 0.  We make no assumptions at this point about the 

covariance matrix of e, so the model is completely general (eq. 1 has no economic content). 

 

We follow the convention that all vectors are column vectors unless otherwise noted.  For generic random 

variables x and y, cov(x, y) ≡ E[(x – μx)(y – μy)′]; i.e., the row dimension is determined by x and the 

column dimension is determined by y.  We use ι to denote a conformable vector of ones, 0 to denote a 

conformable vector or matrix of zeros, and I to denote a conformable identity matrix.  M denotes the 

matrix I – ιι′/d that transforms, through pre-multiplication, the columns of any matrix with row dimension 

d into deviations from the mean. 

 

The factors in F can be thought of as a ‘true’ model that is known to price assets; it will serve as a 

benchmark but we won’t be interested in it per se.  Instead, we want to test a proposed model P consisting 

of J factors.  The matrix of assets’ factor loadings on P is denoted C ≡ cov(R, P) var-1(P), and we’ll say 

that P ‘explains the cross section of expected returns’ if μ = C γ for some risk premium vector γ.  Ideally, 

γ would be determined by theory. 

 

A common way to test whether P is a good model is to estimate a cross-sectional regression of expected 

returns on factor loadings 
 
 μ = z ι + C λ + η, (2) 
 
where λ denotes a J × 1 vector of regression slopes.  In principle, we could test three features of eq. (2):  

(i) z should be roughly zero (that is, the zero-beta rate should be close to the riskfree rate); (ii) λ should be 

non-zero and may be restricted by theory; and (iii) η should be zero and the cross-sectional R2 should be 

one.  In practice, empirical tests often focus only on the restrictions that λ ≠ 0 and the cross-sectional R2 is 

one (the latter is sometimes treated only informally).  The following observations consider the conditions 

under which P will appear well-specified in such tests. 
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Observation 1. Suppose F and P have the same number of factors and P is correlated with R only 

through the common variation captured by F, by which we mean that cov(e, P) = 0 (e is the residual in 

eq. 1).  Assume, also, that the correlation matrix between F and P is nonsingular.  Then expected returns 

are exactly linear in stocks’ loadings on P – even if P has arbitrarily small (non-zero) correlation with F 

and explains very little of the time-series variation in returns. 

 
Proof:  The assumption that cov(e, P) = 0 implies cov(R, P) = B cov(F, P).  Thus, stocks’ loadings on P 

are linearly related to their loadings on F:  C ≡ cov(R, P) var-1(P) = B Q, where Q ≡ cov(F, P) var-1(P) is 

the nonsingular matrix of slope coefficients when F is regressed on P.  It follows that μ = B μF = C λ, 

where λ = Q-1 μF.  

 

Observation 1 says that, if P has the same number of factors as F, testing whether expected returns are 

linear in betas with respect to P is essentially the same as testing whether P is uncorrelated with e – a test 

that doesn’t seem to have much economic meaning in recent empirical applications.  For example, in tests 

with size and B/M portfolios, we know that RM, SMB, and HML (the ‘true’ model F in our notation) 

capture nearly all (more than 92%) of the time-series variation in returns, so the residual in R = B F + e is 

both small and largely idiosyncratic.  In that setting, we don’t find it surprising that almost any proposed 

macroeconomic factor P is correlated with returns primarily through RM, SMB, and HML – indeed, we 

would be more surprised if cov(e, P) wasn’t close to zero.  In turn, we are not at all surprised that many 

proposed models seem to ‘explain’ the cross-section of expected size and B/M returns.  The strong factor 

structure of size and B/M portfolios makes it likely that stocks’ betas on almost any proposed factor will 

line up with their expected returns.1 

 

Put differently, Observation 1 provides a skeptical interpretation of recent asset-pricing tests, in which 

unrestricted cross-sectional regressions (or equivalently SDF tests, as we explain below) have become the 

norm.  In our view, the empirical tests say little more than that a number of proposed factors are 

correlated with SMB and HML, a fact that might have some economic content but seems like a pretty low 

hurdle to meet in claiming that a proposed model explains the size and B/M effects.  We offer a number 

of suggestions for improving the tests below. 

 

Observation 2.  Suppose returns have a strict factor structure with respect to F, i.e., var(e) is a diagonal 

                                                 
1 This argument works cleanly if a proposed model has (at least) three factors.  It should also apply when P has two 
factors since size–B/M portfolios all have multiple-regression market betas close to one.  In essence, the two-factor 
model of SMB and HML explains most of the cross-sectional variation of expected returns, so a proposed model 
really needs only two factors (as long as we ignore restrictions on the intercept). 
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matrix.  Then any randomly chosen set of K assets perfectly explains the cross section of expected returns 

so long as the K assets aren’t asked to price themselves (that is, the K assets aren’t included as test assets 

on the left-hand side of the cross-sectional regression and the cross-sectional risk premia aren’t required 

to equal the expected returns on the K assets).  The only restriction is that RK, the return on the K assets, 

must be correlated with F, i.e., cov(F, RK) must be nonsingular. 

 

Proof:  Let P = RK in Observation 1 and re-define R as the vector of returns for the remaining N – K 

assets and e as the residuals for these assets.  The strict factor structure implies that cov(e, Rk) = cov(e, BK 

F + eK) = 0.  The result then follows immediately from Observation 1.  

 

Observation 2 is useful for a couple of reasons.  First, it provides a simple illustration of our argument 

that, in some situations, it is easy to find factors that explain the cross section of expected returns:  under 

the fairly common assumption (in the APT literature) of a strict factor structure, any collection of K assets 

will work.  Obtaining a high cross-sectional R2 just isn’t very difficult when returns have a strong factor 

structure, as they do in most empirical applications. 

 

Second, Observation 2 illustrates that it can be important to take seriously restrictions on the cross-

sectional slopes.  In particular, Observation 2 hinges on the fact that the K asset factors aren’t asked to 

price themselves, i.e., that the cross-sectional risk premia aren’t restricted to equal the vector of expected 

returns on the K assets, as asset-pricing theory would predict.  To see this, Observation 1 (proof) shows 

that the cross-sectional slopes on C are λ = Q-1 μF, where Q is the matrix of slope coefficients when F is 

regressed on RK.  In the simplest case with one factor, λ simplifies to μK / ρ2, where ρ is the correlation 

between RK and F.2  The slope λ is clearly greater than μK unless RK is perfectly correlated with F.  The 

implication is that the problem highlighted by Observations 1 and 2 – that ‘too many’ proposed factors 

explain the cross section of expected returns – would be less severe if the restriction on λ was taken 

seriously (e.g., RK would then price the cross section only if ρ = 1). 

 

Observations 1 and 2 are rather special since, in order to get clean predictions, we’ve assumed that a 

proposed model P has the same number of factors as the known model F.  The intuition goes through 

when J < K because, even in that case, we would expect the loadings on proposed factors to line up 

(imperfectly) with expected returns if the assets have a strong factor structure.  The next observation 

generalizes our results, at the cost of changing the definitive conclusion in Observations 1 and 2 into a 

                                                 
2 This follows from the fact that Q-1 = var(RK) / cov(RK, F) and μK = BK μF = μF cov(RK, F) / var(F). 



 7

probabilistic statement. 

 

Observation 3.  Suppose F has K factors and P has J factors, with J ≤ K.  Assume, as before, that P is 

correlated with R only through the factor F [cov(e, P) = 0], and that P and F are correlated, so that 

cov(F, P) has rank J.  In a generic sense, made precise below, the cross-sectional R2 in a regression of μ 

on C is expected to be J / K. 

 
Proof:  By a ‘generic sense,’ we mean that we don’t have any information about the contribution of each 

of the factors in F in explaining the cross-section of expected returns and so treat the contributions as 

random.  More specifically, suppose the factor loadings on F satisfy VB = B′MB / N = IK, i.e., they are 

cross-sectionally uncorrelated and have unit variances; this assumption is without loss of generality since 

F can always be transformed to make the assumption hold.  A ‘generic sense’ means that we view the risk 

premia on the transformed factors as being random draws from a normal distribution with mean zero and 

variance σγ
2.  The proof then proceeds as follows:  In a regression of μ on C, the risk premia are λ = 

(C′MC)-1C′Mμ and the R2 is λ′C′MCλ / μ′Mμ.  By assumption μ = B μF and Observation 1 (proof) shows 

that C = B Q, where Q ≡ cov(F, P) var-1(P).  Substituting for λ, μ, and C, and using the assumption that VB 

= IN, the R2 simplifies to μF′Q(Q′Q)-1Q′μF / μF′μF, where Q(Q′Q)-1Q′ is a symmetric, idempotent matrix of 

rank J.  The risk premia, μF, are assumed MVN[0, σγ
2

 IK], as explained above, from which it follows that 

the R2 has a Beta distribution with mean J / K.3  

 

Observation 3 generalizes Observations 1 and 2.  Our earlier results show that, if a K-factor model 

explains both the cross section of expected returns and much of the time-series variation in returns, then it 

should be easy to find other K-factor models that also explain the cross section of expected returns.  The 

issue is a bit messier with J < K.  Intuitively, the more factors that are in the proposed model, the easier it 

should be to find a high cross-sectional R2 as long at the proposed factors are correlated with the ‘true’ 

factors.  Thus, we aren’t surprised at all if a proposed three-factor model explains the size and B/M effects 

about as well as the Fama-French factors, nor are we surprised if a one- or two-factor model has some 

explanatory power.  We are impressed if a one-factor model works as well as the Fama-French factors, 

since this requires that a single factor captures the pricing information in both SMB and HML.  [We note 

again that size–B/M portfolios all have Fama-French three-factor market betas close to one, so the model 

can be thought of as a two-factor model (SMB and HML) for the purposes of explaining cross sectional 

variation in expected returns.] 

                                                 
3 The distribution follows from the fact that R2 can be expressed as z1 / (z1 + z2), where z1 and z2 are independent, 
chi-squared variables with degrees of freedom J and K–J; see Muirhead, 1982, Thm. 1.5.7. 
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Figure 1 (on the next page) illustrates these results using Fama and French’s 25 size-B/M portfolios, 

getting away from the specific assumptions underlying Observations 1 – 3.  We calculate quarterly excess 

returns on the 25 portfolios from 1963–2004 and explore, in several simple ways, how easy it is to find 

factors that explain the cross section of average returns.  The figure treats the average returns and sample 

covariance matrix as population parameters; thus, like Observations 1 – 3, it focuses on explaining 

expected returns in population, not on sampling issues (which we consider later). 

 

Each of the panels reports simulations using artificial factors to explain expected returns.  In Panel A, the 

factors are constructed to produce a random vector of return betas:  a 25 × 1 vector of loadings (for the 25 

size-B/M portfolios) is randomly drawn from a MVN distribution with mean zero and covariance matrix 

proportional to the return covariance matrix.  Thus, although the artificial factors aren’t designed to 

explain expected returns, the loadings will tend to line up with expected returns (positively or negatively) 

simply because their cross-sectional pattern is determined by the covariance structure of returns.  This 

procedure matches the spirit of Observations 1 – 3 but doesn’t impose the requirement that the artificial 

factors covary only with common components in size-B/M portfolios (cov(e, P) doesn’t have to be zero), 

though the common components will tend to dominate simply because they are so important. 

