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ABSTRACT

This paper explores the implications of a simple model of learning and innovation by firms.
In this model R&D spillovers are partly determined by firms, rather than by the given economic
environment. According to this approach the full effect of spillovers on research productivity of firms
exceeds the structural effect because it includes an “active learning” response of firms to new
information. Furthermore, effective spillovers grow faster or slower than potential spillovers,
depending on the returns to scale of production processes for learning and invention.

The empirical work is based on a sample of R&D laboratories in the chemicals, machinery,
electrical equipment, and transportation equipment industries. I estimate negative binomial regressions
for the number of patents as a function of academic and industrial spillover pools, learning
expenditures and internal research expenditures. The findings are consistent with the view that
learning expenditures transmit the effect of spillovers. I also perform tobit, ordered probit and
grouped probit estimation of learning effort. I find that learning effort increases in response to
industrial and academic R&D spillovers. Lastly, academic spillovers appear to have a more pervasive
effect on R&D than do industrial spillovers.

Overall these results suggest a sequence of events underlying learning and innovation, with
learning responding to opportunities, innovation responding to learning and own R&D, and a stream
of innovations leading to the accumulation of new product introductions that ultimately are reflected

in the value of enterprise.
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l. I ntroduction

In recent years agrowing literature has studied knowledge spillovers and their effect on the performance of
industrial firms. Thisliterature finds consistent evidence for increases in patenting and productivity due to
spillovers, holding firm research and development (R& D) constant®. In spite of these results few economists have
studied how spillovers occur and what thisimplies about the behavior and performance of firms2.  And yet firms
decide how much to learn from external R& D and how much knowledge spills over, just as they decide the extent of
their involvement in many other activities, including investment, advertising and diversification. Asaresult,
exogenous spillovers may be unimportant when compared with spilloversthat firms generate by their own efforts.

This paper provides new evidence on the endogeneity of knowledge spillovers. | show that firms actively
seek new information and that they increase their learning efforts when there is more to learn and thus more to be
gained from learning. Furthermore, by responding to these opportunities, firms amplify the effects of spillovers on
their patenting and innovation. This *“magnification of spillovers effect” islater transmitted to process and product
innovation, to profits, and finally to general economic growth as the results of learning and internal research spread
from enterprise to enterprise®. According to this description of the learning process, spillovers affect the firm and
economy through a sequence of events. Learning effort increasesfirst in response to knowledge spillovers. Later on
learning and internal research enlarge the flow of innovation. Over time profitsincrease in such away that the short
run effect of innovation on profitsis small, though the long run effect is substantial. Current innovation contributes
little to current profits, because most of the firm’s products date from earlier years, so that profits are determined by
the stock of innovation and by market forces.

By design R& D laboratories are centers of innovation within their firms*. Accordingly, section |1 buildsa

simple model to describe the behavior of industrial R& D |aboratories, and to guide the empirical work. The key

! Griliches (1979) introduces the cosine measure of spillovers used in much subsequent research, while Griliches
(1991) isahistory of spillover research. Mansfield (1991) discusses the effect of academic research on the speed of
industrial research, which complements the work of Mansfield, et al. (1977) on the high rate of return to industrial
research. Seealso Jaffe (1986), Adams (1990), Adams and Jaffe (1996), and Adams (1999) for more on academic
and industrial spillovers.

2 Two exceptionsthat | know of are Cohen and Levinthal (1989) and Sakakibara (1998). These papers focus on
learning and research in non-cooperative oligopoly. Mowery (1995) provides an historical perspective on thistopic.
3 See Becker and Murphy (1992) for arelated analysis of economic growth through the division of labor, which is
driven by increases in the aggregate stock of knowledge.

* Throughout this paper the term “R& D laboratory” refersto any research group and not necessarily to aformal,
separately dedicated R& D establishment in afirm.



assumption isthat the different components of R& D are not perfect substitutes, so that innovation depends on the
alocation of laboratory R& D aswell asitslevel. Asaconsequence, | take adifferent view of the knowledge
production function, one where innovation is primarily afunction of laboratory learning from external R& D and
internal research. Learning effort isitself afunction of potential spillovers. This approach contrasts with asingle
stage specification that treats innovation as a function of firm R&D and spillovers. The most important implication
of the new approach isthat the full effect of spillovers exceedsthe structural effect. The firm’sindirect innovation
function embodies thisimplication and results from substituting the optimized R& D components, which are
increasing functions of the spillovers, into the original innovation function. Spillovers have primary and secondary
effectsin the indirect innovation function. The secondary effect results from induced learning in the laboratory that
is brought about by spillovers, and is the source of the magnification effect discussed above.

Section |11 describes the database. This section also spells out definitions of learning, internal research, and
spillovers of academic and industrial R&D. Most of the discussion concerns arecent survey of R&D laboratoriesin
the chemical's, machinery, electrical equipment, and transportation equipment industries. The survey was designed
to quantify learning, internal research, spillovers, and output of the laboratories. It serves asthe principal data
source for this paper. Section 111 concludes by discussing data on academic R& D, industrial R& D, and patents of
parent firmsthat supplements the survey evidence.

Section |V presentstheresults. | find that the elasticity of patent counts with respect to laboratory R&D is
about 0.6. We shall seethat this appearance of diminishing returnsis partly due to the exclusion of value weights on
patents. The core of the work on patents explores a decomposition of |aboratory budget between learning and
internal research. In the most refined estimates | find that learning accounts for about 12% of the effect of R&D. |
uncover substantial evidence that learning contributes to patents, in addition to internal research and spillovers.
These findings for patents suggest that learning isimportant for the transmission of knowledge to the firm. In
addition, both learning expenditures and the fraction of laboratory workforce composed of Ph.D. researchers
increase in response to potential spillovers. Learning expenditures are to an extent specific to particular spillovers.
Learning about university R& D tends to be more sensitive to university spillovers, while industrial learning
responds more to industry spillovers. Finally thereis evidence that learning directed towards university research is
more pervasive than industrial learning efforts. Spillovers of university research bring about astrong increasein

general R&D spending, unlike industrial spillovers.



The empirical work concludes with an analysis of the value of new products and cost savings generated by
the laboratories. | find that the elasticity of value of new products and cost savings with respect to laboratory R& D
isabout 1.0, suggesting that the patenting elasticity of 0.6 is downward biased because it omits value weightsfor the
patents. In thisanalysis, | do not find arobust and significant effect of learning effort on values of new products and
cost savings of the laboratory. | believe that this provides further support for the multi-stage nature of innovation,
since cost savings and value of new products are the result of a series of innovations extending into the past.

Section V engagesin ageneral discussion. The section compares the approach taken in this paper with
related literature on innovation and growth, and fits our approach into that literature. The empirical findings of
section IV are further explored in light of this comparative discussion. In particular, | quantify the magnification of
spillovers by endogenous learning effort. Consistent with the approach taken here, the estimates suggest that the
secondary effects of spillovers significantly add to primary effects. Thisis especially true of academic spillovers,
whose secondary effect on the laboratory is pervasive, and about double the primary effect. Section VI concludes

and discusses extensions of the research reported in this paper.

II.  Analytical Framework

A. R&D Composition and the Knowledge Production Function

Consider an R& D laboratory that servesafirm or aline of business within afirm. Following Cohen and
Levinthal (1989), R&D iscomprised of learning about external R& D and internal research. | assumethat the
laboratory learns from academia, indicated by A, and industry, indicated by M. Suppressing time subscripts the
laboratory R&D budget R is given by

Q) R=/(,+/y +R:
where / , isacademic learning effort, ¢, isindustrial learning effort and Rr isinternal research.

The firm has a production function that generates innovations as afunction of R&D. Inapractical sense
one might identify innovation with patents, although with two caveats. Counts of patents |eave out innovations that
are not patented and they fail to take the differing importance of innovationsinto account. Therefore, | prefer to
think of innovations more generally, perhaps weighted by their importance, though patent counts do serve as one of
the measures of innovation in this paper. One common approach writes innovations n, as afunction of R&D and

potential spillovers:



@) n= ARRK 24K, AWK 2Fe",
where RisR&D, academic spilloversare K, industrial spilloversare Ky, the firm’s stock of knowledgeisKg and u
isarandom error tern?. Thisisthe “exogenous spillovers” view of innovation.

This paper departs from (2) by writing innovation as afunction of learning expenditures and internal
research. The learning components of R& D are the primary transmitters of spillovers, while internal research brings
the firm’s stock of knowledge to bear on innovation. Therefore, innovations are produced according to
) n=B/, A0, "MR Fe,
where B, stands for neutral efficiency and v israndom error in innovation. Note that small positive numbers
increment the R& D components, so that the firm can innovate, even though it spends nothing on one or more of the
learning components. The exponentsb;, while constant from the firm’ s point of view, exhibit gradual change as
spillovers and the firm’s stock of knowledge increase. Variationsin applicable spillovers and past research at
individual laboratories, aswell astheir growth, drive the b, and therefore learning and internal research. Compared
with (2), equation (3) depends more on the allocation of R& D, and less on external knowledge. Although B, may
still be afunction of spillovers, much of the effect of knowledge disappearswhen ¢ ,, ¢,, , and Rr equal zero. To
take the possibility of exogenous spilloversinto account, | write
@ B, =D, KK IMKIF
Equation (4) specifies the exogenous contribution of spilloversto innovation®. Therest of (3), apart from By,
specifies the endogenous component.

