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That interest rates move in a discontinuous manner is no surprise to participants in the bond
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estimators. Analytical derivations of the characteristic functions, moments and density functions
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“Natura non facit saltum?”, - Nature does not jump.
Alfred Marshall, title page, Principles of Fconomics, 1890.

1. INTRODUCTION

This paper examines the role of jump-enhanced diffusions (i.e., Poisson-Gaussian
processes) in modelling the term structure of interest rates. Theoretical work on
jump-diffusion term structure models exists,! and is of recent origin, but little in
the way of empirical examination of these models has been undertaken so far. This
paper (i) develops jump-diffusion analytics for a wide class of models, and (ii)
empirically examines the value of these models.

Motivation: Why should we expect jummps to be a satisfactory modelling device?
Stylized facts from the bond markets suggest that jump behavior is ubiquitous.
Exogenous interventions in the markets by the Federal Reserve causes jumps. Sup-
ply shocks are another factor, as regular debt refundings inject sufficient volume to
magnify price effects. Demand shocks such as market behavior at Treasury auctions
often result in jumps, as do economic news announcements. As Merton [36] em-
phasizes, routine trading information releases are well depicted by smooth changes
in interest rates, yet bursts of information are often reflected in price behavior as
jumps. Jump effects tend to be prevalent in regulated “intervention” environments
such as the interest rate and foreign exchange markets.

Raw statistical evidence is strongly suggestive of jumps. Interest rate volatility
is very high at the short end of the term structure,® and changes in intcrest rates
demonstrate considerable skewness and kurtosis. Poisson-Gaussian processes can
flexdibly accommodate a wide range of skewness and kurtosis effects. Kurtosis can
substantially affect the pricing of derivative securities. Table 1 provides summary
statistics for the short rate of interest. The presence of leptokurtosis in interest

rate changes in undeniable and makes a strong case for jump models.?

The extent of the volatility “smile”, symptomatic of excess kurtosis (fat tails)
in the conditional distribution of changes in interest rates, cannot theoretically
be sustained by Gaussian models. One way to model the excess kurtosis is by
means of Poisson-Gaussian processes. Other approaches which capture leptokurto-
sis are stochastic volatility models or simpler time-varying volatility models, such
as ARCH processes. The paper examines these various alternative models. The

'See Ahn and Thompson [1], Attari [4), Das and Foresi {23}, Babbs and Webber [6], Backus,
“oresi and Wu (7], Baz and Das [11], Das {25][26], Chacko, Heston [30], Naik and Lee [37], Burnetas
and Ritchken [14], Shirakawa [38] for a range of theoretical models.

2Coleman, Fisher and Ibbotson [19] find that in the 1980s, the standard deviation of monthly
changes in the short (1-month) rate was 128 basis points.

3wWe will use the term ‘Gaussian’ to denote the smooth component of interest rate behavior,
and the term ‘jump’ or ‘Poisson shock’ to denote the discontinuous component of the interest rate
process.

48ee Backus, Foresi and Wu [7] for an excellent exposition of why jumps may better explain
the high degree of curvature in yield curves. More on this towards the end of the paper.

2



POISSON-GAUSSIAN PROCESSES 3

degree of conditional leptokurtosis varies with the time interval between data obser-
vations (see Das and Sundaram [24]), and jump-diffusion models allow for param-
eter choices which match conditional skewness and kurtosis at varying maturities.
Chan, Karolyi, Longstaff and Sanders [18] found that interest rates display level
dependent volatility to an extent not accounted for by existing theoretical models.
Recent work by Brenner, Harjes and Kroner [15] and Koedijk, Nissen, Schotman
and Wolff [32] provides strong evidence that in addition to level dependence, time
varying volatility (i.e. ARCH) models provide a better empirical fit. In this arti-
cle, we explore simple versions of these models with jumps, and find improvements
in fit. We essentially conclude that mixed models with stochastic volatility and
jumps are predicated. We briefly surnmarize the results of the paper, theoretical
and empirical.

Analytics: The following are developed. First, characteristic functions for a range of
jump-diffusion stochastic processes (irrespective of jump distribution) are derived,
thereby obtaining the primary tool for pricing and statistical analysis of our models.
Second, probability density functions are obtained for estimation by maximum-
likelihood and for derivative security pricing. Third, the first four moments for
jump-diffusion stochastic processes are calculated in closed form so as to enable
method of moments estimation methods. Fourth, analytical expressions for bond
prices are derived. Hence, the paper offers a comprehensive set of tools for the
application of jump-diffusion processes to term structure models. These methods
do not rely on specific choices of the jump distribution, but apply to any jump
distribution with finite moments.

Empirical Work: The content of the paper is as follows. First, exact estimation
of specific jump-diffusion models is possible in continuous time, and is undertaken,
evidencing a good fit for this class of models. Second, a more easily implementable
and analogous discrete time method is used to integrate ARCH type models with
jump-diffusions, and estimation results show that the best models we consider are
those that contain features of jumps as well as time varying volatility. Third, the
flexibility of the estimation approach is exploited by enhancing the model for day
of the week effects, wherein we find that jumps are most likely on Wednesdays
and Thursdays, probably on account of option expiry effects. Fourth, the model
is enhanced to make jumps dependent on Federal Reserve activity, and we find
that the two-day meetings of the Federal Open Market Committee appear to have
an information effect. Fifth, estimation is also undertaken using the analytically
derived moments, and the presence of jumps is confirmed in a general model, where
no jump distribution is imposed a priori. Sixth, an examination of the structure of
cmpirical moments confirms that they would not be generated by diffusion processes
alone, indicating strongly that jumps be added to diffusion-based term structure
models.

The discussion so far begs the question: should we eschew diffusion processes
in favor of jump models of the term structure? Our empirical results in the paper
show that jumps are a necessary addition to existing diffusion models. We show that
the jump process accounts for a large part of the total variation in interest rates,
and that the patterns of higher-order moments cannot be generated by diffusion
models alone, even if they are multidimensional diffusions. Therefore, rather than
view jump models as competing with the best diffusion models, we demonstrate
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the strong complimentarity of these two stochastic process choices in modelling the
term structure.

Thus, this article provides a comprehensive toolkit for the application of jump-
diffusion methods to term structure models. The detailed content of the paper
comprises two sections. Section 2 provides analytics, and Section 3 contains the
empirical implementation. We conclude in Section 4.

2. ANALYTICAL METHODOLOGY

This section deals with the derivation of the analytics required for maximum-
likelihood and method of moments estimation, as well as the analytics of the term
structure..

Estimating mean-reverting interest rate processes with jumps entails complica-
tions beyond those encountered for processes without mean reversion. There are
two main reasons for this:

s For interest rates, no common modelling approach seems to be adopted, and
a wide variety of stochastic processes are nsed, where often, transition density
functions are unavailable in closed form.’

e Mean reversion substantially complicates the derivation of the conditional
transition density function, used for maximum-likelihood estimation. With
the lognormal form used for stocks, the exact time at which a jump occurs in
any time interval does not matter in the determination of the transition den-
sity function, while with interest rate processes, the presence of mean reversion
is important, as it affects the drift of the process differentially, depending on
where in time the jump occurs.

In this paper, a generalized derivation of the probability function and the mo-
ments of the jump-diffusion process surmounts these issues in a framework where
estimation is undertaken with the exact densities from the continuous time stochas-
tic process.

The plan for this section is as follows. The stochastic process for the jump-
diffusion model is presented, followed by a derivation of the characteristic function.
This provides two important by-products: (i) the conditional moments of the pro-
cess, in particular the kurtosis, and (ii) the transition density functions.

2.1. The Stochastic Process. The following is the mean reverting process for
interest rates employed in this paper:

(2.1) dr = k(6 — r)dt +vdz + J dw(h)

where £ is a central tendency parameter for the interest rate v, which reverts at rate
k. Therefore the interest rate evolves with mean-reverting drift and two random
terms, one a diffusion and the other a Poisson process embodying a random jump J.
The variance coefficient of the diffusion is v? and the arrival of jumps is governed

50n the other hand, for equities, the generally accepted process for stock prices is a lognormal
diffusion with jumps, which has well known properties. This makes the derivation of the density
function quite straightforward since the stochastic differential equation for the stock price process
is easily solved.
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by a Poisson process n with arrival frequency parameter h, which denotes the
number of jumps per vear. The jump size J can be completely general and may
be & constant or drawn from a probability distribution. The diffusion and Poisson
processes are independent of each other, and each of them is independent of J as
well,

2.2. The Characteristic Function. Assessing the impact of jumps on pricing
interest rate dependent securities requires an analysis of the probability distribution
of a jump-diffusion interest rate process, and the moments of this distribution. The
characteristic function of the jump-diffusion process offers the raw material with
which to derive the density functions as well as the moments.

