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impact on the expected real rate. If the results are interpreted in terms

of the risk averse model, inflation uncertainty has a negative impact on
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in a risk averse world.
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I. Introduction

In this paper we examine the relationship between interest rates

and inflation uncertainty. We develop two models here, one involving

risk neutrality and the other risk aversion, which suggest a theoretical

relationship between inflation uncertainty and interest rates. Both

models suggest essentially the same reduced form equation which we esti—

mate using quarterly U.S. data for the period 1959—I to l980—IV. The

empirical results support the assertion that inflation uncertainty has

an effect on interest rates; the estimated effect is highly significant

and enters with the appropriate sign. These results are consistent with

the findings of Levi and Nakin (1979, 1981).

The theory developed here raises some important points. First,

even with risk neutrality, the standard Fisherian definition of the real

interest rate is not the relevant concept for economic decisions when

the expected rate of inflation is the expected value of a random variable

rather than a point expectation; the appropriate concept is an expected

real rate which generally includes uncertainty effects. As noted at the

beginning of the next section, this point has been made by several

authors. Second, with risk aversion, economic decisions depend on

higher order moments of probability distributions and the expected real

rate which is important in the risk neutral case no longer plays the

central role. These two facts raise important questions about the use

of the standard Fisherian definition of the real interest rate in situa-

tions where there is uncertainty about the future inflation rate.
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Section II develops our risk—neutral model and examines its

implications. We begin with a simple model of a producer—consumer in a

two—period world, then extend the analysis to cover market determination

of the nominal and expected real rates of interest, and finally discuss

the continuous time version of these rates. Section III examines a

simple model with risk aversion. Again we begin with a single producer—

consumer and then aggregate to discuss the determination of the equili—

brium interest rate. Section IV contains the econometric estimates of

the common reduced form equation suggested by both models. Finally,

Section V contains a brief summary and some concluding comments.

II. The Risk—Neutral Case

In this section we investigate the relationship between inflation

uncertainty and interest rates in a risk—neutral economy.

A central feature of this analysis is an expected real interest

rate which plays a critical role in both the investment decision of

producers and the borrowing or lending decision of individuals. This

expected real rate, which differs in a fundamental way from the standard

definition of the real rate associated with the name of Fisher (1930),

has been examined by Blejer and Eden (1979), Boonekamp (1978), and

Eden (1976) in papers dealing with portfolio choice and the demand for

money in discrete time models, and by Fischer (1975, pp. 518—19) in a

paper dealing with the demand for indexed bonds in a continuous time

model.

With continuous discounting, the standard Fisherian definition of

the real rate of interest, rF, is the nominal rate of interest, i,
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less the expected rate of inflation, a: rF = i — a. The corresponding

definition for discrete time is given by1 1 + r = (1+i)/(1-i-a).

However the expected real rate which enters both the production

decisions and the consumption or borrowing decisions in this paper is given

by

1 + r = (l+i) E[l/(l+a)}

where E is the expectation operator, a is the inflation rate and r is

the appropriately defined expected real interest rate. If a is a non—

degenerate random variable (1+i)/(l+a) and (l+i) E[l/(l+a)] will differ

and the difference may be large. This difference arises from the basic

fact that the reciprocal of the expected value of a random variable is

not equal to the expected value of the reciprocal. Since 11(1-i-a) is

convex in a, Jensen's inequality implies r > rF. As is clear from

Fischer's analysis, the difference does not disappear in continuous time.

We begin by developing a simple model in which risk—neutral indi-

viduals make production and consumption and borrowing decisions and show

that these decisions are based on an appropriately defined expected

real rate of interest. We then investigate the effect of increased in-

flation uncertainty on the net demand for loans and the resulting

effects on the equilibrium expected real and nominal interest rates.

The section concludes with a discussion of continuous—time versions of

these results.
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The Model

Consider an individual consumer in a two—period world. The con—

sunier receives nominal endowments (non—capital income) of W0 at the

beginning of period 0 and W1 at the beginning of period 1. These can

be interpreted as payments for labor services plus transfer payments.

Wealth carried over from previous periods is included in W0. W1 need

not be known with certainty in period 0. We assume W1 .0. The indi-

vidual can borrow or lend "money" in the initial period at the known

nominal interest rate i. Let B denote the individual's net borrowing.

