
NBER WORKING PAPER SERIES

TIME-CONSISTENT NO-ARBITRAGE
MODELS OF THE TERM STRUCTURE

Michael W. Brandt
Amir Yaron

Working Paper 9458
http://www.nber.org/papers/w9458 

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
January 2003

We thank Viral Acharya, Kerry Back, Ravi Bansal, George Constantinides, Domenico Cuoco, Rob Engle,
Ron Gallant, John Heaton, Krishna Ramaswamy, Pedro Santa-Clara, Ken Singleton, Ragurajan Sundaram,
and seminar participants at the University of Pennsylvania, 2000 NBER Summer Institute, 2001 Utah Winter
Finance conference, 2001 Texas Finance Festival, and 2001 annual meeting of the Western Finance
Association for their comments and suggestions. We also thank Robert Bliss, Daniell Waggoner, and the
Federal Reserve Bank of Atlanta for sharing their term structure data. The Rodney L. White Center for
Financial Research at the Wharton School provided financial support. The views expressed herein are those
of the authors and not necessarily those of the National Bureau of Economic Research.

©2003 by Michael W. Brandt and Amir Yaron.  All rights reserved. Short sections of text not to exceed two
paragraphs, may be quoted without explicit permission provided that full credit including notice, is given to
the source.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6716087?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Time-Consistent No-Arbitrage Models of the Term Structure
Michael W. Brandt and Amir Yaron
NBER Working Paper No. 9458
January 2003
JEL No. G0

ABSTRACT

We present an econometric procedure for calibrating no-arbitrage term structure models in a way

that is time-consistent and robust to measurement errors. Typical no-arbitrage models are time-

inconsistent because their parameters are assumed constant for pricing purposes despite the fact that

the parameters change whenever the model is recalibrated. No-arbitrage models are also sensitive

to measurement errors because they fit exactly each potentially contaminated bond price in the

cross-section. We overcome both problems by evaluating bond prices using the joint dynamics of

the factors and calibrated parameters and by locally averaging out the measurement errors. Our

empirical application illustrates the trade-off between fitting as well as possible and overfitting the

cross-section of bond prices due to measurement errors. After optimizing this trade-off, our approach

fits almost exactly the cross-section of bond prices at each date and produces out-of-sample forecast

errors that beat a random walk benchmark and are comparable to the results in the affine term

structure literature. We find that non-linearities in the pricing kernel are important, lending support

to quadratic term structure models.
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1 Introduction

No-arbitrage models of the term structure are popular among practitioners because they

provide a description of the yield curve that is consistent with the prices of all actively

traded bonds on a given date and can therefore be used for pricing less liquid bonds and

fixed income derivatives on the same date.1 Although often categorized as a separate class

of “models,” no-arbitrage models have the same theoretical underpinnings as other term

structure models. The difference is really an econometric issue. No-arbitrage models are

calibrated to the cross-section of bond prices on a single date, while the more academic

approach to estimating term structure models involves a historical panel of bond prices.

No-arbitrage models suffer from at least three problems. The first problem is conceptual.

Calibrating the model on one date and then recalibrating it on the next, which implicitly

allows the parameters of the model to change, is inconsistent with the theoretical structure

of the model that assumes constant parameters (Dybvig, 1989). The econometric procedure

is therefore time-inconsistent because the econometrician pretends that the parameters are

constant when fitting the model knowing that the parameters will be different when the

model is refitted next period. The second problem is econometric. Since the model is

never confronted with historical data there is no guarantee that the dynamics of the factors

driving the time-variation of the yield curve implied by the cross-sectional fit correspond to

the actual dynamics of the factors through time. If the factor dynamics are misspecified, the

model may admit arbitrage despite appearing arbitrage-free (Backus, Foresi, and Zin, 1998).

Finally, from a more practical perspective, no-arbitrage models are extremely sensitive to

measurement errors, market microstructure effects, and other data imperfections, because

they fit exactly each potentially contaminated bond price in the cross-section.

We present an econometric procedure that overcomes these problems. We achieve time-

consistency and well-specified dynamics in a few steps. First, we separate parts of the

model that can be identified outside the bond market, namely exogenous factors driving the

endowment side of the economy, from parts that are inherently related to asset prices, namely

aggregate preferences. Assuming the endowment side of the economy does not change from

one date to the next, we estimate the dynamics of the factors from historical data and impose

these dynamics on the cross-sectional fit of the arbitrage-free model at each date. Second, we

infer from the cross-section of bond prices at each date the preference parameters that make

the model approximately arbitrage-free. Third, we estimate and explicitly incorporate the

1No-arbitrage models calibrated to bond prices (and in some cases also their volatilities) on a single
date include Ho and Lee (1986), Black, Derman, and Toy (1990), Hull and White (1990,1993), Black and
Karasinski (1991), Jamshidian (1991), and Heath, Jarrow, and Morton (1992).
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dynamics of the preference parameters from one cross-sectional fit to the next into the bond

pricing equation. Since the second and third step are intimately related (we need the bond

pricing equation to infer the preference parameters and we need realizations of the preference

parameters to estimate and incorporate their dynamics into the bond pricing equation), we

implement these two steps in an iterative procedure

An equally important contribution of our paper is to address the sensitivity of the cross-

sectional fit of no-arbitrage models to measurement errors. We develop a cross-sectional

estimator that locally averages out the measurement errors around the date of the model fit.

Specifically, we employ a rolling sample approach for estimating the preference parameters

from a set of adjacent cross-sections of bond prices. This procedure can be interpreted

as a hybrid of cross-sectionally calibrating a no-arbitrage model and estimating the same

model from a historical panel of bond prices. Depending on the degree of measurement error

in the data, which we specify with a tuning parameter, our estimator resembles more the

cross-sectional calibration or panel estimation approach.

To illustrate some of the key features of our approach, we present an empirical application

of two-factor models to U.S. Treasury data. We use as factors either consumption growth

and inflation, which arise naturally as state variables in any consumption-based asset pricing

model, or the level and conditional volatility of the one-month interest rates, which resembles

the Longstaff and Schwartz (1992) model. In both cases, the results illustrate clearly the

trade-off between fitting as well as possible and overfitting the cross-section of bond prices due

to measurement errors. After optimizing this trade-off, by using a quadratic log pricing kernel

and a three-month rolling-sample window to average out measurement errors, our approach

fits almost exactly the cross-section of bond prices at each date (with mean absolute errors

ranging from five to 9 basis points) and produces out-of-sample forecast errors that beat

a random walk benchmark and are comparable to the results in the affine term structure

literature (with one-year ahead mean absolute forecast errors of 70 to 80 basis points). The

performance of our approach is particularly encouraging for the macroeconomic factors,

which are known to be difficult to relate to asset prices. Finally, the fact that we find non-

linearities in the pricing kernel to be important lends support to quadratic term structure

models (Ahn, Dittmar, and Gallant, 2001).

We describe our theoretical framework in Section 2 and then discuss our econometric

approach in Section 3. Section 4 presents and interprets our empirical application. We

conclude in Section 5 with a review of our approach and empirical results.
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2 Theoretical Framework

2.1 A Generic Discrete-Time Term Structure Model

We consider a discrete-time economy with complete markets. The state of the economy is

described by Kz <∞ exogenous factors zt governing endowments and Kθ <∞ parameters θt

describing aggregate preferences that can be time-varying (e.g., habits formation). Following

Harrison and Kreps (1979), there exists a nominal pricing kernel M(zt, zt+1; θt) that prices

all assets, in the sense that:

P x
t = Et

[
M(zt, zt+1; θt)Xt+1

]
, (1)

where Xt+1 is the uncertain payoff of the asset at time t+1, P x
t is its price at time t, Et[·]

denotes an expectation conditional on all information at time t. Furthermore, the absence of

arbitrage in this economy is equivalent to the existence of a strictly positive pricing kernel,

such that M(zt, zt+1; θt) > 0 for all zt+1.

In a term structure setting, the price P n
t of a nominal default-free discount bond that

pays one dollar when it matures at time t+n is:

P n
t = Et

[
M(zt, zt+1; θt)P

n−1
t+1

]

P n
t = Et

[
M(zt, zt+1; θt) Et+1

[
M(zt+1, zt+2; θt+1)P

n−2
t+2

]]

(2)· · ·
= Et

[ n−1∏
j=0

M(zt+j, zt+j+1; θt+j)
]
,

where the last equality follows by recursive substitution and the law of iterated expectations.

Equation (2) shows that any term structure model in this general setting amounts to

parametric assumptions about the pricing kernel M(zt, zt+1; θt) and the joint dynamics of

the exogenous factors zt and preference parameters θt. We assume that zt and θt evolve as

a first-order Markov process with time-homogeneous transition density:2

f(zt+1, θt+1|zt, θt; ϕ) = fz(zt+1|zt; ϕz)× fθ(θt+1|zt, θt; ϕθ), (3)

where the factorization of the density follows from the fact that the factors zt are exogenous.

Notice that if the parameters of the pricing kernel are constant (i.e., θt =θ for all t), as they

2The first-order assumption is innocuous because zt and θt can contain lagged values.

3



are in most models, the joint dynamics reduce to fz(zt+1|zt; ϕz), a first-order Markov process

for the exogenous factors alone. We refer to ϕ as the “time-series parameters” because they

characterize the time-series dynamics of the factors and preference parameters.