Assume that we are at time ¢ = 0, and that we are looking ahead to time
t = T. We are interested in the distribution of »(T") given the current value of the
interest rate r(0) = rg = 7. In order to derive the T-interval characteristic function
F(r.T; s) for the process (2.1}, (s is the characteristic function parameter) we solve
its Kolmogorov backward equation (KBE) subject to the boundary condition that

(2.2) F(r,T =0;5) = exp(isr).

where ¢ = +/—1. The backward equation is

(2.3) 0= %—fk(ﬂ—r)+%%v2— g—i +hE[F(r+J) - F(r)].
The solution {derived in Appendix A) is provided below:
F(r,T;s8) = explA(T;s)+rB(T;s))
A(T;s) = f (k@B(T;s) + %UZB(T; $)2+hE [eJW;s) - 1}) dT
B(T;s) = tisexp(—kT)

Given the characteristic function, we can obtain the moments and the probability
density functions for any choice of jump distribution.

For the special case where the jump size is distributed Bernoulli-exponential
(with Bernoulli parameter v for the sign of the jump and exponential distribution
parameter o for the absolute size of the jump], the characteristic function of the
probability distribution of the interest rate of r(t+ 7) conditional on r(t) is derived
in closed form (sce [23}):

F(r{t),7;8) = exp[ﬁi(f; 5) — B(T; s)r(t)],

R ] 1 — e—k‘r 2 o 1 — e*?kT
A(T,S) = iské (—L—_) — 57V (T)

th(1 — 2¢ s L
+L_Ul [Arctau (ie_‘!”T) — Arctan (i)}
k o fa

n h 1 a? + g2e 2T
Ay Y L AR
28 a? + 52

B(r;s) = —isexp(—kT).

where
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The closed-form characteristic function above exploits the fact that we can solve
the partial-differential difference equation for the characteristic function. No other
solutions are currently known to exist for interest rate processes.

2.3. The Moments. The moments of the jump-diffusion process offer valuable
insights. First, the behavior of options prices may be inferred from a study of the
moments. Second, the moments are easily used in method of moments estimation
models. In this subsection, the derivation of the moments incorporates two inno-
vations: (i) moments are obtained for any jump distribution, and (ii) the moments
are derived without necessarily obtaining the characteristic function in closed form.

To obtain the moments, we differentiate the characteristic function successively
with respect to s and then find the value of the derivative when s = 0. Let p,
denote the nth moment, and F,, be the nth derivative of F with respect to s, lLe.
Fn=%E. Then

1
#n:i—n[FnLSZO]-

Likewise E{J"] denotes the nth moment of the jump shock. The first four moments
(as derived in Appendix B) are:

w o= (9+ %{ﬂ) (1 - e *) 4 re™ T
v? 4+ hE[J? _op
Hy = —— L) g - ery 42
1— e*SkT
py = hE[J (S—k)

| — o-2kT
+3py (v2 + hE[J?)) (—;———) + 4

k
1— e—4kT

o= e () (1 enerh ()

1— —3kT
4 hE[J? (——‘-’;)

2

3k
—2kT

+64: ((”2 + RE[JH) (%—)) +

Any jump distribution where the moments are known and finite is admissible, since
we only need the values of E[J"],n =1,2,3,4.

2.4. Density Functions. The estimation of Poisson-Gaussian processes in con-
tinuous time requires the conditional transition probability density of the jump-
diffusion process. This is derived via Fourier inversion of the characteristic func-
tion. If t denotes today, and 7 denotes the time interval, such that the horizon
T = t+ 1, then Fourier inversion of the characteristic function F(r(t), T; s) provides
the necessary transition density function f{r(f),7), i.e.

flr(t+ )y | r(t)] = % fOOO Re[exp(—isr(t + 7)) F(r(t), ; 5)| ds

Therefore the transition probability function is obtained by numerical integration
over the characteristic function. Estimation is carried out by maximuin-likelihood,
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using a discrete time series of interest rates r(t),t = 0..7. If the time interval
between observations is A, then the log-likelihood function being maximized is:

T-1
L= :
R, S, ; log(f [r(t + A) | (t)])
Le.
T-1 1
(2.4) k,G,v,h,[?j%[)S“]},Vn ; log (-T—r— /0 Relexp(—isr(t + ADF(r(t), A; s)] ds)

Fourier inversion is achieved by computing the integral in equation (2.4} numer-
ically using a quadrature routine. Numerical second derivatives of the likelihood
function evaluated at the optimal parameter set Q* = [k*, 8", v", h*, { E[J"|}"] pro-
vide the Hessian Matrix: Y = %. The standard errors are then computed from

the Hessian as y/diag(—~Y ~'). These standard errors are employed in obtaining
the required T-statistics, and the results of the continuous time estimation are
presented subsequently in Section 3.

2.5. Analytical Jump-diffusion Models for Bond Pricing. Equation (2.1)
states the statistical process for the interest rate. However, the pricing of interest
rate sensitive securities is undertaken by translating this statistical process to a
risk-neutral one. Assume that an equivalent martingale measure exists such that
the risk-neutral (drift adjusted) interest rate process is

(2.5) dr = [k(@ —7) — M| dt +vdz + Jdn(h")

where A is the unit price of diffusion risk and A* = h{1 — A;) is the risk-neutral
hazard rate where Aj is the parameter implementing the price of jump risk. The
adjustment in equation (2.5) required two risk adjustments: for diffusion risk via
the price of risk A, and for jump risk via the risk adjustment A;. The pricing
of interest rate sensitive securities is undertaken for this risk-neutral interest rate
process.

Denote present time by the variable ¢, the maturity date of a bond by 7', and
the time to maturity 7 = T —¢t. Define the price of a zerc-coupon bond to be
P(r,7); we assume that all factors determining the value of this bond are captured

=4

in equation (2.5) above. The solution for the bond price under a jump-diffusion
model is given by (the proof is given in Appendix C):

P(T, T) — eA(‘r)+rB(T)
e kT — 1
B =
A(r) = /((k@—/\v)B(T)+%1)23(7)24—(}[5’(7)]) dr, A(0) =0
glB(r)] = h*E(e/8 1)
B o= h(l—Ay)

The expression g[B(7)] accommodates any jump distribution provided the mo-
ments are finite. In general, the integral equation for A(r) (which is the solution
to an ordinary differential equation) does not always admit a closed-form. Specit-
ically, even in the simplest cases, when J is a constant or is distributed Gaussian,
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no closed-form solution is achievable. Das and Foresi [23] find that in the special
case of a jump with a sign based on a Bernoulli distribution and a size based on
an exponential distribution, it is possible to obtain a closed-form solution. Chacko
[16],[17] extends the Das-Foresi model to incorporate stochastic volatility and sto-
chastic mean as well by exploiting the facile properties of the Bernoulli-exponential
form. When the Bernoulli-exponential form is not availed of, the ordinary differen-
tial equation for A{7) is solved numerically by Runge-Kutta methods.

An important aspect of this solution is the fact that the yields [: ‘7' In (P[T])]
are ‘affine’, i.e. linear functions of the short rate. This is a useful property for
estimation purposes.

This concludes the development of all the analytics needed for estimating and
pricing jump-diffusion based term structure derivative securities. The next section
deals with the application of these methods to bond market data.

3. ESTIMATION

The analytics from Section 2 are applied to daily data on the Fed funds rate
for the period January 1988 to December 1997. The total number of observations
is 2609. The data is from the Federal Reserve web site and is plotted in Figure
1. The descriptive statistics for the data are in Table 1. An examination of the

Fed Funds Rate from 1/1/88-31/12/97 (2609 cbs)
11

10

Fed Funds rate
[22]
o~

|

0 500 1000 1500 2000 2500 3000
Observation No

FiGurE 1

data reveals that changes in interest rates evidence a very high degree of kurtosis,
a stylized fact that predicates the use of a jump model. Over the entire 10 yvear
period, rates have quickly risen to a peak of 10% and then fallen to a low of 3%,
finally stabilizing at a 6% level.