  

[An alternative interpretation of these simulations is to note that if we generate a time series of artificial 

factors uncorrelated with returns, the covariance matrix of estimated betas (in a multivariate regression of 

portfolio returns on the factor) is proportional to the covariance matrix of returns.  Thus, the loadings in 

the simulations can be interpreted as sample betas for random (‘useless’) factors, and the population R2 

can be interpreted as a sample R2 when size-B/M portfolios’ average returns are regressed on these 

sample betas.  The simulations show how often we expect to find high R2s if researchers simply come up 

with factors that have nothing to do with returns.] 

 

Panel A shows that it is easy to find factors that help explain expected returns on the size-B/M portfolios.  

With one factor, half of our factors produce an R2 greater than 0.12 and 25% produce an R2 greater than 

0.30 (the latter isn’t reported in the figure).  With three factors, the median R2 is 0.51 and the 75th 

percentile is 0.64, and with five factors, the median and 75th percentiles are a remarkable 0.68 and 0.76, 

respectively.  Roughly half of our artificial three-factor models and 86% of our artificial five-factor 

models explain more than half of the cross-sectional variation in expected returns. 

 

Panel B performs a similar exercise but, rather than randomly generate loadings, we randomly generate 

factors that are zero-investment combinations of the size-B/M portfolios:  a 25 × 1 vector of weights is  
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Figure 1. Population R2s for artificial factors. 

This figure explores how easy it is to find factors that explain, in population, the cross section of expected 
returns on Fama and French’s 25 size-B/M portfolios.  We randomly generate factors – either factor loadings 
directly or zero-investment factor portfolios, as described in the figure – and estimate the population R2 when 
the size-B/M portfolios’ expected returns are regressed on their factor loadings.  The average returns and 
covariance matrix of the portfolios, quarterly from 1963 – 2004, are treated as population parameters in the 
simulations.  The plots are based on 5,000 draws of 1 to 5 factors. 
 

Panel A: Random draws of factor loadings.
Loadings for the 25 size-B/M portfolios are drawn
from a MVN distribution with mean zero and
covariance matrix proportional to the return
covariance matrix. 
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constructed by independently drawing from a normal distribution with mean zero and variance one (the 

weights are shifted and re-scaled to have a cross-sectional mean that is exactly zero and to have one dollar 

long and one dollar short).  These simulations show how easy it is to stumble across factors that help 

explain the cross section of expected returns.  As in Panel A, betas on the artificial factors will tend to line 

up with expected returns simply because of the covariance structure of returns, even though the factors 

aren’t chosen to have any explanatory power.  In fact, Panel B shows that the artificial factors here are 

even better at explaining expected returns:  with one, three, and five factors, the median R2s are 0.14, 

0.77, and 0.84, while the 75th percentiles are 0.40, 0.81, and 0.87, respectively. 

 

Finally, Panel C repeats the simulations in Panel B with a small twist:  we keep only those artificial 

factors that have roughly zero expected returns [the factors in Panel B are expected to have zero expected 

returns (E[μ′x] = 0 across draws of x) but don’t because of random variation in x].  These simulations 

illustrate that it can be very important to impose restrictions on the cross-sectional slopes when possible; 

in particular, theory says that the risk premia on our artificial factors should be zero, equal to their 

expected returns, but Panel C ignores this restriction and just searches for the best possible fit in the cross-

sectional regression.  Thus, the actual R2 differs from zero simply because we ignore the theoretical 

restrictions on the cross-sectional slopes and intercept.  The additional degrees of freedom turn out to be 

very important, especially with multiple factors:  with one, three, and five factors in Panel C, the median 

R2s are 0.03, 0.51, and 0.64, while the 75th percentiles are 0.12, 0.60, and 0.68, respectively (again, 

properly restricted R2s would all be close to zero). 
 

The results above illustrate that the covariance structure of size-B/M portfolios makes it easy to find 

factors that produce high population cross-sectional R2s.  Our final two observations show that the 

problem is similar in SDF tests and exacerbated by sampling issues. 

 

Observation 4.  Suppose F has K factors and P has J factors, with J ≤ K.  Assume, as before, that P is 

correlated with R only through the factor F [cov(e, P) = 0], and that P and F are correlated, so that 

cov(F, P) has rank J.  In a generic sense, made precise below, the sum of squared pricing errors in an 

SDF framework, ε = E[mR], are expected to be q (K – J), where q is defined below.  The pricing errors 

are exactly zero when J = K. 

 

Proof:  By a ‘generic sense,’ we again mean that we don’t have any information about the contribution of 

each factor in F in explaining the cross section of expected returns, but we operationalize the idea slightly 

differently here (a similar, somewhat messier, result holds if we use the earlier definition).  Specifically, 
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suppose the factor loadings on F satisfy B′B / N = IK; this assumption is without loss of generality since F 

can always be transformed to make the assumption hold.  A ‘generic sense’ means that we view the risk 

premia on the transformed B as being random draws from a normal distribution with mean α and variance 

σγ
2.  The proof proceeds as follows:  Define the SDF as m = a – b′P and the pricing errors as ε = E[mR].  

Using excess returns, the SDF is defined up to a constant of proportionality (see Cochrane, 2001); we 

therefore fix a and find the corresponding b in the SDF.  In first-stage GMM, minb ε′ε, the solution is b = 

a(D′D)-1D′μ and ε = a[IN – D(D′D)-1D′]μ, where D ≡ cov(R, P).  The sum of squared pricing errors is ε′ε 

= a2μ′[IN – D(D′D)-1D′]μ.  By assumption μ = B μF and B′B/N = IK, so ε′ε can be rewritten as a2NμF′HμF, 

where H = IK – B′D(D′D)-1D′B/N.  The matrix H is symmetric and idempotent with rank K – J and the risk 

premia are assumed to be MVN[α, σγ
2 IK], as explained above, from which it follows that μF′HμF is 

proportional to a noncentral chi-squared variate, with mean (α2
 + σγ

2) (K – J) (ε and μF′HμF are exactly 

zero when J = K).  The sum of squared errors has expectation E[ε′ε] = a2 N (α2 + σγ
2) (K – J).  

 

Observation 4 is the SDF equivalent of our earlier cross-sectional R2 results.  It says that, as long as 

proposed factors P covary with returns only through the factors F – an assumption that seems likely to 

hold for just about any proposed factor when the test assets are size-B/M portfolios – the model will help 

reduce SDF pricing errors, ε = E[mR].  The errors are expected to be smaller the more factors that are in P 

and, in the limit, drop to zero when P has the same number of factors as F.  The magnitude of the errors 

when J < K can be interpreted by noting that with no factor, J = 0, the sum of squared pricing errors is 

expected to be a2 N (α2 + σγ
2) K given our assumptions.  Thus, every factor reduces E[ε′ε] by a fraction 

1/K.  The decline in pricing errors is nearly mechanical in tests with size-B/M portfolios, because of their 

strong covariance structure, and has little economic meaning. 

 

Observation 5.  The problems are exacerbated by sampling issues:  If returns have a strong factor 

structure, it can be easy to find a high sample cross-sectional R2 even in the unlikely scenario that the 

population R2 is small or zero. 

 

Observation 5 is intentionally informal and, in lieu of a proof, we offer simulations using Fama and 

French’s 25 size-B/M portfolios to illustrate the point.  The simulations differ from those in Figure 1 

because, rather than study the population cross-sectional R2 for artificial factors, we now focus on 

sampling variation in estimated R2s conditional on a given population R2.  The simulations have two 

steps:  First, we fix a true cross-sectional R2 that we want a model to have and randomly generate a matrix 

of factor loadings C which produces that R2.  Factor portfolios, P = w′R, are constructed to have those  
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Figure 2: Sample distribution of the cross-sectional adj. R2. 
This figure shows the sample distribution of the cross-sectional adj. R2 (average returns regressed on estimated 
factor loadings) for Fama and French’s 25 size-B/M portfolios from 1963 – 2004 (quarterly returns).  The plots use 
one to five randomly generated factors that together have the true R2 reported on the x-axis.  In the left-hand panels, 
the factors are combinations of the size-B/M portfolios (the weights are randomly drawn to produce the given R2, as 
described in the text).  In the right-hand panels, noise is added to the factors equal to 3/4 of a factor’s total variance, 
to simulate factors that are not perfectly spanned by returns.  The plots are based on 40,000 bootstrap simulations 
(10 sets of random factors; 4,000 simulations with each). 
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factor loadings, i.e., we find portfolio weights, w, such that cov(R, P) = var(R) w is linear in C.4  Second, 

we bootstrap artificial time series of returns and factors by sampling, with replacement, from the 

historical time series of size-B/M returns (quarterly, 1963–2004).  We then estimate the sample cross-

sectional adj. R2 for the artificial data by regressing average returns on estimated factor loadings.  The 

second step is repeated 4,000 times to construct a sampling distribution of the adj. R2.  In addition, to 

make sure the particular matrix of loadings generated in step 1 isn’t important, we repeat that step 10 

times, giving us a total sample of 40,000 adj. R2s corresponding to an assumed true R2. 

 

Figure 2 shows results for models with 1, 3, and 5 factors.  The left-hand column plots the distribution of 

the sample adjusted R2 (5th, 50th, and 95th percentiles) corresponding to true R2s of 0.0 to 1.0 for models 

in which the factors are portfolio returns, as described above.  The right-hand column repeats the exercise 

but uses factors that are imperfectly correlated with returns, as they are in most empirical applications; we 

start with the portfolio factors used in the left-hand panels and add noise equal to 3/4 of their total 

variance.  Thus, for the right-hand plots, a maximally correlated combination of the size-B/M portfolios 

would have a time-series R2 of 0.25 with each factor. 

 

The figure shows that a sample R2 needs to be quite high to be statistically significant, especially for 

models with several factors.  Focusing on the right-hand column, the 95th percentile of the sampling 

distribution using one factor is 44%, using three factors is 62%, and using five factors is 69% – when the 

true cross-sectional R2 is zero!  Thus, even if we could find factors that have no true explanatory power 

(something that seems unlikely given our population results above), it still wouldn’t be terribly surprising 

to find fairly high R2s in sample.  Further, with either three or five factors, the ability of the sample R2 to 

discriminate between good and bad models is quite small, since the distribution of the sample R2 is 

similar across a wide range of true R2s.  For example, with five factors, a sample R2 greater than 73% is 

needed to reject that the true R2 is 30% or less, at a 5% one-sided significance level, but that outcome is 

unlikely even if the true R2 is 70% (probability of 0.17) or 80% (probability of 0.26).  The bottom line is 

that, in both population and sample, a high cross-sectional R2 seems to provide little information about 

whether a proposed model is good or bad. 