2.2 Time-Consistency

By time-consistency we mean that the expectation in equation (2) is taken with respect to

the distribution governing the actual joint evolution of {zt, θt} in the data (looking forward).3

Given the factorization in equation (3), time-consistency requires that the transition density

fz(zt+1|zt; ϕz) describes the true dynamics of the factors zt and that the transition density

fθ(θt+1|zt, θt; ϕθ) accurately reflects the way the preference parameters θt change from one

date to the next. Since the factors are assumed observable, the first part of this condition is

straightforward to implement and test using historical data {zt}T
t=1. An important feature

of our econometric procedure is to ensure that the second part also holds.

The problem of time-inconsistency arises in the context of no-arbitrage models. As with

most term structure models, the bond pricing equations of no-arbitrage models assume time-

invariant factor dynamics and constant preference parameters, meaning that the expectation

in equation (2) is taken only with respect to the factor dynamics. The goal of no-arbitrage

models is to fit exactly the cross-section of bond prices {P n
t }N

n=1 at a given date. This perfect

cross-sectional fit is typically achieved through the choice of both the preference and time-

series parameters. Given enough parameters, the resulting model precludes arbitrage in the

cross-section of bonds, but the model is potentially time-inconsistent for two reasons. First,

there is no guarantee that the factor dynamics implied by the cross-sectional fit correspond

to the true dynamics of the factors, since the model is never confronted with historical

data. Second, if the fitted parameters are not constant from one period to the next, the

fit is inconsistent with the assumption of constant parameters underlying the bond pricing

equations. This implies that the model is internally inconsistent (Dybvig, 1989) and may

permit arbitrage in contingent claims (Backus, Foresi, and Zin, 1998).

3An alternative way to define time-consistency is under the risk neutral measure, defined by the equivalent
representation of the pricing equation P x

t =Et[M(zt, zt+1; θ)Xt+1]=EQ
t

[
Xt+1

]
, where the expectation EQ

t [·]
is taken with respect to the marginal utility discounted density M(zt+1, zt; θt) f(zt+1, θt+1|zt, θt; ϕ). Since the
bond pricing equation involves only the product of M(·) and f(·), any model with arbitrary pair M̂(zt+1, zt; θt)
and f̂(zt+1, θt+1|zt, θt; ϕ) that satisfy M̂(·) f̂(·) = M(·) f(·) in all states is time-consistent under the risk
neutral measure. Clearly any model that is time-consistent under the real measure is also time-consistent
under the risk neutral measure, but the converse is generally not true.
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3 Econometric Approach

The basic idea of our econometric approach is to hold constant the time-series parameters

across all cross-sectional fits, enforcing the assumption of time-invariant factor dynamics,

and to explicitly incorporate the way the preference parameters change from one fit to the

next into the bond pricing equations, effectively taking the expectation in equation (2)

with respect to f(zt+1, θt+1|zt, θt; ϕ) as opposed to just fz(zt+1|zt; ϕz). Specifically, we first

estimate the factor dynamics from the historical data {zt}T
t=1. We then iterate between

inferring the preference parameters θt from the cross-section of bond prices at each date t

in our sample and estimating the dynamics fθ(θt+1|zt, θt; ϕ) from the resulting time-series of

inferred preference parameters {θt}T
t=1. We iterate between these steps because we need the

dynamics of the preference parameters to obtain theoretical bond prices from equation (2)

for the cross-sectional fits and we need the time-series of preference parameters to estimate

their dynamics. We now turn to an example to further illustrate our approach.

3.1 Illustrative Example

Consider the classic Vasicek (1977) model, which in our setting implies the following linear

log pricing kernel and Gaussian factor dynamics (Backus, Foresi, and Telmer, 1999):4,5

m(zt, zt+1; θ) = θ0 + θ1zt + θ2zt+1 (4)

and

fz(zt+1|zt; ϕz) = N
[
πz0 + πz1zt, Σz

]
. (5)

With constant preference parameters, the pricing kernel is log-normally distributed and the

conditional expectation in the bond pricing equation (2) can be solved analytically in the

form P n
t = exp{An(θ, ϕz) + Bn(θ, ϕz)zt}.

The traditional way of calibrating equations (4) and (5) as a no-arbitrage model involves

choosing at date t both the time-series and preference parameters to minimize, for example,

the sum of squared pricing errors
∑N

n=1

[
P n

t − exp{An(θt, ϕzt) + Bn(θt, ϕzt)zt}
]2

, where here

the time-subscripts on the parameters denote the date of the cross-sectional fit. The model

is arbitrage-free if this cross-sectional fit is perfect. However, unless f(zt|zt−1; ϕzt) happens

to describes the true dynamics of the factors into the future and {ϕzt, θt} are the same across

4We work with the log pricing kernel m(zt, zt+1; θ) ≡ ln M(zt, zt+1; θ) to ensure positivity of the pricing
kernel, which in turn guarantees the absence of admit arbitrage (Harrison and Kreps, 1979).

5In the single-factor Vasicek model, the factor zt is the one-period yield − ln P 1
t = − ln Et[M(zt, zt+1; θ)].

As we discuss in Section 3.3.3, choosing a bond yield as factor is problematic in our setting.
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all cross-sectional fits, the model is time-inconsistent.

In the context of this example, our econometric approach proceeds as follows. We first

estimate the time-series parameters ϕz corresponding to the dynamics of the exogenous

factors from historical data {zt}T
t=1. We then choose for each date t in the sample the

preference parameters to minimize
∑N

n=1

[
P n

t − P n(zt, θt, ϕ)
]2

, where P n(zt, θt, ϕ) denotes

the theoretical bond price obtained from equation (2). Since the preference parameters vary

from one date to the next, we model their dynamics analogous to equation (5) as:

fθ(θt+1|θt, zt; ϕθ) = N
[
πθ0 + πθ1zt + πθ2θt, Σθ

]
(6)

and evaluate the expectation in equation (2) with respect to the joint distribution of the

factors and preference parameters, given by the product of equations (5) and (6). The

challenge is how to estimate the time-series parameters ϕθ corresponding to the dynamics

of the preference parameters, since the preference parameters are only revealed through the

cross-sectional fits, which, in turn, depend on the theoretical bond prices and hence on the

time-series parameters we want to estimate. We propose an iterative procedure. Starting by

taking expectations in the bond pricing equation only with respect to the factor dynamics (as

if the preference parameters were constant), we infer the preference parameters for each date

in the sample. Given the resulting {θt}T
t=1, we estimate ϕθ. We then return to inferring the

preference parameters from the cross-sections of bond prices, this time taking the expectation

in the bond pricing equation with respect to the joint distribution of the factor and preference

parameters. We iterate until the distribution of the preference parameters has converged.

While this example illustrates the basic steps of our econometric approach, our actual

implementation differs in a number of important ways. First, we use more flexible statistical

models for the dynamics of the factors and preference parameters because there is no

guarantee that the true dynamics are Gaussian and because any misspecification of the

dynamics may lead to time-inconsistencies. Second, we use a more flexible parameterization

of the log pricing kernel that provides enough degrees of freedom to fit as well as desired

(which means exactly in an ideal world without data imperfections) the cross-section of

bond prices at each date in our sample. Third, we evaluate the theoretical bond prices using

simulations (i.e., by Monte Carlo integration) because with flexibly parameterized dynamics

and log pricing kernel the bond pricing equations do not have analytical solutions. Finally,

but perhaps most innovative from an econometric perspective, we make the cross-sectional

inference of the preference parameters at each date robust to measurement errors in bond

prices. We now describe in more detail each step of our econometric procedure.
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3.2 Details of the Procedure

3.2.1 Step 1: Estimating the Factor Dynamics

Since by assumption the factors are observable and their dynamics do not depend on the

preference parameters or bond prices, we can directly estimate fz(zt+1|zt; ϕz) from historical

data {zt}T
t=1. To avoid misspecification, which may lead to time-inconsistencies, we rely on

the semi-nonparametric (SNP) density estimation method of Gallant and Tauchen (1989).

Intuitively, we model the dynamics of the factors as a nonlinear and potentially time-varying

transformation of a Gaussian vector autoregression (VAR). Gallant and Nychka (1987) show

that under reasonable regularity conditions, SNP transition densities are flexible enough to

approximate arbitrarily well the true transition densities of a stationary Markov process. In

addition, the convergence of the SNP densities to the true densities is sufficiently strong to

consistently evaluate expectations of functions of zt+k, such as in equation (2), by integrating

against the estimated SNP densities instead of against the true densities.

A generic representation of the SNP transition density in our context is:

fz(zt+1|zt; ϕz) ∝
(
H[

ut+1, zt; φz

])2

N
[
πz0 + πz1zt, Σz

]
, (7)

where πz0 and πz1 are the intercept and slope coefficients of a first-order VAR of zt and Σz

is the residual covariance matrix of this VAR. H[ut+1, zt, ; φz] denotes a Hermite polynomial

expansion in the standardized residuals ut+1 = Σ
−1/2
z (zt+1−πz0−πz1zt) with coefficients

that are themselves polynomials of zt, to accommodate time-variation in the departure of

the true factor dynamics from the VAR (including conditional heteroscedasticity), and φz

are the parameters of the second set of polynomials (in zt).
6,7 Finally, ϕz now represents

the collection of coefficients of the VAR and the polynomial expansion [πz0, πz1, Σz, φz].
8

Estimation of the SNP density entails a standard maximum likelihood procedure together

with a model selection strategy, such as minimizing the Akaike (1973) information criterion

6For example, assume there is only one factor and consider a second-order expansion in the standardized
residual ut+1 with coefficients that are linear in zt:

H[ut+1, zt;φz] = at + bt(2ut+1) + ct(4u2
t+1 − 2),

where the terms in parentheses are first- and second-order members of the Hermite class and at =a0+a1(2zt),
bt =b0 + b1(2zt), and ct =c0 + c1(2zt). In this case, φz = [a0, a1, b0, b1, c0, c1].