"Money" in each period is used to purchase a nonstorable good. In period

0 the good can be either consumed or used as the input to a production

process whose output is the good in period 1. For simplicity assume

that production is carried out in sole proprietorships. This, of course,

implies that borrowing to cover production costs is included in net

borrowing, B. Let X be the amount of the period—U good used in pro-

duction; the corresponding output in period 1 is F(X). The price of

the good in period 0 is 1 and its price in period 1 is P. P is not

known with certainty in period 0; P clearly satisfies P = 1 + a where a

is the random inflation rate.

Let C0 and C1 denote consumption of the good in periods 0 and 1

respectively. The Individual's period—U budget constraint is

(1) W0+B=C0+X.

In period 1, the individual faces the constraint
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(2) Wi + PF(x) = (1+1) B + PC1.

If we were to follow the common practice of identifying risk

neutrality with a linear von Neumann—Morgenstern utility function the

individual would maximize

E{C0 + RC1}

where R is a subfective discount factor reflecting time preference.

Since this objective function is linear in B, there is no unique,

interior solution. In particular, if hR > E(l+i)/P the optimal current

consumption is unboundedly large, if hR < E(l+i)/P it is unboundedly

small; and if hR = E(l+i)/P any level is optimal. This is clearly not

an adequate solution to the consumer's consumption or borrowing problem,

and it suggests either that consumers cannot make these decisions in a

risk neutral manner or that this specification of the risk—neutral ob-

jective function is inappropriate. The latter point of view is adopted

here.

The difficulties just outlined arise because the marginal rate

of substitution between consumption in the two periods is constant. To

avoid these problems we assume the consumer maximizes

(3) U(C0) + RU(EC1)

where U' > 0, U" < 0, and R is a subjective discount factor. This seems

to be a reasonable way to specify the objective function of a risk—

neutral consumer in a two—period setting. It reflects risk neutrality
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in that it depends only on the realized or the expected values of

those variables of ultimate interest, namely, consumption in the two

periods. However it does not require a constant marginal rate of

substitution between current consumption and expected future consumption.

From (2) it is clear that

(4) EC1 = E(W1/P)
— E[(l+i)B/P] + F(X).

If (1) and (4) are used to eliminate C0 and EC1 in (3), the con-

sumer's problem is to choose B and X to maximize

g =
U(W0+B—X)+RU{E(W1/P)—E[(l+i)B/p]+ F(X)}.

The first—order conditions are g/B = 0 which implies

(5) U'(c0) = RU'(EC1)E[(l+i)/P]

and g/X = 0 which implies

(6) U'(c0) = RU'(EC1) F'(x).

Optimal B and X are found by solving (5) and (6). Note that once

B and X are determined, so also is the optimal C0 through (1). The

resulting C1 will be determined by (2) once the random variables are

observed in period 1.

Consider first the production decision. Since the nominal rate

of interest is known in period 0, (5) and (6) imply
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(7) F'(X) = (1+1) E(l/P),

or

(8)
(l+i)E(l/P)

F'(X) = 1.

The interpretation of (8) is straightforward. The cost of a unit of

the input in period 0 is 1. The marginal unit of the input makes an

expected real contribution of F'(X) to real wealth in period 1. The

discounted value of this contribution is to be equated to the price of

the input, and the discount factor is based on (l+i)E(l/P). Note that

(7) or (8) essentially gives a Fisher Separation Theorem in that the

optimal production—investment decision is independent of consumer pre-

ferences. However, the expected real interest rate implicit in (8) is

not the standard Fisherian real interest rate. Note also that

(l+i)E(l/P)
F'(X) EPF'(x)

so it is inappropriate to discount the expected nominal value of the

marginal product using the nominal interest rate.

If there are diminishing returns in production, F"(X) < 0, and

(7) or (8) can be solved for optimal X as a function of (l+i)E(l/P);

in essence, the demand for capital is a function of the appropriately

defined expected real interest rate.

Consider now the individual's consumption or net borrowing de-

cision. If there are diminishing returns in production, the optimal X

can be substituted into (1) and (4), and then (5) can be solved for B
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as a function of W0, E(W1/P), and (1+i)E(l/P). Optimal net borrowing

is clearly a function of the appropriately defined expected real interest

rate, (l+i)E(l/P). If notation is simplified by letting

(9) S = (l+i)E(l/P),

the functional relationship for optimal net borrowing can be denoted

(10) B =
B(W0, E(W1/P), S).

