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Abstract

The identifiability of reduced form econcmetric models with variable
coefficients is investigated using the control theoretic concepts of
uniform complete observability and uniform complete controllability.
First, a variant of the state space representation of the traditional
reduced form is introduced which transcribes the underlying non-
stationary estimation problem into one particularly suited to a Kalman
filtering solution. Using such a formulation, observability and con-
trollability can be called upon to obtain a necessary and sufficient
condition for identification of the specific parameterization. The
results so obtained are completely analogous to those already established
in the econometric literature, namely, that the parameters of the reduced
form are always identified subject to the absence of multicollinearity
(referred to as "persistent excitation" in the control literature). How-
ever, now the multicollinearity condition is seen to depend on the struc-
ture of the parameter variations as well as the statistical nature of

the explanatory variables. The verification of identifiability thus
reduces to a check for uniform complete observabilify which can always

be affected in econometric applications. Some consistency results are

also presented which derive from the above approach.
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1. Introduction

Identification is an issue which arises in connection with all parametric
statistical models. Simply stated, the issue is whether one can infer
from observed samples the existence of a unique underlying theoretical
structure. Econometricians have long concerned themselves with establish-
ing the conditions for the identifiability of structures whose parameters
are assumed to be constant. In this paper we address the seemingly more
complex issue of the identifiability of structures when the parameters

themselves are varying systematically or stochastically over time. This
| is a relevant problem because in recent years increasing attention has
been focused on the problem of estimating time varying structures. Although
estimation methods have been suggested by several authors, little attention
has been paid to the space problem of identification or to the asymptotic theory
for these estimators. Many of the issues we address in this paper have
been investigated by others (Tse & Anton [1972] and Mehra [1974] for
example) but the context, as we shall elaborate, is somewhat different.

The identification problem for the traditional linear econometric

model with uncorrelated errors was first recognized by Koopmans and
Reiersol [1950] and solutions were provided by Koopmans et al. [1950].
This theory was later extended and elaborated upon by Fisher [1966]

in his camprehensive book on the subject. Two important papers by




Hannan [1969, 1971] generalize the earlier theory to encompass models
with moving average error processes.l Most of this prior theory
concentrates on conditions which guarantee unique solutions to the set
of equations which characterize the structural form parameters in terms
of the reduced form parameters as manifest by Hannan's solution.
Rothenberg [1971] takes a different approach in characterizing the
identifiability criteria in terms of the information matrix of classica%
mathematical statistics. Rothenberg's approach has been nicely extended
to a more general representation by Bowden [1973]. It is this latter
approach which is most appropriate to problems we are considering because
of its relative independence from concepts related to stationary
stochastic process theory.

The problem we are addressing can best be illustrated by considering
the state space representation of a model with stochastically varying
structure. We characteriﬁe the problem in terms of a regression relation

(or observation equation) and a "state" equation which describes the

evolution of the parameters over time:
(1.1 Vi = Xf Bt + ey
(1.2) B

The variables Y and X represent the observables of the system, ¢ is a

(kxk) matrix which governs the transitions of the k component parameter




B,, and e + and u,_ are independently and identically distributed random

t
variables with mean zero and covariance matrixes 02 and Q respectively.
Intuitively it is seen that identificatic\m is more complex in this

context because the underlying theoretical structure is itself a stochastic
process. Since the process is also dependent upon initial conditions we
must establish the conditions for the existence of a unique set of kx(T+1)
parameter vectors. In fact, however, the problem is not as difficult as

it might appear because we have imposed additional structure on the problem
through equation (1.2). Nevertheless, the information matrix conditions

of Rothenberg and Bowden must be amended to establish identification in
such a context.

The plan of the paper is as follows. In Section 2 we formulate the
general estimation problem for time varying structures and present the
recursive (Kalman Filtering) solution. Our purpose here is partly peda-
gogical because, while the Kalman Filtering solution to the time varying
estimation problem has appeared elsewhere in the li1:e;r‘€-j.t1.1:r'e,2 it provides
a convenient vehicle for illustration of the identifiability conditions.
The third section of the paper introduces concepts of uniform camplete
observability and uniform complete controllability and relates these to
the performance of the Kalman Filter.

In Section 4 the observability matrix and controllability matrix
are related to the information matrix of the constant parameter case

considered by Rothenberg. In addition, these concepts are used to

derive some interesting asymptotic results for the time varying problem.
The final section discusses the results and suggests directions for

further research.




2. The Estimation Theory for Time Varying Structures

In the introduction we represented the problem of time varying structures
in terms of a single equation regression relationship and an equation
which characterizes the evolution of the parameters -as a first order
Markov process. As a point of departure for this section let us consider
how we might generalize this representation. Ideally, we would like to
be able to consider general simultaneous equation regression relation-
ships. In practice, however, we must restrict ourselves to the considera~
tion of reduced form relationships because the estimation theory for the
structural forms of simultaneous equation systems has not yet been
developecl.3 Consequently, the most general regression structures we

can deal with are of the form

(2.1) Ve = A Y, 4 +....+Ap(t)y_t_P+Bo(t)Wt to B (DNt ey

-q
where y_t is an #x1 column vector of outputs (endogenous variables), w't:-j

are vectors of exogenous variables, and e + is an &x1 vector of observa-
tion errors. This system of equations can be represented more compactly

as

(2.2) Yy = X By t e

We also want to consider generalizations of the process which governs

the evolution of the parameters. Our original characterization of the




parameter evolution as a first order Markov process, or, more generally,
as an autoregressive or moving average process of low order has consider-
able appeal. Not only is it a convenient characterization but it is a
natural one in a time series context in that such processes can capture
well the evolution of the parameters.u

In many instances, however, one might expect to observe variation
that is systematic but non-stochastic, or variation that is purely random.