Our estimation exercise uses (i) continuous time cstimators, (ii) discrete appros-
imation estimators, and (iii} method of moments techniques. Our jump-ditfusion
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TABLE 1. Descriptive Statistics
The following table presents descriptive statistics for the Fed Funds rate over the period

January 1988 to December 1997. The data is daily in frequency. The statistics reported
are for the interest rate level (r) and the change in interest rates (dr).

Statistic T dr
Mean 5.8100 -0.0005
Standard Deviation | 1.9558  0.2899
Skewness 0.3032  0.3950
Excess Kurtosis -0.8304 19.8667
Minimum 2.58 -2.70
Maximum 16.71 2.83

TaBLE 2. Continuous-Time Estimation

This table presents the results of the continuous-time jump-diffusion model. Estimation is
undertaken using maximum-likelihood where the transition density function is obtain by
numerical Fourier inversion at each point in time, Optimization of the likelihood function

is then undertaken numerically over the numerically obtained probability density.
The parameter estimates for the continuous-time model are reported below.

Parameter Estimate T-Statistic
k 0.6521 2.8089
It 0.0173 0.9553
v 0.0146 24.5698
h 118.87 11.0819
P 0.5411 22.7500
o 365.62 16.6437
Log-likelihood | 12541.11

models are extended for ARCH effects. They allow for mean-reversion in jump pro-
cesses, and also test for the impact of Federal Reserve actions and day-of-the-week
effects.

3.1. Continuous-Time Estimation. The process was estimated using contin-
uous time transition density functions for the jump-diffusion process. The log-
likelihood function in equation 2.4 is used for the estimation. Since the Vasicek
model is nested within the jump-diffusion framework of this paper, a comparison of
log-likelihoods reveals the improvement in fit obtained by adopting a jump-diffusion
model. The results are provided in Table 2. The model finds a large number of
jumps in the data, seen in parameter i. The average size of each jump is given by

1 - 1/365.62, i.e. 27 basis points. From the descriptive statistics it is known that

o

mild positive skewness exists, cvidenced by the parameter ¥ = 0.54. Therefore,
the results (i) confirm that the jump parameters are statistically significant, and
(ii) that the jump comprises a reasonable component of the stochastic variation in

interest rates.

We now conduct a simple analysis to check for consistency of the estimation
scheme with the theoretical model. In Section 2.3 we derived the moments of the
model, and found that the conditional mean of the jump-diffusion process was equal

to (9 + ’—1—‘5%11’1) (1- e*“‘) +re~*T. The unconditional mean may be derived as the

litnit when T —— oo, which yields 8 + M Since the jump size is distributed
¥ fr I
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exponential, the average size is % The expected value of the jump then is 2 E(J) +
(1 - )E(~J) = L + (1 — y)(—L) = 0.00022194, using the parameters in Table
2. Thus, using the other parameters, we obtain that 6 + h—EiM =0.0578, i.e. 5.78%
which is almost equal to the mean of the data given in Table 1. It is important to
note that under the jump-diffusion model, 8 is no longer the unconditional mean
of the data: it needs to be replaced with the expression ¢ + h—E;f—Q above.

3.2. Estimation using Discrete-Time Approximations. Estimation using the
continuous-time method of the previous section is an exceedingly intensive numeri-
cal process. It requires numerical optimization over a density function that is itself
obtained by numerical Fourier inversion. In this section a simpler discrete-time
approach allows us to estimate a model where the jumps are normally distributed.

We estimate the Poisson-Gaussian interest rate model using a Bernoulli approx-
imation first introduced in Ball & Torous [9]. The assumption being made here is
that in each time interval either only one jump occurs or no jump occurs. This is
tenable for short frequency data, and may be debatable for data at longer frequen-
cies. Since we use daily data, this approximation is justifiable. As Ball and Torous
found, it makes the estimation procedure highly tractable, stable and convergent.
Since the limit of the Bernoulli process is governed by a Poisson distribution, we
can approximate the likelihood function for the Poisson-Gaussian model using a
Bernoulli mixture of the normal distributions governing the diffusion and jump
shocks.® In discrete time, we express the process in equation (2.1) as follows:

(3.2) Ar = k(0 —r) At +vAz + J(p,v?) An(q)

where 22 is the annualized variance of the Gaussian shock, and Az is a standard
normal shock term. J{u,+?) is the jump shock, which is normally distributed with
mean g and variance ¥2. Arx(q) is the discrete-time Poisson increment, approxi-
mated by a Bernoulli distribution with parameter ¢ = h At + O(At). Then, the
transition probabilities for the interest rate following a Poisson-Gaussian process
are written as (for s > t)

) B —(r(s) —r(t) — k(6 — r(t)) At — w)? 1
f{T (5) l T(t)] = gexp ( 2(,02 At +72) ) 2,”(07_ At + 72)
—(r{s) —r(t) — k{0 —r(t)) A!‘)z) 1

2u? At Vom? At

6The Bernoulli approximation is achieved as follows: Define the indicator variable Y; =1 if a
jump ovccurs, else ¥; = 0 for all ... N, and where At = T/N, for the time serics spanning T

Pr[Y; = 0] = 1 — h At + O(At)
PrY; = 1] = h At + O(At)
(3.1) PrlY; > 1] = O(Al)

(3.3) +(1 — g)exp (

Let Al = Z?’;l Y;. M is distributed Binomial being the sum of independent Bernoulli variables
For r occurrences,
Pr(M = 1] =N Co(hT/NY(1 — AT/N)N 77, vz
—hT hT)®
lim Pr{M =z|= N G
N =00 x!

Therefore, it is clear that the Bernoulli approximation converges to the appropriate Poisson
density.
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TaBLE 3. Basic Poisson-Gaussian Estimation

We present results for the estimation of pure-Gaussian, Poisson-Gaussian, ARCH-Poisson-
Gaussian and ARCH-Gaussian processes on daily data covering the period January 1988
to December 1997. The total number of observations is 2609. Estimation is carried out
using maximum-likelihood incorporating the transition density function in equation (3.3}.
The discretized ARCH-Poisson-Gaussian process estimated is specified as follows

Ar = k(@ —r)At+vAz+ J(p,y) Ar(q)
”tQ-i—At = ag+ai[Ar — E'(A‘n)]2 _
The other processes are special cases of the one above. T-statistics are presented below

the parameter estimates. The variable g, the probability of a jump in the interval At is

analogous to the continuous time parameter A for jump arrival intensity, by the relation
q == hAt.

Parameter Pure Poisson ARCH-Poisson ARCH
Gaussian  Gaussian Gaussian Gaussian
k 2.8832 0.8542 0.5771 1.2810
3.68 2.26 2.02 4.66
4] 0.0576 0.0330 0.0346 0.0974
10.91 2.57 2.50 9.78
u 0.0466 0.0173
111.01 24.01
ao 0.0001 0.0008
17.65 66.48
a1 127.0201 232.07
13.92 29.85
“ 0.0004 0.0017
1.38 5.66
Y 0.0058 0.0045
24.50 16.60
q 0.2162 0.1564
17.91 13.14
Log-Likelihood | 13938.13 14830.90 15197.67 14509.50

where g = h At-+O(At). This approximates the true Poisson-Gaussian density with
a mixture of normal distributions. Estimation involves the following maximization:
T

max 3" (log(flr(s) | r(6))
(k8,007 0] §5

Maximum likelihood estimation results are presented in Table 3. In order to com-
pare different processes for the short rate, we estimated four nested models on the
data set. Using data from different sampling frequencies enables us to examine
whether the stochastic process used is sensitive to this criterion. The models es-
timated are (i) a pure-Gaussian model (h = 0), (ii) the Poisson-Gaussian model
of equation (2.1), (iii) an ARCH-Poisson-Gaussian model, which consists of the
Poisson-Gaussian model with the variance of the Gaussian component following
an ARCH(1) process,” and (iv) a pure ARCH-Gaussian model. This parallels to

"This is done by modelling the variance of the Gaussian process as fullows:
(s + A2 = ag + afr(s) — E(r(s)?

and estitnating the parameters ag,a;.-
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a large extent the analyses carried out by Jorion [31] for the equity and foreign
exchange markets.

