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I. Introduction 

In recent years a growing literature has studied knowledge spillovers and their effect on the performance of 

industrial firms.  This literature finds consistent evidence for increases in patenting and productivity due to 

spillovers, holding firm research and development (R&D) constant1.  In spite of these results few economists have 

studied how spillovers occur and what this implies about the behavior and performance of firms 2.   And yet firms 

decide how much to learn from external R&D and how much knowledge spills over, just as they decide the extent of 

their involvement in many other activities, including investment, advertising and diversification.  As a result, 

exogenous spillovers may be unimportant when compared with spillovers that firms generate by their own efforts. 

 This paper provides new evidence on the endogeneity of knowledge spillovers.  I show that firms actively 

seek new information and that they increase their learning efforts when there is more to learn and thus more to be 

gained from learning.  Furthermore, by responding to these opportunities, firms amplify the effects of spillovers on 

their patenting and innovation.  This “magnification of spillovers effect” is later transmitted to process and product 

innovation, to profits, and finally to general economic growth as the results of learning and internal research spread 

from enterprise to enterprise3.   According to this description of the learning process, spillovers affect the firm and 

economy through a sequence of events.  Learning effort increases first in response to knowledge spillovers. Later on 

learning and internal research enlarge the flow of innovation.  Over time profits increase in such a way that the short 

run effect of innovation on profits is small, though the long run effect is substantial.  Current innovation contributes 

little to current profits, because most of the firm’s products date from earlier years, so that profits are determined by 

the stock of innovation and by market forces.    

 By design R&D laboratories are centers of innovation within their firms4.  Accordingly, section II builds a 

simple model to describe the behavior of industrial R&D laboratories, and to guide the empirical work.  The key  

                                                                 
1 Griliches (1979) introduces the cosine measure of spillovers used in much subsequent research, while Griliches 
(1991) is a history of spillover research.  Mansfield (1991) discusses the effect of academic research on the speed of 
industrial research, which complements the work of Mansfield, et al. (1977) on the high rate of return to industrial 
research.   See also Jaffe (1986), Adams (1990), Adams and Jaffe (1996), and Adams (1999) for more on academic 
and industrial spillovers.    
2  Two exceptions that I know of are Cohen and Levinthal (1989) and Sakakibara (1998).  These papers focus on 
learning and research in non-cooperative oligopoly.  Mowery (1995) provides an historical perspective on this topic.    
3 See Becker and Murphy (1992) for a related analysis of economic growth through the division of labor, which is 
driven by increases in the aggregate stock of knowledge. 
4  Throughout this paper the term “R&D laboratory” refers to any research group and not necessarily to a formal, 
separately dedicated R&D establishment in a firm. 
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assumption is that the different components of R&D are not perfect substitutes, so that innovation depends on the 

allocation of laboratory R&D as well as its level.   As a consequence, I take a different view of the knowledge 

production function, one where innovation is primarily a function of laboratory learning from external R&D and 

internal research.  Learning effort is itself a function of potential spillovers. This approach contrasts with a single 

stage specification that treats innovation as a function of firm R&D and spillovers.  The most important implication 

of the new approach is that the full effect of spillovers exceeds the structural effect.  The firm’s indirect innovation 

function embodies this implication and results from substituting the optimized R&D components, which are 

increasing functions of the spillovers, into the original innovation function.  Spillovers have primary and secondary 

effects in the indirect innovation function.  The secondary effect results from induced learning in the laboratory that 

is brought about by spillovers, and is the source of the magnification effect discussed above.   

Section III describes the database.  This section also spells out definitions of learning, internal research, and 

spillovers of academic and industrial R&D.  Most of the discussion concerns a recent survey of R&D laboratories in 

the chemicals, machinery, electrical equipment, and transportation equipment industries.  The survey was designed 

to quantify learning, internal research, spillovers, and output of the laboratories.  It serves as the principal data 

source for this paper.  Section III concludes by discussing data on academic R&D, industrial R&D, and patents of 

parent firms that supplements the survey evidence. 