To include these possibilities we modify our state equation to the form

(2.3) B, = @B +T 2, *+up,

which admits variation of all three types. If u, is equal to zero then
the variation is purely systematic. Thus, if the parameters follow a
time trend, a sinusoidal pattern, or are correlated with exogenous vari-
ables it can be represented in this fashion. Similar models have been
considered by Belsley [1973]. If z_ is a unit vector and u, is non-
zero then the formulation is equivalent to the random coefficients model
considered by Swamy [1970] and others where the parameters are pregarded
as random drawings from a mltivariate distribution with mean vector I
in the above representation. Although this is not properly a stat‘e space
formulation it can still be handled within this framework. Thus, the
evolution of the state of the system represented by equation (2.3) is a

general one which encompasses many possibilities.5 In any given context




prior restrictions will be placed on ¢ and T' (and also the covariance
of the ut) by one's view of the particular problem.

Models like the one described by equation (2.2) and (2.3) have been
extensively explored in the engineering literature following the work
of Kalman [1960] and Kalman and Bucy [1961]. The first recognition of
the applicability of state space representations and Kalman filtering
solutions to the problem of estimating econometric relationships with
time varying structure was by Rosenberg [1968]. Other approaches to
estimating models similar to the one described above have been suggested
by Cooley and Prescott [1973] and Sarris [1973]. Here, however, we shall
briefly review only the optimal recursive estimation method because it
is the most convenient for establishing the identifiability criteria.

We begin by assuming that e, and u, from equations (2.2) and (2.3)
are uncorrelated Gaussian sequences with

E[ei] =0 E[ui] =0
E[eiej'] = Rsij E[uiuj'] = Qsij

where Q and R are at least positive semi definite matrices and § is the
Kronecker delta. The estimation problem is to obtain estimates of the B8 +
based on the observations [y,.....yp]. If we let b, ., be an estimate of
B, based on observations [yl. cee .y_t*] where t*<t and define the error

covariance matrix of the estimated coefficients as
: - - o {

then the solution is easily obtained when B8 o? ® , Q, R and I' are known.

The form of the solution is known as the Kalman filter and is represented
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as
(2.5) bt+l/t =9 bt/t +T Zigy
(2.6) b

t+1/e41 - Prse ¥ R Mg

21w =Y - Y by - X Tz
(2.8) S =X P ;X'+R

(2.9 K =P, ) X's’}

(2100 P, =P, ¢ +Q

(2.11) Py, = (I-KX) P o

Although the Kalman Filter has appeared many other places in the
literature a brief interpretation may be useful. Equation (2.5) represents
the one step ahead prediction of the parameters based on observations
i:hmugh period t when t* = t-1. The quantity u £ which is called the
"innovations" series, is obviously the one period prediction error for
the Vi The quantity Kt is called the gain of the Kalman Filter and St
is the covariance matrix of the innovations. In this light it is easy
to see that the gain of filter is simply the":_optjmal prediction correction
factor.

It is obvious that By> Po /o? Q and R will not be known in most appli-
cations. The log likelihood of the system represented by (2.5) - (2.11),

however, is (see Mehra [19721);

T

-1
= 1
(2.12) L(BO,Po/o,e) S wds t§1[10g|st| + My St

U.t] b
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where St is the covariance matrix of the innovations and @ = (R,Q. T, ®).

Thus, estimation proceeds by selecting initial values of Bo’ Po /o

and using the equations of the Kalman Filter to define the likelihood

’ e

function. This process proceeds iteratively and is known in the engineer-
ing literature as "tuning the filter". The engineering literature,
however, has not in general been sensitive to problems of estimating

the initial state vector By Most of the literature assumes that By

has a proper prior distribution which eliminates the problem. That

this is seldom the case, however, is not a serious problem in dealing
with real time systems with many observations (as is the case in most
engineering applications) because it is easily shown that under the
appfopriate conditions7 the discrete Kalman filter is asymptotically
stable and the effect$ of the initial conditions are ultimately forgotten
(see Jazwinski [1970, pp. 240-243]). In econcmetrics, however, the
situation is somewhat different in that we do not deal with real time
systems, our observation intervals are often relatively short, and we
are often primarily interested in how the structure of the system evolves
over time. TFor all of these reasons it is particularly important to be
sensitive to the starting problems. The first correct solution to the
starting problems was proposed by Rosenberg [1968] and later generalized
by him [1973b]. The solution involves concentration of the likelihood
function with respect to the initial parameter vector B This permits
maximum likelihood estimation of Bo conditional on R, Q, ¢ and I'. The

. . 8
recursive equations for B o are
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(2.13) no/o = I
(2.14) 9t+1/t =9 nt/t
(219 Bepyyen = Uye ~ KenXenTonye
(2.16) H. = (X.0 st (% e )
t % /t-1? Ot t Se/t-1
(2.17) = (X, Q yr g L
: hy +t /-1’ Pt Mt
T T
N a = (3 -l
(2.18) Bo =1 Ht t§1 ht

where Kt’ My and St are as defined in equations (2.5 - 2.11). The matrix
Q then is simply a function of the transition matrix which extrapolates
the initial parameter vector into the future.