If F(X) exhibits constant returns, F"(X) 0 and there is no demand

function for X. However, in this case marginal and average products are

equal, and (7) implies that

F(X) = X(l+i)E(l/P).

If this is substituted into (4), expected consumption in period 1 is

EC1 + E(W1/P) — (B—X)(l+i) E(l/P).

There are no unique solutions for B and X under these conditions. This

is to be expected since the individual scale of production is not deter-

mined under constant returns to scale, and optimal net borrowing will

vary as the scale of production varies. Note, however, that B—X can

be determined, and optimal C0 is a function of W0, E(W1/P), and S.

The Effects of Inflation Uncertainty and Variation
in Expected Inflation on Interest Rates

The notion of increased uncertainty we use is the mean preserving

spread analyzed by Rothschild and Stiglitz (1970). We will be making
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use of the fact that the expected value of a convex function increases

as its argument undergoes a mean preserving spread.

We begin by considering the case of constant returns to scale in

production. In this case F'(X) is constant, and (7) determines the

equilibrium expected real interest rate. Under these conditions the

expected real interest rate is constant, and any variation in the distri-

bution of P brings about a change in the equilibrium nominal interest

rate to keep S = (l+i)E(1/P) constant.

The effect of increased inflation uncertainty on the nominal in-

terest rate is easily determined here. Since 1/P is a convex function,

a mean preserving spread in the distribution of P will increase E(l/P).

If S is to remain constant, this requires that i fall. Note also that

1/P is decreasing in P, and therefore an increase in the mean of P

(holding other central moments constant) will decrease E(l/P). Given S,

this implies that i must increase.

If there are diminishing returns to scale in production, the

market determination of equilibrium interest rates can be investigated

using the following simple model. Assume there are n individuals in the

economy. They may have different preferences and different endowments,

but all are risk neutral in the sense defined above and all have the

same (marginal) distribution for P. Let the superscript k index indivi-

duals. Equilibrium requires

(11)
k=l

E(W/P), S) B*(S,E(W/P),...,E(/P),W,...,W) = 0
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*
tthereB is the aggregate net demand function for borrowing. Given

and E(W/P), k = l,2,...,n, the market can be viewed as determining

the equilibrium S. Given the equilibrium S and the distribution of P,

the equilibrium nominal interest rate is then determined from (9).

Suppose first that E(W/P) does not vary as the distribution of

P changes for all k, i.e., all period—i endowments are fully indexed.

If there is a unique equilibrium, any variation in the distribution of P

must lead to variation in the nominal interest rate, 1, in such a way

that the expected real interest rate, S = (l+i)E(l/P), remains constant.

If some of the period—i endowments are not fully indexed,

E(W/P) will vary as the distribution of P changes. This will generally

affect the net demand for borrowing and the resulting equilibrium

expected real interest rate. To investigate this effect we divide

E(W/P) into two parts, one part being fully indexed and the other not

indexed at all. Let

(12) E(W/P) = w + E(W1/P)

where w is the real value of the fully indexed part of individual k's

period—i endowment and is the nominal value of the nonindexed part.

w is clearly independent of all variation in the distribution of P.

Since is not indexed at all, it is independent of the distribution

of P. Now, is decreasing and convex in P. Thus, if > 0,

an increase in the mean of P will decrease E(W/P), and a mean preserving

spread in the distribution of P will increase E(W1/P).



11

It is straightforward but tedious to show that an increase in

E(W/P) increases the net demand for borrowing for the model considered

here,

(13) k/E (W/P) >

This, of course, is to be expected since any increase in future real

income, c. p.,, would be expected to increase current net borrowing.

We shall now make the assumption that (11) determines a unique,

stable equilibrium. Stability requires that

(14) < 0

around the equilibrium point. Consider now the effect of variation in

E(W/P) on equilibrium S. The differential of (11) is

n n

dE(W/P) + : dS E

k=l
E(W1/P)

k=l

n *

dE(W/P) + dS = 0.
k=1 E(W1/P)

Given (13) and (14), any increase (decrease) in some or all of the

k = 1,2,...,n, will increase (decrease) equilibrium S.