Since the ARCH-Poisson-Gaussian model subsumes the other three models, like-
lihood ratio tests may be applied to compare nested models. Comparison of nested
log-likelihoods via a x? statistic with degrees of freedom equal to the difference
in the number of parameters between two models reveals in Tables 3 that the
ARCH-Poisson-Gaussian model outperforms the rest. The Poisson-Gaussian pro-
cess fits the data significantly better than the pure-Gaussian one. Whereas the
Poisson-Gaussian and ARCH-Gaussian models are not nested, the likelihood for
the Poisson-Gaussian model is greater, suggesting that Poisson-Gaussian processes
provide a better fit than ARCH volatility models.?

A comparison of the pure-Gaussian model and the Poisson-Gaussian model re-
veals a sharp drop in Gaussian volatility (v) when jumps are introduced nto a
pure-Gaussian model. For example, in Table 3, the Gaussian volatility drops to
one-third its prior level suggesting that jumps account for a substantial component
of volatility.

Once again, the parameter & appears downward biased, but is actually so because
of skewness from the jump. The unconditional mean of the interest rate under the
discretized process is given by 8 + hu = 6 + gu/A, and computations using the
values in Table 3 arrive at a value of 0.0557 or 5.57%, once again close to the mean
value in Table 1.

In the Poisson-Gaussian model (Table 3) we find that g = 0.2162, which under
our Bernoulli model is simply the probability of a jump on any day. Thus, we
find that jumps occur once every five days over our sample period. In contrast,
the ARCH-Poisson-Gaussian model provides a jump probability of only 0.1564,
evidence of the fact that stochastic volatility will account for some of the jumps.
We conclude by noting that pure-Gaussian models do not capture the features of the
data. Moreover, Poisson-Gaussian and ARCH-Gaussian models as well fall short
of the efficacy of the ARCH-Poisson-Gaussian model. This has implications that
theoretical work be driven in the direction of a combined ARCH-Poisson-Gaussian
model.

Observe that the coefficient of mean reversion drops from 2.88 to (.83 when
jumps are added to the diffusion model. This may imply that jumps provide a
source of mean reversion. This happens when the skewness of the jump distribution
depends on the level of the interest rate in such a way as to induce mean reversion
i.e. there is a greater chance of a positive jump at low interest rate levels, and a
higher chance of a negative jump at high interest rate levels. Thus, we may find
that the jump size distribution is positively skewed at low levels of r and negatively
skewed at high levels of . This can be modelled by allowing the mean of the jump
size to depend on the level of r. For example, we may use a specification such as
py = ap + (8 — 7). When oy > 0, we obtain mean reversion of the short rate
through the jump component of the process.

Table 4 reports the results of the time-varying mnean reverting model when juinps
inject mean reversion. The mean reversion in the process is now attributable to

8 Application of the Akaike Information Criterion (not reported), where the likelihvod is ad-
justed downwards by the number of parameters, provides evidence of this.
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TaBLE 4. Estimation of the Time Varying Jump Means Model

We present results for the estimation of the ARCH-Poisson-Gaussian model allowing for
time variation in the mean of the jump size. This enables assessment of the mean reversion
effects of the jump process. Estimation is carried out using maximum-likelihood incerpo-
rating the transition density function in equation (3.3). The process estimated is specified
in the following equations:

Ar = k(@ -r)At+vAz+ I, 72) Am(q)
viear = ao+ ai|Ar — E(Ar))?
pe = coto(f—r)

T-statistics are presented below the parameter estimates. The x? statistic is computed for
twice the difference between the mean reverting jump model and the constant mean jump
model (where ag = i and @, = 0). The degrees of freedom used is one, being the difference
in the number of parameters between the two models. The variable g, the probability of a
jump in the interval At is analogous to the continuous time parameter A for jump arrival
intensity, by the relation q =~ hAt.

Model: Jump-diffusion [ ARCH-jump

Parameter Estimate T-stat Estimate T-stat

k 0.6336 1.64 0.5023 1.72

A 0.0233 1.04 0.0304 1.69

v 0.0173  24.04

ao 0.0001 17.65

al 1266914  13.90

q 0.2163 17.91 0.1567 13.14

(o7 0.0018 1.46 0.0022 3.13

oy 0.0414 3.04 0.0202 1.44

5y 0.0057 23.16 0.0045 16.03
Log-Likelihood 14895.65 15198.82
Log-L for constant & | 14890.90 15197.67
P-Val for x?(1) = 0.0021 0.1294

both the drift term and the jump term. Since jump arrivals are uncertain, the rate
of mean reversion is now time-varying, and the drift in the interest rate becomes
stochastic. Ait-Sahalia [2] and Stanton [39] demonstrate that the drift term dis-
plays non-linear behavior, which may be partially explained if jumps inject ‘extra’
mean reversion at interest rates far away from the long run mean of the short rate.
In fact these papers find that the mean reversion pull is far stronger when the
interest rate lies outside the range 4%-17%, which is consistent with the phenom-
enon suggested here. We extend our empirical model to estimate the parameters
(ap.1). We estimated the Poisson-Gaussian and ARCH-Poisson-Gaussian model
with time-varying jump means (Table 4). Table 4 can be compared with Table
3. Notice that the coefficient of mean reversion k is lower, as the mean reverting
component has been redistributed partly to the jump component of the process.
The T-statistic for e is significant for the jumnp model indicating that the mean of
the jump process is time-varying. However, when an ARCH effect is added to the
model, the time-varying drift coefficient becomes insignificant. The joint evidence
of these two models appears to suggest that different specifications of the volatility
and jump may result in a linear drift model. We explore this issue in greater detail
in a later subsection.
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TABLE 5. Jump Estimation with Day of the Week Effects

The table presents results of the estimation of a jump-diffiusion model when the jump
arrival intensity is assumed to be affected by the day of the week. The jump intensity
follows a linear model

qe = Ao + Midy + Aadz + Adady + dady

where d;,i = 1,2, 3,4 are dummy variables for Monday, Tuesday, Wednesday and Thurs-
day.

Parameter Estimate T-Statistic
k 0.7960 2.09
f 0.0259 1.60
1 0.0171 24.38
Ao 0.1222 6.17
A1 0.0413 1.34
Az 0.0147 0.54
Az 0.2523 6.85
Ay 0.1777 5.46
2 0.0004 1.52
Y 0.0057 24.94
Log-likelihood | 14932.74

3.3. Day of the Week Effects. In this section we examine whether jumps are
more likely to occur on specific days of the week, by introducing a modification
to make the arrival intensity of jumps depend on the day of the week. There are
several reasons which make jumps more likely on some days of the week rather than
others. For example, jumps would be more likely on Mondays since the release of
pent up information over the weekend may drive up the possibility of a large change
in interest rates. Likewise, option expiry may inject jumps into the behavior of
interest rates, and this would be likely on Wednesdays and Thursdays. Jumps may
also occur on Fridays when last minute trading may create excess volatility.

By using dummy variables for cach day of the week, we assume a linear model
for the arrival intensity of jumps in the short rate of interest:

At = g + Apdy + Agdy + Aads + Agdy

where Ag is the arrival probability of a jump if the day is Friday, and A;,7 = 1,2.3.4
is the incremental arrival intensity of jumps over Friday's level when the day of the
week is Monday, Tuesday, Wednesday and Thursday respectively. ;@ = 1,2,3.4
are dummy data variables indicating the day of the week for Monday, Tuesday,
Wednesday and Thursday respectively. Estimation was conducted over the two
models containing jumps, i.e. (i) the jump-diffusion model and (ii) the ARCH-jump-
diffusion model. The results of the estimation are presented in Table 5. Intuifive
results emanate from this analysis. The likelihood of jumps is highest on Fridays,
but jumps are also likely on Wednesdays and Thursdays, when information from
options expiry is released. This lends credence to the proposition that jumps are
caused by large bursts of information being released into the market. Once again,
there is no evidence of skewness, but kurtosis exists. The jumnp tends to be of the
order of 50 basis points.

3.4. Federal Reserve Activity., Jumps may arise from intervention by the Fed-
eral Reserve in the bond markets. The Federal Open Market Committee (FOMC)
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meets periodically, and informs their open market desk of the range they wish to
establish for the Fed Funds rate. Short rates tend to track this rate rather closely.
Existing models do not account for Federal Reserve activity. It is possible that
these meetings form an important information event. If so, a model that accounts
for this will prove to be superior for traders. In this section, we enhance our jump
model by making the jump intensity depend on the FOMC meeting. By examining
the impact of the meeting on the jump probability we can ascertain whether the
meeting is a significant information event.