7One of the regularity conditions for convergence is that the tails of the transition densities of the
standardized residuals ut+1 are thin enough for exp{u 2

t+1/2}f ′(ut+1|ẑt; ϕz)2 to be integrable (Cramér, 1925).
An intuitive way to ensure convergence for highly heteroskedastic processes, which can have extremely fat
tails, is to standardize the data by a conditional covariance matrix Σzt (see Gallant and Tauchen, 1992).

8Gallant and Nychka (1987) and Gallant and Tauchen (1989) provide a more detailed description of the
SNP density estimator and its asymptotic properties (as the order of the expansion increases). The idea of
approximating a density through a Hermite polynomial expansion dates back at least to Schwartz (1967).
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(AIC), to determine the appropriate order of the polynomial expansion.

The flexibility and convergence properties of the SNP densities are obviously appealing

from a statistical perspective. Moreover, the structure of the SNP densities is ideal for our

application from an economic perspective because it nests at the most fundamental level

the factor dynamics of the classic Vasicek model in equation (5) (through the VAR). The

polynomial expansion then capture both unconditional and conditional deviations of the true

factor dynamics from this intuitive and standard (in the literature) reference model.

3.2.2 Step 2: Inferring the Preference Parameters

Fitting arbitrarily well the cross-section of bond prices at each date is likely to require

considerable degrees of freedom. Since we hold the time-series parameters constant to enforce

the assumption of time-homogenous dynamics, the only way to introduce these degrees of

freedom is through the pricing kernel. We therefore model the log pricing kernel also semi-

nonparametrically using a Hermite polynomial expansion in zt and zt+1 of the generic form

m(zt, zt+1; θt) = H(zt, zt+1; θt), where θt represents the coefficients of the expansion.9 Under

suitable regularity conditions for the true pricing kernel, this polynomial expansion converges

to the true pricing kernel as the order of the expansion increases (Powell, 1981).

A generic expansion of the log pricing kernel achieves the goal of providing enough degrees

of freedom, but it does so along some dimensions that are not particularly sensible for pricing

kernels. The pricing kernels generated by von Neumann-Morgenstern preferences can always

be expressed in time-separable form m(zt, zt+1; θt) = θ0t + m1(zt; θ1t) + m2(zt+1; θ2t), which

eliminates all interactions between the current and future realizations of the factors and

implies that the corresponding cross-terms in the polynomial expansion are nuisance terms.10

In particular, all reduced-form term structure modes in the literature that we are aware of,

including the popular classes of affine (Duffie and Kan, 1996) and quadratic (Ahn, Dittmar,

and Gallant, 2001) models, are time-separable. We incorporate this theoretical restriction

of time-separability by considering only separable expansions of the form:

m(zt, zt+1; θt) = θ0t +H(zt; θ1t) +H(zt+1; θ2t). (8)

9Similar expansions of the pricing kernel are considered in different contexts by Chapman (1997) and
Dittmar (2002). An alternative is the neural network approach of Bansal and Viswanathan (1993).

10This time-separability property follows directly from the Euler equations defining the pricing kernel and
holds even for time non-separable preferences, such as habit formation (e.g., Constantinides, 1990), after
suitably redefining the state space. The Euler equations reveal further that the pricing kernel can always be
expressed in symmetric form with m1(z; θ1) = −m2(z; θ2) and θ1 = θ2. However, this symmetry property is
very dependent on the correct representation of the state space (e.g., it breaks down when we add a constant
to zt). We thank George Constantinides for these insights on the properties of pricing kernels.
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Finally, notice that, analogous to the SNP factor dynamics, the expansion the log pricing

kernel nests as special case the linear pricing kernel of the Vasicek model in equation (4).

The higher-order terms in the expansion reflect deviations of the true pricing kernel from

the pricing kernel of this popular reference model.

Given this specification of the log pricing kernel, we infer at each date t in the sample

the preference parameters θt from the cross-section of bond prices {P n
t }N

n=1. For pedagogical

reasons we first briefly discuss this cross-sectional inference step assuming that there are

no measurement errors in bond prices. Of course, it is quite naive to think that the bond

data is perfect, especially since zero-coupon bond prices are usually estimated from a much

larger cross-section of coupon-bearing bond prices (e.g., McCulloch, 1971).11 Since ignoring

measurement errors is likely to result in over-fitting of the pricing kernel to the cross-section

of bond prices, which may lead to time-inconsistencies, the main discussion revolves around

the more realistic case involving measurement errors.

Without Measurement Errors

We first assume that the bond prices used to calibrate the model are measured without errors.

For a given dynamics of the state variables fz(zt+1|zt; ϕz) and of the preference parameters

fθ(θt+1|zt, θt; ϕz) (which we discuss in the next section) we infer the parameters of the log

pricing kernel from the cross-section of bond prices at each date in the sample. Specifically,

define the pricing errors at date t as:

g(zt, θt) =




P 1
t − Et

[
exp

{
m(zt, zt+1; θt)

}]

P 2
t − Et

[
exp

{
m(zt, zt+1; θt) + m(zt+1, zt+2; θt+1)

}]

· · ·

PN
t − Et

[
exp

{ N−1∑
j=0

m(zt+j, zt+j+1; θt+j+1)
}]




. (9)

As long as the number of bonds in the cross-section is sufficiently large (e.g., equals the

number of parameters in the expansion of the log pricing kernel), we can infer the preference

parameters θt simply by inverting g(zt, θt).

In principle, the conditional expectations in equation (9) are taken with respect to the

true n-step ahead transition densities. However, in practice we evaluate the expectations

with respect to estimated analogs fz(zt+n|zt; ϕ̂z) and fθ(θt+n|zt; ϕ̂θ). Since with the SNP

11An obvious solution to this problem is to use the coupon-bearing bonds in the estimation. Unfortunately,
this is computationally formidable because of the large number of outstanding bonds. Furthermore, bid-ask
spreads and infrequent trading cause measurement errors even in coupon-bearing bond prices.
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estimators the n-step ahead transition densities do not possess closed-form representations

for n > 1, we cannot evaluate the expectations analytically and instead evaluate them

numerically through conditional (on zt and θt) simulations. In particular, conditional on

the observed zt and trial values for θt, we simulate S hypothetical paths of the factors

and preference parameters {zs
t+1, z

s
t+2, ...z

s
t+N}S

s=1 and {θs
t+1, θ

s
t+2, ...θ

s
t+N}S

s=1 according to the

estimated one-step ahead transition densities and then evaluate the conditional expectations

with the corresponding sample averages over the simulated paths. 12 We thereby construct

the following simulation analog of the conditional moments (2):

gS(zt, θt) =




P 1
t − 1

S

S∑
s=1

exp
{
m(zs

t , z
s
t+1; θt)

}

P 2
t − 1

S

S∑
s=1

exp
{
m(zs

t , z
s
t+1; θt) + m(zs

t+1, z
s
t+2; θ

s
t+1)

}

· · ·

PN
t − 1

S

S∑
s=1

exp
{ N−1∑

j=0

m(zs
t+j, z

s
t+j+1; θ

s
t+j)

}




, (10)

where zs
t+j and θs

t+j denote the realization of the factors and preference parameters at time

t+j along the sth simulated path from the estimated transition densities.

We define the cross-sectional estimator θ̂t of the preference parameters θt as the parameter

vector that sets gS(zt, θt) to zero. Repeating this cross-sectional inference step for every

date t in the sample generates the sequence of preference parameters {θ̂t}T
t=1 and the

corresponding sequence of log pricing kernels {m(zt, zt+1; θ̂t)}T
t=1. The asymptotic properties

of the estimator are relatively straightforward. The key is to recognize that the moment

conditions are exact, in contrast, for example, to the noisy sample moments of a GMM

estimator. There is no sampling variation in the conditional moments (9) and there is only

simulation-induced variation in the simulated conditional moments (10). As S →∞, the

simulation errors become negligible and the only randomness in the cross-sectional estimator

comes from the estimation of the transition densities. Consequently, the standard errors of

θ̂t can be obtained by the delta method from the standard errors of ϕ̂.

With Measurement Errors

We now consider the more realistic case involving measurement errors in bond prices (which,

for obvious reasons, is also the focus of our empirical application). Specifically, we consider

12See Gallant and Tauchen (1992) for a description of the simulation algorithm for SNP densities.
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contaminated bond prices of the form:13

P n
t = P n∗

t + εn
t , for n = 1, 2, . . . N, (11)

where P n∗
t denotes the true but unobservable bond prices for which equation (2) holds and

εn
t are zero-mean measurement errors that are iid through time but potentially correlated

across bonds. P n
t are the observed bond prices. The immediate implication of measurement

errors in observed bond prices is that the moment conditions (9) hold only in expectation:

Eε
t [g(zt, θt)] = 0, (12)

where the expectation is taken with respect to the distribution of the errors εt.