Therefore, so long as .. 0 for all k with strict inequality

for some k, an increase in the mean of P decreases equilibrium S.

This, of course, is equivalent to a decrease in the expected real rate

of interest. This result is similar to the Mundell (1963) and Tobin

(1965) effects in that a rise in expected (anticipated) inflation
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depresses the equilibrium expected real rate of interest. Moreover,

since a mean preserving spread in P increases E(W/P), we have that

increased inflation uncertainty increases the equilibrium S so long as

W �. 0 for all k with strict inequality for some k.

The results of this subsection can be summarized briefly. For

the risk—neutral model considered here, the appropriately defined

expected real rate of interest, r l—S, will be constant in the cases

of constant returns to scale in production or fully indexed future

endowments (noncapital income). However, if there are diminishing returns

to scale in production, F" < 0, and if some of the individual's have some

nonindexed future endowments, then an increase in expected inflation

decreases S l+r while increased uncertainty about the inflation rate

increases S = l+r. We can denote these effects by writing r as a function

of expected inflation, a, and a shift parameter, v2, which corresponds

to a mean preserving spread in the distribution of P,

(15) r = r(a, v2)

where r/3.a . 0 and r/v2 > 0. The effects on nominal interest rates

follow from (l+r) = S = (l+i) E(l/P) and the fact that 1/P is decreasing

and convex. Given S, an increase in expected inflation increases the

nominal interest rate, i, while increased uncertainty about the inflation

rate decreases i.



13

Continuous Time

We have argued that the appropriate discrete—time definition

of the expected real interest rate satisfies

(16) S = 1 + r = (l+i)E(l/P) (l+i) E(1)

where et is the random inflation rate. We now investigate the corres-

ponding relationship for the continuous discounting case. To do this,

we divide the period into n subperiods of equal length with compounding

carried out in each subperiod and then take the limit as n --

The analysis is complicated by the fact that the inflation rate is

random. Once the period is divided into n subperiods, it will be neces-

sary to associate a random inflation rate with each subperiod.

If we divide the period into n subperiods with interest being com-

pounded in each subperiod, and if the growth factor in prices over the

th . . . (n) (n)k subperiod is given by (1 + ) where
0k

is a random variable,

then (16) is replaced by

(17) (1 + = (1 + E
1

We take the 1 + to be identically and independently distributed.

This is, roughly speaking, the multiplicative equivalent of a stochastic

process with independent increments. Let = + (n) k = 1,2,...,n.

Then,
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'18 E
1 1 1 — 1 1 1

"
(n) (n)

•

(n)
— E

(n)
E

(n)
E

(n)
1 2

Z
Z1 Z2 Zn

= [E

Zk

since the are independently and identically distributed. It is clear

that the results will depend on how the random variables are speci—

(n) (n)fied. Since prices cannot be negative, we must have Zk = 1 + .�. 0.

Two specifications come naturally to mind; one involves letting be

log normal while the other lets it have a gamma probability distribution.

We consider these in turn.

Let z' = (1 + be lognormally distributed, i.e., log

(1 + is a normal variate with a mean and a variance of, say,

and — respectively. (Note that and are the mean and variance

:f log(l + and not of the underlying random variable

Note that the mean price change over a subperiod and its variance approach

zero as the subperiods get shorter (n -' °°). Thus, we are requiring

that prices do not behave too erratically over very short periods of

time.

is a lognormal variate then so also is l/z, and log

(n)
[1/zk ] has mean — and variance —. Therefore

n

[E[l/z]] = [elI 2
n]

With the lognormal specification (17) gives
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n .n -+—-a2
(1+-f-) = (1+3:) e

2

As n -* , this becomes

12
r

e e

so that

(19) r = it

Recall that the mean, p, and variance, a2, here refer to the mean and

variance of log (1 + a) rather than to the mean and variance of a itself.