Given an estimate of the initial parameter vector, say Bo, estimation
of any realization bt /t is straightforward given equations (2.5 - 2.11).
It is worth ﬁoting that, in econometric applications, we will be most
interested in obtaining smoothed estimates of given realizations of the
parameter trajectory (Bt /T) , that is, estimates which use all of the
information in the sample. Smoothing equations are presented in Meditch
[1969]. |

This review of estimation methods for time varying structures high-
lights one of the important features that is useful in the discussion of
the identifiability of such structures. It is that estimation that is a
two-step procedure. In the first step the initial parameter vector By
and the unknown covariance elements are estimated. The second step
consists of estimating realizations of the parameter process (bt /t OF

b + /T) conditional on the estimates obtained in the first step. Thus,




-10-

estimation of the parameter trajectories is essentially an empirical
Bayesian procedure. Consequently, the identifiability criteria for
such structures may be viewed as having two parts. The first, which
obviously is the crucial part, establishes conditions for the existence
of a unique underlying initial parameter vector. The second part simply
involves the conditions for the existence of a trajectory conditional
on bo'

As we shall see subsequently there is a direct, but by no means
simple, relationship between the classical identifiability criteria
for constant parameter models and the identiability criteria for models
with time varying structure. Before deriving this relationship, however,
we introduce some concepts from the control theory literature which will

be useful in the subsequent analysis.
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3. Observability and Controllability

3.1 Définitions
The concepts which we shall find useful in studying the identifiability
of time varying structures have evolved in the control theory literature
from an essentially different, but parallel set of concerns. The rapid
development of éptimal control theory in the early 1960's led to a
concern for the qualitative aspects of the optimal control problem.
Naturally, of first concern were questions regarding the existence and
uniqueness of optimal controls. This led to the consideration of whether
or not it was possible to arbitrarily alter the state of a model solely
by manipulation of the instruments (inputs). If a model possessed this
ability it was said to be campletely controllable, i.e., there existed
a coupling between the inputs and all of the states. In relation to the

usual state space form representation9

(3.1) Et"'l = F.t Et + G.t X-t b

Yt

+
He 8¢ " D% s
the concept of controllability can be captured in the following defini't:ion:10

Definition 1. The model (3.1) is said to be uniformly completely

controllable with, respect to the input Xps if and only if there

exists an integer N>0 and constants C1,C,>0 such tha.'t:ll

2

(3.2) 0 < clI < C(t,t-N) < el

for all t =~ N, where the controllability matrix C(tl,to) is defined by
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t. -1

1
_ ‘ '
(3.3) Clty ty) = I #(ty,1) 6.6 o' (t),1).

%

Uniform complete comtrollability (UCC) implies two things. First,
when the lower positive bound, clI, obtains, every mode of the dynamic
model for Et will be excited by xt.12 In other words, if X, is inter-
preted as a stochastic process, then a random component will enter every
element of Etlthus insuring that some uncertainty is present in each
state. This characteristic is important when specializing these concepts
to the estimation problem, and will be treated again below. Second,
when the finité upper Bound, CZI’ exists and X, is given a stochastic
interpretation, then the effects of this random input on & will remain
bounded in a mean-square sense. This implication also has an important
role to play in the TVP estimation problem, and will be more thoroughly
discussed below.

A second qualitative consideration arose from the feedback nature
of many optimal control schemes. Since a feedback control required the
state for its implementation, and normally only the endogenous variables
(outputs) were available for measurement, it became increaingly important
to ascertain whether information about the state of the system could be
extracted solely from observations made on the dutputs. If a model

possessed this characteristic it was said to be observable, i.e., there

existed a coupling between all of the states and the outputs. In relation

to the representation (3.1), the concept of observability is best described

by the following definition:l®
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Definition 2. The model (3.1) is said to be uniformly completely

observable if, and only if, there exist an integer N>0 and con-

stants cl, c,>0 such that,

2

(3.4) 0 < c,I < 0(t,t-N) < ¢l

1
for all t > N, where the observability matrix O(t&,to) is defined

by

t

1

t

] ]
X ) (r,tl)HT HT¢(T,t1).

Uniform complete observability (UCO) implies that given enough
observations {yt; t-N < t < t} it is possible to solve exactly for £
In its original (purely deterministic) sense, with X, interpreted as a
known function of time, this ability to recover £; also implies the
exact recovery of EeN® In fact, for a linear deterministic system
such as (3.1), the observability of the state at any one time t implies

16

the observability at any other time. When a stochastic environment

is encountered such that Xy is random or measurement errors are present,
then §4 cannot be determined exactly from a finite set of observations.
However, uniform completé observability will be useful in that it

can establish the possibility of estimating £y exactly given an infinite
set of data. This is akin to consistency so that observability has an

important role to play in estimation.
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3.2 Observability, Controllability, and Estimation

In order to establish the usefulness of UCO and UCC, they must be related |
to estimation and identification. To this end, two lemmas are presented
which explicitly display the fundamental role played by these concepts.
But before this is done, the definitions given previously are specialized
to TVP estimation problems characterized by (2.2) - (2.3).

Definition 3. The model (2.2) - (2.3) is said to be uniformly

completely controllable with respect to the noise, Uy > if and
only if there exists an integer N>0 and constants c)s 02>0 such
that (3.2) holds for all t>N, where the controllability matrix is
now defined as
o = L0 17TTGG! (@

=t

o)
16

Q%

tl-r-l
(3.6) C(tl,t )!

where G =

Definition 4. The model (2.2) - (2.3) is said to be uniformly

completely observable if and only if there exist an integer N>0
and constants cs G such that (3.4) obtains, where the observa-
bility matrix is now defineci as
t -t _
@7 0t = 1 (6 1),X;XT°" ol
These are simply re-statements of Definitions 1 and 2 with the special
structure imposed by (2.2) - (2.3) taken into account.
The following lemma exhibits the existence of a priori bounds: on

P

t/t in terms of C(t,t-N) and a slightly modified 0(t,t-N). Proof of
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this lemma is omitted since it may be found in Jazwinski [1970, Chapt. 7,
pp. 234-239], Aoki [1967, Chpt. 6, pp. 214-221], éucy and Joseph [1968.
Chapt. 6, pp. 70-71] or McGarty [1974, Appendix C, pp. 363-377].
Lemma 1. Let the system (2.2) - (2.3) be uniformly completely
observable and uniformly completely controllable, and let Po /on,

then P't: /t is uniformly bounded for all t>N according to

(3.8) 0 < [Op(t,t-1) R CRENY P sO;l(t,t—N) + Clt,t-N)< @
where

t
(3.9) Ot t-M) = I ("5 xRTIx o7

Thus UCC and UCO are seen to guarantee a méa.rﬁngful problem in the sense
that a positive definite Pt /t is assured for every t2N. Upon examination,
(3.8) reveals that UCO is crucial in establishing a finite upper bound,
while UCC is vital in establishing a positive definite lower bound
(since [Op+¢™171 = [CO+TTMO).