Section IV presents the results.  I find that the elasticity of patent counts with respect to laboratory R&D is 

about 0.6.  We shall see that this appearance of diminishing returns is partly due to the exclusion of value weights on 

patents.  The core of the work on patents explores a decomposition of laboratory budget between learning and 

internal research. In the most refined estimates I find that learning accounts for about 12% of the effect of R&D.  I 

uncover substantial evidence that learning contributes to patents, in addition to internal research and spillovers.  

These findings for patents suggest that learning is important for the transmission of knowledge to the firm.  In 

addition, both learning expenditures and the fraction of laboratory workforce composed of Ph.D. researchers 

increase in response to potential spillovers.  Learning expenditures are to an extent specific to particular spillovers.  

Learning about university R&D tends to be more sensitive to university spillovers, while industrial learning 

responds more to industry spillovers.   Finally there is evidence that learning directed towards university research is 

more pervasive than industrial learning efforts.   Spillovers of university research bring about a strong increase in 

general R&D spending, unlike industrial spillovers. 
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The empirical work concludes with an analysis of the value of new products and cost savings generated by 

the laboratories.  I find that the elasticity of value of new products and cost savings with respect to laboratory R&D 

is about 1.0, suggesting that the patenting elasticity of 0.6 is downward biased because it omits value weights for the 

patents. In this analysis, I do not find a robust and significant effect of learning effort on values of new products and 

cost savings of the laboratory.  I believe that this provides further support for the multi-stage nature of innovation, 

since cost savings and value of new products are the result of a series of innovations extending into the past.     

Section V engages in a general discussion.  The section compares the approach taken in this paper with 

related literature on innovation and growth, and fits our approach into that literature.  The empirical findings of 

section IV are further explored in light of this comparative discussion.  In particular, I quantify the magnification of 

spillovers by endogenous learning effort.  Consistent with the approach taken here, the estimates suggest that the 

secondary effects of spillovers significantly add to primary effects.  This is especially true of academic spillovers, 

whose secondary effect on the laboratory is pervasive, and about double the primary effect.   Section VI concludes 

and discusses extensions of the research reported in this paper. 

II. Analytical Framework 

A.  R&D Composition and the Knowledge Production Function 

 Consider an R&D laboratory that serves a firm or a line of business within a firm.   Following Cohen and 

Levinthal (1989), R&D is comprised of learning about external R&D and internal research.  I assume that the 

laboratory learns from academia, indicated by A, and industry, indicated by M.  Suppressing time subscripts the 

laboratory R&D budget R is given by 

(1)  FMA RR ++= ll  

where Al is academic learning effort, Ml is industrial learning effort and RF  is internal research. 

The firm has a production function that generates innovations as a function of R&D.  In a practical sense 

one might identify innovation with patents, although with two caveats.  Counts of patents leave out innovations that 

are not patented and they fail to take the differing importance of innovations into account.  Therefore, I prefer to 

think of innovations more generally, perhaps weighted by their importance, though patent counts do serve as one of 

the measures of innovation in this paper.  One common approach writes innovations n, as a function of R&D and 

potential spillovers: 
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(2) u
FMAn eKKKRAn FMAR αααα= , 

where R is R&D, academic spillovers are KA, industrial spillovers are KM , the firm’s stock of knowledge is KF  and u 

is a random error term5.  This is the “exogenous spillovers” view of innovation.  