Suppose now that = 1 + ct1) is a gamma variate with mean

1 + (i/n) and variance v2/n. Notice that this again implies that the

mean price change over the subperiod and its variance both approach

zero as n -'- we again require that prices do not behave too erratically

over very short periods of time. Some straightforward but rather

.3tedious calculations give

1+
1 n

Zk (1 +_)2
n n

(l+)

___________(1+ )(1+ )

Substituting (20) into (18) and that into (17) gives
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n •n (1+)
(1+ ) =(1+ ) ______n n —12 v r2 —n 12 VT —na- -v + VV - 4a a- - — Vv2—4a

(1+ ) (1+ )

As n - ° this becomes

ar 1 ee —e
— 12 V /2 — 12 V /2a- -v + VV -4a a- —v - 'v -4a

e e

which simplifies to

r i—ct+V2e =e

so that

(21) r = I — a + v2.

In other words, if the are independent and identical gamma Variates,

then with continuous discounting the real rate of interest is the

nominal rate less the expected rate of inflation plus the variance of

the inflation rate. We can identify the shift parameter for the mean

preserving spread with the Variance, substitute (15) into (21), and

rearrange to get

(22) i = r(a, v2) + a — v2

where r/a < 0 and r/Dv2 . 0.



17

III. A Simple Risk Averse Case

In this section we briefly investigate the effect of inflation

uncertainty on the interest rate in an economy of risk—averse individuals.

Except as noted below, we continue to use the notation of the previous

section.

We begin by considering the behavior of a single individual who

maximizes

E {u(c0) + R U(C1)}

where U is a vonNeumann—Morgenstejn utility function and R is a subjec-

tive discount factor. We will simplify the analysis greatly by making

the following two assumptions:

(i) There is no production in the model. Returns from production

are simply included in the period—l endowment; and

(ii) The vonNeumann—Morgenstejn utility function is logarithmic,

U(C) = log C.

Our justifications of the logarithmic utility function are its relative

simplicity and Arrow's (1965, p. 37) argument that the appropriate

form of the utility function is logarithmic if we wish to restrict our-

selves to the class of functions having constant relative risk aversion.

If there is no production

C0 = W0
+ B.
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As in equation (12) above, we explicitly recognize that some of the

period—i endowment may be indexed while some of it may not. Real con-

sumption in period—i is given by

C

B
C1 = w1

+ — (l+i)

where w1 is the real value of the fully indexed part of the period—i

endowment and W is the nominal value of the nonindexed part. Both w1

and W may be random, but W is independent of P.

With the logarithmic specification the first order condition for

net borrowing implies

1 — 1
(l+i)}

W0+B
B+ - (l+i) -

or

(23) W+B
= (1+1)

0 Pw1 + W — (l+i)B
}.

The optimal B clearly depends on the nominal interest rate, i, on W0,

and on the parameters of the distribution of W, w1 and P. The expected

real interest rate which played a central role in the risk—neutral model

does not enter here since (1+1)/P does not enter as a simple linear term

under the expectation sign. This will be true generally for models with

risk aversion.

The effects of variation in the distribution of P on the indivi—

dual's net demand for borrowing are easily determined. The left hand

side of (23) Is a decreasing function of B; it is graphed in Figure 1.
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The right hand side of (23) is an increasing function of B; it is

graphed as A in Figure 1. The intersection of these two functions gives

optimal net borrowing, B, in Figure 1. Now, the random variable P

appears only on the right hand side of ( 23). If w1 > 0,

(l+i)/{pw1 + W — (1+i)B} is decreasing and convex in P. Therefore,

if w1 > 0, an increase in the mean of P, c.p.,, will decrease the right

hand side of (23) for any given B; this shifts the curve A down, say,

to A". The optimal B therefore increases with an increase in the expected

inflation rate, a. Moreover, since the expression inside the expectation

sign on the right hand side of (23) is convex in P, a mean preserving

spread in the distribution of P will increase the right hand side of (23)

for any given B. This shifts the curve A up, say to A', and leads to a

decrease in B. If we denote the individual's net demand for borrowing as a

function of the nominal interest rate, i, the expected inflation rate,

a, and a shift parameter, v2, reflecting a mean preserving spread in

the distribution of P,

(24) B (i, a, v2).

We have that B/ct > 0 and DB/v2 < 0 so long as w1 > 0.

We turn now to the determination of the equilibrium interest rate.

Assume there are n individual's in the economy. They may have different

endowments, but all have the same vonNeumann—Morgenstern utility function

and all have the same marginal distribution of P. We let the superscript

k index individuals. We assume w - 0 for all k with strict inequality

for some k.
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1 ,A
W +B
0

Figure 1

Market equilibrium requires

B

(25)
k=l

(i, , v2) B* (i, ct, v2) = 0.