The FOMC meets 8 times each year. There are two types of meetings of the
FOMC: one-day meetings and two-day meetings. There are usually 2 two-day
meetings and 6 one-day meetings every year. Our sample over the ten-year period
consists of 58 one-day meetings and 22 two-day meetings. In total there were 80
meetings, i.e. one every 6-7 weeks. The first and fourth meetings every calendar
year are two-day events. They begin at 2:30 pm on the first day, continuing at 9:00
am the following day. The one-day meetings always begin at 9:00 am. All meetings
begin on Tuesdays.

At these meetings, the FOMC examines information about the economy and
decides on whether to undertake open market operations in the dollar or other
currencies. They also determine the level of short-term rates. The usua} issues
relating to the economic outlook are considered: consumer spending, non-farm
payroll, industrial production, retail sales, real business fixed investment, nominal
deficit, consumer price inflation, currency rates, money supply (M2,M3), and hous-
ing activity. At the two-day meetings additional policy directives are issued. In
particular, these relate to domestic open market operations, authorization of for-
eign bank limits for foreign currency operations, foreign currency directives, and
procedural instructions with reference to foreign currency operations. We find that
the two-day meetings appear to have a greater information impact than one-day
meetings.

In addition to foreign currency directives, the Fed also undertakes other distinct
activity at the two-day meetings. By {the Humphrey-Hawkins) law, the Fed must
report to Congress twice a year on monetary policy, i.e. in February and July.
The two-day meetings are the setting for the discussions on monetary policy as
well. The FOMC thus votes on the range of growth rates of M2,M3 and the debt
levels it expects to see. Thus, two-day meetings tend to evidence more forward-
looking discussions than usually occur at one-day meetings. However, these votes
are not announced immediately, and only get reported in minutes two weeks after
the meeting. Thus, it is not clear that this activity of the Fed in any way forms an
information event. However, we do find that the two-day meetings seem to iinpact
parameter estimation, in contrast to the one-day meetings.

To begin, we carry out a few simple regressions to ascertain if the volatility of
interest rates is in any way related to information released at FOMC meetings. This
is done by regressing the squared change in interest rates on interest rate level and
a dummy variable for the FOMC meeting. The regression cquation is as follows:

(P41 *T‘t]g =a+bry+cfiyr te

where f, is the dumny variable indicating the FOMC meeting. It may take four
different forms as described in Table 6 below. Since some of the meetings last 2
days, combinations are possible. First, we assign a dummy variable which is the
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TaBLE 6. FOMC Meeting impact: Linear Regressions

We examine via simple regressions whether the FOMC meeting results in a information
surprise. The regression is

(34) : [Tg+1 -— ’F‘t]2 =a+br + CfH»l + e

where f; is the dummy variable for the FOMC meeting. T-statistics are presented below
the parameter estimates.

Dummy variable {f;) a b c R?
1st day all meetings 0.0373 0.0078 0.0441 0.0019
1.35 1.98 0.99

st day, 1 day meetings | 0.0388 0.0078 -0.0120 0.00i6
161 1.99 -0.27

1st day, 2 day meetings | 0.0377 0.0075 0.3178 0.0070
1.57 191 3.79

2nd day, 1 day meetings | 0.0381 0.0078 0.0723 0.0018
1.58 1.98 0.86

first day of all meetings. As can be seen, this has little impact on volatility, and
hence provides evidence of no unexpected information. A similar result holds when
we examine only 1 day meetings. However, when we set the dummy variable to be
the first day of a 2-day meeting, the coefficient comes in strongly positive. This
indicates that there may be a significant information release on the first day of the
2-day FOMC meetings. We also examined whether the information impact occured
on the second day of the 2-day meeting and found little effect. Thus, if there is
an information effect, it occurs on the first day of the two-day meeting. Table 6
summarizes the regression results.

This informal regression proxies for the possible impact of the FOMC meeting on
interest rate changes. We now turn to the examination of whether the probability
of a jump is linked in any way to the FOMC meetings. We achieve this using a
modification of our Poisson-Gaussian estimation model depicted in equation (3.3).
In the estimation equation (3.3), we specify that the arrival probability of a jump,
denoted by the parameter g, be a function of the Fed meetings (f;). It is possible
that jumps in the interest rate are caused by Fed actions, and then the information
on meetings would determine the probability of a jump taking place. Thus we
specify :

¢ = Ao+ A fe

The equation above accommodates a base level of jump probability Ag. augmented
by a Fed dependent attribute, A;. For the ARCH-diffusion model, we investigate
whether the Fed meetings have an impact on conditional volatility by specifying the
ARCH equation with an additional coefficient a; y on the Fed event, L.e. the variance
will be ag +a€? + agyfi. First, we examine the one-day meetings only. The results
are presented in Table 7. The 1-day meetings appear to have very little impact
on the usual levels of jump probability, as seen in the jump-diffusion model. The
parameter \; is not significant. And in fact, the ARCH model evidences a decrease
in volatility when a one-day FOMC meeting takes place. We now examine the
information impact of the 2-day meectings in Table 8. As in the basic regression in
Table 6, this dummy variable proves to be significant, i.e. it increases the probability
of a jump. This probabhility more than doubles im magnitude. In the ARCH model,
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TABLE 7. FOMC Meeting impact: One-day meetings

We examine via ARCH and jump models whether the FOMC meeting results in a infor-
mation surprise. The jump model is extended by q. = Ao + Alday ft where fi is the dummy
variable for the FOMC meeting. The ARCH model is written as ap + a6 + Qiday ft-

Model: ARCH-diffusion Jump-diffusion
Parameter Estimate T-stat | Estimate T-stat
k 1.2563 4.55 0.8625 2.28
0 0.0971 9.58 0.0336 2.67
v 0.0173  24.03
a0 0.0008 63.73
ay 232.9621  29.67
Clday -0.0003  -4.22
Ao 0.2138 17.53
Alday 0.0803 117
I 0.0004 1.36
¥ 0.0058 24.48
Log-likelihcod | 14511.06 14891.68

TaBLE 8. FOMC Meeting impact: Two-day meetings

We examine via ARCH and jump models whether the FOMC meeting results in a infor-
mation surprise. The jump model is extended by ¢q: = Xo+ Azday ft where fi is the dummy
variable for the FOMC meeting. The ARCH model is written as ao + a16¢ + A2dayfi-

Model: ARCH-diffusion Jump-diffusion
Parameter Estimate T-stat | Estimate ‘T-stat
k 1.2915 4.75 0.8574 2.26
f 0.0976 9.92 0.0334 2.64
v 0.0173 24.02
ao 0.0008 66.45
ay 232.1430  30.02
U2day 0.0009 1.82
Ao 0.2139 17.78
}\Qday 03394 2.09
w 0.0004 1.36
Y 0.0057  24.50
Log-likelihood | 14511.91 14893.85

the FOMC meeting appears to be of little consequence. Finally, we put both 1 day
and 2 day meetings together in one model and ascertain the results in Table 9.
The results here are an amalgamation of those from the prior two tables. The two-
day meetings result in a sharp increase in the possibility of a jump. The one-day
meetings in fact seem to predicate a reduction in conditional volatility. One might
speculate that the two-day mectings do result in information surprises, whereas the
one-day meetings confirm the market’s forecasts.

3.5. The Pervasiveness of the Non-linear Drift. In recent papers, Ait-Sahalia
2], Conley, Hansen, Luttmer and Scheinkman [20}, and Stanton [39] have found
the drift of the short rate to be non-linear in the lagged interest rate. This may
simply be an outcome of the specification of the stochastic process as a diffusion.
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TABLE 9. FOMC Meeting impact: One-day and Two-day meetings

We examine via ARCH and jump models whether the FOMC meeting results in a infor-
mation surprise. The jump model is extended by g = Ao + Atdayfit + Azdayf2e where
fit, f2¢ are the dummy variables for the FOMC meetings. The ARCH model is written as
ao + 1€: + A1day fie + G2day for.

Model: ARCH-diffusion Jump-diffusion
Parameter Estimate T-stat | Estimate T-stat
k 1.2677 4.63 0.8660 2.26
0 0.0973 9.72 0.0340 2.64
v 0.0173 24.04
a0 0.0008 65.66
a, 2329507 29.82
Qlday -0.0003 -4.09
A2day 0.0009 1.81
Ao 0.2114 17.39
Alday 0.0832 1.21
A2day 0.3422 2.11
Jr; 0.0003 1.34
5 0.0057 24.48
Log-likelihood | 14513.39 14894.69

Introducing jumps into the specification may well render the drift linear in interest
rates. We explore this aspect in this section.

