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Abstract

A variety of qualitative dependent variable models are surveyed with

attention focused on the computational aspects of their analysis.

The models covered include single equation dichotomous models;

single equation polychotomous models with unordered, ordered, and

sequential variables; and simultaneous equation models. Care is

taken to illucidate the nature of the suggested "full information"

and "limited information" approaches to the simultaneous equation

models and the formulation of recursive and causal chain models.
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1. Introduction

Very often economic variables observed are qualitative rather than

quantitative, e.g., whether or not a person buys a car, whether or not a person

buys a house, whether or not a person goes to a college, what mode of travel a

person chooses, what occupation a person chooses, etc. If these variables are

exogenous, there is no problem with the usual analysis. If these variables are

endogenous then we have a problem. We will first review some of these models

and then discuss the computational aspects. Earlier reviews can be found for

example in Amemiya [2), Cox [8], McFadden [17] and Nerlove and Press [18]. In

section 2 we outline the several functional forms that have been suggested for

binary choice or dichotomous models. In section 3 we outline the polychotomous

models and discuss the difference between the McFadden logit model and the usual

multinoinial logit model. In section 4 we discuss multivariate and simultaneous

equations models and some problems of identification. In section 5 we discuss

some estimation procedures and computational considerations that would be useful

in the preparation of a package for the TROLL system.

2. Different Functional Forms

Consider the case where there are only two possible choices, e.g., buy

a car or not, go to college or not, etc. The dependent variable y takes on the

values 1 or U corresponding to the two choices. The easiest method is to ignore

the nature of y and estimate the usual regression model
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y = + u (1)

But since y takes on the values 1 or 0, u can take on only two values (1-e'x)

and -'x. Hence we cannot assume homoscedasticity of the residuals (nor can we

assume normality). Goldberger [10] discusses a two step procedure to tackle

this problem of heteroscedasticity. Further discussion of the inadequacies of

this model can be found in Nerlove and Press [18].

To solve the different complications arising from the direct estimation

of (1), it has been suggested that a reasonable way of proceeding is to change

the specification (1) so that we say

P = Prob (y = 1) = Prob (u < 'x) = F('x) (2)

and 1-P = Prob (y = 0) = 1 - F('x)

and treat the observed values of y as a realization of a binomial process with

these probabilities.

There have been several suggestions in the literature for the distri-

bution of u.

(1) If u is Normal, F($'x) is cumulative normal and we have what is known as

Normit or Probit analysis. 'x is called Normit P and 'x+5 is called

probit P. The term 'probit' is due to Bliss.

(2) If u has the seth2 distribution

U
f(u) = duu2

(1+e )

then F('x) is the logistic
e

(3)

1+e

$'x =Log. is called logit P. It is also called log odds. Fisher and

Yates defined logit P as . The term logit is due to Berkson.
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(3) If u has the Cauchy distribution we have

F(B'x) = + tan1 ('x)

This is known as Urban's curve.

(4) Another function suggested by Knudsen and Curtis [4] is

F('x) = [1 + Sin(8'x)]

The range for 'x is restricted in this model.

(5) If F(8'x) = e the Goinpertz curve we have what is known as Gompit analysis

(see Zellner and Lee [24]. In this case ln ln (i.) = 'x is called Gompit P.

(6) If u follows the Burr distribution [6] then

1F('x)=1- k
c,k>O, x>O

{l+(tx)C]

and we have Burnt analysis.

From the computational point of view there is possibly nothing to choose

from. Except the normal distribution, all the other functions have closed forms

for the cumulative distributions. However, this is not a major consideration in

the choice between the above mentioned models because computationally fast and

accurate approximations are available for the cumulative normal. What is of

relevance is whether the tails of the distribution of u are expected to be thicker

than those of the normal. If so then the other distributions have to be pre-

ferred. More importantly it is the symmetry aspect of the distribution of u that

might be disturbing. If so one can use other distributions of u like the gamma

or lognormal.