Spilloversincrease learning effort, but learning could increase selectively. Thus academic spillovers may
increase the particular returns to learning about academic R& D, industrial spillovers may increase the returns to
industrial learning, while the firm’s knowledge drivesinternal research. Inthe purest case, ba increases with the
academic spillover K, by increaseswith theindustrial spillover Ky, and bg increases with Kg, the firm’s stock of

knowledge.

® For example, several studiesin Griliches, ed. (1984) express this view of patenting.

6 Audretsch and Stephan (1996) and Zucker, Darby, and Brewer (1998) discuss mobility of academic scientists to
industry. Some of this mobility could lead to unintended and exogenous spillovers that contribute to (4), while some
isfully intended and part of (3). Klette (1996) introduces complementarity between past industrial research of the
firm and current research productivity of the firm, which figuresin (3) and (4).



In this case, spillovers and the firm’ s knowledge increase the returns to scale to innovation; but aslong as

the returns to scale to innovation are diminishing in (3), so that é b, £1.0, there are limits to this contribution.
I

This suggests that spillovers could reduce the other exponents of (3). For example, academic spillovers could
reduce by, and bg whileincreasing ba.

The pair of equations, (3) and (4), comprise the “endogenous spillovers’ view of patenting. Section IV
reports estimates of the two models, comprised of (2) and (3)-(4). According to the estimates (3)-(4) dominates the
exogenous model (2) by awide margin. The alocation of firm R&D between learning and internal research has
incremental ability to explain patents. Asaresult, and in an immediate sense, spillovers are lessimportant to
innovation. And yet indirectly they are more important, through the stimulus they provide to R& D effort. Section
IV goes on to estimate equations for learning and internal research as functions of spillovers, the firm'sR&D
history, firm size and other variables. In these equations spillovers are important determinants of learning
expenditures. But before | explore the determinants of the various R& D components, the nature of their

dependence on the firm’ s environment and past history must be specified.

B. Vintage Product Model of theR&D Firm

A simple model illustrates the determinants of learning and internal research as well as the events
underlying innovation, cost savings, and the revenues from new products. Clearly, more than one model isableto
link learning and internal research to innovation, and ultimately, to link innovation to future profits. The model that
| use represents away to express these connections, one that | believe is correct in broad outline.

The firm produces different vintages of goodsin any period t. These goods were new product introductions
at various times inthe past, and they reflect the firm’s know-how at each period of introduction, since new and
improved models are later introductions. Products are assumed to have afinitelife of L years, reflecting
obsol escence from product improvements. The assumption that products disappear after L years limits the number
of vintagesthat are produced in agiven year and helpsto limit total profits.

Consider total profitsin period t. These arewritten asP* (t), where the asterisk represents maximization
over output, and therefore “indirect” profits. Total profits arethe sum over t of profitsP* (t) from product

introductionsinyear t, wheret3t3t-L, minus R&D in the current period, R (t):



t
(5) P'®)= @ P:(t)- R().

t=v-L
| assume that more recent goods embody higher quality because the firm’s knowledge grows over time.
Quality reflects the firm’ sinnovations, including patents, at the time of introduction.
The firm chooses the level and composition of R& D to maximize discounted present value PV,

¥
©) PV =8 @+r) P ().
t=0

C. Choice between Learning and Internal Research

Now substitute (1) and (3)-(5) into (6) and maximize over the components of R&D. Allowing for corner

solutionsthefirst order conditions at timet satisfy

TPV _ e, (). 220 g
¢ A1) NV
PV _ by n(t)
=mB (). 2" _q4gq
0 Tn (t) o Iy ()
=Y

=mB, ) 200 g0
R (1) Re (1)

where M B, (t) is the discounted present value, or marginal benefit of an innovation. Marginal benefit is multiplied

by ratios that are marginal products of the R& D components, all based on the innovation production function (3).
Not all laboratories engage in deliberate learning, but consider one that does. To afirst approximation |

assume that optimal learning and internal research are the following functions of spillovers, the firm’s stock of

knowledge, and the marginal benefit of a patent. Suppressing time subscripts these are
0, = KK K MBE e

® 0y = KIWK gm K Gur \BEwng
RF - K%FA K’\gAFM KIG:JFF Mngn ew,:

wherew,, Wy, and wg are error terms. These are due to errorsin variables, errorsin functional form, omitted

variables, and thelike. Inthe empirical work | alow for corner solutionsin (8) using tobit analysis.



The empirical work concentrates on the explanation of patents, which are one observable part of
innovation, but also | explore the determinants of learning and internal research. It followsthat (3) and (8) are at the

heart of the empirical work.

D. Behavior of Learning, Internal Research, and Innovation

Several implications follow from (8). Learning and internal research are generally increasing functions of
the spillovers, since knowledge raises the productivity of R&D. Firm size raises the marginal benefit of innovation
and R& D as one might expect. Furthermore, information technology that raises at |east one of the exponents of (8)
increases effective spillovers because |earning expenditure increases, holding constant potential spillovers.

Academic spillovers may increase academic learning effort as compared to industrial learning effort. In
terms of (8), thisoccurswhenba increases relativetobya. Conversely, industrial spilloversincrease industrial
learning effort relative to academic if by increases relativetobay.

Reduced form effects of spillovers and the firm’s stock of knowledge exceed structural effects, since
learning and internal research respond to |earning opportunities, causing effective spilloversto rise more than
potential spillovers. All this showsin the indirect innovation function, the result of substituting (4) and (8) into (3):

o
V+aiWi

©) n = Dn KAdA+éibigiA KMdM +é.ibigiM KFdF+éibigiF MBnéibigine
Spillovers have “primary” effectsthat are caught by thedi termsin the exponents, and “ secondary” effectsthat show

up asremainder terms. Asaresult of these secondary effects, spilloverstend to be more powerful in (9) than (3).
Thisfollows from the fact that (9) approximates a maximum value function. A standard property of such functions
isthat state variables have larger effects than in the original functions, if the controls are increasing functions of the
states’. In (9), the state variables are spillovers and the controls are R& D components that increase with spillovers.
Thusfar | have assumed that external research is complementary to internal research; a different approach
emphasizes R& D partnerships rather than spillovers. According to thisview, firms subcontract research or perform
research for other firms®. By thislogic, internal and external R& D could be substitutes rather than complements.

The following innovation production function shows how subcontracting might work:

’ See Dixit (1990), Chapter 5, for alucid treatment.

8 Conversely, R&D partnerships may exploit complementarities of R& D and follow the previous model. Thisisthe
model of “complementary capabilities’ that seemsto shape many R& D joint ventures. Branstetter and Sakakibara
(1998) contain auseful discussion.



be

(20 n=8,0,0, " R +gR)
where Re is R& D purchased from other firmswhile Rg isinternal research. To avoid knife-edge solutions, | assume
that k<1, so that Rg hasadiminishing effect in (10). Internal and external firm R& D are substitutes, and the firm
chooses between the two based on cost. Thisisan analysis of R&D in the spirit of Coase (1937).

For the data used in this study external R&D islikely to be complementary with internal research. |
calculate spillovers of academic R& D based on national stocks of federally funded R& D; similarly, industry
spillovers are based on company-financed R& D stocksin the rest of industry. R& D substitution is a trace element

within broad specifications of external R&D like the ones used in this paper.

[11. Description of the Data

A. Measurement of Learning and Internal Research

The empirical work depends on arecent survey of industrial R& D laboratories. The survey quantifies
learning effort and internal research, aswell as potential spillovers of the laboratories®. | selected 600 laboratories
owned by 200 firms as potential subjects for analysis. The laboratories were taken from the Directory of American
Resear ch and Technology (R.R. Bowker, 1997). Parent firms were performers of R& D and manufacturers of
chemicals, machinery, electrical goods, or transportation equipment. Firms had to be (1) in Compustat and report
R&D and salesin that database, and (2), had be patent assignees with matching recordsin the U.S. Patent Office
database. These criteriaallow for cross-validation of the data while focusing the sample on innovative companies.

Responsesinclude 208 laboratory aggregates owned by 116 firms. The 208 responses account for 220
laboratories because three firms combined their responses into one, yielding a response rate of 37% (220/600). Of
the 116 firms, 29 were publicly traded for less than 16 yearsin 1996, so that young companies form a significant
part of the sample. Respondents were R& D managers with considerable knowledge of their firms who had been in
industrial research an average of 17 years and with their firmsfor 15 years.

Tables1to 5 describethedata. All the data have been flagged for missing values, checked against outside

sources and any errors corrected. The most important correctionsinvolved re-scaling of dollar variables. In 25

® The survey instrument was refined in three stages. A former R& D manager critiqued theinitial draft. After thisa
beta version was tested on 10 laboratories. Using their comments, we produced afinal draft, and proceeded to
contact the bulk of the laboratories by phone. A mass mailing was then made to all laboratories that granted
permission to send the instrument.



cases | discovered reporting of monetary variablesin whole dollars or in millions, even though respondents were
asked to report in thousands of dollars.