 

                                                 
4 More specifically, for a model with J factors, we randomly generate J vectors, gj, that are uncorrelated with each 
other and which individually have explanatory power of c2 = R2 / J (and, thus, the correct combined R2).  Each vector 
is generated as gj = c μs + (1–c2)1/2 ej, where μs is the vector of expected returns on the size-B/M portfolios, shifted 
and re-scaled to have mean zero and standard deviation of one, and ej is generated by randomly drawing from a 
standard normal distribution (ej is transformed to have exactly mean zero and standard deviation of one, to be 
uncorrelated with μ, and to make cov(gi, gj) = 0 for i ≠ j).  The factor portfolios in the simulations have covariance 
with returns (a 25×1 vector) given by the gj. 
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Related research 
 
Our appraisal of asset-pricing tests overlaps with a number of studies.  Roll and Ross (1994) and Kandel 

and Stambaugh (1995) argue that the cross-sectional R2 in simple CAPM tests isn’t very meaningful 

because, as a theoretical matter, it tells us little about the location of the market proxy in mean-variance 

space (see also Kimmel, 2003).  We reach a similarly skeptical conclusion about the R2 but emphasize 

different issues.  The closest overlap comes from our simulations in Panel C of Figure 1, which show that 

factor portfolios with zero mean returns might still produce high R2 in unrestricted cross-sectional 

regressions.  These portfolios are far from the mean-variance frontier by construction – they have zero 

Sharpe ratios – yet often have high explanatory power, consistent with the results of Roll and Ross and 

Kandel and Stambaugh. 

 

Kan and Zhang (1999) study cross-sectional tests with ‘useless’ factors, defined as factors that are 

uncorrelated in population with returns.  They show that the usual asymptotics break down because the 

cross-sectional spread in estimated loadings goes to zero as T gets big (since all the loadings go to zero).  

Our simulations in Panel A of Figure 1 have some overlap since, as pointed out earlier, they can be 

interpreted as showing the sample R2 when randomly generated useless factors are used to explain 

returns.  The issues are different since our simulations generate random factors but hold the time series of 

returns constant (thus, they don’t really consider the sampling issues discussed by Kan and Zhang).  More 

broadly, our results are different because we focus on population R2s and, when we do look at sampling 

distributions in Fig. 2, the factors are not ‘useless.’ 

 

Some of our results are reminiscent of the literature on testing the APT and multifactor models (see, e.g., 

Shanken 1987, Reisman, 1992; Shanken, 1992a).  Most closely, Nawalkha (1997) derives results like 

Observations 1 and 2 above, though his focus is different.  In particular, he emphasizes that, in the APT, 

‘well-diversified’ variables (those uncorrelated with idiosyncratic risks) can be used in place of the ‘true’ 

factors without any loss of pricing accuracy.  We generalize his theoretical results to models with J < K 

proposed factors, consider sampling issues, and emphasize the empirical implications for recent tests 

using size-B/M portfolios. 

 

Finally, our critique is similar in spirit to a contemporaneous paper by Daniel and Titman (2005).  They 

show that, even if characteristics determine expected returns (e.g., expected returns are linear in B/M), a 

proposed factor can appear to price characteristic-sorted portfolios simply because, in the underlying 

population of stocks, factor loadings and characteristics are correlated (forming portfolios tends to inflate 

that correlation).  Our ultimate conclusions about using characteristic-sorted portfolios are similar but we 



 15

highlight different concerns, emphasizing the importance of the factor structure of size-B/M portfolios, 

the impact of using many factors and not imposing restrictions on the cross-sectional slopes, and the role 

of both population and sampling issues. 

 
 
3. How can we improve empirical tests? 
 
The theme of Observations 1 – 5 is that, in situations like those encountered in practice, it may be easy to 

find factors that explain the cross section of expected returns.  Finding a high cross-sectional R2 or small 

pricing errors often has little economic meaning and, in our view, should not be taken as providing much 

support for a proposed model.  The problem is not just a sampling issue – it cannot be solved by getting 

standard errors right – though sampling issues exacerbate the problem.  Here, we offer a few suggestions 

for improving empirical tests. 

 

Prescription 1.  Expand the set of test portfolios beyond size–B/M portfolios. 

 
Due to the importance of the size and value anomalies, empirical tests often focus on size-B/M portfolios.  

This practice is understandable but problematic, since the concerns highlighted above are most severe 

when a couple of factors explain nearly all of the time-series variation in returns, as is true for size-B/M 

portfolios.  One simple solution, then, is to include portfolios that don’t correlate as strongly with SMB 

and HML.  Reasonable choices include industry–, beta–, volatility–, or factor-loading–sorted portfolios 

(the last being loadings on a proposed factor; an alternative would be to use individual stocks in the 

regression, though errors-in-variables problems could make this impractical).  Bond portfolios might also 

be used.  The idea is to price the portfolios all at the same time, not in separate cross-sectional 

regressions.  Also, the additional portfolios don’t need to offer a big spread in expected returns; the goal is 

simply to relax the tight factor structure of size-B/M portfolios. 

 

Figure 3 illustrates this idea.  We replicate the simulations in Figure 1 but, rather than use size-B/M 

portfolios alone, we augment them with Fama and French’s 30 industry portfolios.  As before, we 

generate artificial factors and explore how well they explain, in population, the cross section of expected 

returns (average returns and covariances from 1963 – 2004 are treated as population parameters).  The 

artificial factors are generated in three ways.  In Panel A, the factors are constructed to produce a 

randomly chosen 55 × 1 vector of factor loadings, drawing from a MVN distribution with mean zero and 

covariance matrix proportional to the return covariance matrix.  In Panel B, the factors are constructed by 

randomly drawing a 55 × 1 vector of portfolio weights from a standard normal distribution.  And in Panel 

C, we repeat the simulations of Panel B but keep only the factor portfolios that have (roughly) zero  
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Figure 3. Population R2s for artificial factors: Size-B/M and industry portfolios. 

This figure compares how easy it is to find factors that explain, in population, the cross section of expected 
returns on Fama and French’s 25 size-B/M portfolios (dotted lines) vs. 55 portfolios consisting of the 25 size-
B/M portfolios and Fama and French’s 30 industry portfolios (solid lines).  We randomly generate factors – 
either factor loadings directly or zero-investment factor portfolios, as described in the figure – and estimate the 
population R2 when the portfolios’ expected returns are regressed on their factor loadings.  The average returns 
and covariance matrix of the portfolios, quarterly from 1963 – 2004, are treated as population parameters in the 
simulations.  The plots are based on 5,000 draws of 1 to 5 factors. 
 

Panel A: Random draws of factor loadings.
Loadings for the 25 size-B/M portfolios are drawn
from a MVN distribution with mean zero and
covariance matrix proportional to the return
covariance matrix. 
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expected returns.  The point in each case is to explore how easy it is to find factors that produce a high 

cross-sectional R2 (in population).  We refer the reader to the discussion of Figure 1 for the logic and 

interpretation of each set of simulations. 

 

Figure 3 shows that it is much ‘harder’ to explain expected returns, using artificial factors, on the 55 

portfolios than on the 25 size-B/M portfolios (the median and 95th percentiles for the latter are repeated 

from Fig. 1 for comparison).  For example, with three factors, the median R2 for the full set of 55 

portfolios is 15% in Panel A, 20% in Panel B, and 10% in Panel C, compared with median R2s for the 25 

size-B/M portfolios of 50%, 77%, and 51%, respectively.  The difference between the 25 size-B/M 

portfolios and the full set of portfolios is largest for models with at least three factors, consistent with the 

three-factor structure of size-B/M portfolios being important.  In short, the full set of portfolios seems to 

provide a more rigorous test of a proposed model. 

 

Prescription 2.  Take the magnitude of the cross-sectional slopes seriously. 

 
The recent literature sometimes emphasizes a model’s high cross-sectional R2 but doesn’t consider 

whether the estimated slopes and zero-beta rates are reasonable.  Yet theory often provides guidance for 

both that should be taken seriously, i.e., the theoretical restrictions should be imposed ex ante or tested ex 

post.  Most clearly, theory says the zero-beta rate should equal the riskfree rate.  The standard retort is that 

Brennan’s (1971) model relaxes this constraint if borrowing and lending rates differ, but this argument 

isn’t convincing in our view:  (riskless) borrowing and lending rates just aren’t sufficiently different – 

perhaps 1% annually – to justify the extremely high zero-beta estimates in many papers.  An alternative 

argument is that the equity premium is anomalously high, à la Mehra and Prescott (1985), so it’s 

unreasonable to ask a consumption-based model to explain it.  But it isn’t clear why we should accept a 

model that doesn’t explain the level of expected returns. 

 

A related restriction, mentioned earlier, is that the risk premium for any factor portfolio should be the 

portfolio’s expected excess return.  For example, the cross-sectional price of market-beta risk should be 

the market equity premium; the price of yield-spread risk, captured by movements in long-term Tbond 

returns, should be the expected Tbond return over the riskfree rate.  In practice, this type of restriction 

could be tested in cross-sectional regressions or, better yet, imposed ex ante by focusing on time-series 

regression intercepts (Jensen’s alphas).  Below, we discuss ways to incorporate the constraint into cross-

sectional regressions (see, also, Shanken, 1992b). 
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As a third example, conditional models generally imply concrete restrictions on cross-sectional slopes, a 

point emphasized by Lewellen and Nagel (2006).  For example, Jagannathan and Wang (1996) show that 

a one-factor conditional CAPM implies a two-factor unconditional model:  Et-1[Rt] = βt γt  →  E[R] = β γ 

+ cov(βt, γt), where βt and γt are the conditional beta and equity premium, respectively, and β and γ are 

their unconditional means.  The cross-sectional slope on ϕi = cov(βit, γt), in the unconditional regression, 

should clearly be one but that constraint is often ignored in the literature.  Lewellen and Nagel discuss this 

issue in detail and provide empirical examples from recent tests of both the simple and consumption 

CAPMs.  For tests of the simple CAPM, the constraint is easily imposed using the conditional time-series 

regressions of Shanken (1990), if the relevant state variables are all known, or the short-window approach 

of Lewellen and Nagel, if they are not. 

  

Prescription 3.  Report GLS cross-sectional R2s. 

 
The literature typically favors OLS over GLS cross-sectional regressions.  The rationale for neglecting 

GLS regressions appears to reflect concerns with (i) the statistical properties of (feasible) GLS and (ii) the 

apparent difficulty with interpreting the GLS R2, which, on the surface, simply tells us about the model’s 

ability to explain expected returns on ‘re-packaged’ portfolios, not the basic portfolios that are of direct 

interest (e.g., if μ and B are expected returns and factors loadings for size-B/M portfolios, OLS regresses 

μ on X ≡ [ι B] while GLS regresses Q μ on Q X, where Q is an N × N matrix such that var-1(R) = Q′Q).  

We believe these concerns are misplaced (or at least overstated) and that the GLS R2 actually has a 

number of advantages over the OLS R2. 

 

The statistical concerns with GLS are real but not prohibitive.  The main issue is that, since the covariance 

matrix of returns must be estimated, the exact finite-sample properties of GLS are generally unknown and 

textbook econometrics emphasizes GLS’s asymptotic properties, which can be a poor approximation 

when the number of assets is large relative to the length of the time series (Gibbons, Ross, and Shanken, 

1989, provide examples in a closely related context; see also Shanken and Zhou, 2006).  But we see no 

reason this problem can’t be overcome using standard simulation methods or, in special cases, using the 

finite-sample results of Shanken (1985) or Gibbons et al. 