Though there is a wide variety in the underlying distributions for a

binary choice or dichotomous model, this is not true for the polychotomous model

except under special circumstances (when the variables are ordered or sequential).
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3. Polychotoinous Models

Here, as outlined in Cox ([8], chapter 7) and Amemiya [2], we have to

distinguish between unordered, sequential and ordered variables. Examples of

unordered variables are: choice of mode of transport - car, bus, train, choice

of occupation - teacher, lawyer, doctor, plumber, etc. Suppose there are k

categories. Let P1 p2 •.. be the probabilities associated with these k

categories. Then the idea is to express these probabilities in binary form.

Let

F(jx)

2k
= F(x) (4)

-1 = F( 1x)
k-i k

-

These imply

P F'' j = G('x) (5)

"k 1—F(!x) 3

for j = 1,2 ... k—i

k-i P. 1-Pk iSince = =—- 1
j=ik k

k-i
1

we have k = + E G($!x)] (6)

j=i
3

G ( ! x)
and hence from (S) P. = (7)

[1 + G($!x)]
j=i 3

for j = 1,2 ... k-i
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One can consider the observations as arising from a multinomial distribution with

probabilities given by (6) and (7). Though, in principle, any of the previously

mentioned underlying distributions of u can be used, from the computational point

of view the logistic is the easiest to handle. In this case G(8x) in (5 is

8!x
nothing but e . There are also other reasons for preferring the logistic which

we will discuss later on. Since the logistic form will be the one that will be

used in further analysis of the multinomial model, we will write down equations

(6) and (7) explicitly. They are

P = e /D j = 1,2 .. (k—i)

and Pk1/D

k-i !x
where D=1+ e3

j=1

For an ordered response model Cox ([8], chapter 7) and Aineiniya [2]

mention the following model (originally analyzed by Aitchison and Silvey [1],

Ashford [4], Gurtland, Lee and Dolan [12]). Here we assume

= F('x)

+ 1'k-l F('x + c)

+
1'k—l

+
"k—2

= F('x + + a2) (8)

+
k—1

+ •• + P2 = F('x +
a1

+
a2

+ .. + ctk2)

and P1 = 1 - F('x +
a1

+
a2

+ • + ctk2)

where ct1,ct2, " ak_2
> 0



These equations imply

= F('x)
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k-1 = F('x + - F('x) (9)

k-2 = F(x +
c1+

- F('x +
c1) etc.

An example of ordered response variable is the following.

group individuals by the amount of expenditures they make on a car.

the variable y as follows:

Suppose we

We define

y= 1

y= 2

y= 3

y=4

if the individual

if the individual

if the individual

if the individual

spends < $1,000

spends > $1,000

spends > $2,000

spends > $4,000

Finally, we have sequential models. An example of this is the following:

has not completed high school

has completed high school but not college

has completed college but not a higher
degree

y = 4 if the individual has a professional degree

Then the probabilities can be written as (see Ainemiya [2fl

P1 = F(x)
P2 = [1 - F(x)] F(x)

P3 = [1 — F(xfl[1 - F(xfl F(x)

P4 = [1 — F(jx)][1 — F(x)]f1 - F(x)]

(10)

but

but

< $2,000

< $4,000

y=1
y= 2

y= 3

if the individual

if the individual

if the individual
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As Ainemiya (2] points out, in such models the likelihood function can be maxi-

mized by maximizing the likelihood function of dichotomous models repeatedly.

For the case of ordered and sequential models any of the underlying

distributions mentioned in section 2 can be used. For the ordered response model,

there is only one underlying random variable u. For the sequential model with

k categories, there are (k-i) underlying variables but we assume these to be

independent. For instance, equations (10) are:

P1 = Pr(u < x)
P2

=
Pr(u1> 8x. u2 < 8x)

P3
=

Pr(u1
> 8x, u2 > 3x, u3 < x) (11)

P4
= Pr(u > x, u2

> 3!x, u3 > x)
One question we have to ask is what is the underlying distribution for

the multinomial model given by (6) and (7)? Suppose there are k random variables

u1 u2 ..
and category j is chosen if

!x+u. < B!x+u. for all i :1: j

i.e., P. =
Pr(u.—u1

< 9x-8x) for all i j (12)

McFadden [16] shows that if u1 are independently and identically dis-

tributed with the distribution function

-u
-e

F(u) = e

e3
then P. in (12) can be written as

k

i=1

It is often customary to write the multinomial logit model without any discussion

of the underlying probability distribution just by analogy to the binomial model
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(Theil [21], Cox [7]). McFadden gave some justification to it in terms of a

stochastic choice theory.