We estimate four models allowing for non-linear drift terms: (i) a pure-diffusion
model, (i) a jump-diffusion model, (iii) an ARCH-diffusion model and (iv) an
ARCH-jump-diffusion model. The general econometric specification is as follows:

dry = [k (0~ re) + aar + 0‘3/7't] dt + vedzy + J(p,~*)dm(h)
vir = ap+a ldre — E(dr))’

The critical parameters are (a2, @3). They examine whether the drift is a function
of squared interest rates or inversely related to interest rate levels. If any of these
parameters is significantly different from zero, it means that the drift term is non-
linear. The results are presented in Table 10

The ARCH diffusion model failed to converge. It is evident from the table that
the introduction of the jump does diminish the size of the non-linear coefficients
(cva, ex3). There is also a reduction in the level of significance. In fact the non-
linearity paramcters are significant at the 95% level but not at the 99% level once
the jump model is introduced. Hence, it is possible that the jumps do make the
model linear in drift. However, from the results here, this is not a strong conclusion,
though it is suggestive. It is important to note that the introduction of non-linearity
in the drift does not eliminate the statistical significance of the jump process.

We plot in Figure 2 the graph of the drift term for the pure-diffusion model and
the jump-diffusion model. The dotted line shows the drift in the pure-diffusion
model for interest rates varying from 1% to 12%. The full line depicts the jump-
diffusion model. The non-linearity diminishes with the introduction of jumps in
the extreme ranges of the graph.

It is also likely that the jump model with time-varying jump means may resolve
the non-linear drift issue. Since it appears that jumps tend to be positively skewed
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TABLE 10. Model Estimation with non-linear drift

This table presents the results of the estimation model where the drift term is non-linear.
The model specification is as follows:

Ar = [k(0—r)+oor +aafr] AL+ v Az + J(u,v*) Anig)
viear = ao+ai[Ar— E(Ar)]?

Model: Pure-diffusion Jump-diffusion ARCH-jump
Parameter Estimate T-stat | Estimate T-stat | Estimate T-stat
k -81.6448  -4.67 | -25.6544 -2.08 | -20.0436 -2.09
7] 0.0546  36.86 0.0580 18.88 0.03534  23.33
o) -475.9293 -4.90 | -142.9902 -2.02 | -115.6292 -2.10
a3 0.0769 4.57 0.0264 2.38 0.0189 2.20
v 0.0465 108.47 0.0173  23.96
Qo 0.0001 17.65
ai 127.0719 13.95
g = hdt 0.2162 17.90 0.1553 13.07
i 0.0004 1.43 0.0017 5.69
v 0.0058 24.46 0.0045 16.55
Log-likelihood | 13944.11 14894.29 15200.17
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at lower interest rates, and negatively skewed at high rates (see Table 4}, explicitly
accounting for this fact may result in the drift becoming linear in the short rate.
Therefore, we rerun the estimation carried out in Table 4 allowing for a non-linear
drift term. The stochastic process specification is as follows:

dry = [k (6 — ) + agri + ag/n] dt + vidzy + Ty, ¥ )dm(R)
Vg1 = ap + ay [d""t - E((h’t)}Q
p, = oo+ap(f-r

The results are presented in Table 11. However, from Table 11, it is clear that
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TABLE 11. Estimation of the Time Varying Jump Means
Model with non-linear drift

We present results for the estimation of the Poisson-Gaussian model allowing for time
variation in the mean of the jump size when the drift term is non-linear. This enables
assessment of the mean reversion effects of the jump process, and its impact on the drift.
Estimation is carried out using maximum-likelihood incorporating the transition density
function in equation (3.3). The process estimated is specified in the following equations:

Ar = [k(9~r)+agr2+a3/r]At+vAz+J(u,qg)Aw(q)
i, = oao+a(f—r)

T-statistics are presented below the parameter estimates. The variable g. the probability
of a jump in the interval At is analogous to the continuous time parameter h for jump
arrival intensity, by the relation g = hAtL.

Model: Jump-diffusion
Parameter Estimate T-stat
k -26.9835 -2.18
(2] 0.0577  20.27
23 -149.6366 -2.11
g 0.0272 2.45
v 0.0173 23.98
q 0.2163 17.90
Qo 0.0004 1.23
o 0.0419 3.07
o] 0.0057  23.15
Log-Likelihood | 14899.13

the mean-reversion introduced by the jump process is not sufficient to rule out the
now-linearity in the drift term. One may conclude that while jump processes may
ameliorate the non-linearity in the drift, it is still a feature that appears robust to
enhanced specifications such as that introduced in this paper.

3.6. Estimation using the Method of Moments. The method of moments has
the advantage that the jump distribution can be modelled quite generally, and the
estimation scheme is easy to implement. Empirical estimation for the method of
moments is undertaken using the standard Hansen [28] efficient generalized method
of moments estimation approach. We estimated two models: (i) a pure diffusion
model and (ii) the jump-diffusion model.

First, the pure diffusion model was estimated. All first four moments of the
distribution were used for the estimation so as to be consistent with the jump-
diffusion model. As in the paper by Chan, Karolyi, Longstaff and Sanders [18], the
instruments used here are a constant, and the lagged value of the short rate. For
the pure diffusion model, the moments used are a special case of the moments in
Section 2.3, where the jump variables are eliminated from the moment expressions
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TaBLE 12. Method of Moments Estimation

This table presents results for method of moments estimation, using four raw moment
conditions. The instruments used are a constant and once-lagged values of the short rate.
The table presents estimates for a pure-diffusion model and a jump-diffusion model.

Model: Pure-diffusion Jump-diffusion
Parameter | Estimate T-stat Estimate T-stat
k 2.6880 3.69 3.0992 4.09
&' 0.0593 10.82 0.0580 12.22
v 0.0387 11.13 0.0447 10.82
RE(J%) 1.0688 x 10° 2,04
RE(JY) -2.08 x 107 -1.16
o 29.89 12.97

by setting the jump intensity parameter o = 0.

o= 01— )+ re~ kT
v ~2kT 2
pe = ol e™)
1— 8—'2kT .
Hy = 3#1”2 (T) +

2

. | — e 2T
s (557)
1— evZkT
+6743 (U2 (_Ok )) + 11

The results are presented in Table 12. The moment conditions may be suminarized
as

Hy =T
_p2 1
E H2 7‘2 50 =0
Mg — Ty Iy
Ha — 'r;:t

We minimize the usual objective function (denoted H). In contrast to Chan,
Karolyi, Longstaff and Sanders, we use the exact continuous time moments rather
than moments from a discretization of the short rate process. The jump-diffusion
model is also estimated. One of the difficulties with the method of moments is
that some parameters are not identifiable separately from the others. In the case
of this model, the first jump moment E[J] enters only as a sum with 6 in the first
moment. In addition, the second jump moment E[J?] always enters as a sum with
©2 in the second, third and fourth moments, and hence, is not separately identified.
The values of these two variables are subsumed into 8 and v? respectively. We
relabel these parameters 0" = 8 + "2U) and o = 4% + hE(J?). Also, we estimate
the composites hE(J?), and hE(J*) since E(.J%), E(J*) do not appear except as
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multiplied by h. The reparameterized moments from Section 2.3 are as follows:

p, = 6 (1—e ) 4re*T
v 2T 2

My = %(1”5_ )+ py
l_e*SkT
= RE[JP({Z—u-—o

by w1 (25 )
1 — 2T

w30 (—;——) +

1 — e— 3T o (1 — e 2T 2
_ A ' -
ty, = hE[J ]( T ) +3 ('v ( o ))

] — e—BkT
+d4, RE[J?] (T)

.2 2 1— e 2 4
o\ v | ) ) Tt

Estimation results in Table 12 indicate a better fit for the jump-diffusion model
versus the pure diffusion model, though neither model offers a very good statistical
match. The difference in the objective functions (tested by x? statistics) between
the two models is significant. Specializations of the GMM approach used here may
be achieved by simply choosing varied distributions for the jump. We have chosen
here to retain a general form for the jump distribution.