 

The second concern – that the GLS R2 is hard to interpret – also seems misplaced.  In fact, Kandel and 

Stambaugh (1995) show that the GLS R2 is in many ways a more meaningful statistic than the OLS R2:  

when expected returns are regressed on betas with respect to a factor portfolio, the GLS R2 is completely 

determined by the factor’s proximity to the minimum-variance boundary while the OLS R2 has little 
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connection, in general, to the factor’s location in mean-variance space (see also Roll and Ross, 1994; this 

result assumes the factor is spanned by the test assets).  Thus, if a market proxy is nearly mean-variance 

efficient, the GLS R2 is nearly one but the OLS R2 can, in principle, be anything.  A factor’s proximity to 

the minimum-variance boundary may not be the only metric for evaluating a model, but it does seem to 

be both economically reasonable and easy to understand. 

 

The same idea applies to models with non-return factors.  In this case, Appendix A shows that a GLS 

regression is equivalent to using maximally-correlated mimicking portfolios in place of the actual factors 

and imposing the constraint that the risk premia on the portfolios equal their excess returns (in excess of 

the zero-beta rate if an intercept is included).  The GLS R2 is determined by the mimicking portfolios’ 

proximity to the minimum-variance boundary (more precisely, the distance from the minimum-variance 

boundary to the ‘best’ combination of the mimicking portfolios).  Again, this distance seems like a natural 

metric by which to evaluate a model, since any asset-pricing theory boils down to a prediction that the 

factor-mimicking portfolios span the mean-variance frontier. 

 

One implication of these facts is that obtaining a high GLS R2 would seem to be a more rigorous hurdle 

than obtaining a high OLS R2:  a model can produce a high OLS R2 even though the factor mimicking 

portfolios are far from mean-variance efficient, while the GLS R2 is high only if a model can explain the 

high Sharpe ratios available on the test portfolios. 

 

The implicit restrictions imposed by GLS aren’t a full solution to the problems discussed in Section 2.  

Indeed, Observations 1 and 2 apply equally to OLS and GLS regressions (i.e., both R2s are one given the 

stated assumptions).  But our simulations with artificial factors, which relax the strong assumptions of the 

formal propositions, suggest that, in practice, finding a high (population) GLS R2s is much less likely than 

finding a high OLS R2.  Figure 4, on the next page, illustrates this result.  The figure shows GLS R2s for 

the same simulations as Figure 1, using artificial factors to explain expected returns on Fama and 

French’s (1993) size-B/M portfolios (treating their sample moments as population parameters; the OLS 

plots are repeated for comparison).  The plots show that, while artificial factors have some explanatory 

power in GLS regressions, the GLS R2s are dramatically lower than OLS R2s.  The biggest difference is 

in Panel C, which constructs artificial factors that are random, zero-cost combinations of the 25 size-B/M 

portfolios, imposing the restriction that the factors’ Sharpe ratios are zero.  The GLS R2s are appropriately 

zero, since the risk premia on the factors match their zero expected returns, while the OLS R2 are often 

50% or more in models with multiple factors.  The simulations suggest that obtaining a high GLS R2 

represents a more stringent hurdle. 
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Figure 4. Population OLS and GLS R2s for artificial factors. 
This figure explores how easy it is to find factors that explain, in population, the cross section of expected 
returns on Fama and French’s 25 size-B/M portfolios.  We randomly generate factors – either factor loadings 
directly or zero-investment factor portfolios, as noted – and estimate the population OLS and GLS R2s when 
expected returns are regressed on factor loadings.  The average returns and covariance matrix of the size-B/M 
portfolios, quarterly from 1963 – 2004, are treated as population parameters in the simulations.  The plots are 
based on 5,000 draws of 1 to 5 factors. 
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Panel A: Random draws of factor loadings. Loadings for the 25 size-B/M portfolios are drawn from a MVN 
distribution with mean zero and covariance matrix proportional to the return covariance matrix. 
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Panel B: Random draws of factor portfolios. Zero-investment factors, formed from the size-B/M portfolios, are 
generated by randomly drawing a 25×1 vector of weights from a standard normal distribution. 
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Panel C: Random draws of zero-mean factor portfolios. Zero-investment factors, formed from the size-B/M 
portfolios, are generated by randomly drawing a 25×1 vector of weights from a standard normal distribution, but only factors 
with roughly zero expected returns are kept. 
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Prescription 4.  If a proposed factor is a traded portfolio, include the factor as one of the test assets on the 

left-hand side of the cross-sectional regression. 

 
Prescription 4 builds on Prescription 2, in particular, the idea that the cross-sectional price of risk for a 

factor portfolio should be the factor’s expected excess return.  One simple way to build this restriction 

into a cross-sectional regression is to ask the factor to price itself; that is, to test whether the factor 

portfolio itself lies on the estimated cross-sectional regression line. 

 

Prescription 4 is most important when the cross-sectional regression is estimated with GLS rather than 

OLS.  As mentioned above, when a factor portfolio is included as a left-hand side asset, GLS forces the 

regression to price the asset perfectly:  the estimated slope on the factor’s loading exactly equals the 

factor’s average return in excess of the estimated zero-beta rate (in essence, the asset is given infinite 

weight in the regression).  Thus, a GLS cross-sectional regression, when a traded factor is included as a 

test portfolio, is similar to the time-series approach of Black, Jensen, and Scholes (1972) and Gibbons, 

Ross, and Shanken (1989). 

 

Prescription 5.  Report confidence intervals for the cross-sectional R2. 

 
Prescription 5 is less a solution to the problems highlighted above – indeed, it does nothing to address the 

concern that it may be easy to find factors that produce high population R2s – than a way to make the 

sampling issues more transparent.  We suspect researchers would put less weight on the cross-sectional R2 

if the extremely high sampling error in it was clear (extremely high when using size-B/M portfolios, 

though not necessarily with other assets).  More generally, we find it odd that papers often emphasize this 

statistic without regard to its sampling properties. 

 

The distribution of the sample R2 can be derived analytically in special cases, but we’re not aware of a 

general formula or one that incorporates first-stage estimation error in factor loadings.  An alternative is 

to use simulations like those in Figure 2, one panel of which is repeated in Figure 5.  The simulations 

indicate that the sample R2 (OLS) is often significantly biased and skewed by an amount that depends on 

the true cross-sectional R2.  These properties suggest that reporting a confidence interval for R2 is more 

meaningful than reporting just a standard error. 

 

The easiest way to get confidence intervals is to ‘invert’ Figure 5, an approach suggested by Stock (1991) 

in a different context.  In the figure, the sample distribution of the estimated R2, for a given true R2, is 
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found by slicing the picture along the x-axis (fixing x, then scanning up and down).  Conversely, a 

confidence interval for the true R2, given a sample R2, is found by slicing the picture along the y-axis 

(fixing y, then scanning across).  For example, a sample R2 of 0.50 implies a 90% confidence interval for 

the population R2 of roughly [0.25, 1.00], depicted by the dark dotted line in the graph.  The confidence 

interval represents all values of the true R2 for which the estimated R2 falls within the 5th and 95th 

percentiles of the sample distribution.  The extremely wide interval in this example illustrates just how 

uninformative the sample R2 can be. 

 

Prescription 6.  Report confidence intervals for the (weighted) sum of squared pricing errors. 

 
Prescription 6 has the same goals as Prescription 5:  to provide a better summary measure of how well a 

model performs and to make sampling issues more transparent.  Again, Prescription 6 doesn’t address our 

concern that it may be easy to find factors that produce small population pricing errors for size-B/M 

portfolios.  But reporting confidence intervals should at least make clear when a test has low power:  we 

may not reject that a model performs perfectly (the null of zero pricing errors), but we also won’t reject 

that the pricing errors are quite large.  And the opposite can be true as well:  confidence intervals can 

reveal if a model is rejected not because the pricing errors are economically large but because the tests 

simply have strong power.  In short, confidence intervals allow us to better assess the economic signifi-

cance of the results. 

Figure 5. Sample distribution of the cross-sectional adj. R2. 
This figure repeats the ‘1 factor’ panel of Fig. 2.  It shows the sample distribution of the cross-sectional adj. R2, as a 
function of the true cross-sectional R2, for a model with one factor using Fama and French’s 25 size-B/M portfolios 
from 1963 – 2004 (quarterly returns).  The simulated factor is a combination of the size-B/M portfolios (the weights 
are randomly drawn to produce the given R2, as described in Section 2).  The plot is based on 40,000 bootstrap 
simulations (10 sets of simulated factors; 4,000 simulations with each).  

5th pct

50th pct

95th pct

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1  
       True R2 

 

S
am

pl
e 

ad
j. 

R
2 



 23

The (weighted) sum of squared pricing errors (SSPE) is an alternative to the cross-sectional R2 as a 

measure of performance.  Like the R2, sample estimates of the SSPE are generally strongly biased and 

skewed, suggesting that confidence intervals are more meaningful than standard errors or p-values.  The 

literature considers several versions of such statistics, including Shanken’s (1985) cross-sectional T2 

statistic, Gibbons, Ross, and Shanken’s (GRS 1989) F-statistic, Hansen’s (1982) J-statistic, and Hansen 

and Jagannathan’s (1997) HJ-distance.  Confidence intervals for any of these can be obtained using an 

approach like Figure 4, plotting the sample distribution as a function of the true parameter.  We describe 

here how to get confidence intervals for the GRS F-test, the cross-sectional T2 (or asymptotic χ2) statistic, 

and the HJ-distance, all of which have useful economic interpretations and either accommodate or impose 

restrictions on the zero-beta rate and risk premia. 

 

The GRS F-statistic tests whether the time-series intercepts (pricing errors) are all zero when excess 

returns are regressed on a set of factor portfolios, R = a + B RP + e.  (The F-test can be used only if the 

factors are all portfolio returns or if the non-return factors are replaced by mimicking portfolios.)  Let â be 

the OLS estimates of a and let Σ ≡ var(e).  The covariance matrix of â, given a sample for T periods, is Ω 

= c Σ, where c = (1 + sP
2) / T and sP

2 is the sample maximum squared Sharpe ratio attainable from 

combinations of P.  GRS show that, under standard assumptions, the weighted sum of squared pricing 

errors, S = â′ ΩOLS
-1

 â = c-1
 â′ ΣOLS

-1
 â is asymptotically chi-squared and, if returns are multivariate normal, 

the statistic F = c-1
 â′ ΣOLS

-1
 â [(T – N – K) / N (T – K – 1)] is small-sample F with non-centrality parameter λ 

= c-1 a′ Σ-1
 a and degrees of freedom N and T – N – K.  Moreover, the quadratic θz

2 = a′ Σ-1 a is the model’s 

unexplained squared Sharpe ratio, the difference between the population squared Sharpe ratio of the 

tangency portfolio (θτ
2) and that attainable from RP (θP

2).  Thus, a confidence interval for θz
2 can be found 

by inverting a graph like Fig. 5 but showing the sample distribution of F as a function of θz
2 (or, more 

formally, finding the set of θz
2 for which F is less than, say, the 95th percentile of an F-distribution with 

non-centrality parameter c-1 θz
2). 