Table 1 shows the distribution of firms and laboratories by industry of the parent firm. The distributionis
uniform except for a smaller number of firms and laboratories in transportation equipment. Thiswas to be expected
given that a smaller number of firmswerein transportation equipment than in other industries. The number of
responses by industry isin fact, roughly proportional to the number of |aboratories surveyed.

Table 2 reports the size characteristics of the laboratories. Consider R& D inputs: the average laboratory
employed 127 scientists and engineersin 1991, of whom 19 held the Ph.D. (or MD) degree. The average R&D
budget was 12 million dollars™. By 1996 the number of scientists was 142, the number of Ph.D. researcherswas 21,
and R&D was 13 million. Thusscientists, Ph.D.s, and R&D all increased by 6 to 9% over the sample period.
Standard deviations appear in parentheses. These imply a positive skew of |aboratory size that may be the result of
cumulative processes favoring large and diverse R& D programs (Cohen and Klepper, 1992).

Now turn to R&D outputs. Two measures of patents are shown in Table 2. Thefirst line shows patents
granted in the years 1991 and 1996 as reported in the survey. Not all laboratories, especially several of the larger
ones, knew their patentsin these two years. The second line replaces missing patents with an estimate based on U.S.
patents for the firm, laboratory location, and year. The datawere downloaded from the U.S. Patents Database
(Community of Science, 1999).

The method for obtaining the patent estimatesis asfollows. | begin by matching two digit zip codesto text
addresses of the inventorsin the patent data for a given company using the electronic zip code database of the U.S.
postal service. Next | assign patents of the parent firm to the laboratory location if the two-digit zip code of
inventors matches the two-digit zip code of the laboratory. Finally | assign patentsto the years 1991 and 1996
according to their issue dates™.

| believe that thisisthe best available way to impute the missing patents, but it is not a perfect assignment.
For an example of this, consider laboratoriesin small states. Their inventors often livein adifferent two-digit zip

code and state than the laboratory, and their patents are irrevocably lost according to this method.

10 This figure, which follows NSF definitions, represents R& D purged of all overhead or non-research charges. Itis
alower bound on omnibus figures for total R& D appropriations that are reported in Compustat. The survey figures
on R& D place less emphasis on production engineering and more on research.

11| am indebted to Margaret Lister Fernando for downloading the patent data and for translation of the text fields
into SAS'™ data sets for further analysis.



Furthermore, patents often include multiple inventorsin different locations, and different laboratoriesin a
firm may cluster in the same two-digit zip code. Both situationslead to over counts of the firm’s patents. | handle
the first problem by multiplying the patents by the fraction of the top four inventorson a patent who residein the
same two-digit zip code as the laboratory, although this adjustment makes little difference to theresults. | handle
the problem of geographic clustering of laboratories in the same firm and multiple counting of patentsasfollows. |
catalog laboratoriesin the survey that are in the same firm and two-digit zip code, and | apportion the patents
according to the shares of scientists and engineers that are employed in the same firm within this area.

The sample of laboratoriesaccounts for 2,000-4,000 patents. Thisisa5-10% sample of U.S. industrial
patents during the middle 1990s. Using the more comprehensive figure for patents, which includes all the large
laboratoriesin the sample, the laboratories produce one patent for every 12 scientists and engineers. Based on
National Science Board (1998), Appendix Tables 3-15 and 4-4, the average for industry is one patent for every 19
scientists and engineers. Thus the sample of laboratories produces a number of patents that is above the average for
their size class. But thereis evidence that other R& D in the firm contributesto laboratory patents. This“virtual”

R& D bringsthe patent to R& D ratio closer to the national average.

Table 2 showsthat R& D outputsrise faster than inputs during the sample period. Mean numbers of patents
granted in the survey and supplemented are 5.2 and 8.9 in 1991. The samefiguresare 7.7 and 12.4 in 1996. Value of
salesrises from 95 million to 131 million. Thus patents and value of new productsboth rise by 40- 50% over the
sample period, and both increase relative to R& D inputs.

Table 3 measures learning effort by the laboratories. Direct learning expenditures are reported fractions of
budget spent on learning about spillover i (i=A, M) times |aboratory R& D budget:

(11) Direct Learning Expenditure; = Direct Learning Fraction ~ R& D Budget.
Examples of direct learning include travel to and attendance at meetings, expenditures on journals, books, technical
reports, and on salaries of student interns and of consultants.

While concrete and easily grasped by respondents, direct expenditures underestimate learning effort. R&D
laboratories learn from recently hired graduate students and they conduct internal research jointly with a study of the
science and engineering literature. The joint conduct of practical research with theoretical study makesit quite hard

to separate learning from internal research. Total learning expenditures devoted to spillover i (i=A, M) are

10



Total Leaming Experditure = (Direct Learning Fraction +
Indirect Learning Fraction) ~ R&D Budget.

Ph.D. scientists
Indirect Learning Fraction = F ~ 02~ ——M—
12) 9 L ' all scientists
Direct Learning Fraction on i

° - . . .
a Direct Learning Fraction on i
i=AM

F =

Total expenditures are the sum of direct andindirect learning expenditures—the corresponding total budget fractions
times R& D budget. | assume that indirect expenditure fractions stand in the sameratio as the direct fractions. This
yields Fj as shown in the third equation of (12). The second equation estimates the indirect learning fraction by
multiplying F by 20 percent of the fraction of scientiststhat hold the Ph.D. This assumesthat Ph.D. scientists spend
20 percent of their time learning. Assuming a 60 hour week, Ph.D.s spend 12 hoursleaming about external research
by reading, going to meetings, meeting with consultants, visiting research installations, and so on. On average eight
of these 12 hours are spent on industrial research while four are spent on academic research. Only doctoral
researchers are permitted this release time. Both assumptions are conservative, and | explore estimates assuming
fractions of time spent learning of 0.4 and 0.6 besides 0.2. Theseresultsare similar to (12).

Table 3 hasthree panels. Thetop panel describes academic learning effort. The direct percent of R&D
budget spent on learning about academic research rises from 0.6% in 1991 to 0.8% in 1996. Direct learning
expenditures increase from 0.12 million to 0.16 million dollars, or 33%. Thetotal percent of budget spent on
academic R&D is more than twice the direct percent, 1.5% compared with 0.6%, and total |earning expenditures are
correspondingly larger.

The middle panel of Table 3 describesindustrial learning effort. Direct percent of budget spent on learning
about industrial R&D risesfrom 1.0% in 1991 to 1.6% by 1996. Direct industrial learning expendituresincrease
from 0.21 to 0.26 million dollars. Thetotal percent of budget spent onindustrial R&D risesfrom 1.9%to 2.8%in
1996. Thetwo panels suggest that laboratories spend more on learning about industrial R& D than on university
R&D. Table 5 showsthat spillovers of industrial R& D are nine times larger than academic spillovers, suggesting
that laboratories have a greater incentive to learn about industrial research.

The bottom panel of table 3 reports employment of Ph.D. scientists. Since Ph.D.sincrease the capacity to

learn about new developmentsin science and technology, Ph.D. employment signals an increase in linkagesto

1



Tablel
Distribution of Firmsand L abor atories

by Industry

Industry SIC Code Number of Firms Number of |

Observations
Chemicals 28 32 59
Machinery 35 37 58
Electrical Equipment 36 3 57
Transportation Equipment 37 14 A
All Industries 116 208

Source: Survey of Industrial Laboratory Technologies 1996.  The 208 observations represent 220

laboratories owing to the aggregation of laboratories by several firms.

Table?2
Size Characteristics of the R& D Laboratories
(Standard Deviationsin Parentheses)

Variable Year
1991 1996
R& D Inputs
Number of Scientists and Engineers 126.9 1421
(385.2) (4215)
Number of Ph.D. (or MD) Scientists and Engineers 191 214
(108.3) (99.2)
Laboratory R&D Budget (in millions of 87 $) 12.2 12.9
(40.4) (39.2
R& D Outputs
Patents Granted from the Survey 52 7.7
(115) (18.3)
Patents Granted from the Survey, Supplemented by estimated 89 124
USPTO Patents by Firm and Laboratory Location (30.4) (40.6)
Sales from New Products Originating in the 94.9 1310
Laboratory (in millions of ‘87 $) (5119 (626.2)

Source: Survey of Industrial Laboratory Technologies 1996. Note: the same laboratories appear in the

1991 and 1996 calculations for each variable.
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Table3
Learning Effortsof the R& D Laboratories
and Linkagesto External R& D Performers
(Standard Deviationsin Parentheses)

Measure Year
1991 1996
L earning Effort, Laboratory with University
Direct Percent of Budget Spent on Learning about University R&D 2 0.6% 0.8%
(1.4%) (1.7%)
Dir ect Learning Expenditures on University R&D (in Millions of '87 $) P 012 0.16
(047) (0.60)
Total Percent of Budget Spent on Learning about University R&D 2 15% 1.8%
(3.2%) (3.7%)
Total Learning Expenditures on University R&D (in millions of '87 $) 0.21 0.27
(0.79) (1.04)
Learning Effort, Laboratory with Industry
Direct Percent of Budget Spent on L earning about Industry R&D 2 1.0% 16%
(1.9%) (2.2%)
Dir ect Learning Expenditures on Industry R& D (in millions of '87 $) P 021 0.26
(1.08) (114
Total Percent of Budget Spent on Learning about Industry R&D 2 19% 2.8%
(3.0%) (3.5%)
Total Learning Expenditures on Industry R&D (in millions of '87 $) ° 0.27 037
(1.22) (140)
Linkagesto Industry and University
Percent of Laboratorieswith Ph.D. or MD Researchers 59.0% 66.2%
Fraction of Laboratory Scientists and Engineers Holding the Ph.D. or MD 012 014
(0.17) (0.18)

Sour ce: Survey of Industrial Laboratory Technologies 1996. Note: for each variable, the same
laboratories appear in the calculations for 1991 and 1996. 2 Percent of budget as estimated by the
laboratory. ® Estimated percent of budget times R& D budget estimated by the laboratory.



externd R&D. Ph.D. employment as a share of laboratory workforce rose slightly, from 13% to 14%, over the
sample period. The percent of laboratories that employed Ph.D. researchers increased somewhat more, from 59% to
66%. Together these findings suggest that the Ph.D. share of smaller laboratories increased over the sample period.