This paper departs from (2) by writing innovation as a function of learning expenditures and internal 

research.  The learning components of R&D are the primary transmitters of spillovers, while internal research brings 

the firm’s stock of knowledge to bear on innovation.  Therefore, innovations are produced according to 

(3)  v
FMAn eRBn FMA βββ ll= , 

 
where Bn stands for neutral efficiency and v is random error in innovation.  Note that small positive numbers 

increment the R&D components, so that the firm can innovate, even though it spends nothing on one or more of the 

learning components.  The exponents βi, while constant from the firm’s point of view, exhibit gradual change as 

spillovers and the firm’s stock of knowledge increase.  Variations in applicable spillovers and past research at 

individual laboratories, as well as their growth, drive the iβ  and therefore learning and internal research.  Compared 

with (2), equation (3) depends more on the allocation of R&D, and less on external knowledge.  Although Bn may 

still be a function of spillovers, much of the effect of knowledge disappears when Al , Ml , and RF  equal zero.  To 

take the possibility of exogenous spillovers into account, I write 

(4)  FMA
FMAnn KKKDB δδδ= . 

Equation (4) specifies the exogenous contribution of spillovers to innovation6.  The rest of (3), apart from Bn, 

specifies the endogenous component. 

Spillovers increase learning effort, but learning could increase selectively.  Thus academic spillovers may 

increase the particular returns to learning about academic R&D, industrial spillovers may increase the returns to 

industrial learning, while the firm’s knowledge drives internal research.  In the purest case, βA increases with the 

academic spillover KA, βM  increases with the industrial spillover KM , and βF  increases with KF , the firm’s stock of 

knowledge. 

                                                                 
5 For example, several studies in Griliches, ed. (1984) express this view of patenting. 
6 Audretsch and Stephan (1996) and Zucker, Darby, and Brewer (1998) discuss mobility of academic scientists to 
industry. Some of this mobility could lead to unintended and exogenous spillovers that contribute to (4), while some 
is fully intended and part of (3).  Klette (1996) introduces complementarity between past industrial research of the 
firm and current research productivity of the firm, which figures in (3) and (4). 
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In this case, spillovers and the firm’s knowledge increase the returns to scale to innovation; but as long as 

the returns to scale to innovation are diminishing in (3), so that 0.1≤∑i iβ , there are limits to this contribution.  

This suggests that spillovers could reduce the other exponents of (3).  For example, academic spillovers could 

reduce βM  and βF  while increasing βA.  

The pair of equations, (3) and (4), comprise the “endogenous spillovers” view of patenting.  Section IV 

reports estimates of the two models, comprised of (2) and (3)-(4).  According to the estimates (3)-(4) dominates the 

exogenous model (2) by a wide margin.  The allocation of firm R&D between learning and internal research has 

incremental ability to explain patents.  As a result, and in an immediate sense, spillovers are less important to 

innovation.  And yet indirectly they are more important, through the stimulus they provide to R&D effort.  Section 

IV goes on to estimate equations for learning and internal research as functions of spillovers, the firm’s R&D 

history, firm size and other variables.  In these equations spillovers are important determinants of learning 

expenditures.   But before I explore the determinants of the various R&D components, the nature of their 

dependence on the firm’s environment and past history must be specified. 

B. Vintage Product Model of the R&D Firm   

 A simple model illustrates the determinants of learning and internal research as well as the events 

underlying innovation, cost savings, and the revenues from new products.  Clearly, more than one model is able to 

link learning and internal research to innovation, and ultimately, to link innovation to future profits.  The model that 

I use represents a way to express these connections, one that I believe is correct in broad outline.  

The firm produces different vintages of goods in any period t.  These goods were new product introductions 

at various times in the past, and they reflect the firm’s know-how at each period of introduction, since new and 

improved models are later introductions.  Products are assumed to have a finite life of L years, reflecting 

obsolescence from product improvements.  The assumption that products disappear after L years limits the number 

of vintages that are produced in a given year and helps to limit total profits. 

Consider total profits in period t.  These are written as Π* (t), where the asterisk represents maximization 

over output, and therefore “indirect” profits.  Total profits are the sum over τ of profits Π*τ(t) from product 

introductions in year τ, where t ≥τ≥t-L, minus R&D in the current period, R (t): 
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I assume that more recent goods embody higher quality because the firm’s knowledge grows over time.  