If the preference parameters are constant (i.e., θt = θ for all t) we can estimate them

through unconditional moments obtained by taking unconditional expectations of the

moments (9) and applying the law of iterated expectations. The unconditional expectation

effectively averages out the measurement errors through time. Unfortunately, this approach

does not work if the preference parameters are time-varying and, more importantly, the

unconditional model looses its interpretation of being arbitrage-free unless we are willing to

attribute all of the mispricing to measurement errors, meaning εt≡g(zt, θ).

To overcome the problem of measurement errors without sacrificing the no-arbitrage

aspect of our model, we adopt a rolling sample approach very similar to that used by Foster

and Nelson (1996) for estimating conditional variances. In particular, we define the following

rolling sample estimator of the conditional expectation in equation (12):

ḡτ (z, θt) =
τ∑

j=−τ

ω(j) g(zt+j∆t, θt), (13)

where ω(j) denotes a sequence of non-negative weights that are non-increasing in |j|. To

understand this estimator, suppose ω(j) = 1/(2τ) and ∆t = 1. Then, ḡτ (z, θt) is a rolling

sample average of the pricing errors g(zt+j, θt), where the sample ranges from t− τ to t + τ .

For this average to converge to the conditional expectation of the pricing errors, instead

of to the unconditional expectation, as τ →∞, we introduce the sampling frequency ∆t.

Following the arguments of Foster and Nelson (1996), if we increase both this sampling

frequency (∆t→ 0) and the number of pricing errors we average over (τ →∞) in such a

way that the sample window becomes increasingly focused on date t (2τ∆t→0), the rolling

13Alternatively, we can assume multiplicative measurement errors, such that Pn
t = Pn∗

t εn
t , and express the

moment conditions (9) in terms of yields or log prices g(zt, θt) = {ln Pn
t − ln Et[M(zt, zt+n; θt)]}N

n=1.
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sample average ḡτ (z, θt) converges to the conditional expectation Eε
t [g(zt, θt)].

14

Intuitively, our estimator averages out the measurement errors over cross-sections of

pricing errors surrounding date t, instead of over all cross-sections in the sample (which

corresponds to unconditional estimates of constant preference parameters). The purpose of

the weights ω(j) is to emphasize pricing errors close to (in time) date t relative to those far

from date t. There are many candidate weighting functions, including an optimal one, that

accomplish this.15 For the sake of simplicity, we focus on the following two specifications

ω(j) = 1− |j|
τ + 1

or ω(j) =





1− |j|
τ + 1 if j ≤ 0

0 otherwise
. (14)

The first set of weights defines a symmetric “tent” centered at j =0 (or date t). It generates

a sample window that is both forward- and backward-looking. The second set of weights is

equal to the first for j≤0 but is zero for j >0. It implies a backward-looking sample window

that is particularly useful for out-of-sample testing of the estimated pricing kernel.

We use the rolling sample average (13) with weights (14) and the simulated moments (10)

to construct the cross-sectional GMM estimator:16

θ̂τ
t = arg min

θ
ḡτ

S(z, θ)′ W ḡτ
S(z, θ), (15)

for some predetermined weighting matrix W. When τ = 0 we have ḡ0
S(z, θ) = gS(zt, θ) and

hence θ̂0
t = θ̂t, which means that the formulation of our estimator with measurement errors

nests the case without measurement errors. At the other extreme, when τ =∞, we have

ḡ∞S (z, θ) =
∑T

t=1 gS(zt, θ), which is proportional (by a factor 1/T ) to the sample analog of

the unconditional expectation of the moments (9). Therefore, our approach also nests the

unconditional estimator of constant preference parameters. Finally, note that the presence

of the weighting matrix W allows for there to be more bonds than the dimension of θ. This

flexibility is useful in the presence measurement errors because the information contained in

the additional bonds is not necessarily redundant.

There are two natural economically motivated weighting matrices W in our context.17 The

14In our notation, ∆t→0 means that we are sampling the data at an increasing frequency (weekly, daily,
hourly, minute-by-minute, etc.). The natural limit is a continuous record of the data, which is why the
asymptotics we invoke below are called “continuous record asymptotics.”

15Foster and Nelson show that for estimating conditional variances and covariances the optimal, in an
asymptotic mean-squared error sense, weighting function is ω(j)=α exp{−α|j|} for some α ≥ 0.

16The estimator can be interpreted in the context of the simulated method of moments (SMM) of Ingram
and Lee (1991) and Duffie and Singleton (1993).

17There also exists an optimal weighing matrix that minimizes the asymptotic variance of the estimates
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first is a diagonal matrix with elements 1/n, where n=1, 2, . . . N , along the diagonal. With

this weighting matrix our approach approximates least squares estimation in yields, since

ln P n
t /n'(P n

t −1)/n for Pt'1. By treating equally yield errors across maturities this matrix

emphasizes more heavily dollar price errors at the short end of the term structure. The

second natural weighting matrix is an identity matrix, which gives the interpretation of least

squares estimation in prices. This matrix treats equally dollar price errors across maturities

and therefore emphasizes more yield errors for long maturities. As in a standard regression

context, variation in the regressors, in our case variation in the future realizations of factors

and preference parameters, increases the precision of the estimated parameters. Given the

autoregressive nature of the dynamics typically used in the term structure literature, the

variance of {zs
t+1, θ

s
t+1}S

s=1 in the moment condition for the one-period bond is substantially

less than that of {zs
t+N}S

s=1 in the corresponding moment condition for the N -period bond.

Therefore, we choose the identity matrix to weight the moment conditions.18

Relative to the case without measurement errors, the asymptotics of θ̂τ
t are substantially

more complicated because of the rolling sample average. Not only do we need to ensure

that the local (in time) average ḡτ
S(z, θt) converges to the conditional expectation (12),

but the sampling variation in the rolling sample average due to the measurement errors

also introduces additional randomness in the cross-sectional estimator of the preference

parameters. Given our additive measurement error specification (11) and under appropriate

regularity conditions, the asymptotic distribution of the rolling sample average estimator as

S→∞, τ→∞, ∆t→0, and ∆tτ→0 is (Foster and Nelson, 1996):

√
τ ḡτ

S(z, θt) ∼ N
[
0, Vε

]
. (16)

where Vε denotes the covariance matrix of the measurement errors. To derive the asymptotics

of θ̂τ
t we expand the first-order conditions of the GMM problem (15) as follows:

√
τ
(
θ̂τ

t − θt

)
= −A−1

[
Dg′θW

√
τ ḡτ

s (z, θt) +
[
Dg′θWDgϕ

]√τ√
T

√
T

(
ϕ̂− ϕ

)]
. (17)

Finally, substituting the asymptotic distributions of ḡτ
S(z, θt) and of ϕ̂ into this expansion

reveals that as T →∞ and
√

τ/
√

T → c (a constant) the estimator θ̂τ
t is asymptotically

(Hansen, 1982). However, we prefer sacrificing some statistical efficiency in return for the transparency and
intuition offered by an economically motivated weighting matrices (Cochrane, 2001).

18This reasoning supports further the use of an economically motivated weighting matrix instead of the
statistically optimal weighting matrix (see also footnote 17). The optimal weighting matrix emphasizes the
least variable moments, in our case the pricing errors for short-term bonds, which unfortunately are also the
least informative moments for identifying the parameters of the pricing kernel.
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normal with mean θt and covariance matrix:

Asy. Var
[
θ̂τ

t

]
=

1

τ
A−1

[
Dg′θW Vg W ′Dgθ + cDg′θWDgϕ Vϕ Dg′ϕW ′Dgθ

]
A−1. (18)

This asymptotic covariance matrix illustrates that our cross-sectional estimator of the

preference parameters is influenced by both the sampling variation in the estimates of the

time-series parameters (the second term in the brackets) and the sampling variation in the

moment conditions due to the measurement errors (the first term).

3.2.3 Step 3: Estimating the Preference Parameter Dynamics

Given a sequence of preference parameters {θt}T
t=1 obtained by applying the above cross-

section inference step at each date in the sample, we estimate the dynamics of the preference

parameters fθ(θt+1|zt, θt; ϕθ) analogous to the way we estimate the dynamics of the factors

in the first step of the procedure. Specifically, we model the transition densities of the

preference parameters using the SNP densities:19

fθ(θt+1|zt, θt; ϕθ) ∝
(
H[

vt+1, [zt, θt]; φθ

])2

N
[
πθ0 + πθ1zt + πθ2θt, Σθ

]
, (19)

where vt = Σ
−1/2
θ (θt+1−πθ0−πθ1zt−πθ2θt) and ϕθ = [φθ, πθ0, πθ1, πθ2, Σθ]. The only practical

difference between estimating the factor dynamics and preference parameter dynamics is that

the dimensionality of θt tends to be much larger than that of zt. This limits the complexity

of the SNP densities we can realistically consider.

3.2.4 Iterating between Steps 2 and 3

The second and third step of our procedure are intimately linked. On one hand, the second

step requires estimates of the preference parameter dynamics to evaluate the theoretical bond

prices. On the other hand, the third step is based on the sequence of preference parameters

from the second step. We accommodate this link by iterating between the two steps.