Table 4 combines the statistics of tables 2 and 3 for the subsample of laboratories that employ at |east one
Ph.D. Doctoral laboratories are larger than average: the number of scientists and R& D budget are 50% larger than
intable 2, as are patenting and the value of new products. Some of thisreflectsindustry distinctions, but most of it
survivesindustry effectsin the regressions reported below.

Not surprisingly, employment of Ph.D.s and direct learning expenditures are related to each other. To see
this compare table 3 with table 4. Expenditures on learning, and especially academic learning, are larger both asa
percent of budget and in dollar terms.

So far | have focused on learning expenditures, but now consider internal research. Internal research isthe

portion of R&D budget ostensibly not devoted to learning:

(13) Internal Re search = R&D Budget - é Learning Expenditure,
i=AM

where A and M again refer to academia and industry.

B. Construction of Potential Spillovers

The empirical work focuses on innovation and learning by R& D laboratories. In support of such an
investigation, the data were designed to contain citations to particular sciences, universities, and areas of technology
that the R& D managers view asimportant. | use thisinformation to construct the spillovers.

The academic spillover isthe easiest to construct. Respondentsidentified up to five of 18 science and
engineering fields that they regarded as most relevant to their laboratory . Matching R& D expenditures by field of
science are taken from the NSF-CA SPAR database for the top 225 research universities ranked by size of their R& D

programs. These data cover nearly all of academic R& D and span the period 1972-1995'2,

12 seience disciplines include astronomy, chemistry, physics, other physical sciences; computer science,
mathematics and statistics; atmospheric sciences, earth sciences, and oceanography; and agriculture, biology, and
medicine. Engineering disciplinesinclude aeronautical, chemical, civil, electrical, mechanical, and other
engineering.
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Table4

Learning Effort and Size Of Doctoral R& D Laboratories
(Standard Deviationsin Parentheses)

Characteristic Year
1991 1996
R& D Inputs
Number of Scientists and Engineers 181.0 2034
(461.8) (504.7)
Number of Ph.D. (or MD) Scientists and Engineers 286 321
(1316) (120.0)
R& D Budget (in millions of '87 $) 16.8 184
(48.9) 47.7)
R& D Outputs
Patents Granted from the Survey 7.7 114
(136) (219
Patents Granted from the Survey, Supplemented by estimated 128 175
USPTO Patents by Firm and Laboratory Location (37.7) (46.7)
Sales from New Products Originating in the Lab (in millions of 87 $) 1430 197.7
(634.8) (779.5)
Learning Effort, Laboratory with University
Direct Percent of Budget Spent on University R&D 0.9% 1.2%
(1.7%) (2.0%)
Direct Learning Expenditures on University R&D (in Millions of '87 $) 0.18 0.24
(0.58) (0.73)
Total Percent of Budget Spent on University R&D 21% 2.7%
(3.8%) (4.4%)
Total Learning Expenditures on University R&D (in Millions of 87 $) 0.31 041
(0.96) (1.26)
Learning Effort, Laboratory with Industry
Direct Percent of Budget Spent on Industry R&D 11% 2.0%
(1.8%) (2.3%)
Direct Learning Expenditures on Industry R&D (in Millions of '87 $) 0.27 0.37
(1.28) (1.39
Total Percent of Budget Spent on Industry R&D 25% 3.9%
(3.2%) (3.8%)
Total Learning Expenditures on Industry R&D (in Millions of ' 87 $) 040 054
(1.49) (1.70)

Source: Survey of Industrial Laboratory Technologies 1996. Note: for each variable the same | aboratories appear in

the calculations for 1991 and 1996.

13 For more on the university data see Adams and Griliches (1996,1998).
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The academic spillover isthe sum of federally funded academic R& D accumulated into stocks over aperiod of 17
years (the most available) for up to five sciences that managers regard as important. The choice of federally funded
R& D separates university R& D from company-financed R& D inindustry. This separation isimportant to maintain,
since smaller universities depend heavily on industry support (Mansfield, 1995). | refer to this measure of academic
spillovers as federally funded academic R&D.

The laboratories also report up to five universities that were most influential for their R&D. | sum federally
funded 17-year R& D stocks across these universities for as many asfive sciences. | cal this, federally funded
academic R&D in closely affiliated universities.

Theindustry R&D spillover isamoreinvolved calculation that relies partly on the Census-NSF R&D
survey of industrial research. The estimated spillover isthe sum of company R& D stocks over 35 product groups

weighted by the importance of each group to the laboratory*®. Thus,

14) R&DintheRestoﬂndustry:éjgjﬁj.
Here F~2j isthe stock of R& D over aperiod of 13 years (the most available) in product j, net of parent firm R&D.

The g; arelaboratory-specific, so that the industry spillover islaboratory -specific. Theg; are fractions of

technologiesin each SIC group that are important both to the laboratory and as sources of technology transfer. The
technologies have been mapped to four digit SIC codes by CorpTech (Corporate Technology Information Services,

1994). Therefore, the technology codes can be aggregated to the SIC groups used in the Census-NSF R& D data.

Equation (14) requires Rj —R&D in product group j in the rest of industry. To compute Rj | rely on

Compustat to correct the Census-NSF R& D datafor changing samples and falling response rates (see Adams and

14 The 35 industriesinclude agricultural chemicals; aircraft; communications equipment; construction and materials
handling equipment; drugs; electrical components; electrical industrial apparatus; engines and turbines; electrical
transmission and distribution equipment; fabricated metals; farm and garden equipment; primary ferrous metals;
food and kindred products; inorganic and organic chemicals; missiles and space vehicles, motor vehicles;
metalworking equipment; soap, paint, and miscellaneous chemicals; other electrical equipment, including appliances
and wiring; computers and office equipment; optical, surgical, and photographic instruments; ordnance; special and
general industry machinery; ships, railroads, and other transportation equipment; petroleum refining; plastics, resins,
and fibers; primary nonferrous metals; audio, video, and radio equipment; rubber and plastics; search and detection
equipment and lab apparatus; stone, clay, and glass; textiles; prepackaged software; computer services; and
telecommunications services. Thefirst 32 industries are the Census applied product fieldsin manufacturing. The
last three industries, taken from Compustat, are R& D-intensive sectors outside manufacturing. Each of the 35
groups can be assigned to atwo or three digit SIC major industry group.
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Peck, 1994). The calculation of R j beginswith the distribution of R& D across 32 product fields reported in the
Census-NSF data. | sum these data over firms by product field. Thisyieldsan esti mateﬁj of R&D in product j.
The rest of the calculation correctserrorsin R .

The Compustat extension that achievesthis correction is comprised of the three equations,

5 ﬁi,
R]:—__ SJ
I
= Ry
(15) R = o
' ar
i

Definitions of theterms are

R; = aggregateCensusR& D in product j
§j =aggregatesalesin j fromCompustat line of businessdata
S; =salesof firmiin j fromCompustat lineof businessdata

R = R& D of company i from Compustat
F%i =estimated R& D of firmi in product j,not controlledtototal R& D of firmi

Rj =estimated R& D of firmiin product j,controlledtototal R& D of firmi
Iij = final estimateof aggregateR& Dinj.

Thefirst equation of (15) multiplies the aggregate R& D to salesratio in product j by sales of firmi in that

product, yielding imputed R&D, R, , of thefirmin product j. Thisassumesthat the ratio of firm R& D to salesina

ijo

given product group equals the industry ratio. And yet thefirst stage estimates of firm R& D by product do not sum

tototal firm R&D.
The second equation handles the adding up problem. | multiply company R& D reported from Compustat,

R, by thefirst stage shares of firm R&D in product j. By necessity these second stage estimates add up to total
firm R&D. Thethird equation of (15) sumsthe corrected estimates across firms to reach estimated company-

financed R& D by applied product, R j- | deflate R j and accumulate flows into stocks over a 13-year period (the

most available) using adepreciation rate of 15%. Finally | subtract 13-year stocks of parent firm R&D fromR jto

obtain R&D intherest of industry.
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In addition to R& D in the 32 product fields defined by Census, | include deflated stocks of company-
financed R& D (depreciated at 15%) in prepackaged software, software services, and telecommunications services,
all taken from Compustat. The Census-NSF R& D data do not cover firmsin these important high technology
products. Deflated R& D stocksin these three products improve the quality of the industry spillover by expanding
its coverage outside manufacturing.