Quality reflects the firm’s innovations, including patents, at the time of introduction.   
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C.   Choice between Learning and Internal Research 

Now substitute (1) and (3)-(5) into (6) and maximize over the components of R&D.  Allowing for corner 
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where MBn (t) is the discounted present value, or marginal benefit of an innovation.  Marginal benefit is multiplied 

by ratios that are marginal products of the R&D components, all based on the innovation production function (3).  

Not all laboratories engage in deliberate learning, but consider one that does.  To a first approximation I 

assume that optimal learning and internal research are the following functions of spillovers, the firm’s stock of 

knowledge, and the marginal benefit of a patent. Suppressing time subscripts these are  

(8)   
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where wA, wM , and wF  are error terms.  These are due to errors in variables, errors in functional form, omitted 

variables, and the like.  In the empirical work I allow for corner solutions in (8) using tobit analysis. 
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 The empirical work concentrates on the explanation of patents, which are one observable part of 

innovation, but also I explore the determinants of learning and internal research.  It follows that (3) and (8) are at the 

heart of the empirical work. 

D.  Behavior of Learning, Internal Research, and Innovation 

 Several implications follow from (8).  Learning and internal research are generally increasing functions of 

the spillovers, since knowledge raises the productivity of R&D.  Firm size raises the marginal benefit of innovation 

and R&D as one might expect.  Furthermore, information technology that raises at least one of the exponents of (8) 

increases effective spillovers because learning expenditure increases, holding constant potential spillovers. 

Academic spillovers may increase academic learning effort as compared to industrial learning effort.  In 

terms of (8), this occurs when βAA increases relative to βMA.  Conversely, industrial spillovers increase industrial 

learning effort relative to academic if βMM  increases relative to βAM. 

 Reduced form effects of spillovers and the firm’s stock of knowledge exceed structural effects, since 

learning and internal research respond to learning opportunities, causing effective spillovers to rise more than 

potential spillovers. All this shows in the indirect innovation function, the result of substituting (4) and (8) into (3): 

(9)  
∑∑∑∑∑=

++++ i i
i inii iFiFi iMiMi iAiA wv

nFMAn eMBKK K Dn γβγβδγβδγβδ*  

Spillovers have “primary” effects that are caught by the iδ terms in the exponents, and “secondary” effects that show 

up as remainder terms.  As a result of these secondary effects, spillovers tend to be more powerful in (9) than (3).  

This follows from the fact that (9) approximates a maximum value function.  A standard property of such functions 

is that state variables have larger effects than in the original functions, if the controls are increasing functions of the 

states 7.   In (9), the state variables are spillovers and the controls are R&D components that increase with spillovers. 

 Thus far I have assumed that external research is complementary to internal research; a different approach 

emphasizes R&D partnerships rather than spillovers.  According to this view, firms subcontract research or perform 

research for other firms 8.  By this logic, internal and external R&D could be substitutes rather than complements.  

The following innovation production function shows how subcontracting might work:  

                                                                 
7 See Dixit (1990), Chapter 5, for a lucid treatment.  
8 Conversely, R&D partnerships may exploit complementarities of R&D and follow the previous model.  This is the 
model of “complementary capabilities” that seems to shape many R&D joint ventures.  Branstetter and Sakakibara 
(1998) contain a useful discussion.  
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(10)  ( ) FMA
EFMAn RRBn

βκββ γ
  

 += ll . 

where RE is R&D purchased from other firms while RF  is internal research.  To avoid knife-edge solutions, I assume 

that κ<1, so that RE has a diminishing effect in (10).  Internal and external firm R&D are substitutes, and the firm 

chooses between the two based on cost.  This is an analysis of R&D in the spirit of Coase (1937). 

For the data used in this study external R&D is likely to be complementary with internal research.  I 

calculate spillovers of academic R&D based on national stocks of federally funded R&D; similarly, industry 

spillovers are based on company-financed R&D stocks in the rest of industry.  R&D substitution is a trace element 

within broad specifications of external R&D like the ones used in this paper. 