 

Figure 6 illustrates the confidence-interval approach for testing the unconditional CAPM.  The test uses 

quarterly excess returns on Fama and French’s 25 size-B/M portfolios from 1963 – 2004 and our market 

proxy is the CRSP value-weighted index.  The size and B/M effects are quite strong during this sample 

(the average absolute quarterly alpha is 0.96% across the 25 portfolios), and the GRS F-statistic strongly 

rejects the CAPM, F = 3.491 with a p-value of 0.000.  The graph shows, moreover, that we can reject that 

the squared Sharpe ratio on the market is within 0.21 of the squared Sharpe ratio of the tangency 

portfolio:  a 90% confidence interval for θz
2 = θτ

2 – θM
2 is [0.21, 0.61].  Interpreted differently, following 
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MacKinlay (1995), there exists a portfolio z that is uncorrelated with the market and, with 90% 

confidence, has a quarterly Sharpe ratio between 0.46 (=0.211/2) and 0.78 (=0.611/2).  This compares with 

a quarterly Sharpe ratio for the market portfolio of 0.18 during this period.  The confidence interval 

provides a good summary measure of just how poorly the CAPM works. 

 

Shanken’s (1985) CSR T2 test is like the GRS F-test but focuses on pricing errors (residuals) in the cross-

sectional regression, μ = z ι + B λ + α.  (The T2 test can be used with non-return factors and doesn’t 

restrict the zero-beta rate to be rf, unless the intercept is omitted.)  The test is based on the traditional two-

pass methodology:  Let b be the matrix of factor loadings estimated in the first-pass time-series regression 

and let x = [ι b] be regressors in the second-pass cross-sectional regression with average returns, r, as the 

dependent variable.  The pricing errors, â = [I – x(x′x)-1x′] r, have asymptotic variance Σa = (1 + λ′ ΣF
-1

 λ) y 

Σ y / T, where y = I – x(x′x)-1x′ and the term (1 + λ′ ΣF
-1

 λ) accounts for estimation error in b.5  The T2-

statistic is then â′ Sa
+ â, where Sa

+ is the pseudoinverse of the estimated Σa (based on consistent estimates 

of λ, ΣF, y, and Σ; the pseudoinverse is necessary because Σa is singular).  Appendix A shows that T2 is 

                                                 
5 Appendix A explains these results in detail.  The variance Σa assumes that returns are IID over time and that α = 0.  
Also, Shanken analyzes GLS, not OLS, cross-sectional regressions.  The appendix shows that the OLS-based T2 test 
described here is equivalent to his GLS-based test. 

Figure 6. Sample distribution of the GRS F-statistic and confidence interval for θz
2. 

This figure provides a test of the CAPM using quarterly excess returns on Fama and French’s 25 size-B/M portfolios from 
1963–2004.  The sample distribution of the GRS F-statistic, for a given value of the true unexplained squared Sharpe ratio,
θz

2, can be found by slicing the graph along the x-axis (fixing θz
2 then scanning up to find percentiles of the sample 

distribution).  A confidence interval for θz
2, given the sample F-statistic, is found by slicing along the y-axis (fixing F then 

scanning across).  θz
2 is the difference between the squared Sharpe ratio of the tangency portfolio and that of the CRSP

value-weighted index.  F = c-1
 â′ ΣOLS

-1
 â (T–N–1)/[N(T–2)]; it has an F-distribution with noncentrality parameter c-1θz

2 and 
degrees of freedom N and T–N–1, where N=25, T=168, and c≈1/T.  The sample F-statistic is 3.49 and the corresponding 
90% confidence interval for θz

2 is depicted by the dark dotted line. 
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asymptotically χ2 with degrees of freedom N – K – 1 and non-centrality parameter n = α′ Σa
+ α = α′ (y Σ 

y)+ α [T / (1 + λ′ ΣF
-1

 λ)].  The quadratic, q = α′ (y Σ y)+ α, again has an economic interpretation:  it 

measures how far factor-mimicking portfolios are from the mean-variance frontier.  Specifically, let RP be 

K portfolios that are maximally correlated with F, and let θ(z) be what we’ll refer to as a generalized 

Sharpe ratio, using the zero-beta rate, rf + z, in place of the riskfree rate.  The appendix shows that q = 

θτ
2(z) – θP

2(z), the difference between the maximum generalized Sharpe ratio on any portfolio and that 

attainable from RP.  (The zero-beta rate in this definition is the z that minimizes q; it turns out to be the 

GLS zero-beta rate.)  Therefore, as with the GRS F-test, a confidence interval for q can be found by 

plotting the sample distribution of the T2-statistic as a function of q, using either the asymptotic χ2 

distribution or a simulated small-sample distribution.6 

 

The final test we consider, the HJ-distance, differs from the prior two because it focuses on SDF pricing 

errors, ε = E[y(1+R) – 1], where y = a + b P is a proposed SDF and we now define R as an N+1 vector of 

total (not excess) returns including the riskless asset.  Let m be any well-specified SDF.  Hansen and 

Jagannathan (1997) show that the distance between y and the set of true SDFs, D = minmE[(y–m)2], also 

equals the largest squared pricing error available on any portfolio relative to its second moment, i.e., D = 

maxx (ε′x)2/E[(1+Rx)2].  Using the second definition, the distance is easily shown to equal D = ε′ H-1 ε, 

where H ≡ E[(1+R)(1+R)′] is the second moment matrix of gross returns.  To get a confidence interval for 

D, Appendix B shows that D = θz
2 / (1 + rf)2, where θz

2 is the model’s unexplained squared Sharpe ratio, 

as defined earlier (see also Kan and Zhou, 2004).  Thus, like the GRS F-statistic, the estimate of D is 

small-sample F up to a constant of proportionality.7  A confidence interval is then easily obtained using 

the approach described above. 

 
 
4. Empirical examples 
 
The prescriptions above are straightforward to implement and, while not a complete solution to the 

problems discussed in Section 2, should help to improve the power and rigor of empirical tests.  As an 

illustration, we report tests for several models that have been proposed recently in the literature.  Cross-

sectional tests in the original studies focused on Fama and French’s 25 size-B/M portfolios, precisely the 

                                                 
6 A third possibility, applying the logic of Shanken (1985), would be to replace the asymptotic χ2 distribution with a 
finite-sample F distribution (details available on request). 
7 We assume that the parameters a and b are chosen to minimize D and that the factors are portfolio returns, or that 
all non-return factors are replaced by mimicking portfolios.  In the latter scenario, the small-sample F-distribution 
would not take into account estimation error in the mimicking-portfolio weights; simulations could be used instead 
to approximate the sampling distribution. 
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scenario for which our concerns are greatest.  Our goal here is not to disparage the papers – indeed, we 

believe the studies provide economically important insights – nor to provide a full review of the often 

extensive empirical tests in each paper, but only to show that our prescriptions can dramatically change 

how well a model seems to work. 

 

We investigate models for which necessary data are readily available.  The models include: (i) Lettau and 

Ludvigson’s (LL 2001) conditional consumption CAPM (CCAPM), in which the conditioning variable is 

the aggregate consumption-to-wealth ratio cay (available on Ludvigson’s website); (ii) Lustig and Van 

Nieuwerburgh’s (LVN 2004) conditional CCAPM, in which the conditioning variable is the housing 

collateral ratio mymo (we consider only their linear model with separable preferences; mymo is available 

on Van Nieuwerburgh’s website;); (iii) Santos and Veronesi’s (SV 2004) conditional CAPM, in which the 

conditioning variable is the labor income-to-consumption ratio sω; (iv) Li, Vassalou, and Xing’s (LVX 

2005) investment model, in which the factors are investment growth rates for households (ΔIHH), non-

financial corporations (ΔICorp), and the non-corporate sector (ΔINcorp) (we consider only this version of 

their model); and (v) Yogo’s (2006) durable–consumption CAPM, in which the factors are the growth in 

durable and non-durable consumption, ΔcDur and ΔcNon, and the market return (RM) (we consider only his 

linear model; the consumption series are available on Yogo’s website).  For comparison, we also report 

results for the simple unconditional CAPM, the unconditional consumption CAPM, and Fama and 

French’s (FF 1993) three-factor model (collectively called the benchmark models). 

 

Table 1 reports cross-sectional regressions of average returns on estimated factor loadings for the eight 

models.  The tests use quarterly excess returns (in %), from 1963 – 2004, and highlight Prescriptions 1, 5, 

and 6, our suggestions to expand the set of test portfolios beyond size-B/M portfolios and to report 

confidence intervals for the cross-sectional R2 and Shanken T2 (asymptotic χ2) statistic.  Specifically, we 

compare results using Fama and French’s 25 size-B/M portfolios alone (‘FF25’ in the table) with results 

for the expanded set of 55 portfolios that includes Fama and French’s 30 industry portfolios (‘FF25 + 30 

ind’).  Our choice of industry portfolios is based on the notion that they should provide a fair test of the 

models (in contrast to, say, momentum portfolios whose returns seem to be anomalous relative to any of 

the models).  We report OLS regressions, despite our advocacy of GLS regressions, for two main reasons:  

(i) to enhance comparison with prior studies; and (ii) Appendix A shows that there is a close link between 

the GLS R2 and the cross-sectional T2-statistic that do report, since both measure how far a model’s 

factor-mimicking portfolios are from the minimum-variance boundary.  Therefore, to limit reduncancy, 

we just report a p-value for the T2 statistic and a confidence interval for q, the difference between the 
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maximum generalizable Sharpe ratio and that attainable from a model’s mimicking portfolios (q is zero if 

the model fully explains the cross section of expected returns). 

 

The confidence intervals for q and the cross-sectional R2 are obtained using the methods described in the 

previous section.  For R2, we simulate the distribution of the sample adjusted R2 for true R2s between 0.0 

to 1.0 and invert plots like Figure 5; the simulations are similar to those in Figures 2 and 5, with the actual 

factors for each model now used in place of the artificial factors.8  We also use simulations to get a 

confidence interval for q, rather than rely on asymptotic theory, because the length of the time series in 

our tests (168 quarters) is small relative to the number of test assets (25 or 55).  The confidence interval 

for q is based on the T2-statistic since, as explained above, q determines the noncentrality parameter of 

T2’s (asymptotic) distribution.  Thus, we simulate the distribution of the T2-statistic for various values of 

q and invert a plot like Figure 6, with q playing the same role as θz
2 in the GRS F-test.  The p-value we 

report for the T2-statistic also comes from these simulations, with q = 0. 

 

Table 1 shows four key results.  First, adding industry portfolios dramatically changes the performance of 

the models, in terms of slope estimates, cross-sectional R2s, and T2 statistics.  Compared with regressions 

using only size-B/M portfolios, the slope estimates are almost always closer to zero and the cross-

sectional R2s often drop substantially.  The adj. R2 drops from 58% to 0% for LL’s model, from 57% to 

9% for LVN’s model, from 41% to 3% for SV’s model, from 80% to 42% for LVX’s model, and from 

18% to 3% for Yogo’s model.  In addition, for these five models, the T2 statistics are insignificant in tests 

with size-B/M portfolios but reject, or nearly reject, the models using the expanded set of 55 portfolios.  