The UCC condition of Lemma 1 is somewhat restrictive in that there
are three important cases in econometrics where UCC fails to obtain:
(1) constant parameter estimation; (2) purely deterministic (or systematic)
parameter estimation; and (3) a mixture of systematic and stochastic
parameter variation. ' In the first two instances Q=0 forces C(t,t-NJ)=0,
whereas in the third instance Q20 together with certain ¢ can lead to
C(t,t-N)20. In these circumstances no positive definite lower bound
on Pt /t e;cists by the hypotheses of Lemma 1. Fortunately this dilemma
can be easily overcome by a slight modification of Lemma 1:
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Lemma 2. Let the system (2.2) - (2.3) be UCO but not necessarily
' . .
UCC, GG'>0 and Po/o>o’ then Pt/t is uniformly bounded for all

t> N according to
-1
(3.10) 0 < P't/t < 0R (t,t-N) + C(t,t-N)< =,

The key requirement of this lemma is that Po /O>O. If estimation is
initiated with a proper prior on B then P t/t will be positive definite
whether or not controllability obtains. It appears quite reasonable

in paractice to expect Po /O>O when estimating constant or nonstochastic
parameters, otherwise the nonstochastic elements of B + would be known
exactly at t=o and it would be senseless to attempt to estimate them !
Note, however, that even when some § + elements are nonstochastic (GG'20),

¢ may be such that C(t,t-N) is positive definite for some t. This situa- .

tion would be a manifestation of the controllability property as discussed
after (3.2): Namely, that the particular structure in ¢ would eventually
result in the "scattering" or distribution of randomness due to U
working its way through the system into all the components of 8 £
Eventually all of the elements of the parameter vector would contain
some uncertainty so that Pt /+>0 must be satisfied.

The results contained in Lemmas 1 and 2 should not be interpreted
as restricted solely to the Kalman filter method of parameter estimation.
The Kalman Filter is a member of the BLUE class so that any and all esti-
mators that are BLUE nmst yield the same P +/+ matrix. Thus the bounds

presented above remain iﬁdependent of the estimation method. Indeed,

both 0(t,t-N) and C(t,t-N) are defined independentlv of the estimator.
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3.3 Observability, Controllability, and Identification

The main import of Lemmas 1 and 2 is the uniform boundedness of Pt/t’
its definiteness, and its invertibility. Whenever 0 < Pr /< P;}t
exists and is positive definite. This is extremely important because
it is intuitively clear that uncertainty (as represented by Pt/t) and
information are inversely proportional. Thus in obtaining a priori
conditions which guarantee the positive definiteness of Pt/t’ it is
possible to insure, a priori, the identifiability of the parameters.
The relationship between observability, controllability, and identifi-
ability can be put on a more rigorous footing by examining the special
case of systematic parameter variation.

Consider the identification problem associated with the estimation
of B,. in (2.2) - (2.3) given only Y{ = {yt-N"""yt} when Q=0 and R=I.
The classical approach to the identification problem would be to view
B, as the only vector to be estimated so that all identification questions
focus on it and neglect the rest of the parameter (vector) trajectory.
With this interpretation, identification would be determined by examination
of the singularity of the Fisher Information Matrix or the definiteness
of the Hessian of the Information Integral.l7‘ In the present situation
both approaches are equivalent because the relevant probability densities

are continuous in By- Therefore the Infarmation Matrix,

d ) ,
(3.11)  I(t,t-N) = -E{zg— tnp (¥;3b) + 5pr tnp (Y5 b)Y i
t t b= &
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is constructed directly. From (2.2) - (2.3) it is known that the
sequence {yt-N"’ .,yt} are independent, Gaussian, and have mean tht

and variance~covariance I. Thus,

1
p(y_sb ) = exp {-%[y -X b 1'[y_-X_b_1}
11 (2H)N/2det;é(I) R T T
i
p(Y't.ib't) = t=t-N p(y'r ;b'r)
t
R,np(Y_t,b_t) = -r='§—N n p(yT,bT)
'g ‘tgl
T ofey 0 p(yT;dh(r,t)bt- j=r°(1’3+l)rzj)
t t-1 ) ,
= const.-% 'r=‘t-N{ [yT-XT¢(-r,t)bt+XTj§T@(-r,j+;)rzj_]

t-l
x[y-xr¢(r,t)bt+ij§T¢(r,3+1)rzj]

where the last line follows from the constraints placed on the parameter
evolution, (2.3). The differentiation of the above expression with to
by is now straightforward,

t
.j.._ = z 1 ! o
3, n p(Yibt) = =r® (r,t)XT[yTXTQ(T,t)bt

t-1
+ ijET(r,j+1)rzj].
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Insertion of this expression into (3.11) yields

1(t,t-N) = -E{T=E_N¢'(r,t)x;[-]

I

!
by 1'K (0]

bt=B

t

! ' ,
_T=€_N[¢ (T,t)XTE{[.][.] }

¥X_0(t,1)]|
b =8

t 't

t

- I @'(T,t)X;XTQ(T,t)

(3.12) c=bN

t-1
[yT—XTQ(T,t)bt+XTj§T¢(r,j+l)sz].