III. Description of the Data 

A. Measurement of Learning and Internal Research 

The empirical work depends on a recent survey of industrial R&D laboratories.  The survey quantifies 

learning effort and internal research, as well as potential spillovers of the laboratories9.  I selected 600 laboratories 

owned by 200 firms as potential subjects for analysis.  The laboratories were taken from the Directory of American 

Research and Technology (R.R. Bowker, 1997).  Parent firms were performers of R&D and manufacturers of 

chemicals, machinery, electrical goods, or transportation equipment.  Firms had to be (1) in Compustat and report 

R&D and sales in that database, and (2), had be patent assignees with matching records in the U.S. Patent Office 

database.  These criteria allow for cross-validation of the data while focusing the sample on innovative companies.  

Responses include 208 laboratory aggregates owned by 116 firms.  The 208 responses account for 220 

laboratories because three firms combined their responses into one, yielding a response rate of 37% (220/600).  Of 

the 116 firms, 29 were publicly traded for less than 16 years in 1996, so that young companies form a significant 

part of the sample.  Respondents were R&D managers with considerable knowledge of their firms who had been in 

industrial research an average of 17 years and with their firms for 15 years.  

Tables 1 to 5 describe the data.   All the data have been flagged for missing values, checked against outside 

sources and any errors corrected.  The most important corrections involved re-scaling of dollar variables.  In 25 

                                                                 
9 The survey instrument was refined in three stages.  A former R&D manager critiqued the initial draft.  After this a 
beta version was tested on 10 laboratories.  Using their comments, we produced a final draft, and proceeded to 
contact the bulk of the laboratories by phone. A mass mailing was then made to all laboratories that granted 
permission to send the instrument.    
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cases I discovered reporting of monetary variables in whole dollars or in millions, even though respondents were 

asked to report in thousands of dollars.  

Table 1 shows the distribution of firms and laboratories by industry of the parent firm.  The distribution is 

uniform except for a smaller number of firms and laboratories in transportation equipment.  This was to be expected 

given that a smaller number of firms were in transportation equipment than in other industries.  The number of 

responses by industry is in fact, roughly proportional to the number of laboratories surveyed. 

Table 2 reports the size characteristics of the laboratories.  Consider R&D inputs: the average laboratory 

employed 127 scientists and engineers in 1991, of whom 19 held the Ph.D. (or MD) degree.  The average R&D 

budget was 12 million dollars10.  By 1996 the number of scientists was 142, the number of Ph.D. researchers was 21, 

and R&D was 13 million.  Thus scientists, Ph.D.s, and R&D all increased by 6 to 9% over the sample period.  

Standard deviations appear in parentheses.   These imply a positive skew of laboratory size that may be the result of 

cumulative processes favoring large and diverse R&D programs (Cohen and Klepper, 1992). 

Now turn to R&D outputs.  Two measures of patents are shown in Table 2.  The first line shows patents 

granted in the years 1991 and 1996 as reported in the survey.  Not all laboratories, especially several of the larger 

ones, knew their patents in these two years.  The second line replaces missing patents with an estimate based on U.S. 

patents for the firm, laboratory location, and year.  The data were downloaded from the U.S. Patents Database 

(Community of Science, 1999). 

The method for obtaining the patent estimates is as follows.  I begin by matching two digit zip codes to text 

addresses of the inventors in the patent data for a given company using the electronic zip code database of the U.S. 

postal service.  Next I assign patents of the parent firm to the laboratory location if the two-digit zip code of 

inventors matches the two-digit zip code of the laboratory.  Finally I assign patents to the years 1991 and 1996 

according to their issue dates11. 

I believe that this is the best available way to impute the missing patents, but it is not a perfect assignment.  