Theresult of al these calculationsis (14), R&D in the rest of industry. Thisisthe best measure of industry
spillovers available to us, even though it contains sizable errors. Aswe have seen, the underlying Census-NSF R&D
data suffer from incomplete coverage of product groups, from variable rates of sampling, and from afaling
response rate over time™®.

Table 5 reports means and standard deviations of spillover variables for the laboratories. All the spillovers
increase from 1991 to 1996, with industrial spilloversincreasing at the most rapid rate. Asexpected, academic
spillovers areless than industrial spillovers, and of course spillovers from closely affiliated universities are smaller

than general academic spillovers. Not surprisingly, spilloversto doctoral laboratories are larger than average.

V. Innovation, Learning, and Internal Research

Tables 6-10 report regression-style estimates that explain innovation, learning, and internal research.
Tables 6 and 7 use negative binomial regression to explain numbers of patents granted to the laboratories, while
tables 8 and 9 use tobit, OL S, and various probit techniques to explain learning and internal research. Table 10
concludes with the analysis of the value of new products and cost savings contributed by the laboratories.

| begin with the regression analysis of patentsin tables6 and 7. Asistypically the case for count data,
many of the laboratories do not patent, mean numbers of patents are close to zero, and there are large differences
among the laboratories in the numbers of patents issued.

Given the differences aregression method is required that can handle over-dispersed count data. Negative

binomial regression generalizes Poisson regression by allowing for over-dispersion of counts between the

15 The interaction of the Census R& D data with Compustat R& D remedies problems of variable sampling and
responsein the Census data. It doesthis by requiring that estimated firm R&D by industry sum to total firm R&D in
Compustat. Thislast figureisclean of response rate problems, but notice that Compustat R& D omits government-
financed R&D. Thisisconcentrated differently among industries than company-financed R&D.
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Table5
Academic and Industrial R& D Spillovers
(Standard Deviationsin Parentheses)

Year
Spillover Variable 1991 1996
All Laboratories
Spillover of R&D from Closely affiliated Universities (17 year, 2371 290.5
federally funded R& D stocksin millions of '87 $) (456.3) (542.2)
Spillover of R&D from all Universities (17 year, federally funded 8,779.3 11,0758
R& D stocksin millions of 87 $) (6,186.6) (7,668.0)
Spillover of R&D from the Rest of Industry (13 year, company funded 72,687.0 97,053.7
stocksin millionsof '87 $) (63,478.9) (84,562.6)
Doctoral Laboratories
Spillover of R&D from Closely affiliated Universities (17 year, 337.6 412.3
federally funded R& D stocksin millions of 87 $) (536.2) (633.6)
Spillover of R&D from All Universities (17 year, federally funded 9,7374 12,267.3
R& D stocksin millions of 87 $) (7,067.4) (8,773.1)
Spillover of R&D from the Rest of Industry (13 year, company funded 77,062.0 102,349.5
stocksin millions of '87 $) (64,903.2) (85,863.7)

Sour ces: Survey of Industrial Laboratory Technologies 1996, NSF CASPAR database of universities, CensusNSF

R& D Survey, and Compustat. Note: for each variable the same laboratories appear in the calculations for 1991 and
199.

19



observations'®. Tests of over-dispersion support the negative binomial over the Poisson in all the regressions
reportedin tables6 and 7.

The dependent variable of table 6 is patents granted to the laboratories, supplemented by estimated patents
for firms and laboratoriesif the patent data are missing. When | use patents granted from the survey alone, the
results are similar to those shown, though slightly less significant given the smaller sample. All the equations
include year and industry dummies. In addition, all include two dummiesthat control for laboratory specialization.
Thefirst controls for specialization in testing rather than research. For laboratories primarily devoted to testing the
dummy equals 1. For all other laboratories the testing dummy equals 0. Asone would expect, patenting islessin
laboratories whose main function istesting. The second dummy equals 1 when alaboratory isjointly housed with a
manufacturing facility. Otherwise the jointly housed dummy equals 0. While negative, thisvariableis never
significant in the patent equations. All the equationsinclude besides adummy coded 1 if patents areimputed for the
laboratory from the U.S. Patent Office dataand O otherwise. This variable has a positive coefficient, reflecting in
part the large size of laboratories whose patents are assigned.

Finally, in some of the equations | include athird variable that captures specialization. Thisisthe fraction
of academic fields cited by respondents as important, which are outside engineering. This variable picks up science
orientation of the laboratory. However, thisisinsignificant.

Besides the above controls | include two measures of size of the parent firm. Both are taken from
Compustat. Thefirst isthelogarithm of recent salesin thefirm. Thisisthe depreciated stock of firm salesin
millions of 1987 dollars over the preceding 13 years (the most avail abl€), assuming a depreciation rate of 15 percent.
The second size variableis the logarithm of company-financed R& D in the rest of thefirm. Thisisthe 13-year
stock of firm R& D outside the laboratory in millions of 1987 dollars assuming a depreciation rate of 15 percent.

Equations 6.1 to 6.4 of table 6 report “ exogenous” spillover regressions. Asin equation (2) patentsare
functions of laboratory R&D, firm size and R& D, and potential spillovers. Equations 6.5 to 6.8 are endogenous

spillover regressionsin which | divide R& D budget into learning and internal research components. Under the null

16 Assume that the number of events conditional on! is Poisson distributed, and that the | parameter follows the
Gammadistribution. Integration over | yieldsthe unconditional distribution for the number of events, and this
follows the negative binomial distribution. For a derivation see Johnson and Kotz (1969). For adiscussion of the
application of the Poisson family of distributionsto patents, see Hausman, Hall, and Griliches (1984).
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hypothesis of endogenous spillovers one would expect learning expenditures to matter in addition to internal
research, because they transmit spilloversto patents. Likewise, spillovers should beless significant in the
endogenous specifications.

Equations 6.1 and 6.2 are the simplest specificationsin the table. These include controlsfor year, industry,
and laboratory specialization, laboratory R& D, and the two measures of firm size. Since the controls have already
been explained, | concentrate on laboratory R& D and firm size. The coefficient of the logarithm of laboratory R& D
isthe elasticity of patents with respect to laboratory R& D in this regression method®’. While highly significant, the
point estimate is 0.6, significantly lessthan 1.0, indicating diminishing returnsto laboratory R&D, or errorsin the
measurement of the importance of inventions, or perhaps, adeclining propensity to patent. However theresultsin
table 10 paint adifferent picture. Therethe elasticity of value of new products or of cost savings with respect to
laboratory R& D is not significantly different from 1.0. These results suggest that the value of innovation follows
constant returnsto scale, and that not measuring value is the source of the problem.

| enter the logarithm of recent salesin 6.1 without R& D in the rest of the firm, and its effect on patentsis
positive and highly significant. But when R&D in the rest of the firmisalso introduced, asin 6.2, the significance
of recent sales disappears. R&D intherest of the firm contributesto laboratory patents, probably through shared
projects with other laboratoriesin the firm. At most, recent sales of the firm capture the effect of rest of firm R&D.

Equations 6.3 and 6.4 add the spillovers of section |11 to 6.1 and 6.2. Of the three, company financed R& D
in therest of industry is positive and significant, federally funded academic R& D is marginally significant, and
R&D in closely affiliated universitiesis never significant. Adding the spilloversto the regressions lowers the
coefficient on laboratory R&D slightly.

The endogenous spillover specifications consist of equations 6.5 to 6.8. Equations 6.5 and 6.6 break up
laboratory R& D into direct learning expenditures (see section I11) on industrial and academic R& D and the
remainder of budget, or internal research. All three components of R& D budget are highly significant. The results

are striking: learning expenditures assume alarge proportion of the effect of patents, while own research, which

7 The mean of dependent variable in negative binomial regression isl;. Thisis parameterized as

logl;, = xib.