We again assume a unique, stable equilibrium. Stability requires

(26) BIi < 0,

around the equilibrium point. Under these conditions we can solve

(25) for equilibrium i in terms of c and V2.

(27) i = i(c, v2).

1
W +B
0

A'

/

/ II

B



21

Standard operations show that

— kl— __________

and

ai k=l
v2

Given (26) and the properties of (24), it is clear that i/ct > 0 and

ai/v2 < 0 so long as w > 0 for all k with strict inequality for some k

In other words, given this specification of the risk—averse model, the

equilibrium nominal interest rate increases with expected inflation and

decreases with uncertainty about the inflation rate.

IV. Empirical Tests

We have developed two models which suggest that the equilibrium

nominal interest rate responds to variations in the expected inflation

rate and to uncertainty in the inflation rate.

The risk—neutral model operates through an appropriately defined

expected real interest rate which, with the gamma specification, gives

rise to equation (21),

(21) i=r+c—v2

giving the nominal interest rate in terms of the expected real rate

and the mean and variance of the inflation rate. If the expected real

rate is constant, the variance, v2, in (21) enters with a coefficient of

(—1).
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Statistical investigations of the behavior of the real rate in

models with point expectations have appeared with increasing frequency

since publication of Fama's (1975) provocative article and suggest that

it is inappropriate to treat the real rate as a constant, particularly

outside of the 1953—1 through 1973—2 sample period investigated by Fama.

Nelson and Schwert (1977) argued that Fama's test of the joint hypothesis

of rationality of inflation forecasts and constancy of the real rate

was not sufficiently powerful and after applying more powerful tests

concluded that the data permitted rejection of the constant real rate

hypothesis. Mishkin (1981) showed the sensitivity of Fama's tests to

sample period. Studies by Levi and Makin (1979, 1981), Tanzi (1980),

Mishkin (1981), Makin (1982), Hafer and Hem (1982) and others have

found that the real rate may be affected, at least in the short run,

by a number of specific variables including measures of the stage of

the business cycle, unanticipated changes in the money supply, measures

of inflation variability, total borrowing demand relative to GNP and

anticipated inflation itself.

The risk—neutral model considered in this paper suggests that the

expected real rate may respond negatively to the expected inflation rate

and positively to uncertainty about the inflation rate. (See (15)

above.) If the expected real rate is not constant, which seems a safe

operating hypothesis, and if we maintain the gamma specification of the

distribution of P, we have (22) of Section II as a specification of an

interest rate equation for the risk neutral model. The other variables

which the studies mentioned above have found to be important determi-

nants of the real rate can be viewed as variables from outside our
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model which shift the aggregate net demand for borrowing and hence

affect the equilibrium expected real interest rate.

The expected or anticipated inflation rate may affect the real

rate for the reason given in Section II above or because of the Hundell

and Tobin effects.

In a model of point expectations, the hypothesized impact of a

money surprise on real interest arises from an assumption of "sticky"

price adjustment. Money growth above its anticipated level results

in an excess supply of money if prices are sticky in the short run,

assuming also that surprisemoney growth does not immediately cause a

rise in real income sufficient to absorb excess money supply. Until

prices adjust fully to absorb excess money supply, the only alternative

is for real interest to fall thereby lowering (cet. par.) nominal

interest by an amount sufficient to clear the money market.4

The real rate may also be affected by budget deficits. In addi-

tion to the possible impact of deficits on anticipated inflation, a

measure of the deficit or total borrowing relative to GNP can be viewed

as a shift parameter in our function given the aggregate net demand for

borrowing. An increase in this ratio corresponds to an upward shift

in the net demand function, and, as was shown in Section II, this will

tend to increase the expected real rate.

Combining these variables with those in our equation (15) gives

rise to an expression for the expected real rate involving expected

inflation, c, a measure of borrowing relative to GNP, d, a measure

of surprises in money growth, N, and the variance of the inflation rate or

some other measure of uncertainty, v2. In linearized form we have
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= c + A2d—X3M + A4v2,

with X. > 0, i = 0,.. .,4. Substituting this in (21) and adding an error

term, e, gives the linear equation

(28)
= X0+(lX1) + A2d—X3m — (l—X4)v2

+ e.