McFadden's derivation of the multinomial logit is very general and

some of the economic applications that have been made are different from those

of what is referred to as the multinomial logit in the statistical literature.

He assumes (12) to be of the more general form.

P. = Pr [u.—u < V.(x.) — V.(x.)J

Thus the function V.(x.) can be of the form !x or 'x. or !x. and the inter-33 3 3 33
pretation of the models is different.

As an illustration consider the two studies on occupational choice done

by Boskin [5] and Schmidt and Strauss [19]. In the study by Boskin there are a

number of occupations and each is characterized by three variables; present value

of potential earnings, training cost/net worth, and present value of time unem-

ployed. Let x. denote the vector of the values of these characteristics for

occupation j. The probability that an individual chooses occupation j is

,x.
p = e

(13)

Note the difference between this model and the multinomial model given by (6)

and (7) where the P. have different coefficient vectors . In the model (13)

the vector gives the vector of implicit prices for the characteristics. Thus,

the problem analyzed here is similar to that analyzed in the hedonic price index

problem. Boskin obtains a different set of "implicit prices" for the character-

istics for white males, black males, white females and black females. These

coefficients tell us the relative valuation of the three characteristics mentioned



-9-

above by these different groups. Also, if we are given a new occupation not

considered in the estimation procedure and the characteristics of this new occu-

pation, then we can use the estimated coefficients to predict the probability

that a member chosen at random from each of the four groups would join this

occupation. Thus, the main use of the model (13) is to predict the probability

of choice for a category not considered in the estimation procedure but for

which we are given the vector of characteristics x3.

By contrast, the model on occupational choice considered by Schmidt

and Strauss [19] is the usual multinomial model given by equations (6) and (7).

Suppose there are k occupations and y is the vector of individual characteris-

tics for individual i(age, sex, years of schooling, experience, etc.). Then

the probability that the th occupation is chosen by the individual with char-

acteristics y. is

cdy. c'y.
P. = e3 eml (14)

m

with some normalization like = 0.

In (13) the number of parameters to be estimated is equal to the number of char-

acteristics of the occupations. In (14) the number of parameters to be estimated

is equal to the number of individual characteristics multiplied by (k-i) where k

is the number of occupations. The questions answered by the models are different.

In (14) we estimate the parameters and then given a new individual and his char-

acteristics, we can predict the probabilities that he (or she) will choose one of

k occupations considered.

Of course one can combine both the models and write

txj
+

= e (15)
3 'Xm +

m
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In McFadden [16], he considers an example of shopping mode choice where he takes

into account both the mode characteristics x. (transit walk time, transit wait

plus transfer time, auto vehicle time, etc.) and individual characteristics

(ratio of number of autos to number of workers in the household, race, occu-

pation - blue collar or white collar).

In his discussion on choice of modes of transport Theil [22] specifies

the following model: Let be bus, D2 train, D3 car, x1, x2, x3 the respective

travel times, and y income. Then he specifies the model as

P(D1x1 x2 x3 y)
X

Log
P(D Ix x x y)

= a -
a5

+ rs log y + y log (i—) (16)
s 123 s

The implied probabilities are

a. + $. log y + y log x.
e3

E e
k= 1

which are of the same form as (15) except that the explanatory variables are in

the log form.

4. Multivariate Models

Suppose there are two jointly dependent variables each taking the values

o and 1. Then this can be reduced to a multinomial model with 4 categories and

the methods of the previous section hold good. If there are too many parameters

involved in this procedure then we can set some of the parameters equal to zero

and simplify the models. This will be discussed later on.