Thus x;; = log z; impliesthat by; is the elasticity of the dependent variable with respect to z;.
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Table6
Patents Granted
(Asymptotic Normal Statisticsin Parentheses)

Specification
Variable or Statistic
Exogenous Spillovers Endogenous Spillovers
Eg.61 Eg62 Eg63 Eq64 Eq.65 Eq.66 Eq.67 Eq.6.8
Estimation Method Negative Binomial Regression
Y ear and Industry Dummies Yes Yes Yes Yes Yes Yes Yes Yes
LabisPrimarily aTesting Facility (1 if yes, -1.75 -1.44 -1.76 -152 -1.68 -1.43 -1.56 -1.30
0if no) (-2.9) (-2.0) (-2.5) (-2.3) (-2.4) (-22) (-22) (-1.9
Lab Housed With Manufacturing (1 if yes, 0.01 -0.02 -0.04 -0.06 -0.03 -0.08 -0.01 -0.09
0if no) 0.1 (-0 (-0.2) (-0.4) (-0.2) (-05) (-0 (-0.5)
Patents Imputed (1 if yes, 0 if no) 0.63 0.61 0.56 054 0.79 0.83 0.78 0.86
(2.6) (2.6) (2.3 (2.3 (3.0 (29 (2.9 (3.0)
Importance of Science Relativeto Engineering -021 -0.37
(Range: 0to 1) (-0.5 (-0.8)
Log (Recent Sales of the Firm) 0.18 0.04 0.20 0.08 0.18 0.05 0.18 0.05
(3.8 (0.6) 4.2 (1.3 (3.7 (0.8 (3.7) 0.7
Log (Company Financed R&D in the Rest of 0.08 0.07 0.07 0.07
the Firm) (32 (2.6) (2.8 (2.8
Log (Laboratory R& D budget) 0.60 064 055 0.60
(10.5) (11.3) (9.9 (10.3)
Log (Direct Learning Expenditures, Industrial 0.16 0.16
R&D) (35) (37
Log (Direct Learning Expenditures, Academic 011 011
R&D (29) 24
Log (Direct Internal Research) 031 0.36
4.7 (4.6)
Log (Total Learning Expenditures, Industrial 0.16 0.16
R&D) 4.1 4.3




Table6
Patents Granted
(Asymptotic Normal Statisticsin Parentheses)

Specification
Variable or Statistic
Exogenous Spillovers Endogenous Spillovers
Eg.61 Eq.62 Eq.63 Eq64 Eq.65 Eq.66 Eq.6.7 Eq.6.8
Log (Taotal Learning Expenditures, Academic 0.10 011
R&D (28) (29
Log (Total Internal Research) 031 035
4.2 (4.6)
Log (Company Financed R& D in the Rest of 0.06 0.06 0.05 0.05 0.05 004
Industry) (2.9 (2.9 (2.5 24 (2.3 (21
Log (Federally funded Academic R& D) 0.37 0.33 0.24 0.23 0.20 022
(2.2 (1.9 (1.3 1D 1D (11
Log (Federally funded Academic R&D in 0.003 0.001 -0.011 -0.011 -0.010 -0.010
Closely Affiliated Universities) 0.2 0.3) (-0.7) (-0.7) (-0.6) (-0.6)
Number of Observations 288 2838 288 288 268 268 268 268
Log Likelihood -730.3 -7125.7 -7219 -718.8 -646.2 -642.7 -644.9 -641.1

Note: data are derived from Survey of Industrial Laboratory Technologies 1996, the Census-NSF R& D survey,
Compustat, and the NSF CASPAR database of university research. Seethe text for adiscussion of the variables.
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accounts for most of R& D budget, falls sharply. Industrial learning isthe more powerful of the two learning
expenditures. Thisresult isconsistent with the fact that industrial R& D isthe largest spillover source. Equation 6.6
adds R&D in therest of the firm and science orientation of the laboratory, though the latter isinsignificant. As
before, R& D elsewhere in the firm eliminates the effect of firm sales, indicating the importance of other R&D units
in the firm to patents. Equations 6.5 and 6.6 include the spillovers. Sincelearning effort is held constant the
spillovers are now less significant. Equations 6.7 and 6.8 replace direct learning expenditures with total learning
expenditures*®. The new measures of learning are a better fit to laboratory patents based on the log likelihood:;
otherwise the results are similar to 6.5 and 6.6. Consistent with this better fit the spillover constructs are still
weaker. They are at best marginally significant in 6.7 and 6.8.

The large effect of learning expendituresin table 6, while consistent with the hypothesis that learning
contributes to laboratory productivity, is still acause for concern. The percent of budget contributed by each type of
learning expenditure is small—on the order of 1-5% depending on the measure. And yet the elasticities of patents
with respect to the learning expenditures are athird to a half of the elasticity for internal research, amuch larger
component of R& D budget.

Three hypotheses are candidates to explain the outsized effect of learning on patents. First, learning
expenditures may capture excluded aspects of laboratory specialization or size that have little to do with learning. |
am fairly sure that variablesof thiskind are not driving the results, because the equations include a battery of
controlsfor laboratory specialization and size. | include testing, joint housing with manufacturing, and laboratory
orientation towards science as controls for laboratory specialization. | include laboratory R&D, R&D in therest of
the firm, and firm sales as controlsfor size.

A second and more plausible hypothesisis that |earning expenditures are underestimated in the data. There
is evidence to support this hypothesis. Total learning expenditures have at least as strong an effect on patents as
direct learning expenditures, even though total expenditures exceed direct expenditures. As| increase the fraction of
time spent learning by Ph.D. researchersin (14) from 0.2 to 0.4 or 0.6 the results stay about the same. This suggests
that | underestimate informal learning expenditures. Table 8 provides further evidence on this point. Thetable

shows that internal research aswell as learning responds to spillovers, implying that learning activity permeates

18 Compare (11) and (12): these define, respectively, direct and total learning expenditures.
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R&D budget. The difficulty of separating learning from internal research occurs for agood reason, the inherent
joint-ness of the two activities.

A third hypothesis| believe also hasvalidity. Sincelearning expenditures are products of the fractions
spent on learning and R& D budget, these expenditures may simply pick up the effect of R&D budget. To examine
this hypothesis | introduce logarithms of fractionsof budget spent on learning in the patent equations, which are
independent of the logarithm of |aboratory R& D budget. Thisisdonein Table7. Equations 7.1 and 7.3 introduce
direct and total fractionsof budget spent on learning about industrial and academic R&D. Thelearning fractions are
highly significant in both equations. Theindustrial |earning fraction remains the more potent of the two, consistent
with the larger size of industrial spillovers. Notice also that the effect of R& D budget declines from about 0.6 in 6.1
to 6.4 of table 6,t00.53in 7.1 and 7.2. Thisisadrop of 0.07, or 12 percent of the effect of laboratory budget.

Turning the result the other way, learning activities seem to account for about 12 percent of budget.

I conclude that learning effects are outsized in table 6 for two reasons. First, respondents underestimate
learning expenditures. They ignore activities like the reading of scientific journalsthat are jointly carried out with
internal research. They do not regard these activities as a cost of learning, though they require scarce time and are
essential to invention. Second, |earning expenditures cannot be separated from total R& D budget. However, the
resultsin table 7 suggest that, as afraction of budget, learning does matter for patents. Asit turns out, research “not
invented here” has acrucial bearing on how industry goes about the business of invention.

Alsointable 7, | combine the fractions of budget spent on learning about academic and industrial R&D
into asingle learning fraction. Respondents may find it hard to separate the two types of learning, and one would
liketo test for this. Theresults, equations 7.2 and 7.4, produce a slightly better fit than equations 7.1 and 7.3, and the
combined fraction spent learning has a positive and highly significant effect on patents. These results suggest that
respondents find it a challenge to separate industrial from academic learning, though the problem does not appear to
be a serious one.

Table 8 fits the various components of laboratory R& D budget to the data'®. The logarithms of |aboratory
learning and internal research are treated as functions of firm sales, R& D elsewherein the firm, and the various

spillovers. Thefitted equations are the log-linear approximations to laboratory R& D found in (8) of section I11.

19| am estimating patents and R&D in arecursive system. Thisis because | assume that R& D precedes patents,
implying that learning, and internal research, are predetermined in the patent equations.
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Patents Granted Asa Function of Fractions Spent on L earning
And Laboratory R&D

Table7

(Asymptotic Normal Statisticsin Parentheses)

Variable or Statistic Eq. 7.1 Eq. 7.2 Eq. 7.3 Eq. 7.4

Estimation Method Negative Binomial Regression

Year, Industry, Test, Lab, Patent Imputation Dummies Yes Yes Yes Yes

Industrial and Academic Spillovers Included Included Included Included

Log (Recent Sales of the Parent Firm) 0.07 0.08 0.07 0.08
11 1.2 (1) 12

Log (R&D inthe Rest of the Firm) 0.06 0.06 0.06 0.06
(25 (24 (249 (2.5

Log (Direct Learning about Industrial R&D asa 021

fraction of Laboratory Budget) 33

Log (Direct Learning about Academic R&D asa 0.17

fraction of Laboratory Budget) 249

Log (Combined Direct Learning asafraction of 0.32

L aboratory Budget) (44)

Log (Total Learning about Industrial R&D asa 022

fraction of Laboratory Budget) (4.0

Log (Total Learning about Academic R&D asa 015

fraction of Laboratory Budget) 2.7

Log (Combined Total Learning asafraction of 0.29

Laboratory Budget) (4.7)

Log (Laboratory R& D Budget) 053 0.55 052 0.56
(8.6) 9.3 (8.6) (9.5

Number of Observations 268 268 268 268

Log Likelihood -644.5 -643.0 -642.6 -642.0

Note: data are derived from Survey of Industrial Laboratory Technologies 1996, the Census-NSF R&D survey,

Compustat, and the NSF CASPAR database of universities. Seethetext for adiscussion of the variables.
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Table8
Deter minants of L earning and Inter nal Resear ch Expenditures
(t-Statisticsin Parentheses)