The expected real rate does not play a role in our model of interest

rate determination with risk aversion. However, as shown in Section III,

the equilibrium nominal rate is an increasing function of expected

inflation, c, and a decreasing function of a measure of inflation un-

certainty, v2, which we can identify with the variance. Moreover, the

arguments given above that the measures d and N may act as shift para-

meters in the aggregate net demand function for borrowing can be applied

here too. If we combine these shift parameters with the parameters ex-

plicitly recognized in (27), linearize, and introduce an additive error

term, e, we have

(29)
= o]_ i + 2d—M — i3 v2 + e

where > 0, i = 1,.. .,4. Equations (28) and (29) are not generally

distinguishable, and we therefore are not in a position to test which of

our two models is appropriate. However, both imply that inflation un-

certainty affects the nominal interest rate, a proposition which we now

test.
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The common equation given by (28) or (29) will be estimated employ-

ing the transfer function methodology developed by Box and Jenkins

(1970). The methodology has a number of advantages over usual, linear

econometric estimation techniques. It is possible to entertain any

autoregressive (AR), moving average (MA), or combined ARMA representa-

tion of residuals and to estimate it simultaneously with relationships

between the endogenous and exogenous variable(s). Usual methodology

only allows iterative estimation of a first—order autoregressive pro-

cess to represent residuals.5 The transfer function also enables

parsimonious representation of possible distributed lag relationships

between the endogenous variable and exogenous variables. In addition,

transfer function output includes leading and lagging cross correlations

between the endogenous and exogenous variables which enable the investi-

gator to check for all possible lagged relationships while also pro-

viding a check on possible feedback running from the endogenous variable

to exogenous variables. It is worth noting that the transfer function

in its simplest representation produces estimation results identical

to usual OLS methodology with serially uncorrelated residuals. As is

well—known, however, the standard assumptions required for OLS estima-

tion are often violated, and in such cases transfer function technique

provides the investigator with a useful and more flexible tool with

which to test for empirical relationships.

Overall, the transfer function is reasonably well described as

a means of combining time series and structural explanations of behavior

of economic variables such as interest rates. By providing maximum
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flexibility with respect to the form of the ABIIA model required to model

residuals, the procedure imposes a more stringent test of the existence

of a relationship between dependent and independent variables. In

effect, significant explanatory variables must explain the residuals

from the best ARNA model representing time series behavior of the

dependent variable.

The result of estimating the equation given by (28) or (29) over

the 1959—I — l980-1V sample period is reported as equation (1.1) in

Table 1. Since the ratio of total borrowing to GNP (d) is not signif i—

cant even at the 10 percent level, equation (1.1) is reestimated omitting

that variable with the result reported as equation (l.2).6 A number of

conclusions emerge. Anticipated inflation produces a positive impact

upon nominal interest. The estimated coefficient on a is 0.791, signi-

ficantly below unity. This is consistent with the risk—neutral model

where expected inflation affects the expected real rate, either through

our (15) or through the Mundell and Tobin effects. It is also consistent

with the risk averse model, (27), and the fact that si/Ba < 0 as shown

in Section III. The money "surprise't variable carries the anticipated

negative sign and is significant at the 0.01 level.

The primary object of our investigation, the effect of inflation

uncertainty, produces the anticipated negative impact on the nominal

interest rate and is significant at the 0.01 level. The value of the

coefficient, —0.271, is significantly different from —1. If we adopt

the risk—neutral version of the model given by (21), this is consistent

with having the expected real rate depend positively on inflation
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uncertainty as argued in Section II. Alternatively, it is consistent

with the risk—averse model in which the nominal interest rate depends

negatively on inflation uncertainty.

The results reported in Table 1 support the hypothesis that infla-

tion uncertainty is an important determinant of interest rates. Within

a risk—neutral setting, inflation uncertainty has an impact on both

the nominal and the appropriately defined expected real interest rates.

With risk—aversioh, inflation uncertainty has an impact on the nominal

interest rate. Failure to take account of inflation uncertainty may

well account for the frequent empirical findings by Gibson (1972),

Tanzi (1980), and others that the impact of anticipated inflation on

nominal interest rates lies below the level suggested by previous theory.