We initiate the iteration by assuming in the second step that the preference parameters

are constant. That is, in the first iteration we assume at each date t that θt+n = θt for all

future dates n and evaluate the conditional expectations in equation (9) only with respect

to the estimated factor dynamics (which may be time-inconsistent). We use the resulting

sequence of preference parameters to estimate their dynamics in the third step. We then

19Notice that we ignore the potential estimation error in the preference parameters from the cross-sectional
inference step. The way to incorporate the estimation error is to formulate the preference parameter dynamics
in a state-space form. This significantly complicates the estimation and is beyond the scope of this paper.
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return to the cross-sectional inference step, this time (and every time thereafter) evaluating

the conditional expectations with respect to the estimated joint dynamics of the factors and

preference parameters from the previous iteration. Given a new set of preference parameters,

we re-estimate their dynamics and then obtain again a new set of preference parameters. We

terminate the iteration when the preference parameters are unchanged from one iteration

to the next. Formally, we implement the convergence criterion maxt,dim(θ) |θ(i)
t − θ

(i−1)
t | < η,

where i enumerates the iteration and η is a predetermined critical value.

3.3 Discussion

3.3.1 Factors vs. Time-Varying Preference Parameters

Allowing the parameters of the pricing kernel to be time-varying commingles, to some extent,

the notions of factors and preference parameters. To clearly differentiate the two, the factors

are to be thought of as exogenous to the pricing environment (consumption growth, inflation,

GNP growth, etc.), while the preference parameters reflect the attitude of agents toward

these factors. An example that fits well into this structure is the habit formation model of

Campbell and Cochrane (1999). In their economy, consumption growth rates are independent

of preferences (the factor dynamics do not depend on θt) and agents realize shocks to their

habit level (or relative risk aversion) from a distribution that depends on the consumption

growth rates (the preference parameter dynamics depend on zt).

In practice, when the true structure of the economy is unknown, the danger exists that an

incorrect choice of factors leads to spurious variation in the preference parameters. Consider

the extreme case where the economy is driven by a set of factors that is completely orthogonal

to the factor we use in the estimation. In that case, the variation in the preference parameters

fully reflects the state of the economy, rather than aggregate preferences. Of course, more

rigidly parameterized models (i.e., model with constant preference parameters) completely

break down in this case. We therefore view the flexibility of our approach to accommodate

this form of model misspecification as a strength, rather than a weakness, but acknowledge

that interpreting the variation in the preference parameters requires some caution.

Another potentially controversial aspect of our modeling approach is that we assume the

factors are observable, while the majority of the term structure literature allows at least

some of the factors to be latent. However, this assumption is actually less restrictive in our

setting than it appears because we are not imposing any particular parametric form on the

pricing kernel. The key is that as long as there exists an invertible mapping between the

observed and latent factors, we can price assets just as well with the observed factors as with
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the latent factors. The only difference is that the functional form of the pricing kernel with

the observed factors may be different from that with the latent factors.

3.3.2 Approximate vs. Exact No-Arbitrage Model

As long as there exists a pricing kernel that is consistent with the observed bond prices and

this pricing kernel is a smooth function, the convergence theorems for polynomial expansions

(Powel, 1981) guarantee that our model can in principle deliver a perfect cross-sectional fit

and therefore belongs to the class of no-arbitrage models. However, depending on the order

of the polynomial we use in practice, the cross-sectional fit of the model can be less than

perfect. On one hand, when there are no measurement errors in bond prices, the presence of

any pricing errors implies that the model is not completely arbitrage-free and suggests that

we have to increase the order of the polynomial expansion. On the other hand, when there

are data imperfections, increasing the order of the expansion may lead to over-fitting.

Data imperfections are a reality. This means that there always exists a trade-off between

fitting as well as possible and over-fitting the model to the cross-section of bond prices. As

a result, the best specification of the pricing kernel, in terms of optimizing this trade-off,

necessarily corresponds to a model that is only approximately arbitrage-free (i.e., the model

generates some differences between observed and model prices). This should not be viewed as

a drawback of our approach. Rather, the flexibility of our approach to achieve a compromise

between fitting and over-fitting is one of its major advantages relative to traditional no-

arbitrage models that can only be calibrated exactly.

3.3.3 Yield-Based Factors

Instead of using macroeconomic state variables as factors, the majority of the term structure

literature uses yield-based factors. In the context of our approach, yield-based factors pose

two challenges. First, bond prices or yields do not generally satisfy the factorization of the

joint dynamics of the factors and preference parameters in equation (3) because they depend

explicitly on the preference parameters through the bond pricing equation (2). Without the

factorization of the transition densities we cannot split the estimation of the factor dynamics

(in step 1) from that of the preference parameter dynamics (in step 3). A potential remedy,

therefore, is to directly estimate the joint dynamics f(zt+1, θt+1|zt, θt; ϕ) in the iterative

scheme. Unfortunately, the resulting increase in the dimensionality of the transition densities

makes it more difficult to implement higher-order SNP densities.20

20Recall that the number of terms in an expansion increases exponentially in the number of variables.
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Second, yield-based factors introduce additional restrictions on the parameters of the

pricing kernel arising from the fact that the model must recover exactly the yields used as

factors. Suppose, for example, we take the Vasicek model described in equations (4) and (5)

and use as factor the one-period bond yield zt =− ln P 1
t . Since:

−zt = ln P 1
t = ln Et[exp{θ0+ θ1zt + θ2zt+1}] = θ0 + θ1zt + θ2(πz0 + πz1zt) +

1

2
θ2

2Σ. (20)

the intercept of the pricing kernel θ0 is:

θ0 = −(1 + θ1 + θ2πz1)zt − θ2πz0 − 1

2
θ2

2Σ. (21)

The intercept cannot depend on zt, which implies the following two parameter restrictions

(1 + θ1+ θ2πz1) = 0 and θ0 =−θ2πz0− 1
2
θ2

2Σ. This leads to two equations in three unknowns,

leaving only one degree of freedom. In other words, two of the three preference parameters

in this example are determined by the fact that the factor is the one-period bond yield.

In general, the specifics of the parameter restrictions depend on the parameterizations

of the dynamics and pricing kernel, as well as on the identity of the factors, but the generic

lesson from this example is that as long as the factors relate to bond prices (perhaps through

some nonlinear mapping), the model must recover the factors in all states of the world or,

equivalently, for all realizations of the factors. As long as the bond pricing equations (2) have

analytical solutions, we can impose these identification restrictions analytically. Otherwise,

we need to impose them numerically. Suppose the factors are zt =G({P n
t }N

n=1). In that case,

we simply add another set of (potentially infinite-dimensional) moments:

z −G
({

E
[ n−1∏

j=0

M(zt+j, zt+j+1)
∣∣∣zt =z

]}N

n=1

)
= 0 for all possible realizations z of zt (22)

to the estimation moments (9). Theoretically, there are two (asymptotically equivalent) ways

to enforce the “for all possible realizations” condition. The first is to impose the identification

moments literally for all z in the state-space of zt (perhaps through random sampling). The

second way is to impose the moments for every observed z={zt}T
t=1 in the time-series.21

Despite these challenges, one of the empirical applications we provide below involves

a two factor model in which one of the factors is the one-month yield. We proceed with

this application because the overwhelming predominance of yield-based factors in the term

structure literature suggests that there may be considerable interest in implementing our

21Asymptotically, the time-series of zt visits the economically relevant regions of the state-space of zt.
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approach with yield-based factors. The application further illustrates the complications that

arise and provides some diagnostics of how severe the endogeneity of the factor dynamics is

and of how well we can numerically impose the additional parameter restrictions.

4 Empirical Application

We now turn to an empirical application of our econometric approach. Specifically, we apply

our procedure to U.S. Treasury data, taking as factors either real consumption growth and

inflation or the level and conditional volatility of the one-period interest rate.

4.1 Data

We use an updated version of the McCulloch and Kwon (1993) U.S. Treasury term structure

data. This data is a panel of monthly zero-coupon bond prices for maturities ranging from

one month to more than 10 years. The zero-coupon bond prices are inferred through a cubic

spline discount function fitted to observed coupon-bearing bond prices from the Center for

Research in Security Prices (CRSP).22 For the years 1959 through 1986 we use the original

McCulloch and Kwon data, and for the years 1987 through 1998 we use an updated version

of the McCulloch and Kwon data from Bliss (1997) that adds five years to the panel.23

The data contains 480 observations in the time-series dimension. In the cross-section, we

choose 18 bonds with maturities ranging from one month to ten year. Specifically, we use

bonds with {1, 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108, 120} months to maturity.

The first two panels of Table 1 provide summary statistics of the yields and yield spreads,

relative to the one-month yield, for selected maturities. The following stylized facts emerge:

the average yields rise with maturity, ranging from 5.8 percent for a one-month bill to 7.3

percent for a ten-years bond. However, the rate of increase falls with maturity, which implies

on average an upward sloping but concave term structure. All yields are persistent, but long-

term yields, with autocorrelations of 0.99, are more persistent than short-term yields, with

autocorrelations of 0.97. Both the yields and yield spreads are quite volatile, which implies

that there is substantial variation in both the level and shape of the term structure. This

implication is confirmed by Figure 1, which plots the bond yields.

22The details of the fitting procedure are provided in McCulloch (1971,1975).
23As Bliss (1997) explains in detail, the procedure used for the update is slightly different from the one

used by McCulloch and Kwon (1993) in its treatment of the asymptotic rate and the tax effects.
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4.2 Factors and Factor Dynamics

We consider two separate sets each with two factors. We focus on two-factor models because

there is by now substantial empirical evidence against single-factor models of the nominal

term structure (Stambaugh, 1988; Litterman and Scheinkman, 1991).24 As first set of factors,

we use macroeconomic variables, which are a natural choice of factors in our framework

because they satisfy the requirement of being exogenous to aggregate preferences.25 We

collect data on per-capita real consumption growth, defined as the growth rate of real per-

capita consumption of non-durables and services, and inflation, defined as the growth rate of

the implicit price deflator for non-durables and services consumption, from DRI/CITIBASE.