Learning Expenditures, Learning Expenditures, Internal Research
Industrial R& D Academic R&D Expenditures
Variable or
Statistic Direct Total Direct Total Direct Total
Eqg. 81 Eq. 82 Eqg. 83 Eqg. 84 Eqg. 85 Eqg. 86
Estimation Method Tobit Tobit oLs
Y ear, Industry, Test, Jointly Housed Dummies Yes Yes Yes Yes Yes Yes
Log (Stock of Recent Sales of the Company) 040 041 0.74 0.83 043 043
3.3 (3.0) 4.3 4.2 (8.2 (8.2
Log (Stock of R&D in the Rest of the Firm) -0.09 -0.09 -0.09 -0.10 -0.09 -0.10
(-1.7) (-1.4) (-1.2) (-11) (-39) (-4.0)
Log (Company Financed R&D in the Rest of 011 014 -0.01 0.00 0.03 0.03
Industry) (2.3 (2.6) (-0.2) 0.1 (1.4 (13
Log (Federally funded Academic R& D) 103 1.36 141 151 0.55 055
(25) (2.9 (24 (22 (33) (32
Log (Federally funded Academic R&D in 0.07 0.08 0.28 0.32 0.04 0.03
Closely Affiliated Universities) 2.2 (2.2 (5.4 (5.3 (2.4 (2.4
Number of Observations 268 268 268 268 268 268
Percent of Observations Left Censored at Zero 031 031 0.56 0.56 - -
Root MSE 2.96 3.28 373 438 135 135
Log Likelihood -536.6 -557.0 -404.1 -4240 -- -
Adjusted R? - - - - 0.36 0.36

Note: data are derived from Survey of Industrial Laboratory Technologies 1996, the Census-NSF RD-1 survey,
Compustat, and NSF CASPAR database of universities. See thetext for adiscussion of the variables.
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| estimate learning expenditures using tobit analysis rather than ordinary least squares, because 31 percent
of the R& D laboratories report zero expenditures on learning about industrial R& D, while 56 percent report zero
expenditures on learning about academic R&D. The internal research eguations use ordinary least squares since this
part of budget is not censored. All equationsinclude dummy variablesfor year and industry. All include dummies
for testing and joint housing with a manufacturing facility, though these areinsignificant in table 8.
Equations 8.1-8.2 report findings for industrial |earning expenditures. Asthroughout the table, recent sales of the
firm promote learning effort, whereas R& D in the rest of the firm has no effect on learning about industrial research.
Thisisin contrast to patents, where rest of firm R&D was the significant variable, and not sales. The difference
partly reflects the dominance of incentives to perform R& D in table 8, whereas in the patent regressions of tables 6
and 7, R& D budget already capturesincentives. Another differenceisthat R& D elsewherein the firm has a direct
bearing on outputs such as patents, but little bearing on learning effort. Turning to the spillover variables, company
financed R& D elsewhereinindustry stimulates industrial learning, but academic spillovers also have this effect.
Thisis perhaps not surprising. Basic research inindustry islarge, about half that of universities during the 1990s°.
Thusthereis some overlap in the type of research conducted in the two sectors.

Equations 8.3-8.4 report estimates for academic learning expenditures. Qualitative patterns are similar to
the results for industrial learning. The main exception isthat industrial spillovers have no effect on academic
learning. Thisisconsistent with the notion that industrial learning may be specific to industrial spillovers.

Quantitative comparison of the results for industrial learning with those for academic learning requires
estimates of marginal effects. In tobit analysis marginal effects are the estimated coefficients multiplied by the
fraction of observations that are not censored?!. Thefraction not censored is 0.69 for industrial learning and 0.44 for
academic learning. Thus, for example, the marginal effect of recent salesisonly slightly greater for academic
learning than industrial, 0.34 versus 0.28. Surprisingly, federally funded academic R& D has a slightly smaller effect
on academic than industrial learning, about 0.64 versus 0.82. However, the marginal effect of federally funded
R&D in closely affiliated universitiesis almost three times larger for academic learning, 0.13 versus 0.05. Overall

the results suggest that industrial spilloversincrease industrial learning effort more than academic. The specificity

20 5ee National Science Board (1998), appendix Table 4-7, page A-125.

21 \Where b is the Tobit coefficient and 1-F isthe fraction of observations not censored, the expected marginal effect
isb- (1-F). Compare thisresult with OLS, where b is both the regression coefficient and the marginal effect.

Greene (2000), Theorem 20.4, page 909 contains a proof of this result.
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of academic learning effort is not as clear, perhaps because of the presence of basic research in industry. Still,
academic learning responds strongly to federally funded R&D in closely affiliated universities.

It is much more important to see that the results strongly suggest that learning expenditures respond to
learning opportunities, so that spillovers are endogenous. Since tables 6 and 7 indicate that learning expenditures
are adeterminant of patents, spillovers have a secondary effect on innovation that bolsterstheir primary effect. |
return to thisthemein section V of the paper.

Equations 8.5 and 8.6 show the estimates for internal research. Until now R&D in therest of the firm has
had no discernable effect on laboratory effort. But in these results the effect is negative and highly significant,
perhaps reflecting the substitution of other units’ R&D for the laboratory. Another finding isthat academic
spilloversincrease the internal research of the laboratory. Infact, academic research pervades laboratory R&D,
whileindustrial spillovers specifically promote industrial |earning expenditures. The influence of university
research istherefore strongly understated by academic learning expenditures.

Equations 8.1 to 8.4 have used |learning expenditures as the dependent variable. To separate learning effort
from budget | grouped the fractions of budget assigned to learning and treated them as an ordered categorical
variable. The categorized learning fractions were then fitted to the data using ordered probit. To save space | donot
provide a separate table, but simply state that the results generally confirm the findings using tobit analysis. The
industrial spillover significantly increases the fraction of budget devoted to learning about industrial research but not
the fraction devoted to academic learning. As above, academic spilloverstend to increase both academic and
industrial learning fractions. Also as before, the spillover from closely affiliated universities exerts an extraordinary
effect on the academic learning fraction.

Table 9 reports estimates of the determinants of Ph.D. employment. Theideaisto see whether spillovers
increase the fraction of laboratory workforce consisting of Ph.D. researchers, since Ph.D. scientists have a
comparative advantage in learning about external research. Thetechniqueis grouped probit. The sample consists of
laboratories that employ Ph.D. scientists. The dependent variable in equations 9.1 to 9.4 is the fraction of the
workforce composed of Ph.D. scientists?.

Notice that the dummy variable for joint housing with manufacturing is negative and significant in all the

equations. This showsthat jointly housed laboratories are oriented towards devel opment rather than basic and

22 For adiscussion of grouped Probit see Maddala (1983), Chapter 2.
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Table9
Relative Employment of Ph.D. Scientists
(t-Statisticsin Parentheses)

Variableor Log (Ph.D. Scientists/Non-Ph.D. Scientists)
Statistic

Eqg. 9.1 Eqg. 9.2 Eq. 9.3 Eq. 94

Estimation method Grouped Probit
Y ear, Industry Dummies Yes Yes Yes Yes
Lab Housed With Manufacturing (1 if yes, -0.53 -0.64 -064 -0.68
0if no) (-4.9 (-5.3) (-6.2) (-6.0)
Log (Lab R& D Budget) -0.09 -0.05
(-2.0) (-1.0)
Log (Recent Sales of the Firm) -0.00 0.03 -012 -0.10
(-0.3) (1.0 (-35) (-24)
Log (Company Financed R&D in the Rest of the 0.06 0.06
FHrm) (5.0 (4.6)
Log (R&D in the Rest of Industry) 0.03 0.03 0.02 0.02
27 (3.0 (2.0) (2.2
Log (Federally funded Academic R& D) 0.84 084 058 059
(5.2 (5.2 (35) (3.6)
Log (Federally funded Academic R&D in Closely 0.06 0.06 0.05 0.05
Affiliated Universities) (5.6) (6.0) (5.3 (54
Number of Observations 187 187 187 187
Root MSE 049 049 0.46 0.46
Adjusted R? 053 054 059 059

Note: data are derived from Survey of Industrial Laboratory Technologies 1996, the Census-NSF
R& D survey, Compustat, and the NSF CASPAR database of university research. Seethetext for a
discussion of the variables. The dummy variable for testing is omitted because none of the Ph.D.
laboratories specialize in testing.



applied research. For thisreason |aboratories that are jointly housed with manufacturing employ asmaller fraction
of Ph.D. scientists.

The key finding of table 9 isthat R& D spillovers, especially those originating in academia, are the most
important drivers of Ph.D. employment. In addition, R&D in the rest of the firm increases the fraction comprised of
Ph.D. researchers. This suggeststhat larger R& D firms carry out more skill intensive research. However, when
firm R&D isheld constant, asin 9.3 and 9.4, larger sales of the firm decrease the share of Ph.D. employment.

Holding R& D constant, firm size seems to increase the demand for production engineering and not research.

The empirical work concludes with the analysis of data on value of new products and cost savings
originating in the laboratory. The findings, shown in table 10, are different than before, and the sample more
restricted. Though | find a strong effect of overall laboratory budget, the effects of learning effort and spillovers are
not separately identified, and hence omitted from the table.