This method is applicable if the variables are unordered. Ainemiya [2]

gives the extension of the sequential model to the bivariate case. It consists

of specifying equations like (11) for each of the variables and assuming the cor-

responding residuals correlated with correlations p1 p2 p3 respectively. The



-11—

bivariate extension of the ordered response case follows along the same lines.

We specify equations like (8) or (9) for each of the variables and since there

is only one underlying random variable u (viz., u1 for the first variable and

u2 for the second variable) we have to estimate also a correlation coefficient

p. This model is computationally cumbersome to handle. Hence it may be better,

from the practical point of view, to ignore the ordering. Mantel ([15], p. 91)

and Nerlove and Press ([18], p. 22) suggest that the analysis be not constrained

by ordering.

Thus, from the practical point of view it is enough to consider the

unordered case. For illustrative purposes we will consider the case of three

dichotomous variables y1 y2 and
y.3.

Let ijk = Pr (Y1 = i, Y2 = j, Y3
= k) i,j,k = 0 or 1.

One question that we can ask is why not just treat this case as a multinomial

model with 8 catogories? We will here show what happens if we do that. Since,

as mentioned earlier, the multinomial model is most easily handled for the logistic

case, we will make that assumption. We can then write

P000 = l/D

P100=e ID

ID

P001 = e ID (17)

8x
P110=e ID

/D

P011=e /D

ID

7
where D1+ Le

i=1
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These equations imply the following relations:

P100 Polo Pool
e = e = e

000 000 000

P1 e42)X P110 = e4_1)tX ioi = e5_1)tX
pOlo 100 100

P101 (5—B3) 'x poi X Poll
= e = e e

001 001 010

Pill 76 X _____ =
'

:iii =
'

POll 101 110

These relations can be written as

P(y1
= iy2 y3)

Log
P(y1 = 01y2

) = jx + (84-2-1)'x y2 + (5-3-1)'x Y3
+ y2 '

P(y'2
= 1y1 y,)

Log P(y2 = Oly y)
= + (4-2-1)'x 1 + (6-3-2)'x 3

(18)
+ X >1

P(y3 = iy1 y3)
Log P(y3 = Ojy1 y2)

= + (85-83-1)'x y1
+ (6-3-2)'x y2

+ yl Y2

Note the symmetry in the coefficients of the equations (18). This symmetry was

discussed first by Nerlove and Press [18] and later by Amemiya [2] and

Schmidt and Strauss [20]. The model considered by them is a special case

of (18) with the following conditions:
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(84 — 82
—

81)'x =
812

—
83

— 81)'x =
813

(19)

—
83

—
82)'x = 823

(87-86—85—84+83+82+81)'x=y

We can get this model if the first element of x is 1, all but the first elements

of the vector 84 are equal to the sum of the corresponding elements of 82 and

with similar conditions holding for 8 and 86, and for 87 all but the first

element are equal to the sum of the corresponding elements of 8i, 82 and
83.

Thus, an important consequence of the multinomial logistic model (17)

is that we get the well defined conditional distributions (18). In actual prac-

tice, if there are a number of categories, the complete multinomial model (17)

involves too many parameters. That is why Nerlove and Press suggest estimating

equations (18) arguing that one can get consistent estimators for the parameters

(though these are not fully efficient because they ignore the cross equation con-

straints). This procedure reduces the number of parameters to be estimated -

considerably. Further reduction can be achieved by making some simplifying as-

sumptions like (19). If we further impose the restriction 87868584+83+82+81 = 0

we can also eliminate the product terms involving y1 y2, y2 y3, y3 y1 in equations

(18)

Unlike the usual simultaneous equations model where it is not possible

to interpret each equation as a conditional expectation (except in a recursive

system) the specification (17) permits of well defined conditional probabilities

(18). Also, it looks as if we cannot have causal chains in

simultaneous equation logit models. This is indeed not so. Consider a situation

where the causal relations between y1 y2 y3 are as shown in figures 1 and 2.
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1