where [-]

The quantity inside the brackets, [-], is just the observation error,

et,

matrix are identical.

and E{ete{:} = I. Thus the information matrix and the observability
18 Tt is clear that this result also holds for

the constant parameter case (¢ = I, Q = 0, and I‘zt = 0). When the observa-
tion errors are contemporaneously correlated, R # I, then it is easily

shown that
t ]
(3.13)  ICt,t-) = I &'(z,0)X RIX o(x,t)
T=t- T T
= OR(t ,t-N)

In realistic applications there are measurement errors in every element

of y, so that R and R™T are full rank, positive definite matrices. Thus
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it is easy to see that for any variance-covariance matrix R > O, the
condition of uniform complete observability is both necessary and
sufficient for classical identification to obtain. These observations
can be sumarized by the following theorem:

Theorem 1. The TVP model (2.2) - (2.3) with Q = 0, (nonstochastic

parameter variation, is completely identified) if and only if it

is uniformly completely observable.
The feeling that UCO and identifiability were intimately related has
now been borne out; in the case of systematic parameter, identifiability

and observability are equivalent.
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4, Econdmetric Identification and Consistency

The results of the previous section are well known in the engineering
literature although they have not, to the best of our knowledge been
derived elsewhere in the context of the time varying parameter estimation
problem. Most important, however is the fact that the equivalence of the
observability and the information matrix reinforces the generic link
between the econometric identification problem and the properties of the
Kalman Filter. This link provides some insight as to how the criteria for
the identification of time varying models differ from those of the constant
parameter problem. In addition, we can more easily explore same of the

asymp:otic properties of time varying parameter estimators.

4.1 Identification of Constant and Systematically Varying Parameterizations

The constant parameter model is obtained from the general representation

(2.2)-(2.3) by specifying ® = I, T = 0 and Q = 0 so that

(4.1) Beyy = By

Ve T X By tEp

This model is identified if and only if
t

(4.2) ey, I S 0(t, t-n) = I XX < e, 1

T=t-n
is satisfied for some Cys Cps N >0 and every t > N. Since g does not change
it is obvious that t = T and N = T and that (4.2) is simply the well known

multicollinearity condition or the requirement in the engineering literature

that there be "persistently exciting inputs"(Astrom and Bohlin [19661]).

The systematically varying model is obtained from (2.2)-(2.3) by specifying

Q = 0 so that




-

(4.3) B =3, + T2

t+1 t t

= D +
Y Ktst €

t t ’

where ¢ is a non-singular transition matrix, and I‘Zt may or may not be

zero. Theorem 1 states that this model is identified if and only if

t
N = 2 (@THR X6 <oT

(4.4) c
T=t=N 1

I<0 (¢

1 1

is satisfied from some Cys C N >0 and t >N, The implication of systematic

93

parameter variation is now clear. Since we have imposed additional structure

on the problem by specification of the parameter transition process, identifi-

cation is no larger solely dependent or the properties of the exogenous

variables, it now also depends on the specified from of the parameter variation.
It is worth exploring how the specification of the parameter process can

alter the standard conditions for identification. To illustrate this let us

replace the summation in (4.4) by a matrix inner product:

0(t,t-N) = L°L
where,
- _ —N’; | 1-N\. - { '-1’1.’
L7 = D)X 1 (@77 X ppqyeee (@RI X0 T
0 (t,t-N) will be positive definite if L is of full rank. But,since ¢ is
nonsingular, the rank of L is equivalent to the rank of

~’= - (It |.'.|N"l’ 1 NJ 19
(4.5) L = [X 10K ey - 108 DR @)X T

In the constant parameter case identification was concerned only with
the linear independence of the columns of the various {Xt(t-N <1<t} Now,
however, consideration must be given to the linear independence of the columns

of X under the nonsingular transformation 87T .
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One of the consequences of Theorem 1 and the above observations is
that the effects of multicollinearity may be neutralized by specification
of a time-varying structure. Consider the following idealized example of
the most extreme form of multicollinearity where an explanator is proportional

to another:

Xe = Drpp %ppd = g 0yl
Under the assumption of constant parameterization the dbservability criterion

(4.2) reduces to a test of the rank of Lé where

| I |
Te XLt-NI Xl,t-N"l' |X1,t

C

obviously rank i.; = 1, Now assume that @ # I, i.e.
ab

c 4/ .
The rank test now must be applied to L” where,

| I
Lol | e PO N,
+ dox

i

0% eoN | DXl t-N+1 1,t-N+1 |

Ifa#dand b # 0, c = 0 it is quite possible to find two linearly independent
columns from among just the first two in L Therefore, the imposition of
additional prior information in the form of ¢, may serve to identify an otherwise
unidentified model. It must be remembered, however, that the converse is also
possible, namely a certain specification of & when coupled with a linearly inde-
pendent set {X_t; 1<t <T} may be unidentified. Finally, note that the
specification of any diagenally structured ¢ will play a benign role in regard

to multicollinearity problems and identification.
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As mentioned in Section 2, the econometric time-varying estimation
problem is characterized by a two-step procedure, the first step dealing
with the estimation of the unknown initial parameter vector Bo’ and the
second step dealing with the estimation of the trajectory starting from Bo.
Now that time-variation has been introduced (Bo # Bt 7 Bt_)’ it is of interest
to ask whether identification of Bt for some t implies identification of Bo:
Do separate identification problems arise for each B, 0 < t < T? If B, is
identified for some t via satisfaction of (4.4), then Bo can always be recovered
by solving (4.3a) backwards using Bt as a terminal condition. The identifi-
ability of Bo given that of Bt can also be deduced from a rederivation of either
the observability or classical information matrix in the special case where Bo

is to be estimated instead of B given data over 0 < t < T:

T

0(T,0) = I (87-T)"x> x_ o1 T
T T
=0
or

L R S | T-1
I(T,0) = £ (80" X R X o

=0 T T

Since I(T,0) will be full rank if O(T,0) is, identification of Bo reduces once
again to a rank test on 0(T,0). But the observability matrix can be written as,
0(T,0) = M* M

where

P Ny oy -
(4.8) Moo= [XZ ) oKyl ] (@) RG]

Comparison with (4.5) reveals that the two criteria are identical. Thus, the

identification of the initial parameter vector, g_, and the identification of

o’

By @re sSynonamous.
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4.2 Identification of Stochastically Varying Models

The introduction of stochastic paraemeter variation somewhat complicates the
derivation of identifiability conditions. The camplication is due to the
presence of u, in (2.3) which leads to a correlated error structure in the
cbservation equation (2.2). This invalidates the construction used for
Theorem 1 because now p(Yt; bt) # T=E-N p(y. 3 bt) » and a new expression must
be derived for the Fisher Information matrix under these circumstances.

The fully stochastic nature of the model yields an equivalent cbservation

equation, parameterized in B £ of the following form

-1 T-1

X, [d>('r,t)8t + _E ¢(T,j+l)rzj + _E d(1,j+1)G uj] te,
J=t j=t

X: (1,08 + X jio ¢(1,3+1)rzj T

M

where U + is normally distributed with zero mean and variance-covariance matrix

given by

3
RS.. + X. [Z
1 [k=t

(4.8) Q.. = E {uiujf}

i3 ®(m,k+1) Q®“(m,k+1)] Xg

and m . = min(k,j). Thus the measurement errors, Uys are no longer white --

J
each u + is a moving-average process of order t.20 In order to simplify the
derivation, Ve is now replaced by Y, where

=1

LA - X j>-:-0 <I>('r’j+1)I‘zj .

21

Thus the model (2.2)-(2.3) can now be written as
(4.9) Y = X_r o(t,t) Bt tuo.

Both y, and y are equivalent with regard to the identification problem for B £
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The complicated expression for the sequential correlation of the
Hes (4.8), no longer permits the recursive development for the joint
density required in the construction of I(t, t-N). Therefore the joint

process is ‘formed directly, i.e.,

(4.10) Y, =Z bty
where
> - ~). ~)'.---|~‘ »
Y = Lygy ¥1) Vel
Z, = [x] ®(0,t) " ! X77(L,0) - - - %17
- rd ' I' rd P
Up = Dug § ugqe---ugd™

The combined error vector still has zero mean but the associated variance-

covariance matrix € is tf x t&

o =
Qoo Qol' vt Qot
leo s'211 ' i s'21't
9 = . : ’ . A ; lj = jS .
Q'to Q'tl Qt't

The joint process ';{t is normally distributed so that

~ l . ) l ~ ” _l ~
p(Y,sb,) = exp {- = [Y,-Z. b 1’0 "[Y -Z. b 1}
tt (211)55/2 det’m-(_sz) 2 "ttt = t "ttt
o _-ot 1, , 1. -1
n p(Yt’bt) = an(21)- 5 n det Q) - 5 Up 2 U,
(4.11) = p(e3e) = 27 9L [¥.-7.b,]
: b, ptes + = + 4P

Substitution of (4.11) into the definition (3.11) yields the result

-1
I(t,t=N) = =2_Q~ Z_ |
’ t t b, =8

t t
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(5.12)  ICt,tN) = - [07C0,8) %7 | 0°(1,0) x5 L... %] @70

In order to have Bt identified, (4.12) must be a negative definite matrix.
Since  is a variance-covariance matrix of a nonsingular stochastic process

it is always positive definite, thus identification will cbtain if and only if
[#7(0,t)X] | O7(L,0X{ - - - - X1
is full rank. But this is just the observability condition once again! Thus

Theorem 2. The fully stochastic TVP model (2.2)-(2.3), i.e. with
Q > 0, is completely identified at t if and only if it is uniformly

completely observable at time t.

Note that with Q = 0, Q reduces to a block diagonal matrix in RL so that
(4.12) can then be written as (3.13).

The identifiability of an empirically determined prior bo can be inves-
tigated using Theorem 2 with t = 0. In this case, given data up through time
t, the identifiability (cbservability) criterion reduces to a test for the full
rank of

» », P, t"
[x] Vo X[ e )(0D) Xt] .

But this is just (<I>—1(0,t))'Zt so once again, the identifiability of Bt implies
the identifiability of B; for any 0 < T < t. This is the same result as

obtained in the systematic variation case, although not so obvious.
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It was noted in section 2 that estimation is a two-step procedure
where the first step is the estimation of Bo and the covariance structures
and the subsequent step the determination of particular realizations
conditional on bo' As the above result indicates, however, the identifi-
cation of these realizations is a trivial matter, given bo’ because the

state equation is an identifying function in the sense of Kadane [1974].

4.3 Consistengy in Time-Varying Parameter Estimation

The usefullness of the concepts of observability and controilability is not
confined to questions of identification in time-varying models. The consistency
of the Kalman filter estimates can also be examined using these concepts. In
fact, uniform complete observability and controllability, together with Lemma 1,
permit an almost trivial treatment.

Constant Parameters. Considering the behavior of the estimates based

on all of the observations, Lemma 1 yields,

-1 22
(4.13) 0 <P, 20 (£,0)

where t > N. Now it is possible to express 0p as the sum,
(4.14) Op(t,0) = Op(N,0) + O(2N,N) + ... .
Given uniform complete observability, OR(t,O) become the sum of positive
definite matrices so OR_l(t,O) +0as t >« . Thus (4.13) implies that

uniform complete observability insures Pt e 0 as t + o, i.e. consistency.