For an example of this, consider laboratories in small states.  Their inventors often live in a different two-digit zip 

code and state than the laboratory, and their patents are irrevocably lost according to this method. 

                                                                 
10 This figure, which follows NSF definitions, represents R&D purged of all overhead or non-research charges.  It is 
a lower bound on omnibus figures for total R&D appropriations that are reported in Compustat.  The survey figures 
on R&D place less emphasis on production engineering and more on research.  
11 I am indebted to Margaret Lister Fernando for downloading the patent data and for translation of the text fields 
into SAST M data sets for further analysis. 
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Furthermore, patents often include multiple inventors in different locations, and different laboratories in a 

firm may cluster in the same two-digit zip code.  Both situations lead to over counts of the firm’s patents. I handle 

the first problem by multiplying the patents by the fraction of the top four inventors on a patent who reside in the 

same two-digit zip code as the laboratory, although this adjustment makes little difference to the results.  I handle 

the problem of geographic clustering of laboratories in the same firm and multiple counting of patents as follows.  I 

catalog laboratories in the survey that are in the same firm and two-digit zip code, and I apportion the patents 

according to the shares of scientists and engineers that are employed in the same firm within this area.  

The sample of laboratories accounts for 2,000-4,000 patents.  This is a 5-10% sample of U.S. industrial 

patents during the middle 1990s.  Using the more comprehensive figure for patents, which includes all the large 

laboratories in the sample, the laboratories produce one patent for every 12 scientists and engineers. Based on 

National Science Board (1998), Appendix Tables 3-15 and 4-4, the average for industry is one patent for every 19 

scientists and engineers.  Thus the sample of laboratories produces a number of patents that is above the average for 

their size class.  But there is evidence that other R&D in the firm contributes to laboratory patents.  This “virtual” 

R&D brings the patent to R&D ratio closer to the national average.  

Table 2 shows that R&D outputs rise faster than inputs during the sample period.  Mean numbers of patents 

granted in the survey and supplemented are 5.2 and 8.9 in 1991. The same figures are 7.7 and 12.4 in 1996. Value of 

sales rises from 95 million to 131 million. Thus patents and value of new products both rise by 40- 50% over the 

sample period, and both increase relative to R&D inputs. 

Table 3 measures learning effort by the laboratories. Direct learning expenditures are reported fractions of 

budget spent on learning about spillover i (i=A, M) times laboratory R&D budget: 

(11)  .     R&D BudgetractionLearning FDirecteExpenditurLearningDirect ii ×=  

Examples of direct learning include travel to and attendance at meetings, expenditures on journals, books, technical 

reports, and on salaries of student interns and of consultants.    

While concrete and easily grasped by respondents, direct expenditures underestimate learning effort.  R&D 

laboratories learn from recently hired graduate students and they conduct internal research jointly with a study of the 

science and engineering literature. The joint conduct of practical research with theoretical study makes it quite hard 

to separate learning from internal research.  Total learning expenditures devoted to spillover i (i=A, M) are   
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Total expenditures are the sum of direct and indirect learning expenditures—the corresponding total budget fractions 

times R&D budget.  I assume that indirect expenditure fractions stand in the same ratio as the direct fractions. This 

yields Fi as shown in the third equation of (12). The second equation estimates the indirect learning fraction by 

multiplying Fi by 20 percent of the fraction of scientists that hold the Ph.D.  This assumes that Ph.D. scientists spend 

20 percent of their time learning.  Assuming a 60 hour week, Ph.D.s spend 12 hours learning about external research 

by reading, going to meetings, meeting with consultants, visiting research installations, and so on.  On average eight 

of these 12 hours are spent on industrial research while four are spent on academic research.  Only doctoral 

researchers are permitted this release time. Both assumptions are conservative, and I explore estimates assuming 

fractions of time spent learning of 0.4 and 0.6 besides 0.2.  These results are similar to (12). 