Y37
Figure 1 Figure 2

Suppose that y1 and y2 are variables that do precede (in time or in

some other sense) variable y3. Then a relationship as in Figure 2 obviously

does not make sense and it is a relationship as in Figure 1 that we should be

considering. It might be thought that the symmetry conditions in equations

(18) imply that if y3 depends on then the reverse must be true with the

same effect. This is of course not true. What the symmetry conditions imply

is that if y1 depends on y3 and y3 depends on y1 then the two effects should be

equal. We have to interpret the conditional probability equations (18) as de-

picting the nature of the causal relationships between the variables. For the

model in Figure 1 these causal relationships can be written in the following

form

Pr(y1 = lty,,x)
Log =y +c'x

Pr(y1 = 01y2,x) 2 1

Pr(y2
=

11y11x)
Log = Sy + c'x (20)

Pr(y2 = Oy1,x) 1 2

Pr(y3
=

1y1,y2x)
Log

Pr(y3 = Ojy1,y2x)
= l)'l + + ct3X

Note that the symmetry conditions have been imposed only for the first two equa-

tions in (20) since y1 and y2 are jointly determined. One can estimate

from the joint probability distribution of y1 and y2. These joint probabilities
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are:
+ 6

P11 = e

cz'x

P01=e /t

cXiX (21)
P10=e /L

P00
=

cqx cx (12)'x + 6
whereA= 1+e +e +e

As for the third equation in (20) its parameters are estimated separately. This

equation implies

P

Log = + + c&x
110

poll
Loge

= 2 + ctx
010

(22)
P101

Loge
=

100

Pool
Loge =x

000

and equations (22) in conjunction with (21) will enable us to estimate the joint

probabilities ijk for any goodness of fit tests. If we assume the causal re-

lationship in Figure 2, the conditional probabilities will be given by equations

(18), with any appropriate zero restrictions, and the joint probabilities will

be given by (17), again with the appropriate zero restrictions.

Given any specification of the conditional odds ratios as in (18) one

can deduce the joint probabilities (17). The ML estimation procedure based on

the implied joint probabilities (17) has been called the full information ML pro-

cedure by Nerlove and Press [18]. They argue that it is computationally less

cumbersome to estimate the conditional equations (18), that these estimates though

not fully efficient are consistent (see Ainemiya [2] for a heuristic proof) and that

in practice these should be adequate.

In the case of a recursive model, of course, as in the usual sirnul-

taneous equations context, the estimates from the conditional equations (18) would
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be fully efficient. As an illustration consider the causal model

= f(x)

=
f(xIY1)

where y1 and y2 are binary.

Pr(y1
1) =

e

(23)

+ lyl
Pr(y2 = 11y1)

= e

)X +

1 +e -

These give the joint probabilities

P11 = F(8!x) F(x + y)

P10 = F(8x) [1 - F(x)]
(24)

P01 = F(x) [1 - F(Bx +

P00
= [1 — F(x)] [1 - F(x)]

z

where F(z) =
e

1+e

The separate estimation of equations (23) and the joint estimation of equations

(24) are the same.

5. Methods of Estimation and Computational Considerations

Though a variety of models have been enumerated, and all these models

can, in principle, be analyzed with any of the functional forms mentioned in

section 2, the most commonly used functional form is the logistic and the most

commonly used models are
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(a) the McFadden logit model given by equation (13)

(b) the multinomial logit model given by equation (14)

(c) the general logit model given by equation (15)

and Cd) the simultaneous equations models of the Nerlove-Press type.

The ordered response models may be just treated as unordered multi-

nomial models following the suggestion of Mantel [is]. For instance Cragg and

Uhier [9] use the multinomial model to study the decisions:

(i) sell a car, replace a car, purchase additional car

and (ii) number of cars owned 1, 2, 3 or more.

Strictly speaking neither of these can be treated as a standard multi-

nomial model but possibly introducing additional complications is not worthwhile.