As noted by Levi and Makin (1979) omitting a variable such as v2

which is positively correlated with anticipated inflation and negatively

correlated with nominal interest rates will bias downward the estimated

impact of anticipated inflation on nominal interest rates. Such an

effect is evident from equation (1.3) in Table 1. Omission of v2

causes the estimated impact on the nominal interest rate of a unit change

in expected inflation to fall from 0.791 to 0.666.

V. Concluding Remarks

We have developed two models, one involving risk—neutrality and

the other risk—aversion, which suggest that inflation uncertainty affects

interest rates. Since both models give rise to essentially the same

interest rate equation for estimation, we cannot distinguish between

the two models implying that inflation uncertainty has an impact on
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nominal interest rates. Our empirical evidence supports the hypothesis

that inflation uncertainty affects interest rates. If we interpret the

empirical results in terms of the risk—neutral model, inflation un-

certainty has a negative impact on nominal interest rates and a positive

impact on the expected real rate as implied by our theory in Section II.

IE we interpret the results in terms of the risk—averse model, inflation

uncertainty has a negative impact on nominal interest rates. The expected

real rate is not bf direct interest in a risk—averse world.

We believe our results raise real questions about the use of the

Fjsherjan definition of the real interest rate in situations when there

is uncertainty about inflation rates. We have argued that even with

risk—neutrality the Fisherian definition of the real rate is not the

appropriate concept upon which to base economic decisions if inflation

uncertainty is present. The appropriate concept is an expected real

rate which involves an adjustment for uncertainty. Moreover, if the

world is risk—averse, the expected real rate is not a relevant

concept for economic decisions.



30

FOOTNOTES

1. To see that this gives rise to the continuous time Fisherian

definition, first divide the period into n subperiods of equal

length with compounding carried out in each subperiod. This

gives rise to

rFn (l+)
(1+—) =

-n

(l+)

For continuous compounding take the limit as n - on both sides

to get

r
F i-oe =e

2. See Aitchison and Brown (1963) for a discussion of the properties

of the lognormal distribution. Since the product of independent

lognormal variates is lognormal, it follows that P is lognormal.

Although this specification and Fischer's (1975) both lead to the

price level being lognormally distributed, they really are not

directly comparable since Fischer assumes the inflation rate is

normally distributed.

3. See Parzen (1960, pp. 160—65, 220) for a discussion of the gamma

probability distribution and of the mathematics used in this

deviation. If we drop superscripts and subscripts, the density

function of z is
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f(z) =
F(p) (Az) e (z > 0, p > 0)

where F(p) is a gamma function. The mean of the distribution

is p/A and the variance is p/A2. Since p/A = 1 + (Z/n) and

p/A2 = v2/n, we have A = [1 + (/n)]/(v2/n) and

p = [1 + (/fl)]2/(2/) Now

E(l/z) = j F(p)
(Az) e dz

F(p) j
z2 e dz

- ?, F(p—1) - A

F(p) A1
—

Therefore,

n
Z 2

(1 + - V

4. Some investigators, see Grossman (1981) and Engel and Frankel

(1982), have argued the reverse. Unanticipated money growth, they

claim, will cause markets to anticipate tightening by the Federal

Reserve which in turn will cause interest rates to rise in anti-

cipation of the tightening. This could be termed an "expectations"

effect which operates in the opposite direction upon interest

rates as does the "liquidity" effect from unanticipated money

growth.

Two observations are in order on the expectations effect.

First, it is very short—lived. Grossman found it operative over
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a two—hour period from one hour before Friday's money supply an—

noucement to one hour after. Frankel, testing for the same effect

to persist until the following Monday did not detect a statisti-

cally significant effect. It appears that the expectations effect

is operative only on an intra—day basis while over a longer period

such as a quarter. Makin's (1982) results strongly support domi-

nance of the liquidity effect.

Second, it must be remembered that the expectations effect,

which suggests a change in policy, is likely conditional upon the

position of the actual money supply relative to its target when

a "surprise" occurs. If money supply is below target, a positive

surprise may produce no change (or no expected change) in policy

while the reverse would hold given money supply above target and a

positive surprise.

5. For a more thorough discussion of implications of improperly

modeling residuals see Hendry (1977).

6. Total borrowing/GNP may serve as a crude proxy for variance of

inflation. The correlation coefficiency between it and c12 is 0.41.
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