Going beyond the method of moments analysis, it is instructive to examine the
empirical moments over different data intervals. While the estimation results in
Table 12 dealt with data only at daily intervals, we can use the theoretical results
in Section 2.3 over multiple intervals with a view to understand whether the jump
model is a-priori justified. Define the time interval between observations in the
data as T. From Section 2.3, the variance of the jump-diffusion process is:

. 2 4+ hE[J?
Hz*#f#i—gk[—]

(1— e_ZkT).
The skewness is
E(J — /51)3
(p1p — p1)*/2
22he * (1 + T + 2T hE(J?)
3(1 4 efT) (102 + hE(J2)) /(1 — 2T (v + hE(J?))
If h = 0, then the skewness is zero. The kurtosis of the process is:
E(J — u)?
(10 — 13)°
(25T — 1)BREE(JD)? + 602 E(J?) + 3vt) + KRE(J") (T +1)
(e2kT — 1)(v2 + hE(J?))?
When h — 0, i.e. no jumps, the kurtosis is 3, which is the normal level. The

conditional skewness and kurtosis are depicted in the Figures 3 and 4 for various
intervals. The primary feature of these plots is that conditional skewness and

Skewness =

Kurtosis
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Conditional Skewness by Maturity
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kurtosis decline monotonically as T increases. We will use this theoretical property
shortly.

As a first check we compute the moments of the conditional distribution of
interest rates using the estimated parameters for the jump-diffusion model in Table
3. Given the estimated values for the jump distribution (,u, ‘/2), we caln compute
the following values: E(J) = p, E(J?) = p® + %, E(J®) = 113 + 3uv?, and E(J*) =
@+ 64242 + 3v%. Since our data is daily, the horizon T is 555 = 3.8462 x 1077,
given the number of trading days in a year. In order to make a rough comparison,
the moments of the change in interest rates (dr) in Table 1 will correspond to
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Kurtosis by Time Interval
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the computed moments at 7" = 1/262. In fact they correspond well. The values
are (values from Table 1 are in brackets): standard deviation=0.0029 (0.0029),
skewness=0.3553 (0.3950), and kurtosis=13.36 (19.86).

We now use the moments to understand the differences hetween the diffusion-
based class of models and the jump-diffusion class. We first note that for any
n-factor pure diffusion model, as the time interval for sampling the process goes
to zero, i.e. T | 0, the conditional skewness and kurtosis also goes to zero. For
example, in the case of a stochastic volatility diffusion model, when the time interval
is very small, the volatility of volatility has little time to achieve any play, and
o the higher moments are negligible. As T increases, these moments kick in,
and skewness and kurtosis increase in magnitude. As T becomes very large, the
multivariate diffusion model starts returning to being asymptotically Gaussian, with
the result that the skewness and kurtosis revert to normal values. Thus, the graph
for skewness and kurtosis tends to be hump-shaped, beginning at normal values for
small T, then increasing with 7, and finally declining back to normal.

On the other hand, in a jump-diffusion model, since at small T', there is still
a chance that a large jump will take place, the possibility of a large outlier in
comparison to normal variance is very high. This makes for substantial conditional
skewness and kurtosis at short maturities. As T increases, the magnitude of the
jump in relation to the diffusion shock decreases, and so skewness and kurtosis revert
to normal values. Thus, the graph of skewness and kurtosis decline monotonically
with T, as can be seen from Figures 3 and 4.

Therefore, an examination of the behavior of the kurtosis of the time series of
changes in interest rates (dr) offers a simple way to check if the raw data itself
suggests a jurnp model. If kurtosis declines monotonically with 7', then it suggests
that a jump process is required, since that feature would not be possible with &
diffusion model, no matter how many factors it contained. The plot in Figure 5
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depicts the kurtosis for interest rate changes where the time interval between obser-
vations varies from 1 day to 260 days. The plot has been generated by intervalling
the data for n days, where n = 1,2,...260. When n > 1, the data set yields more
than one intervalled time series; for example, when n = 2, we have two series, each
2 days apart. The reported kurtosis is the average of the kurtosis of each series.
This eliminates to some extent any day-of-week effects that might affect the graph.
These day-of-week effects still exists as may be seen from the jaggedness of the plot.
However, the monotonic decline in kurtosis is unmistakeable.

Since the empirical kurtosis declines monotonically, as predicted by the theo-
retical moments from the jump-diffusion model, it confirms two aspects of term-
structure models already identified previously in the empirical section: (i) that
jumps exist, since the declining kurtosis plot would not arise from a pure-diffusion
model alone, unless it were mixed with a jump process, and (i) in the case of a
mixed jump-diffusion model, a declining plot would only arise if jumps constituted
a substantial component of the variation in the interest rate sample path. This, as
we have seen from the results in Table 3, is certainly the case.

Therefore, the analysis of empirical moments adds conclusive evidence to the
maximum-likelihood estimation results in confirming the presence of jumps in the
data.

4. CONCLUDING COMMENTS

The objective of this paper is twofold. One, we develop technical methods for
jump-diffusion term structure models. Two, we examine whether it 1s worthwhile
to enhance existing diffusion models with jump processes.

The methodological innovations of the paper are as follows. (i) We derived
the characteristic function for a general jump-diffusion stochastic process for the
short rate. The process admits any jump distribution, and hence allows a wide
range of possible specifications. This provides the raw material for further analysis.
(i) From the characteristic function we obtained the conditional moments for the
short rate. These are useful in examining propertics of the higher-order moments
and distinguishing jump processes from diffusion models. (iii) We also derived the
transition probability function, which is useful in carrying out maxirun-likelihood
estimation of the model. (iv) Finally, we derived an analytical expression for bond
prices in the model.

The methodology is useful in examining the efficacy of jump processes for inter-
est rate models. The evidence appears overwhelming. First, enhancement of the
diffusion model with jumps resulted in a significant improvement in fit. Second,
the jump model lends itself easily to extended analysis of the impact of information
variables, such as the meetings of the Fed Open Market Committee. We found mild
evidence that the two-day meetings of the Fed were in fact information revealing to
the market. Third, we were able to use the jump model to examine day-of-week ef-
fects, and found these to be quite significant. Wednesdays and Thursdays evidence
a much higher likelihood of juinps than other days of the week. This is likely to be
the case since option expiry effects may result in sharp market movements. Fourth,
recent research has found that the drift terin in the stochastic process for interest
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rates appears to be non-linear. We found that this may be because of an incom-
plete specification of the random variation in the stochastic process. The addition
of a jump process substantially diminishes the extent of non-linearity. In addition,
when an ARCH model is superimposed, this provides an even greater reduction.

Finally, it is pertinent to ask whether jump processes do better than diffusion
processes in modelling interest rates. We have certainly made a case for the en-
hancement of diffusion models with jump processes. To say that jump models do
better than the best diffusion models would be going too far. For one, the literature
is unclear as to what the ‘best’ diffusion model is. And two, the empirical work
here clearly suggests an amalgamation of stochastic volatility cum jump-diffusion
models. This paper provides in modest fashion, a comprehensive set of methods
for jump processes in interest rate modelling, as well as a detailed empirical exam-
ination of the term structure using these techniques.

It is worthwhile suggesting further avenues of research, which would benefit
from the framework of this paper. First, the issue of what information releases
cause jumps is an open guestion. Locating jumps in the data and associating them
with market events is one way of addressing this question. Second, a question of
importance is whether Fed actions are endogenous or exogenous to the interest
rate markets. This aspect is a strong determinant in the choice of the modelling
framework (see Balduzzi, Bertola and Foresi [8]). Third, the shape of the term
structure is also a function of whether agents price jump risk or not. Using the
pricing equations in this study, cross sectional estimation of parameters would shed
light on this question.? This would also address the issue of whether the expecta-
tions hypothesis (see CIR. [21]) holds in a Poisson-Gaussian world. Fourth, rather
than model jumps in the level of the interest rate, modelling jumps in the mean and
volatility of the short rate is an altcrnate approach (see Naik & Lee [37}). Fifth, in
a recent innovation, Heston [30] employs a gamma process as an alternative to the
Poisson-Gaussian framework. A comparison of this model with the one in this pa-
per would be insightful. Sixth, this work may be related to the work of Brandt and
Santa-Clara [13], who develop a method of estimation using simulated transition
density functions. Their work relates to diffusions only, and hence may be extended
to jump-diffusions and then confirmed using the closed-form results of this paper.
Finally, examining very short frequency intra-day data may reveal better the pos-
sible causes of jumps in bond yvields. Eurodollar yields have also been suggested as
a better benchmark for tests of this sort {sec Duffee [27]). This paper leaves this
rich menu of research projects for future work.