Consumption growth and inflation are standard state variables in consumption-based term

structure models, where the real pricing kernel is a function of aggregate consumption and

where inflation is needed to price nominal bonds (Boudoukh, 1993; Brandt and Wang, 2001).

Panel C of Table 1 presents summary statistics of these macroeconomic factors.

In order to relate our results to the majority of the term structure literature that uses

yield-based factors, we also consider as factors the level and conditional volatility of the one-

month interest rate, despite the complications this introduces. The level and conditional

volatility of the short rate emerge as state variables in the Longstaff and Schwartz (1992)

model, for example, which is a leading example of the popular class of affine term structure

models (Duffie and Kan, 1996; Dai and Singleton, 2000). Since the conditional volatility is

unobservable, we extract it by augmenting the SNP dynamics with a standard GARCH(1,1)

model for the volatility. Panel D of Table 1 describe the yield-based factors.

We estimate SNP dynamics fz(zt+1|zt; ϕz) for both sets of factors. Based on the AIC,

the consumption and inflation factors are best described by VAR with skewed and fat-

tailed innovations (a fourth-order expansion of the standardized residuals with constant

coefficients). The one-month rate follows a heteroskedatic AR process with innovations

that exhibit skewness and excess kurtosis dependent on the level of the rate (a fourth-order

expansion with linear coefficients). The point estimates of ϕz are available on request.

24Litterman and Scheinkman (1991) find that two factors account for 96 percent of the time-series variation
in the panel of nominal zero-coupon bond yields. A third factor explains only an additional two percent.
Consistent with this finding, Gibbons and Ramaswamy (1993) and Brown and Schaefer (1994) argue that
single-factor models can fit the term structure of real instead of nominal interest rates. Finally, Cochrane
and Piazzesi (2002) show that expected excess bond returns over a one-year horizon are proportional across
bonds with different maturities, suggesting that only one of the factors in bond returns is priced.

25Ang and Piazessi (2002) document the importance of macro variables in modeling the term structure.
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4.3 Consumption and Inflation Factors

Using first the consumption growth and inflation factors, we apply our iterative procedure,

switching between inferring the preference parameters θt from the cross-section of bond prices

at each date in the sample (with an identity matrix for W and S = 5000 simulations) and

estimating the preference parameters dynamics fθ(θt+1|zt, θt; ϕθ) from the inferred sequence

{θt}T
t=1.

26 After the initial iteration, we model the preference parameter dynamics using a

heteroskedatic Gaussian VAR with the factors as exogenous predictors.27 Using a critical

value of η = 0.001, the procedure converges after four iterations. The point estimates of ϕz

from the final iteration are available on request.

4.3.1 In-Sample-Fit

Panel A of Table 2 describes the in-sample fit of linear, quadratic, and cubic log pricing

kernels for a pure cross-sectional fit with τ = 0, an unconditional fit with τ =∞, and two

intermediate cases with τ =2 and τ =5, which correspond to a three- and six-month rolling

sample window to locally average out the measurement errors, respectively. Columns 2–5

of the panel report the mean yield errors, in terms of percent, for bonds at date t using

the preference parameters fitted to the cross-sections of bond prices at dates t− τ to t. In

columns 6–9 we present the corresponding mean absolute yield errors. For the top half of

the panel we use as factor dynamics a Gaussian VAR and for the bottom half we use the

SNP densities chosen according to the AIC (described above).

Consider first the pure cross-sectional fit with τ = 0, which is most comparable to the

traditional no-arbitrage approach. Two patterns emerge from the mean and mean absolute

yield errors. First, the bias and variability of the in-sample errors decrease for both factor

dynamics as the order of the pricing kernel increases. Furthermore, the improvement in fit in

going from a first- to second-order pricing kernel is approximately the same as in going from

a second- to third-order pricing kernel. For example, with SNP dynamics the mean absolute

yield errors of first-, second-, and third-order log pricing kernels are 10.6, 8.8, and 6.5 basis

points, respectively. Second, comparing the results for the VAR factor dynamics to those for

the SNP dynamics suggests that the factor dynamics are of little, if any, importance for the

cross-sectional fit. The difference in mean absolute errors between any two models with the

same pricing kernel but different factor dynamics is less than one basis point.

26We use variance reduction techniques to limit the effect of the simulation errors. In particular, we employ
the method of antithetic variates, where for every path simulated from the SNP dynamics with innovations
{εs

t+n}N
n=1 we also include the path generated by the innovations {−εs

t+n}N
n=1.

27Unfortunately, higher-order specifications with non-Gausian innovations are practically infeasible due to
the large number of preference parameters (ranging from five for linear to 19 for cubic pricing kernels).
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These patterns are not surprising. In particular, the first pattern is simply a consequence

of increasing the number of free parameters. It is quite intuitive and in fact reassuring that

increasing the number of free parameters, while holding constant the number of moment

conditions, yields an improvement in the fit of the model. The second pattern relates to

the issue of time-consistency. It illustrates that the extent to which the factor dynamics

are representative of the data does not matter for cross-sectional calibration. This is why

standard no-arbitrage models for which both the time-series and preference parameters are

calibrated to the cross-section of bond prices can easily imply misspecified factor dynamics.

Comparing the results of the pure cross-sectional fit to those of the unconditional fit with

τ =∞ demonstrates clearly why practitioners prefer calibrating term structure models to

the cross-section of bond prices over estimating them from a historical panel. The mean

absolute yield error of the best unconditional model is more than six times that of the worst

conditional model (76.8 vs. 11.3 basis points). It is almost twelve times as large as the mean

absolute error of the best conditional model (76.8 vs. 6.5 basis points). As with the cross-

sectional fit, the absolute error decreases with the order of the log pricing kernel. However,

the drop is much more dramatic in going from a first- to second-order log pricing kernel than

in going from a second- to third-order log pricing kernel. For example, with SNP dynamics

the improvement from quadratic terms is 69 basis points but the improvement from cubic

terms is only 17 basis points. This reflects a pattern that will become more apparent later,

namely, that once over-parameterizing is accounted for, quadratic pricing kernels seem to fit

the data best. Finally, the model fits unconditionally much better with SNP than with VAR

factor dynamics, which shows that the factor dynamics become important once the model

is asked to fit more than a single cross-section of bond prices.

Having digested the results for the two extreme cases, the pure cross-sectional fit and the

unconditional fit, understanding the results for the rolling sample estimators with τ =2 and

τ = 5 is straightforward. In both of these intermediate cases, the quality of the in-sample

fit improves as we increase the order of the expansion. As in the unconditional case, the

improvement in absolute pricing error in going from a first- to second-order log pricing kernel

is larger than in going from a second- to third-order log pricing kernel (more so for τ = 5

than for τ =2). Naturally, the mean absolute pricing errors increase with τ , since the model

is asked to price an increasing number of cross-sections of bonds at any point in time. This

increase is slightly more dramatic for the models with VAR than with SNP factor dynamics.

Furthermore, the difference between the mean absolute pricing errors for the models with

VAR and SNP factor dynamics increases slightly as τ increase. Together these two patterns

are consistent with the conclusion from the unconditional fit regarding the importance of

the factor dynamics for fitting more than a single cross-section of bond prices.
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On one hand, someone who views our approach from the perspective of the no-arbitrage

literature that ignores the issue of measurement errors may be troubled by the fact that our

model produces pricing errors at all, since we advertise our approach as being arbitrage-free.

With perfect data, the presence of pricing errors suggests that we need to increase the order

of the polynomial expansion of the log pricing error. Indeed, the cross-sectional fit is virtually

exact when we consider a fifth-order expansion. On the other hand, someone who buys into

our claim that data imperfections are important may be concerned that the statistics we

present for the in-sample fit are relatively uninformative about the parameterization of the

log pricing kernel and degree of local averaging required to obtain the best compromise

between fitting as well as possible and overfitting the data. In order to appease both of these

critics, we next examine the ability of each specification to forecast bond prices l periods

into the future. With perfect data, the better the cross-sectional fit the better should also

be the forecasting performance. In contrast, with less than perfect data, the forecasting

results should reveal the parameterization and degree of local averaging that provides the

best compromise between fitting and overfitting the data.

4.3.2 Out-of-Sample Forecasts

For each date t in the sample, we use the model fitted to the cross-sections of bond prices

at dates t − τ to t to then price the cross-section of bonds at date t + l (l periods in the

future). Panel B in Table 2 reports the resulting mean yield forecast errors (again, in terms

of percent). We consider forecast horizons l of three, six, nine, and 12 months.

Consider first the out-of-sample performance of a pure cross-sectional fit with τ =0. Three

clear patterns emerge from the results. First, the mean absolute errors increase with the

horizon, which is expected in any forecasting exercise. For example, with a linear log pricing

kernel and SNP factor dynamics, the mean absolute errors increase from 50.2 basis points at

the three-month horizon to slightly less than one percent at the one-year horizon. Second,

the mean absolute errors decrease in the order of the polynomial expansion, approximately

five to 10 basis points between the linear and cubic log pricing kernels. This result holds

about equally for VAR and SNP factor dynamics and suggests that the superior in-sample

fit of the higher-order log pricing kernels is not entirely due to overfitting. Third, the mean

absolute errors are significantly smaller with SNP than with VAR factor dynamics, which

confirms the importance of correctly specifying the dynamics. For example, at the three-

month and one-year horizons the mean absolute errors of a linear model with SNP dynamics

are 8.8 and 6.2 basis points less than the corresponding results with VAR dynamics.