Of the four models mentioned above, the likelihood function for (a)

seems to be better behaved than for (b). McFadden [161 reports that the Newton-

Raphson method converged slowly and that Davidson's variable metric method gave

faster convergence. He says that the ML method proved practical up to 20 variables

and 2000 observations. It is obvious that for model (b) it is not possible to

handle 20 variables. The number of parameters to be estimated for model (b) in-

creases with the number of categories, unlike the case for model (a). Schmidt

and Strauss [19] use five occupational categories and have five variables (including

a constant term). Thus they estimate 5 x 4 = 20 parameters. This seems to be

the number of parameters that can be conveniently handled in these models.

Jones [13] reports in connection with the estimation of model (b) that

initial estimates obtained from the linear discriminant functions were often far

from the ML solution and that simple Newton-Raphson procedures often diverged.

He uses the Fletcher-Powell method and Davidson's variable metric method. On the

other hand there have been others (like }iaggstrom at Rand) who have argued that

their experience is that the ML estimates are not much different from those given

by the discriminant function and hence it is not worthwhile bothering to use the
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ML method. In any case, the initial values for method (b) are almost always

obtained from the discriminant function. The same is not true for method (a).

The multinomial model (b) has indeed been derived using the discriminant function

approach (e.g., see Cox [7], Jones [13]) and there is a close relationship be-

tween the two. The same is not the case with McFadden's model - model (a).

Walker and Duncan [23] suggest a weighted least squares method for

the multinomial logit model. The procedure is as follows:

Write p = f(x,) + c fl 1,2, .. N

where f(x,) = P = [1 + exp(- x')]

E( ) = 0 Var(c ) = P (25)n n fl

Expand p in a Taylor series around an initial guess or estimate .

p ".' f(x,) + f' (x,) (—) + c

Let y* = p - f(x,) +

Then y f'(x) + £ (26)

Walker and Duncan weighted iterative non-linear least squares based on equations

(25) and (26). Ainemiya [3] shows that this method is equivalent to the method of

scoring. Thus, we need not consider this method as an alternative to the ML

method.

Broadly speaking we need two sets of programs to handle the two types

of data we encounter: grouped and ungrouped data. For the former we can use

weighted least squares methods. For the latter the ML methods. If there is only

one explanatory variable x, then even if we have detailed observations, we might

want to group the data and use the weighted least squares methods because they

are much simpler to use. This is what was done by Zellner and Lee [24] where
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there was only one explanatory variable, income, and the spending units were

grouped into 12 income classes.

For the binomial model, the weighted least squares method (also known

as minimum logit X2 method) is as follows:

P.

Let L = Log be the true logits.

4 = Log
1 be the observed logits

is the sample proportion

write = 'x + .

f. P.

wherec=Log11 f - Log11
P.(1 - P.)1 1Now Varf.) = _________

1 fl.
1

f.

Thus, expanding Log ..—4.- around P.we get

• -
Log 1

— Log 1 .
P(1 - P.)

Var (f.)
1Hence £(c.) = 0 Var(c.) = 1 = ____________

1 1
[P.(i - P.)] fl.r.l - r.

1 1

This variance will be estimated by flfh
-

Thus, the weighted least squares procedure would be to regress 1./a. f. (1 - f.)
on the x's to get estimates of the s's.

Theil extends this method to the multinomjaj. model (see Theil
[22J).
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McFadden's program reduces the general logit model (15) with any extra

interaction terms, into a model of the type (13) with an appropriate definition

of dummy variables corresponding to the individual characteristics y1. In prac-

tice this would involve the creation of a very large number of variables many

of which will assume zero values for a large number of cases and it is doubtful

if this is the most appropriate way of handling the model on the Troll system.

Goodman has a program for the analysis of contingency tables. In

econometric work we anyhow need to incorporate a number of exogenous variables.

Thus the Goodman programs would not be of much use. The Nerlove-Press program

does allow for exogenous explanatory variables. However, the program imposes

the conditions (19) and also assumes all second and higher order interactions

to be zero (i.e., coefficients of y1y2, y2y3, etc., in (18) are zero). Also, as

discussed earlier one might not always want to consider a model in which all the

endogenous variables are determined jointly. One might sometimes want to formu-

late causal chain models. How much flexibility one should allow will depend on

what sort of problems one would be solving on the Troll system.
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