The performance of FF’s three-factor model is similar to the other five – it has an R2 of 78% for the size-

B/M portfolios and 31% for all 55 portfolios – while the simple and consumption CAPMs have small adj. 

R2s for both sets of test assets. 

 

The second key result is that the cross-sectional R2 is often very uninformative about a model’s true 

(population) performance.  Our simulations show that, across the five main models in Table 1, a 95% 

confidence interval for the true R2 has an average width of 0.69, using either the size-B/M portfolios or 

the expanded set of 55 portfolios.  For regressions with size-B/M portfolios, we cannot reject that all 

                                                 
8 The only other difference is that, to simulate data for different true cross-sectional R2s, we keep the true factor 
loadings the same in all simulations, equal to the historical estimates, and change the vector of true expected returns 
to give the right R2.  Specifically, expected returns in the simulations equal μ = h (C λ) + ε, where C is the estimated 
matrix of factor loadings for a model, λ is the estimated vector of cross-sectional slopes, h is a scalar constant, and ε 
is a random drawn from a MVN[0, σε

2 I] distribution; h and σε are chosen to give the right cross-sectional R2 and to 
maintain the historical cross-sectional dispersion in expected returns. 
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models work perfectly, as expected, but neither can we reject that the true R2s are quite small, with an 

average lower bound for the confidence intervals of 0.31.  (Li, Vassalou, and Xing’s model is an outlier, 

with a lower bound of 0.75.)  For regressions with all 55 portfolios, four of the five confidence intervals 

include 0.00 and the fifth includes 0.20 – that is, using just the sample R2, we can’t reject that the models 

have essentially no explanatory power.  One of the confidence intervals covers the entire range of R2s 

from 0.00 to 1.00.  The table suggests that, as a general rule, sampling variation in the R2 is just too large 

to use it as a reliable metric of performance. 

 

The third key result is that none of the models provides much improvement over the simple or consump-

tion CAPM when performance is measured by q, the distance a model’s mimicking portfolios are from 

the minimum-variance boundary.  (By implication, none shows much improvement when performance is 

measured by the GLS R2, with an average GLS R2 of only 0.10 for the five models using size-B/M 

portfolios and 0.04 using the full set of 55 portfolios.)  This is true even for tests with size-B/M portfolios, 

for which OLS R2s (point estimates) are quite high, and is consistent with our view that q provides a more 

rigorous hurdle than the OLS R2.  The distance q can be interpreted as the maximum generalized squared 

Sharpe ratio (quarterly, defined relative to the optimal zero-beta rate) on a portfolio that is uncorrelated 

with the factors, which is zero if the model is well-specified.  For the size-B/M portfolios, the sample q is 

0.46 for the simple and consumption CAPMs, compared with 0.44 for LL’s model, 0.45 for LVN’s 

model, 0.43 for SV’s model, 0.34 for LVX’s model, and 0.46 for Yogo’s model.  Adding the 30 industry 

portfolios, the simple and consumption CAPM q’s are both 1.34, compared with 1.31, 1.32, 1.28, 1.27, 

and 1.24 for the other models.  Just as important, confidence intervals for the true q are generally quite 

wide, so even when we can’t reject that q is zero, we also cannot reject that q is very large.  Again, this is 

true even for the size-B/M portfolios, for which the models seem to perform well if we narrowly focus on 

the T2-statistic’s p-value under the null. 

 

Finally, in the spirit of taking seriously the cross-sectional parameters (Prescription 2), the table shows 

that none of the models explains the level of expected returns:  the estimated intercepts are all 

substantially greater than zero for tests with either the size-B/M portfolios or the expanded set of 55 

portfolios.  The regressions use excess quarterly returns (in %), so the intercepts can be interpreted as the 

estimated quarterly zero-beta rates over and above the riskfree rate.  Annualized, the zero-beta rates range 

from 7.8% to 14.3% above the riskfree rate.  These estimates cannot reasonably be attributed to 

differences in lending vs. borrowing costs. 

 

In sum, despite the seemingly impressive ability of the models to explain the cross section of average 



 29

returns on size-B/M portfolios, none of the models performs very well once we expand the set of test 

portfolios, consider confidence intervals for the true R2 and cross-section T2 statistic, or ask the models to 

price the riskfree asset. 

 
 
5. Conclusion 
 
The main point of the paper is easily summarized:  Asset-pricing models should not be judged by their 

success in explaining average returns on size-B/M portfolios (or, more generally, for portfolios in which a 

couple of factors are known to explain most of the time-series and cross-sectional variation in returns).  

High cross-sectional explanatory power for size-B/M portfolios, in terms of high R2 or small pricing 

errors, is simply not a sufficiently high hurdle by which to evaluate a model.  In addition, the sample 

cross-sectional R2, as well as more formal test statistics based on the weighted sum of squared pricing 

errors, seems to be uninformative about the true (population) performance of a model, at least in our tests 

with size, B/M, and industry portfolios. 

 

The problems we highlight are not just sampling issues, i.e., they are not solved by getting standard errors 

right (but sampling issues do make them worse).  In population, if returns have a covariance structure like 

that of size-B/M portfolios, true expected returns will line up with true factor loadings so long as a 

proposed factor is correlated with returns only through the variation captured by the two or three common 

components in returns.  The problems are also not solved by using an SDF approach, since SDF tests are 

very similar to traditional cross-sectional regressions. 

 

The paper offers four key suggestions for improving empirical tests.  First, since the problems are tied to 

the strong covariance structure of size–B/M portfolios, one simple suggestion is to expand the set of test 

assets to include portfolios sorted in other ways, for example, by industry or factor loadings.  Second, 

since the problems are exacerbated by the fact that empirical tests often ignore theoretical restrictions on 

the cross-sectional intercept and slopes, another suggestion is to take their magnitudes seriously when 

theory provides appropriate guidance.  Third, since the problems we discuss appear to be less severe for 

GLS regressions, another suggestion is to report the GLS R2 in addition to, or instead of, the OLS R2.  

Last, since the problems are exacerbated by sampling issues, our fourth suggestion is to report confidence 

intervals for cross-sectional R2s and other test statistics using the techniques described in the paper.  

Together, these prescriptions should help to improve the power and rigor of empirical tests, though they 

clearly don’t provide a perfect solution. 
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The paper also contributes to the cross-sectional asset-pricing literature in a number of additional ways:  

(i) we provide a novel interpretation of the GLS R2 in terms of the relative mean-variance efficiency of 

factor-mimicking portfolios, building on the work of Kandel and Stambaugh (1995); (ii) we show that the 

cross-sectional T2 statistic based on OLS regressions is equivalent to that from GLS regressions (identical 

in sample except for the Shanken-correction terms), and we show that both are a transformation of the 

GLS R2;  (iii) we derive the asymptotic properties of the cross-sectional T2 statistic under both the null 

and alternative hypotheses, offering an economic interpretation of the non-centrality parameter; and (iv) 

we describe a way to obtain confidence intervals for the GRS F-statistic, cross-sectional T2 statistic, and 

Hansen-Jagannathan distance, in addition to confidence intervals for the cross-sectional R2.  These results 

are helpful for understanding cross-sectional asset-pricing tests. 
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Appendix A 
 
This appendix derives the asymptotic distribution of the cross-sectional T2-statistic, under the null and 

alternatives, and provides an economic interpretation of the non-centrality parameter. 

 

Let Rt be the N × 1 vector of excess returns and Ft be the K × 1 vector of factors in period t.  Both are 

assumed, in this appendix, to be IID over time.  The matrix of factor loadings is estimated in the first-pass 

time-series regression, Rt = c + B Ft + et, and the relation between expected returns and B is estimated in 

the second-pass cross-sectional regression, μ = z ι + B γ + α = X λ + α, where μ ≡ E[Rt], λ′ ≡ [z  γ′], X ≡ [ι  

B], and α is the vector of the true pricing errors.  More precisely, the parameters in the cross-sectional 

equation depend on whether we are interested in an OLS or GLS regression:  for OLS, the population 

slope is λ = (X′X)-1X′μ and the pricing errors are α ≡ [I – X(X′X)-1X′] μ ≡ y μ; for GLS, the slope is λ* = 

(X′V-1X)-1X′V-1μ and the pricing errors are α* ≡ [I – X(X′V-1X)-1X′V-1] μ ≡  y* μ, where V ≡ var(Rt).  In 

practice, of course, the cross-sectional regression is estimated with average returns substituted for μ and 

estimates of B substituted for the true loadings. 

 

We begin with a few population results that will be useful for interpreting empirical tests.  We omit the 

time subscript until we turn to sample statistics. 

 

Result 1.  The cross-sectional slope and pricing errors in a GLS regression are identical if V is replaced 

by Σ ≡ var(e).  Thus, we will use V and Σ interchangeably in the GLS results below depending on which 

is more convenient for the issue at hand. 

 
Proof:  See Shanken (1985).  The result follows from V = B ΣF B′ + Σ and V-1

 = Σ-1
 – Σ-1 B [ΣF

-1 + B′Σ-1B]-1
 

B′ Σ-1, which, along with the definition of X, imply that (X′V-1X)-1X′V-1 = (X′Σ-1X)-1X′Σ-1. ⁪ 

 

Recall that α = y μ and that α* = y* μ.  The quadratics q = α′ [y Σ y]+
 α and q* = α*′ [y* Σ y*′]+

 α*, where 

a superscript ‘+’ denotes a pseudoinverse, will be important for interpreting the cross-sectional T2 test.  

The analysis below uses the facts, easily confirmed, that y and Σ-1y* are symmetric, y and y* are 

idempotent (y = yy and y* = y*y*), y = yy*, y* = y*y, and yX = y*X = 0. 

 

Result 2.  The quadratics q and q* are unchanged if Σ is replaced by V.  Together with Result 1, this 

result will imply that the T2 statistics, from either OLS or GLS, are the same regardless of which 

covariance matrix we use. 
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Proof:  y X = y* X = 0 implies that y B = y* B = 0, since X = [ι  B].  Thus, y V = y B ΣF B′ + y Σ = y Σ and 

y* V = y* B ΣF B′ + y* Σ = y* Σ.  The result follows immediately. ⁪ 

 

Result 3.  The OLS and GLS quadratics are identical, i.e., q = q*. 

 
Proof:  The quadratics are defined as q = α′ [y Σ y]+ α and q* = α*′ [y* Σ y*′]+ α*.  Using the definition 

of a pseudoinverse, it is easy to confirm that [y Σ y]+ = Σ-1 y*, implying that q = α′ Σ-1 y* α.  Further, [y* Σ 

y*′]+
 = Σ-1(y*)+, implying that q* = α*′ Σ-1(y*)+

 α*.9  Moreover, α* = y*μ = y*α, from which it follows 

that q* = α′y*′ Σ-1(y*)+
 y*α = α′ (Σ-1y*)′ (y*)+

 y*α = α′ Σ-1 y*α = q, where the second-to-last equality uses 

the fact that Σ-1y* is symmetric and that y*(y*)+y* = y*. ⁪ 

 

Result 4.  The OLS and GLS quadratics equal q* = α*′ Σ-1 α* = α*′ V-1 α*.  (This result implies that our 

cross-sectional T2-statistic matches that of Shanken, 1985.) 