Systematic Parameter Variation. The same upper bound exhibited in (4.13)

holds, but (4,14) must be replaced by

(4.15) 0p(t,0) = (5 [0, N,0) + 0N+ Jo T
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since, in general ¢ # I. Uniform compléte cbservability still guarantees
that the sum within the brackets grows without bound, but now there can exist

¢ such that "' > 0 as t + ®. Thus it is now possible for Nt

and ;&) Op(iN,
Nk=N) to interact in such a way that (4.15) has a finite limit. More must be
said of the structure of ¢ before (4.13) can be used to establish consistency.
A simple sufficient condition resulting in consistent filtered estimates is
that only ¢ with eigenvalues on or within the unit circle be considered in

specifying the model structure. For such 9, Nt

(t > N) is an unstable
matrix so all three factors in (4.15) grow without bound as t > . If ¢ = I
then the above problem reduces to that of the constant parameter case, even
though I‘zt £ 0.

Stochastic Parameter Variation. In the general stochastic case the upper

bound from Lemma 1 must include C(t,0):

(4.16 0<P . < 0t (t,00 + C(t,0) .

t/

Since Q# 0 implies C(t,0) # 0, uniform complete observability with an
appropriately chosen ¢ (i.e., Oil(t,O) +0as t»>=) is no 1ongef sufficient
to guarantee caonsistency. Moreover, reference to (2.10) reveals that P £/ t-l’! 0

for any t so long as Q # 0. Thus at each observation Pt /¢ can never be zero

because P is never zero. The best that can be hoped for is that same

t/t-1

finite limiting distribution exist for B p and to achieve this (4.16) suggests

t/
that ¢ be'specified such that C(t,0) » a < as t + <. In turn, the definition

of C(t,0) reveals that,.in order to obtain an a prionl finite distribution

on B ,.s % must be a stable matrix (i.e., all eignevalues within the unit circle).

t/
However, it should be noted that this is not necessary--it only implies that the

bounding techniqﬁe stemming from Lemma 1 loses its usefulness in such situations.
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Thus, the stability of ¢ is again only a sufficient condition for the
boundness of the variance-covariance matrix of the estimated coefficients.
Whether one should consider unstable trensition matrices would appear to
depend on the properties of the inputs (the xt) » because the observability
of the system will depend upon these properties. If the system is obseérvable
then it is not clear that one should attach too much importance to the
consistency property. In such instances, it seems that it is more important
to worry about whether an estimator is efficient. Cooley and Prescott [1972]
have shown that estimators with ¢ = I will be efficient.

The inability of the filter to produce consistent parameter estimates
under stochastic variation suggests that the optimal "smoother" estimates

might be a better aJ.ter'native.15 However this is not the case; inconsistency

still persists so long as Q # 0. This claim can best be substantiated by '
viewing the optimal smoother as a cambination of two optimal filters, one
run forward in time from t=0 to t, and the other run backwards in time from
t=T to t, (See Fraser and Potter [19691).
The smoothed estimation error variance-covariance matrix is given by
Pt/T‘= [F;}t * E;%t]_l

where I_’t /t denotes the forward filter variance-covariance matrix and -Iit /t

denotes the backward filter variance-covariance matrix. As T + « only Et /t
will change since only it depends on T. By increasing the data length, T,

it might be hoped that the solution for could be initialized far encugh

Eest
into the future such that Et i 0. But this can never happen. So long as

Q # 0, the matrix Ricatti solution to the backward filter ean never degenerate

to zero, no matter how long in the filter its solution is initialized (Potter ‘
[19653.‘ Thus B-%/t< ©and P, m> 0 for all T + «. Neither filtering or smoothing

can yield consistent parameter estimates under stochastic parameter variation.
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5. Summary and Conclusions

In the foregoing sections we have used the equivalence of the concepts

of observability in control theory and information in statistics to
establish the conditions for the identifiability of time varying struc-
tures in econometrics. Our intent has been to shed further light on

the properties of time varying parameter estimation methods that have

been introduced into econometrics in recent years. Several interesting
albeit possibly obvious, conclusions emerge; the requirements for
identification in time varying models are not in principle more stringent
than in the classical constant parameter case and may be less so because
of the additional structure imposed on the problem. The identifiability
criteria and the asymptotic properties of the estimators suggest that it
may not always make sense to consider processes with unstable transition
structures. This latter caveat is not completely clear, however, because we
have concentrated throughout on sufficient conditions for identification.
Finally, the estimators for models subject to stochastic parameter varia-
tion will not be consistent in the usual sense. It has been shown, however,
that a sufficient condition for them to have stable asymptotic distribu-
tions is that the transition matrix ¢ be stable (have eigenvalues within
the unit circle). It should be noted that in the econometric environment
where all observed data is to be processed "off-line" (i.e. in batch mode),
it is always possible to verify the conditions for observability and

controllability.
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In the development of the results in this paper it has been
assumed throughout that ¢, is known. It should be obvious that there
is a deeper issue of identifiability that should be dealt with and
that is the identifiability of ¢ when it is unknown as it is in most
applications. This is indeed a more complex problem which requires
further investigation. It appears at the present time that a fruitful
approach to the problem is to concentrate on the connection between
specification errors in®¢ and the serial correlation properties of
the innovations process (the estimated residuals). In this approach
ene is essentially searching for the structure that is empirically best.
This can be thought of as a generalization of the Box-Jenkins approach |
to modelling. Similar approaches have been taken in the engineering

literature to studying the sensitivity of the Kalman Filter. See for

example Mehra [1970], Boozer and McDaniel [1972], Martin and Stubberud
[1974].

Finally, all of the current discussion has been confirmed to the
reduced form models. A more difficult problem would be to look at the
identification of time varying structural models. Before this can be
done, however, the estimation methods must be extended to structural form

models.
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FOOTNOTES

For an interesting interpretation and presentation of Hannan's results
see Preston and Wall [1974].