The overall magnitude of the forecast errors is large. The mean absolute errors increase
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by a factor of five to 10 in going from the in-sample fit to the six-month forecasts. In fact,

at the one-year horizon the forecasts of the no-arbitrage models are worse than the fit of

the corresponding unconditional models. A significant portion of these large forecast errors,

however, are attributed to the sensitivity of the pure cross-sectional fit to measurement errors

in bond prices. This can be seen by comparing the results for τ =0 (a pure cross-sectional

fit) to those for τ =2 (a three-month rolling sample), especially at longer forecast horizons.

For instance, at the one-year horizon the mean absolute error of a quadratic model with SNP

factor dynamics is 88.9 basis points with τ =0 and 79.5 basis points with τ =2.

There is a clear trade-off between fitting the cross-section of bond prices and averaging

out the measurement errors, especially at longer horizons. Increasing the size of the rolling-

sample from three to six months slightly deteriorates the out-of-sample fit at the nine-month

and one-year horizons. Even at shorter horizons, the improvement from increasing the size of

the rolling-sample window from three to six months are negligible relative to the improvement

from increasing the size from one to three months. Overall, a three-month rolling-sample

window appears to achieve a reasonable compromise between fitting the cross-section of bond

prices and averaging out the measurement errors.

Focusing on the three-month rolling-sample results with τ =2, the role of non-linearities

in the log pricing kernel is transparent. Introducing quadratic terms in the log pricing kernel

results in a significant drop (approximately 5 to 10 basis points) in the mean absolute forecast

errors at all horizons and for both factor dynamics. Adding cubic terms, in contrast, yields

relatively little improvements (one to two basis points) in the forecasting performance. This

result suggests that the true pricing kernel is likely to contain quadratic but not necessarily

cubic terms, which is an intriguing finding in light of the recent interest in quadratic term

structure models (Ahn, Dittmar, and Gallant, 2001).

The result in Table 2 are aggregated across the whole yield curve. It is not clear, however,

that the results that hold in aggregate (the effect of measurement errors on the cross-sectional

fit and the role of the non-linearities in the log pricing kernel) apply equally to all bonds

in the cross-section. We therefore plot in Figure 2 the mean absolute forecast errors for

bonds with one, five, and ten years to maturity as a function of the forecast horizon. The

figure is for models with SNP factor dynamics. The circle, diamond, and square symbols are

for a first-, second-, and third-order log pricing kernel, respectively. The first row of plots

corresponds to a pure cross-sectional fit with τ =0. The results in the second and third rows

are for three- and six-month rolling samples with τ =2 and τ =5, respectively. For each case

we also plot the mean absolute forecast errors of a simplistic bond pricing model in which

yields for a given maturity follow a martingale, so that Et

[
log(P n

t+1)/n
]

= log(P n
t )/n. This
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martingale model is an intuitive benchmark. For a term structure model to be valuable out-

of-sample, it must at least outperform a forecasting model in which the future yield curve

at any horizon is simply equal to the current yield curve.

One prominent feature of the disaggregated results is that the mean absolute forecast

errors for the one-year bond are larger than the ones for the five- and ten-year bonds. This

observation is not as much a statement about our approach as it is about the data. From

Table 1, long-term bond yields are more persistent and less volatile than short-term yields,

which makes them easier to forecast. More interestingly, the overall magnitude of the mean

absolute forecast errors is comparable to other studies in the literature. For example, our

mean absolute forecast errors for the 10-year yield at the three- and six-month horizons of

about 38 and 48 basis points are comparable to the forecasting performance of essentially

affine term structure models estimated in a more traditional way from a panel of bond prices,

reported by Duffee (2002).28 Although one can produce slightly better forecasts than Duffee

using more statistical approaches (Cochrane and Piazzesi, 2002; Diebold and Li, 2002), the

fact that our results are comparable to those for essentially affine models is encouraging.

This is especially so because we use as factors consumption growth and inflation, which are

known to have difficulties relating to asset prices.

Looking at the first row of plots for τ = 0, the martingale benchmark model dominates

the linear log pricing kernel at all horizons but is slightly inferior to the quadratic and cubic

models at longer horizons. The higher-order expansions perform better than the linear model

for all three bonds and at all horizons. However, there is little difference between the results

for the quadratic and cubic models. Finally, the differences between the first-, second-, and

third-order expansions are slightly more pronounced for long-term bonds than for short-term

bonds, which empirically confirms our argument in Section 3.2.2 that long-term bonds are

more sensitive to (and hence are more informative about) the pricing kernel.

Comparing the second and third rows to the first clearly illustrates the benefits of locally

averaging out the measurement errors in bond prices. The higher-order models significantly

outperform the martingale benchmark model for all three bonds at horizons of more than

three months. It is also clear from the last two rows that the main improvement in the

forecasting performance of the higher-order models comes from including quadric terms in

the log pricing kernel. The differences in the results for the quadratic and cubic log pricing

kernels are again very small – as the diamond and square symbols are practically on top of

each other. This lends further support to our earlier claim that the data seem to favor a

28Duffee (2002) reports in Table VIII RMSEs of 46 and 62 basis points for three- and six-month forecasts
of the 10-year yield. The RMSEs for forecasts of the six-month yield are 28 and 37 and of the two-year yield
are 45 and 56 basis points. Our results for the one-year yield are slightly worse.
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quadratic pricing kernel. Finally, notice that the forecasting performance of the higher-order

models deteriorates for all three bonds when we increase the size of the rolling-sample from

τ =2 in the second row to τ =5 in the third row. The three-month rolling-sample estimator

emerges uniformly as the best compromise between fitting and overfitting the data.

4.4 Yield-Based Factors

Despite the relative success of our approach with macroeconomic factors and the challenges

posed by using yield-based factors, we explore an application in which one of the two factors

is a bond yield. The goal of this application is to illustrate further the issues that arise

with yield-based factors and to present results that are more directly comparable to the

literature. As we described in Section 4.2, we use as first factor the one-month yield and as

second factor the conditional volatility of the one-month yield extracted by augmenting the

SNP dynamics with a standard GARCH(1,1) model.

We implement our approach with these yield-based factors in the same way as with

the macroeconomic factors, except that we augment the cross-sectional pricing errors (9)

with 10 additional moments of the form (22) for z equal to the deciles of the unconditional

distribution of the one-month rate implied by the SNP dynamics. We assign to each of

these additional moments a weight that is 10 times larger than the weight assigned to

the pricing errors, since the parameter restrictions should hold independent of the cross-

sectional fit. However, even with these relatively large weights, the numerical procedure

is not exact. The mean absolute difference between the one-month rate deciles and the

corresponding model-implied one-month rates ranges from 0.6 to 1.5 basis points, depending

on the parameterization of the log pricing kernel. Although this means that, strictly speaking,

there is a slight inconsistency between the factors and the model, we proceed with the

application because the discrepancy is small by statistical and economic considerations. In

fact, it is five to ten times smaller than the in-sample fit with macroeconomic factors.

To measure the severity of the endogeneity problem, which refers to the fact that the

yield-based factors may not be exogenous to the preference parameters, we regress changes

in the factors from date t to t+1 on the factors and preference parameters inferred from the

cross-section of bond prices at date t. The preference parameters are individually and jointly

insignificant in this regression. Although this does not rule out higher-order dependence

between the factors and preference parameters, the evidence supports the factorization of

the transition densities in equation (3) for our particular choice of yield-based factors.
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4.4.1 In-Sample Fit

In Panel A of Table 3 we describe the in-sample fit with yield-based factors and SNP dynamics

(the VAR results are very similar and are hence omitted to conserve space). Considering

first again the mean absolute errors for the two extreme cases with τ = 0 and τ =∞, it is

clear that as the order of the expansion increases the in-sample fit improves. In particular,

the mean absolute errors decline by about two basis points for each additional order of the

expansion. Furthermore, comparing the results to those in panel A of Table 2 shows that,

for any τ , the yield-based factors produce fitting errors that are substantially smaller than

the fitting errors with the macroeconomic factors. For example, in the case of τ = 2, the

cubic log pricing kernel leads to mean absolute errors that are eight basis points lower. This

is not too surprising as the highly persistent yield-based factors are much more in tune with

the way the yield curve behaves than the almost iid macroeconomic factors. As in the case

of the macroeconomic factors, the absolute pricing errors increase with τ .

4.4.2 Out-of Sample Forecasts

We present the out-of-sample forecasting results in panel B of Table 3 and in Figure 3.

The patterns are very similar to the corresponding results for the macroeconomic factors in

panel B of Table 2 and in Figure 2. For horizons of three months and longer, the three-

month rolling-sample estimator with τ = 2 generates the best forecasts. In terms of the non-

linearities of the log pricing kernel, the majority of the improvement is coming again from

the quadratic terms. Including cubic terms in the log pricing kernel yields only a marginal

improvement in the forecasting performance. Finally, the yield-based factors produce forecast

errors that are substantially lower than the results for the macroeconomic factors. For

instance, at the six-month horizon the mean absolute forecast errors are about 10 basis points

lower. However, notice that the superiority of the yield-based factors diminishes beyond the

six-month forecast horizon. One way to interpret this result is that the macroeconomic

factors are picking up low-frequency movements but are not capable of reconciling as well

as the yield-based factors the high-frequency fluctuations of the yield curve.