 
Proof:  Result 3 shows that q* = α′ Σ-1 y* α.  Recall that y* is idempotent, Σ-1y* is symmetric, and α* = 

y* α.  Therefore, q* = α′ Σ-1
 y*y* α = α′ y*′ Σ-1

 y* α = α*′ Σ-1
 α*. ⁪ 

 

Mimicking portfolios, RP, for the factors are defined as the K portfolios maximally correlated with F.  The 

N × K matrix of mimicking-portfolio weights are slopes in the regression F = k + wP′ R + s, where cov(R, 

s) = 0 (we ignore the constraint that wP′ι = ι for simplicity; the weights can be scaled up or down to make 

the constraint hold without changing the substance of any results).  Thus, wP = V-1 cov(R, F) = V-1 B ΣF 

and stocks’ loadings on the mimicking portfolios are C = cov(R, RP) ΣP
-1 = V wP ΣP

-1= B ΣF ΣP
-1. 

 

Result 5.  The cross-sectional regression (OLS or GLS) of μ on B is equivalent to the cross-sectional 

regression of μ on C, with or without an intercept, in the sense that the intercept, R2, pricing errors, and 

quadratics q and q* are the same in both. 

 
Proof:  The first three claims, that the intercept, R2, and pricing errors are the same, follow directly from 

the fact that C is a nonsingular transformation of B.  The final claim, that the quadratics are the same 

regardless of whether we use F or RP, follows from the fact that the pricing errors are the same and the 

quadratics can be based on V, i.e., q* = α*′ V-1 α*, where V is invariant to the set of factors. ⁪ 
                                                 
9 More precisely, Σ-1(y*)+ is a generalized inverse of y* Σ y*′, though not necessarily the pseudoinverse (the 
pseudoinverse of A is such that AA+A = A, A+AA+ = A+, and A+A and AA+ are symmetric; a generalized inverse 
ignores the two symmetry conditions).  It can be shown that the use of Σ-1(y*)+ in the quadratic q* is equivalent to 
using the pseudoinverse, which may or may not be different (we don’t know). 
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Result 6.  The GLS regression of μ on B or μ on C, with or without an intercept, prices the mimicking 

portfolios perfectly, i.e., αP* = wP′ α* = 0.  It follows that the slopes on C equal μP – z* ι, the expected 

return on the mimicking portfolio in excess of the GLS zero-beta rate (for this last result, we assume that 

wP is scaled to make wP′ι = ι). 

 
Proof:  From the discussion prior to Result 5, wP = V-1 B ΣF, implying that αP* = wP′ α* = ΣF B′ V-1 α* = 

ΣF B′ V-1 y* μ.  Further, X′ V-1
 y* = 0, from which it follows that B′ V-1

 y* = 0 and, hence, αP* = 0.  This 

proves the first half of the result.  Also, by definition, α* = μ – z* ι – C γP*, where γP* are the GLS slopes 

on C.  Therefore, αP* = wP′ α* = μP – z* ι – γP* = 0, where μP = wP′ μ and CP = wP′ C = IK.  Solving for 

γP* proves the second half of the result. ⁪ 

 

Result 7.  Pricing errors in a GLS cross-sectional regression, of μ on either B or C, are identical to the 

intercepts in a time-series regression of R – z*ι on a constant and RP – z*ι.  It follows that the quadratics 

q and q* equal θτ
2(z*) – θP

2(z*), where θi(z*) is a generalized Sharpe ratio with respect to rf + z*, defined 

as (μi – z*) / σi, and σi is asset i’s standard deviation, τ is the ‘tangency’ portfolio with respect to rf + z*, 

and θP is the maximum squared generalized Sharpe ratio attainable from RP. 

 
Proof:  Intercepts in the time-series regression are αTS = μ – z*ι – C (μP – z*ι).  From Result 6, these 

equal α* since γP* = μP – z*ι.  The intepretation of the quadratics then follows immediately from the 

well-known intepretation of αTS′ Σ-1
 αTS (Jobson and Korkie, 1982; Gibbons, Ross, Shanken, 1989), with 

the only change that the Sharpe ratios need to be defined relative to rf + z*. ⁪ 

 

Result 8. The GLS R2 equals 1 – q / Q = 1 – q* / Q, where Q = (μ – μgmv ι)′ V-1 (μ – μgmv ι) and μgmv is 

the expected return on the global minimum variance portfolio (note that Q depends only on the character-

istics of asset returns, not the factors being tested).  Further, the GLS R2 is zero if and only if the factors’ 

mimicking portfolios all have expected returns equal to μgmv (i.e., they lie exactly in the middle of mean-

variance space), and GLS R2 is one if and only if some combination of the mimicking portfolios lies on 

the minimum-variance boundary. 

 
Proof:  The first claim follows directly from the definition of the GLS R2, i.e., GLS R2 = 1 – α*′ V-1 α* / 

(μ – znf ι)′ V-1
 (μ – znf ι), where znf is the GLS intercept when μ is regressed only a constant.  znf is the 

same as μgmv and α*′ V-1 α* is the same as q* (see Result 4).  The second claim, which we state without 

further proof, is a multifactor generalization of the results of Kandel and Stambaugh (1995) with 

mimicking portfolios substituted for non-return factors (see Result 5).  The key fact is that q* = Q – (μP – 



 34

μgmv ι)′ ΣP*-1 (μ – μgmv ι), where ΣP* is the residual covariance matrix when RP is regressed on the Rgmv.  

Thus, q* is zero (the GLS R2 is one) only if some combination of RP lies on the minimum-variance 

boundary, and q* equals Q (the GLS R2 is zero) only if μP = μgmv ι. ⁪ 

 

Together, Results 1 – 8 describe key properties of GLS cross-sectional regressions, establish the equality 

between the OLS and GLS quadratics q and q*, and establish the connections among the location of RP in 

mean-variance space, the GLS R2, and the quadratics.  All of the results have exact parallels in sample, 

redefining moments as sample statistics rather than population parameters. 

 

Our final results consider the asymptotic properties of the cross-sectional T2 statistic under the null that 

pricing errors are zero, α = 0 and α* = 0, and generic alternatives that they are not.  The T2 statistic is, 

roughly speaking, the sample analog of the quadratics q and q* based on the traditional two-pass 

methodology (defined precisely below).  Let r be average returns, b be the sample (first-pass, time-series 

regression) estimate of B, x = [ι  b] be the corresponding estimate of X, v and S be the usual estimates of 

V and Σ, ŷ = I – x(x′x)-1x′ be the sample estimate of y, and ŷ* = I – x(x′v-1x)-1x′v-1 be the sample estimate 

of y*.  The estimated OLS cross-sectional regression is r = x λ̂ + â, where λ̂ = (x′x)-1x′r and â = ŷ r is the 

sample OLS pricing error.  The estimated GLS regression is r = x *λ̂ + â*, where *λ̂ = (x′v-1x)-1x′v-1r and 

â* = ŷ* r.  Equivalently, since r = (1/T) Σt Rt, the estimated slope and pricing errors can be interpreted as 

time-series averages of period-by-period Fama-MacBeth cross-sectional estimates.  We will focus on 

OLS regressions but, as a consequence of the sample analog of Result 3 above, we show that the T2 

statistic is equivalent from OLS and GLS. 

 

Our analysis below uses the following facts: 
 
(1)  Rt = μ + B UFt + et, where UFt = Ft – μF. 
(2)  μ = X λ + α = x λ + (X – x) λ + α = x λ + (B – b) γ + α. 
(3)  B UFt = b UFt + (B – b) UFt. 
(4)  ŷ x = 0 and ŷ b = 0 
 
Combining these facts, the pricing error in period t is ât ≡ ŷ Rt = ŷ (B – b) γ + ŷ α + ŷ (B – b) UFt + ŷ et 

and the time-series average is â = ŷ (B – b) γ + ŷ α + ŷ (B – b) UF  + ŷ ēt, where an upper bar denotes a 

time-series average.  Asymptotically, b → B, ŷ → y, and UF  and ēt both go to zero.  These observations, 

together with y α = α, imply that â is a consistent estimator of α.  Also, the second-to-last term, ŷ (B – 

b) UF , converges to zero at a faster rate than the other terms and so, for our purposes, can be dropped:  â 

= ŷ (B – b) γ + ŷ α + ŷ ēt. 
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Result 9.  Define d ≡ â – ŷ α.  Asymptotically, T1/2 d converges in distribution to N(0, T Σd), where Σd = y 

Σ y (1 + γ′ ΣF
-1 γ) / T. 

 
Proof:  The asymptotic mean is zero since â – ŷ α → α – y α = 0.  The asymptotic covariance follows 

from observing that d is the same as â under the null that α = 0, the scenario considered by Shanken 

(1985, 1992b), and the term (1 + γ′ΣF
-1γ) is just the Shanken correction for estimation error in b.  More 

precisely, d = ŷ (B – b) γ + ŷ ēt.  The asymptotic distribution is the same substituting y for ŷ, and the two 

terms are uncorrelated with each other under the standard assumptions of OLS regressions (i.e., in a 

regression, estimation error in the slopes is uncorrelated with the mean of the residuals).  Therefore, Σd = 

var[y (B – b) γ] + var[y ēt].  Let vec(b – B) be the NK × 1 vector version of b – B, stacking the loadings for 

asset 1, then asset 2, etc, which has asymptotic variance Σ ⊗ ΣF
-1

 / T from standard regression results.  

Rearranging and simplifying, the first term is var[y(B – b)γ] = γ′ ΣF
-1

 γ (y Σ y) / T and the second term is 

var[y ēt] = y Σ y / T.  Summing these gives the covariance matrix. ⁪ 

 

A corollary of Result 9 is that, under the null that α = 0, T1/2 â also converges in distribution to N(0, T Σd).  

To test whether α = 0, the cross-sectional T2 statistic is then naturally defined as T2 = â′ Sd
+ â, where Sd is 

the sample estimate of Σd substituting the statistics ŷ, S, γ̂ , and SF for the population parameters y, Σ, γ, 

and ΣF.  Thus, T2 = â′ [ŷ S ŷ]+ â [T / (1 + γ̂ ′SF
-1 γ̂ )].  The key quadratic here, q̂ = â′ [ŷ S ŷ]+ â, is the sample 

counterpart of q defined earlier.  Result 3 implies that this OLS-based T2 statistic is identical to a GLS-

based T2 statistic defined using *q̂ , the sample equivalent of the GLS quadratic q* (the T2 statistics are 

identical assuming the same Shanken correction term, γ̂ ′SF
-1 γ̂ , is used for both; they are asymptotically 

equivalent under the null as long as consistent estimates of γ and ΣF are used for both).  Moreover, Result 

4 implies that T2 = â*′ S-1 â* [T / (1 + γ̂ ′SF
-1 γ̂ )]. 

 

Result 10.  The cross-sectional T2 statistic is asymptotically χ2 with degrees for freedom N – K – 1 and 

non-centrality parameter n = k q*, where k = T / (1 + γ′ ΣF
-1 γ).10  Equivalently, from Result 7, the non-

centrality parameter is n = k [θτ
2(z*) – θP

2(z*)]. 