ArpeNDIX A. Deriving the Characteristic Function

The Kolmogorov backward equation (KBE) is

oF 19°F , OF .
(A1) 0= WA(@ —7r)+ 552" a7 +hE{F(r+ J)— F(r)].
We guess a solution to this equation of the form
(A.2) F(r,T;s) = exp |A(T; s) + rB(T: 5)].

9S8ee Bates [10] for a study of this issue in the foreign exchange markets.
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Taking derivatives (notation for a derivative in subscripts) we obtain:

F. = BF
F. = B’F
Fr = F(Ar+rBr).

Rewriting equation (A.1) with the posited solution and rearranging gives
i
0=r(-kB— Br]+ (kHB + 51;232 — Ar + hE[e’® - 1])

where E{.) stands for the expectations operator over the probability distribution
for J. Since r = Qeverywhere, the expressions is square brackets in the equation
above must equal zero, and therefore provide us two ordinary differential equations
which may be solved subject to appropriate boundary conditions. These conditions
follow from equations (A.2) and (2.2) and are

AT = 0;8)=0

B(T = 0;s)=is.

The solution for the first ODE is
B(T;s) = isexp (—kT)

and the solution for the second ODE is expressable as an integral after application
of the boundary condition (though not in closed form):

A(T;s) = / (kHB(T; 8) + %UZB(T; s)2 +hE [eJBW) - 1D dT.

AppENDIX B. Deriving Moments from the Characteristic Function

To obtain the moments, differentiate the characteristic function successively with
respect to s. Let j1,, denote the nth moment, and F}, be the nth derivative of F with
respect to s, i.e. F, = %—’; Then

1
o, = —Fa(s =0).

Zﬂ-

Likewise let A, By, be the nth derivatives of A and B respectively with respect
to s. First let us compute the A,,. Substituting for B in A, we can write A as

AT s) = [ (wise” - %Ugs%—?” +hE {eﬁ“’”' - 1D dT.

Then,
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% B /[’»Gze KT _ o 200=%T | pio*Tp [JeJiSﬂ.,.HdT
% = / er_QkT he=2*T 2 {ﬂeh“-”'HdT

which makes use of the fact that the integral is bounded and the expectation E(.)
is also bounded. We can also compute the derivatives of A evaluated at s = 0,
which are:

(@) = ]z (ke 5T + he *TE[J]] dT
ds /.,
= i (uﬁe"""" - %E[J}e'k'r) +

Using the fact that A(T = 0;s) = 0, we get that ¢; = 8 + RE[J], which when
subsitututed back gives us:

(%)S_O i ((9 + %E[J]) (1- e'kT)) ‘

In like fashion, we can obtain the other derivatives evaluated at s = 0:

9‘12_ _ 7TJ2 + hE [Jﬂ (1- e_sz)

ds? ), 2k

d3A R
(&), = - (~5—)

o _akT
hELY (1—;1——)

and the derivatives of B with respect to s:

TN
ol
S
N——
ﬁ
=}
I

L

ds

#?B  d*B _d'B _
ds2  —  ds® T dst

We can write the intermediate value

dA dB . hE J] —RF _kT -
(Esv+rds)szo_i(( )(1 )Jrre = 1f

We can now evaluate the moments for the distribution of the interest rate r which
are:
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1
o = 5 Fals =0).

The first moment is

dF
ds /.y

dA | dB
ds ds J._g

Since A(s = 0) = Oand B(s = 0) = 0, and [%]s

expression evaluates to:
L((day 4B
i ds J 4 ds

hE[J]

| =t | e

=0

(B.1)

29

is given above, the above

= (9 +— ) (1—e )+ re T

Likewise, we can compute the other moments as well. The second moment is:

1 (&F
meo= w\am)

d?A
_ A_(€A+r}3 il
1

/A
- ().

_ v+ hE[J?] _2kT
= Ty e

—

[ 3]

(44, dB :
ds? ds | ds L

dA  dB 2
aa | .er
ds ds o

+ ((9 + ﬁ%[—ﬂ) (1—e™ ") + r-e”)z

v2 4+ hE [J? i .
. o [ ](1 2T +ﬂf~

The third moment is:
_ 1 a3 A N ng A (dA N dB n %
Ha = 3\ g ds? \ ds "ds ds

1— e*BkT
= hE[JY (| 7
BT ( T )
2 1— e-‘2kT
+3uy (v* + hE[J?)) (T) + 415

And finally, the fourth moment is:

., 4B :
' ds
5=0
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— L [d‘l_A +3 @ _A
Ha = 51V ds? e ds
+6d_2é dA dB ﬁ B ]
ds? \ ds ds " ds ) 15=°

_ ,—4kT = 2kT 2
= hE[JY (1 ° ) (v? + hE[J?) (Lsk_))
3k

Sty RE[J?) (ﬂ)
oy (1 — e 2T
+6u2 ((v?‘ + RE[JH) (T)) -
Now, these four moments may be used to carry out method of moments estimation.

Notice that this is possible to do for any jump distribution where the moments are
known since we need the values of E[J?,n =1,2,3.4. &

APPENDIX C. Derivation of the Bond Pricing Equation

Denote present time by the variable ¢, the time point at the maturity of a bond
by T, and the time to maturity 7 = T — ¢. Define the price of a zero-coupon bond
to be P(r,7); we assume that all factors determnining the value of this bond are
captured in equation (2.1) above.

Using an extended version of Tto’s Lemma (see for example, Kushner [33], Merton
[35] for details), the differential process for P{r.t) is:

dp = (k(f? )P+ P+ %UP) dt + vPedz
(C.1) + ([P(r+J.7) —P(r,T)]

where the subscripts denote the relevant derivatives.

J) dm

In equilibrium, the risk adjusted return on all bonds must be the same. The mar-
ket price per unit of diffusion risk (A) for the bond is proportional to the volatility
(v) of the interest rate. We shall assume that the price of jump risk (As) mochﬁes
the arrival rate of the jump i.e. the risk-neutral arrival rate is h* = h(1 — Ay) L0
Standard partial equilibrium arguments (see Vasicek [40]} lead to the following
arbitrage-frec pricing partial differential-difference equation:

0 = (kB-7r)= )P, — P + w"fPrr —rP
(C.2) +h*E[(P(r+J,7)~ P(r. T))]

where 7 has been substituted for . Equation (C.2) is the partial differential-
difference equation (PDDE) describing the behavior of the bond price. We solve
this subject to the following boundary condition:

(C.3) P(r,7=0)=1

WFor a derivation of the prices of risk in an equilibrium framework see Das and Foresi [23].
We assume here that under the changes made to the statistical process, there exists a risk-neutral
martingale measure under which interest rate derivative securities may be valued.
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The solution is obtained by positing that the functional form of the bond price
is given by P(r,7) = explA(7) + rB(7)]. Taking the appropriate derivatives and
inserting them into the PDDE (C.2} above results in the following separable equa-
tion:

0 = [KA-7)—M|B—-A, — B, + %UQBQ -7
(C.4) + [h*E(eJB - 1)]
This can be restated as:
0 = r[-kB-B.-1]

1
(C.5) + (1;93 ~ B A+ vt B q>

where
q=h"EE’?-1)

The elements in square brackets in equation (C.3) form two ordinary differential
equations in T only and are easily solved to provide the solution to the entire PDE.
The two ODEs are as follows:

0 = kEB+B; -1
(C.6) 0 k6B — AvB — A, + %Usz +q

We solve the first ODE subject to the boundary condition that B{r = 0) = 0 to

obtain the expression for B{r) = =1 Using this result in the second ODE
subject to the boundary condition that A(7 = 0) = 0 gives the solution for A(7).
We obtain A(7) as the solution to the following integral equation:

Alr) = / ((k@ — A)B(7) + %IJZB(T)Q + q[B(r)}) dr

e

I general. the second ODE does not always admit a closed-form solution. Specif-
ically, even in the simplest case, when J is a constant, no closed-form solution is
achievable. Also, when J follows a Gaussian distribution, no closed-form solution
results. Das and Foresi [23] find that in the special case of a jump with a sign based
on a Bernoulli distribution and a size based on an exponential distribution, it is
possible to obtain a closed-form solution. #
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