5 Conclusion

We developed an econometric procedure for calibrating no-arbitrage term structure models in

a way that is time-consistent and robust to measurement errors. Typical no-arbitrage models

are time-inconsistent because their parameters are assumed constant for pricing purposes

despite the fact that the parameters change whenever the model is recalibrated and because
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the factor dynamics implied by the cross-sectional calibration may not correspond to the

actual dynamics of the factors through time. Furthermore, no-arbitrage models are sensitive

to measurement errors because they fit exactly each potentially contaminated bond price

in the cross-section. We showed how to overcome both problems by evaluating bond prices

using the actual joint dynamics of the factors and calibrated parameters and by locally

averaging out the measurement errors.

Our econometric procedure achieves time-consistency using an iterative scheme. We

first estimate the dynamics of factors governing the endowments in the economy, which

are assumed exogenous to the bond market. We then iterate between inferring from the

cross-section of bond prices at each data the preference parameters that make the model

approximately arbitrage free and estimating the dynamics of the preference parameters

from one cross-sectional fit to the next. The key to achieving time-consistency is that

the theoretical bond prices used in the first step take into account the dynamics of the

preference parameters estimated in the second step. Our procedure explicitly addresses the

issue of measurement errors through a rolling sample approach for estimating the preference

parameters from the current and adjacent cross-sections of bond prices. This approach can be

interpreted as a hybrid of cross-sectional calibration of a no-arbitrage model and estimating

the same model from an historical panel of bond prices.

We presented an application to U.S. Treasury data using either macroeconomic or yield-

based factors. The results illustrate clearly the trade-off between fitting as well as possible

and overfitting the cross-section of bond prices due to measurement errors. After optimizing

this trade-off, by using a quadratic log pricing kernel and a three-month rolling-sample

window to average out measurement errors, our approach fits almost exactly the cross-

section of bond prices at each date (with mean absolute errors ranging from five to 9 basis

points) and produces out-of-sample forecast errors that beat a random walk benchmark and

are comparable to the results in the affine term structure literature (with one-year ahead

mean absolute forecast errors of 70 to 80 basis points). The performance of our approach is

particularly encouraging for the macroeconomic factors, which are known to be difficult to

relate to asset prices. Finally, the fact that we find non-linearities in the pricing kernel to

be important lends support to quadratic term structure models.
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Table 1 : Data

This tables describes annualized and continuously compounded yields to maturity of zero-
coupon U.S. Treasury bonds from January 1959 through December 1998 (480 observations).
The maturities range from one month to 10 years. Panels A and B present summary statistics
for the yields and yield spreads relative to the one-month yield, respectively. Panels C and D
describe the macroeconomic factors (consumption growth and inflation) and the yield-based
factors (the level and conditional volatility of the one-month interest rate), respectively.

Standard Auto-
Mean Deviation Skewness Kurtosis Correlation

Panel A: Yields

1-Month 5.768 2.662 1.226 4.815 0.972
6-Month 6.316 2.749 1.205 4.568 0.979

12-Month 6.524 2.722 1.115 4.234 0.980
24-Month 6.777 2.647 1.024 3.956 0.983
60-Month 7.110 2.539 0.926 3.614 0.988

120-Month 7.318 2.482 0.756 3.219 0.992

Panel B: Yield Spreads

6-Month 0.548 0.430 1.352 7.809 0.575
12-Month 0.756 0.590 1.125 7.365 0.704
24-Month 1.009 0.800 0.307 5.023 0.805
60-Month 1.342 1.135 -0.161 3.581 0.883

120-Month 1.550 1.343 -0.177 3.114 0.908

Panel C: Macroeconomic Factors

Cons. Growth 1.010 0.682 -0.193 4.465 -0.218
Inflation 1.888 0.463 0.983 4.515 0.668

Panel D: Yield-Based Factors

Level 1.661 0.436 -0.310 2.869 0.976
Volatility 2.935 2.414 2.771 13.111 0.802

31



Table 2 : In- and Out-of-Sample Performance with Macroeconomic Factors

This table reports the mean and mean absolute fitting and forecasting errors of first-, second-,
and third-order log pricing kernels with consumption growth and inflation as factors and VAR
or SNP factor dynamics. For each date t in the sample, we fit the pricing kernels to the
cross-sections of bond prices from dates t−τ to t and then evaluate the pricing errors for
the cross-section of bond prices at date t for panel A and at date t + l for panel B, where l
denotes the forecast horizon. τ =∞ denotes the fit to the whole panel of bond prices.

Panel A: In-Sample Fit

Mean Mean Absolute
Order τ =0 τ =2 τ =5 τ =∞ τ =0 τ =2 τ =5 τ =∞

VAR Factor Dynamics

1 0.024 0.031 0.059 0.073 0.113 0.230 0.390 0.899
2 0.014 0.010 0.005 -0.007 0.099 0.196 0.323 0.824
3 0.001 -0.006 -0.013 -0.022 0.075 0.179 0.309 0.809

SNP Factor Dynamics

1 -0.018 -0.021 -0.059 -0.073 0.106 0.202 0.345 0.853
2 -0.097 -0.006 -0.005 0.009 0.088 0.189 0.284 0.784
3 0.001 0.019 -0.026 -0.034 0.065 0.167 0.279 0.768

Panel B: Out-of-Sample Forecasts

Forecast Horizon
3-Month 6-Month 9-Month 12-Month

Order τ =0 τ =2 τ =5 τ =0 τ =2 τ =5 τ =0 τ =2 τ =5 τ =0 τ =2 τ =5

VAR Factor Dynamics

1 0.594 0.514 0.475 0.753 0.763 0.680 0.881 0.820 0.815 1.001 0.954 0.950
2 0.556 0.467 0.420 0.716 0.672 0.619 0.855 0.785 0.778 0.925 0.875 0.879
3 0.544 0.445 0.414 0.686 0.651 0.588 0.834 0.760 0.754 0.907 0.862 0.868

SNP Factor Dynamics

1 0.502 0.471 0.442 0.671 0.647 0.647 0.819 0.774 0.781 0.990 0.893 0.899
2 0.497 0.417 0.383 0.651 0.563 0.566 0.775 0.677 0.681 0.889 0.795 0.819
3 0.489 0.405 0.373 0.641 0.557 0.550 0.743 0.652 0.666 0.875 0.773 0.787
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Table 3 : In- and Out-of-Sample Performance with Yield-Based Factors

This table reports the mean and mean absolute fitting and forecasting errors of first-, second-,
and third-order log pricing kernels with the level and conditional volatility of the one-month
interest rate as factors and SNP factor dynamics. For each date t in the sample, we fit the
pricing kernels to the cross-sections of bond prices from dates t−τ to t and then evaluate
the pricing errors for the cross-section of bond prices at date t for panel A and at date t + l
for panel B, where l denotes the forecast horizon. τ =∞ denotes the fit to the whole panel
of bond prices.

Panel A: In-Sample Fit

Mean Mean Absolute
Order τ =0 τ =2 τ =5 τ =∞ τ =0 τ =2 τ =5 τ =∞

1 -0.053 -0.062 -0.080 -0.093 0.075 0.138 0.204 0.769
2 -0.032 -0.045 -0.063 -0.072 0.054 0.119 0.177 0.719
3 -0.010 -0.034 -0.040 -0.052 0.037 0.107 0.168 0.706

Panel B: Out-of-Sample Forecasts

Forecast Horizon
3-Month 6-Month 9-Month 12-Month

Order τ =0 τ =2 τ =5 τ =0 τ =2 τ =5 τ =0 τ =2 τ =5 τ =0 τ =2 τ =5

1 0.405 0.350 0.323 0.517 0.495 0.508 0.687 0.621 0.630 0.797 0.750 0.759
2 0.364 0.318 0.289 0.471 0.429 0.435 0.625 0.544 0.556 0.759 0.694 0.709
3 0.348 0.301 0.277 0.487 0.416 0.424 0.618 0.528 0.540 0.748 0.687 0.698
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Figure 1 : Term Structure of Interest Rates

This figures plots the panel of annualized and continuously compounded yields to maturity
of zero-coupon U.S. Treasury bonds from January 1959 through December 1998 (480
observations). The maturities range from one month to ten years.
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Figure 2 : Mean Absolute Forecast Errors with Macroeconomic Factors

The first row of plots presents the out-of-sample mean absolute forecast errors for one-, five-,
and ten-year bonds at time t+ l of pricing kernels that are fitted to the cross-section of bond
prices at date t, where l denotes the forecast horizon. The factors are consumption growth
and inflation with SNP factor dynamics. The circle, diamond, square symbols represent
first-, second-, and third-order log pricing kernels, respectively. The second and third rows
are for pricing kernels that are fitted to the cross-section of bond prices from date t − τ to
date t, where τ = 2 in the second row and τ = 5 in the third row.
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Figure 3 : Mean Absolute Forecast Errors with Yield-Based Factors

The first row of plots presents the out-of-sample mean absolute forecast errors for one-,
five-, and ten-year bonds at time t + l of pricing kernels that are fitted to the cross-section
of bond prices at date t, where l denotes the forecast horizon. The factors are the level
and conditional volatility of the one-month interest rate with SNP factor dynamics. The
circle, diamond, square symbols represent first-, second-, and third-order log pricing kernels,
respectively. The second and third rows are for pricing kernels that are fitted to the cross-
section of bond prices from date t − τ to date t, where τ = 2 in the second row and τ = 5
in the third row.
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