 
Proof, part 1 (distribution under the null):  From Result 9, if α = 0, â is the same as d and T1/2 â converges 
                                                 
10 We use the terminology of a limiting distribution somewhat informally here (notice that, as the result is stated, the 
noncentrality parameter goes to infinity as T get large unless α and q* are zero).  The asymptotic result can be stated 
more formally by considering pricing errors that go to zero as T gets large:  Suppose that α* = T-1/2 δ*, for some 
fixed vector δ*.  For this sequence of α*, the T2 statistic converges in distribution to a χ2 with noncentrality 
parameter kq* = δ*′ Σ-1 δ* / (1 + γ′ ΣF

-1 γ), where k = T / (1 + γ′ ΣF
-1 γ) and q* = δ*′ Σ-1 δ* / T. 
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in distribution to N(0, T Σd).  Σd is nonsingular with rank N – K – 1, so â′ Σd
+ â is asymptotically χ2 with 

degrees of freedom N – K – 1.  Further, Sd
+ is a consistent estimate of Σd

+, implying that â′ Sd
+

 â converges 

to the same distribution.  [Sd
+ converges to Σd

+ since Sd
+ = S-1

 ŷ* T / (1 + γ̂ ′SF
-1 γ̂ ), from Result 3, which 

clearly converges to Σd
+ = Σ-1

 y* T / (1 + γ′ ΣF
-1 γ)]. 

 

Proof, part 2 (distribution under alternatives):  In general, â = d + ŷ α = ŷ (d + α), where the first equality 

follows from the definition of d and the second follows from the fact that ŷ is idempotent and ŷ d = d.  

Following the proof of Result 3, it is straightforward to show that ŷ [ŷ S ŷ]+ ŷ = [ŷ S ŷ]+, which implies 

that q̂ = â′ [ŷ S ŷ]+ â = (d + α)′ [ŷ S ŷ]+ (d + α).  The matrix [ŷ S ŷ]+ converges to [y Σ y]+ and the T2 

statistic is T2 = q̂ T / (1 + γ̂ ′SF
-1 γ̂ ), which together imply that T2 has the same asymptotic distribution as 

(d + α)′ Σd
+ (d + α), where Σd = [y Σ y]+ (1 + γ′ ΣF

-1 γ) / T.  Recall that T1/2 d converges in distribution to 

N(0, T Σd).  Therefore, d′ Σd
+ d is asymptotically central χ2 and (d + α)′ Σd

+ (d + α) is noncentral χ2 with 

noncentrality parameter n = α′ Σd
+ α (both with degrees of freedom N – K – 1).  Result 10 then follows 

from observing that the noncentrality parameter can be rewritten as n = α′ [y Σ y]+
 α T / (1 + γ′ ΣF

-1
 γ) = q* 

k, where k = T / (1 + γ′ ΣF
-1

 γ). ⁪ 

 
 
Appendix B 
 
This appendix derives the small-sample distribution of the HJ-distance when returns are multivariate 

normal and the factors in the proposed model are portfolio returns (or have been replaced by maximally 

correlated mimicking portfolios).  R is defined, for the purposes of this appendix, to be the N+1 vector of 

total rates of return on the test assets, including the riskless asset. 

 

Let y = a + b RP.  The HJ-distance is defined as D = minmE[(m – y)2], where m represents any well-

specified SDF, i.e., any variable for which E[m(1+R)] = 1.  Hansen and Jagannathan (1997) show that, if 

y is linear in asset returns (or is the projection of a non-return y onto the space of asset returns), then the 

m* which solves the minimization problem is linear in the return on the tangency portfolio, i.e., m* = v0 + 

v1 Rτ for some constants v0 and v1, and D = E[(m* – y)2]. 

 

The constants a and b are generally unknown and chosen to minimize D.  Therefore, a and b solve mina,b 

[E(m* – a – b RP)2].  This problem is simply a standard least-squares projection problem, so D turns out to 

be nothing more than the residual variance when m* is regressed on a constant and RP.  Equivalently, D is 

v1
2 times the residual variance when Rτ is regressed on a constant and RP:  D = v1

2 var(ω), where ω is 



 37

from the regression Rτ = a′ + b′ RP + ω.  Kandel and Stambaugh (1987) and Shanken (1987) show that the 

correlation between any portfolio and the tangency portfolio equals the ratio of their Sharpe measures, 

cor(Rx, Rτ) = θx/θτ.  Thus, b′ gives the combination of RP that has the maximum squared Sharpe ratio, 

denoted θP
2, from which it follows that var(ω) = (1 – θP

2 / θτ
2) στ

2.  Cochrane (2001) shows that v1 = –μτ / 

[στ
2 (1+rf)], implying that the HJ distance is D = v1

2 var(ω) = (θτ
2 – θP

2) / (1 + rf)2, where θτ
2 – θP

2 can be 

interpreted as the proposed model’s unexplained squared Sharpe ratio. 

 

The analysis above is cast in terms of population parameters, but equivalent results go through in sample, 

re-defining all quantities as sample moments.  Thus, the estimated HJ-distance, d, is proportional to the 

difference between the sample squared Sharpe ratios of the ex post tangency portfolio and the portfolios 

in RP.  Following the discussion in Section 4, the sample HJ-distance is therefore proportional to the GRS 

F-statistic:  d = F c / (1 + rf)2 [N (T – K – 1) / (T – N – K)], where c = (1 + sP
2) / T and sP

2 is the sample 

counterpart to θP
2.  It follows immediately that, up to a constant of proportionality, d is non-central F with 

non-centrality parameter λ = c-1 a′ Σ-1
 a = c-1 (1 + rf)2 D. 
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Table 1. Empirical tests of asset-pricing models, 1963 – 2004. 
The table reports slopes, Shanken (1992b) t-statistics (in parentheses), and adj. R2s from cross-sectional regressions of 
average excess returns on estimated factor loadings for eight models proposed in the literature.  Returns are quarterly (%).  
The test assets are Fama and French’s 25 size-B/M portfolios used alone or together with their 30 industry portfolios.  The 
cross-sectional T2 (asymptotic χ2) statistic tests whether residuals in the cross-sectional regression are all zero, as descri-
bed in the text, with simulated p-values in brackets.  T2 is proportional to the distance, q, that a model’s true mimicking 
portfolios are from the minimum-variance boundary, measured as the difference between the maximum generalized 
Sharpe ratio and that attainable from the mimicking portfolios; the sample estimate of q is reported in the final column.  
95% confidence intervals for the true R2 and q are reported in brackets below the sample values.  The models are estimated 
from 1963 – 2004 except Yogo’s, for which we have factor data through 2001. 
 
Model and test assets Variables  Adj. R2 T2 q 

Lettau & Ludvigson const. cay Δc cay×Δc     

 FF25 3.33 -0.81 0.25 0.00  0.58 33.9 0.44 
  (2.28) (-1.25) (0.84) (0.42)  [0.30, 1.00] [p=0.08] [0.00, 0.72] 

 FF25 + 30 industry 2.50 -0.48 0.09 -0.00  0.00 193.8 1.31 
  (3.29) (-1.23) (0.53) (-1.10)  [0.00, 0.35] [p=0.00] [0.18, 1.08] 

Lustig & V Nieuwerburgh const. my Δc my×Δc     

 FF25 3.58 4.23 0.02 0.10  0.57 20.8 0.45 
  (2.22) (0.76) (0.04) (1.57)  [0.35, 1.00] [p=0.57] [0.00, 0.48] 

 FF25 + 30 industry 2.78 0.37 -0.02 0.03  0.09 157.1 1.32 
  (3.51) (0.13) (-0.09) (1.40)  [0.00, 1.00] [p=0.04] [0.00, 0.96] 

Santos & Veronesi const. RM sω×RM     

 FF25 2.45 -0.32 -0.22  0.41 19.7 0.43 
  (1.39) (-0.17) (-2.04)  [0.15, 1.00] [p=0.83] [0.00, 0.18] 

 FF25 + 30 industry 2.29 -0.17 -0.05  0.03 188.7 1.28 
  (2.75) (-0.16) (-1.51)  [0.00, 0.70] [p=0.01] [0.06, 0.90] 

Li, Vassalou, & Xing const. ΔIHH ΔICorp ΔΙNcorp     

 FF25 2.47 -0.80 -2.65 -8.59  0.80 25.2 0.34 
  (2.13) (-0.39) (-1.03) (-1.96)  [0.75, 1.00] [p=0.29] [0.00, 0.48] 

 FF25 + 30 industry 2.22 0.20 -0.93 -5.11  0.42 141.2 1.27 
  (3.14) (0.19) (-0.58) (-2.32)  [0.20, 1.00] [p=0.11] [0.00, 0.84] 

Yogo const. ΔcNdur ΔcDur  RM     

 FF25 1.98 0.28 0.67 0.48  0.18 24.9 0.46 
  (1.36) (1.00) (2.33) (0.29)  [0.00, 1.00] [p=0.69] [0.00, 0.30] 

 FF25 + 30 industry 1.95 0.18 0.19 0.12  0.02 159.3 1.24 
  (2.27) (1.01) (1.52) (0.11)  [0.00, 0.60] [p=0.06] [0.00, 0.78] 

CAPM const. RM      

 FF25 2.90 -0.44  -0.03 77.5 0.46 
  (3.18) (-0.39)  [0.00, 0.55] [p=0.00] [0.12, 0.48] 

 FF25 + 30 industry 2.03 0.10  -0.02 225.2 1.34 
  (2.57) (0.09)  [0.00, 0.35] [p=0.00] [0.18, 0.96] 

 
Table 1 continues on next page (variables are defined at the end of the table) 
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Table 1, continued. 
 
Model and test assets Variables  Adj. R2 T2 q 

Consumption CAPM const. Δc      

 FF25 1.70 0.24  0.05 60.6 0.46 
  (2.47) (0.89)  [0.00, 1.00] [p=0.01] [0.06, 0.66] 

 FF25 + 30 industry 2.07 0.03  -0.02 224.5 1.34 
  (3.51) (0.15)  [0.00, 0.65] [p=0.00] [0.18, 1.02] 

Fama & French const. RM SMB HML     

 FF25 2.99 -1.42 0.80 1.44  0.78 56.1 0.37 
  (2.33) (-0.98) (1.70) (3.11)  [0.60, 1.00] [p=0.00] [0.06, 0.42] 

 FF25 + 30 industry 2.21 -0.49 0.60 0.87  0.31 200.4 1.24 
  (2.14) (-0.41) (1.24) (1.80)  [0.00, 0.90] [p=0.00] [0.12, 0.90] 

 
Variables: 
RM = CRSP value-weighted excess return 
Δc = log consumption growth 
cay = Lettau and Ludvigson’s (2001) consumption-to-wealth ratio 
my = Lustig and Van Nieuwerburgh’s (2004) housing collateral ratio (based on mortgage data) 
sω = labor income to consumption ratio 
ΔIHH, ΔICorp, ΔINcorp = log investment growth for households, non-financial corporations, and the non-corporate sector 
ΔcNdur, ΔcDur = Yogo’s (2005) log consumption growth for non-durables and durables 
SMB, HML = Fama and French’s (1993) size and B/M factors 
 