Our best guessisthat the lack of an effect for learning and spillovers follows from the multi-stage nature by
which value of new products and cost savings come about. Inevitably, data of thiskind are more distant in time and
space from current patents and the division of R&D within the laboratory. Most of the evidence concerns research
laboratories within firms, which are usually a small part of enterprise. And yet the value of new products and cost
savings are the result of applying labor, capital, and other inputs that are frequently arrayed throughout the parent
firm and suppliers. Asaconsequence, many of the relevant inputs are difficult to identify. In addition to this, the
value of new productsis astock variable composed of the value of products introduced in the past. At the very least
this suggests the use of panel data on inputs, including past learning effort and internal research of the laboratory.

Table 10 contains the results. Equations 10.1 and 10.2 report OL S regressions for the logarithm of the
value of new products. The logarithm of laboratory R& D is positive and significant in these equations, while R& D
inthe rest of the firm isinsignificant. The elasticity of value of new products with respect to laboratory R&D is
indistinguishable from 1.0, implying that the value of new products increases in proportion to laboratory R&D. This
contrasts with the results for patents, where the patent R& D elasticity is on the order of 0.6, and significantly less
than 1.0. The differencein elasticities highlights the importance of attaching values to patents. Larger |aboratories
seem to have more valuabl e patents.

Since the value of new products has a stock dimension, owing to the introduction of new products over

time, | difference these data. | take the five-year difference of the value of new productsin 1996 and 1991 and of
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R&D inthelaboratory and the rest of the firm. | estimate growth of the value of new products as afunction of
growth in R&D effort in the firm and laboratory. Thefive-year differences have two effects on theresults. First,
individual fixed effects of the laboratories are eliminated. And second, the data focus now on recent products as
well asrecent research. Equations 10.3 and 10.4 display the resultsfor 102 |aboratories that report al relevant data
in both years. Laboratory R& D budget enters more weakly in differenced form, though it would be significant in a
larger sample, and R& D intherest of the firm is significant for the first time. These results are closer to the results
for patents, also aflow variable, where laboratory R& D and R&D in the rest of the firm both contribute, with
laboratory R& D the more important of the two.

The presentation of the findings concludes with OL S regressions explaining the logarithm of the value of
cost savings created by the laboratory. Equations 10.5 and 10.6 contain the results. As held true for new products,
the value of cost savingsincreasesin proportion to laboratory R& D and the elasticity of cost savings with respect to
laboratory R& D is not significantly different from 1.0. Rest of firm R&D isinsignificant in 10.6. The principal
message of table 10 isthat R& D laboratories seem to be subject to constant returns to scal e production processes for

the value of their innovations.

V. Discussion

L et ustake stock of the results and interpret them in the light of the key equations, (3), (8), and (9). To
begin with, the results for patents provide support for the endogenous innovation function (3). According to the
estimatesin tables 6 and 7, outcomes of learning from academia and industry, as well asinternal research, are
recombined in theinnovation function. To this extent, the results convey the spirit if not the letter of Weitzman
(1998), who argues that aggregate growth proceeds by combinatorial means. As he shows, this growth eventually
dominates any exponential growth process. The innovation function in this paper as well, where disparate ideas are
brought together in unexpected ways, is effectively recombinant and mutually reinforcing of the different learning
processes. For inside (3), ideas from multiple sources in academia and industry, as well asideas hatched within the
laboratory, effectively meet and give riseto still other ideas. With laboratoriesin alarge number of companies so
engaged all at once, the economy is a sea of recombinant growth.

Second, the results of tables 8 and 9 suggest that |earning expenditures, fractions of budget disposed
towards learning, and learning resources all increase in response to potential spillovers. It followsthat the indirect

innovation function (9) exhibits returnsto scale that exceed that of the original innovation function (3). Thisresult
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Table 10

Log (Value of New Products) and L og (Value of Cost Savings)
(t-Statisticsin Parentheses)

Log (Vaueof New Five Year Differencein Log (Vaue of Cost
Variable or Products) Log (Vaue of New Savings)
Statistic Products)
Eq.10.1 Eq. 10.2 Eg. 10.3 Eq. 104 Eq. 105 Eq. 10.6
Estimation Method oLS
Y ear, Industry, Test, Jointly Housed Yes Yes No No Yes Yes
Dummies
Log (R&D inthe Rest of the Firm) 0.03 -0.09
(0.6) (-1.5)

Log (Laboratory R& D Budget) 119 118 0.90 0.96

(8.7) (84) (4.8 (5.0)
Five Year Differencein Log (R&D in 022
theRest of the Firm) (2.8
Five Y ear Differencein Log 071 0.82
(Laboratory R&D Budget) (1.8) (2.2
Number of Observations 216 216 102 102 158 158
Root MSE 3.06 307 2.06 200 331 330
Adjusted R? 0.28 0.28 0.02 0.09 022 023
F Statistic 114 102 34 58 6.5 6.1

Note: dataare derived from Survey of Industrial Laboratory Technologies 1996, the Census-NSF R&D survey,

Compustat, and NSF CASPAR database of university research. Seethetext for adiscussion of the variables.



formally resembles that of Becker and Murphy (1992) in their analysis of growth by means of specialization.
However, the results differ from theirs, in that learning from disparate sources places alimit on specialization. In
this sense, the results bear a closer resemblance to those of Cohen and Levinthal (1989) in their work on innovation
and learning, the two faces of R&D.

I now combine the results of the different tablesto obtain point estimates of the primary and secondary
effects of industrial and academic spillovers. Sincethe tables are the first to undertake estimates of this kind, the
following cal culations should be viewed as tentative and illustrative in nature. The measurement of secondary
effectswill allow usto gain a quantitative reading on the magnification of spillovers by the response of learning
effort to learning opportunities represented by the spillovers. Recall that these effects are combined in the exponents

of the indirect innovation function (9), which is reproduced below for convenience:
© 0 =D, K, M8 b0 K 9ar8 oK 4 +8, Do & b0ng A
Using the results of table 6 and 8, the primary effect of industrial spilloversis d,, = 0.05. The secondary effect is
by Guy + 0AGay + BeOry =0.167 0.09 +0.11° 0.00 +0.31° 0.03 = 0.02.
These results multiply the g, coefficients by fractions of observations that are not censored (see table 8).
In any event, the contribution of industrial spilloversislargely the primary effect.
I now repeat this exercise for academic spillovers. Remember that these include federally funded R&D
both in general and for closely affiliated universities of the laboratories. The primary effectisd, =0.22. The
secondary effectis
by, Gya + DaGan + D Gp =0.167 0.89+0.11° 0.77+0.31° 0.69 =0.43 .
In quantifying these secondary effects | once again multiply the g, , coefficients by fractions of observations

not censored (see table 8) to obtain marginal effects. The results suggest that the secondary contribution is more
important for academic spillovers. More important, they show that secondary effects of spillovers are comparable
with the primary effects. Thusthe returnsto scale to innovation are enhanced by the endogeneity of knowledge
spillovers.

One further note concerns the comparison of the two spillover effects. The above cal culations suggest that
the academic spillover effect is about 0.65, about nine times larger than the industrial effect of 0.07. However, these

estimates are el asticities of patents with respect to one-percent increases in each type of spillover. Given that the



industrial spillover is on average nine times larger than the academic spillover (see table 5), per dollar, the two
effects are about equal at the mean of the sample.

Finally, acomplete sequential story that accountsfor the process by which firms discover new products and
processesis desirable, but out of reach at thistime. The stages by which research progresses within the firm cannot
be traced, since the data are not sufficient to link the value of new productsand of cost savings backward to the
myriad of learning activities as described by repeated accessto spillovers. Instead laboratory R& D budget, which
demonstrates a high degree of serial correlation, isthe dominant effect on the value-based measures of innovation
reported in table 10%. This part of the analysisis clearly in need of further improvement. At the very least thiswill

require a panel of data on firmsthat is of avery detailed nature.

VI. Conclusion

This paper has presented theory and evidence concerning endogenous R& D spillovers. While more can be
done on thistopic, | hazard afew conclusions from the work to date. First, academic research does seem to have a
profound significance for the rate of innovation and for the amount of learning carried out by the laboratory.
Consistent with this point of view, an increasing fraction of the laboratoriesin the sample have included doctoral
scientists and engineersin their research programs over time.  Second, the evidenceis consistent with the idea that
spillovers, especially academic spillovers, are endogenous. | find that learning expendituresincrease in response to
spillovers. Third, theresultsimply that learning is somewhat specific, in that learning aimed at a particular spillover
seems to respond intensively to that source. But | also find that academic spillovers exert a broader impact on
laboratory R& D than industrial spillovers. Fourth, the findings are supportive of a sequential view of learning and
innovation, in which spillovers and firm R&D lead to increased learning, learning and own research lead to
innovation, and a stream of innovation supports the cumulative introduction of new products over time. Fifth, not
al laboratories have the same orientation and not all have the same demand for learning about external R&D. Part
of this has to do with the particular industry and with presumed opportunities for learning, but part hasto do with a
mission of the laboratory that is skewed towards testing rather than research, perhaps because other, larger facilities

within the same firm shoulder the main load of research.

23 gee Adams and Jaffe (1996) for evidence on the high degree of serial correlation in R& D dataat the firm and
divisional level.
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