See Rosenberg [1968, 1973bl, Pagan [1975], Sarris [1973].

The authors are currently working on the derivation of the appropriate

recursive estimation procedures for structural form relations.

The reasons for expecting stochastic time variation have been extensively
explored elsewhere. See for example Cooley [1971], Cooley and Prescott
[1973], Lucas [1973] and Rosenberg [1968].

For an excellent survey of generic relations among models with non-
constant coefficients see Rosenberg [1973al.

An exception is Aoki [1967] who did not, however, solve the problem
correctly.

The conditions are that the system is uniformly completely observable
and uniformly completely controllable. These concepts are explained

in the next section.
This is a compact representation of the equations in Rosenberg [1973&).

The relationship between the state space representation and the other
more traditional forms of econometric model representation is not too
difficult to establish. For a simple translation from the reduced form
see Chow [1972al, and from the structural form see Pindyck [1973].

For the purpose of this paper, assume Ee is a kx1 vector of states for
each t, x, an nxl vector of exogenous variables, and A is an 2x1 vector
6f endogenous variables. The first of equations (3.1) is a dynamic
relationship which possesses a solution (see for example Ogata [19671],

DeRusso et al. [1965], or Meditch [1969]1) of the form
: ti=t :
= I
. ¢(tl,t0)£t0 + T=to¢(tl,r+l)GTxT

relating the state at t=t

&t

to the state at t=t given the value of the
is called the fundamental matrix and is nonsingular, satisfying

1
exogenous variables over the interval [to,t




10.

11.

12.

13.

14,

—3Y4—

¢(t+l,t0) = Ft <I>('t,'t0) ; <I>('t0,'t0) =1,

o(t,t) = ¢-1(1,t). For the time varying system of (3.1),

o(t,t) = Ft Ft—l"’FT’

For the time-invariant structure of (1.2) or (2.3) it is easily
seen that ¢(t,t) = ot T
given above plays a vital role in the derivation of the concepts
of controllability and observability.

. The solution of the state equation as

The derivation of the controllability criterion contained in the
following definition is beyond the scope of this paper. The

interested reader may consult any number of introductory texts

such as Zadeh and Desoer [1963; pp. 505-509] for an excellent development.
It should be noted that there are many definitions of controllability,
each with its own subtle twist (see Rosenbrock [1870], Chpt. 5 € 6).

The choice of uniform complete controllability in this work is
principally motivated by its use in discussing the qualitative

aspects of the Kalman filter.

Let x by any arbitrary pxl vector and A any pxp matrix. Then
xI < A < BI is taken to mean X X'x < x'Ax < Bx'xX where I is the
pxp identity matrix.

A complete treatment of the modal interpretation of controllability
is beyond the scope of this paper. The reader is referred to DeRusso,
et al. [1965, pp. 344-349 and pp. 429-431], Ogata [1967, pp. 42u-425],
and Kalman, Ho, and Narendra [1962].

Comments similar to those contained in Footnote 10 apply here: there
are several definitions of observability, but only the one most use-

ful with respect to time-varying parameter estimation and identifica-
tion has been employed.

Since He is generally some time-varying matrix constructed of known
time functions other than explanatory variables, the control litera-
ture emphasises how "controllability and observability are quantities




15.

16.

17.
18.

19.
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exhibited by the system and not the data". This is clearly not the
case with the Kalman filter representation of the TVP estimation
problem when X replaces Ht‘ The strict intrinsic interpretation
of controllability does, however, remain valid since the data never
enters into the definition of Ft or Gt'

The correct criterion for establishing the ability to determine £t

instead of EeN would involve 0(t-N,t). But this can be obtained

from 0(t,t-N) merely by exchanging the arguments in ¢ in (3.5),

i. e. by employing @(tl,r) Since ¢ is nonsingular and @(t,t ) =
(tl,T), this can always be done.

Since Q is a variance-covariance matrix, it is symmetric and at least
positive semi-definite. If it is positive definite it is always
possible to find a unique factorization Q = Q%(Q%)'. Then (2.3) is
equivalent to

= + ~
) Bt G“t i N(0,I)

Bryy t

If, say, k1 of the B's are to be systematically varying, i.e. no
stochastic omponents due to any element of Hys then Q can only be
positive semi-definite. A re-ordering of equations could then be
employed to obtain
s L ®

0 : 0
where Q1 is a klxk1 positive definite matrix. The unique factorization
of Q could then be effected and employed in the first k, rows of
G with the last k.-k1 rows being replaced by a null matrix.

See Rothenberg [1971] and Bowden [1973].

This result is well known in the control literature, having been first
stated by Kalman and Bucy [1960] and more recently by Jazwinski [1970].

An examination of the rank of L is preferred over that of L because
no inverse of ¢ is involved, making conputation that much less

demanding.




20.

21.

22.

23.
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Note, however, that with Q=0, My reduces to c,_ and the previous

t
development of the Information Matrix (Section 3) applies. The
interested reader is referred to Sarris [1973] and Cooper [19731]
who also use this method to reduce the TVP model to a standard

regression model format.

'This transformation can always be effected since it is assumed

that sz is known exactly.

The exact relationship P;}t = P;}o + 0p(t,0) holds in this case.
However, in order to dispense with any consideration of the effects
of the prior distribution, the relationship written as P;}t z_OR(t,O).
See Jazwinski [1970, p. 231 - 236].

Both Jazwinski [1970, pp. 236] and Aoki [1967, pp. 215] note this,
and state a sufficient condition which guarantees consistency: If
[105¢£,0) | l;‘l + 0 faster than {|#(t,0)|| + = then obviously P, > 0.
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