Table 3 has three panels.  The top panel describes academic learning effort.  The direct percent of R&D 

budget spent on learning about academic research rises from 0.6% in 1991 to 0.8% in 1996.  Direct learning 

expenditures increase from 0.12 million to 0.16 million dollars, or 33%.  The total percent of budget spent on 

academic R&D is more than twice the direct percent, 1.5% compared with 0.6%, and total learning expenditures are 

correspondingly larger.  

The middle panel of Table 3 describes industrial learning effort. Direct percent of budget spent on learning 

about industrial R&D rises from 1.0% in 1991 to 1.6% by 1996.  Direct industrial learning expenditures increase 

from 0.21 to 0.26 million dollars.  The total percent of budget spent on industrial R&D rises from 1.9% to 2.8% in 

1996.  The two panels suggest that laboratories spend more on learning about industrial R&D than on university 

R&D.  Table 5 shows that spillovers of industrial R&D are nine times larger than academic spillovers, suggesting 

that laboratories have a greater incentive to learn about industrial research.  

The bottom panel of table 3 reports employment of Ph.D. scientists.  Since Ph.D.s increase the capacity to 

learn about new developments in science and technology, Ph.D. employment signals an increase in linkages to  
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Table 1 
Distribution of Firms and Laboratories 

by Industry 
 

Industry SIC Code Number of Firms  Number of 
Observations* 

Chemicals    28 32   59 

Machinery   35 37   58 

Electrical Equipment   36 33   57 

Transportation Equipment   37 14   34 

All Industries ___ 116 208 

Source: Survey of Industrial Laboratory Technologies 1996.  * The 208 observations represent 220 
laboratories owing to the aggregation of laboratories by several firms.  

 

 

 

Table 2 
Size Characteristics of the R&D Laboratories 

(Standard Deviations in Parentheses)    
 

Year Variable 
1991 1996 

 
R&D Inputs 
 

  

   Number of Scientists and Engineers 
 

126.9 
(385.2) 

142.1 
(421.5) 

   Number of Ph.D. (or MD) Scientists and Engineers 
 

19.1 
(108.3) 

21.4 
(99.2) 

   Laboratory R&D Budget (in millions of ’87 $) 12.2 
(40.4) 

12.9 
(39.2) 

R&D Outputs 
 

  

   Patents Granted from the Survey 
 

5.2 
(11.5) 

7.7 
(18.3) 

   Patents Granted from the Survey, Supplemented by estimated 
   USPTO Patents by Firm and Laboratory Location 
 

8.9 
(30.4) 

12.4 
(40.6) 

   Sales from New Products Originating in the 
   Laboratory (in millions of ‘87 $) 
   

94.9 
(511.9) 

131.0 
(626.2) 

Source: Survey of Industrial Laboratory Technologies 1996. Note: the same laboratories appear in the 
1991 and 1996 calculations for each variable. 
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Table 3 
Learning Efforts of the R&D Laboratories 
and Linkages to External R&D Performers 

(Standard Deviations in Parentheses) 
 

Year Measure 
1991 1996 

Learning Effort, Laboratory with University 
 

  

   Direct Percent of Budget Spent on Learning about University R&D a 

 
0.6% 

(1.4%) 
0.8% 

(1.7%) 
   Direct Learning Expenditures on University R&D (in Millions of ’87 $) b 

 
0.12 

(0.47) 
0.16 

(0.60) 
   Total Percent of Budget Spent on Learning about University R&D a 

 
1.5% 

(3.2%) 
1.8% 

(3.7%) 
   Total Learning Expenditures on University R&D (in millions of ’87 $) b 

 
0.21 

(0.79) 
0.27 

(1.04) 
Learning Effort, Laboratory with Industry 
 

  

   Direct Percent of Budget Spent on Learning about Industry R&D a 
 

1.0% 
(1.9%) 

1.6% 
(2.2%) 

   Direct Learning Expenditures on Industry R&D (in millions of ’87 $) b 

 
0.21 

( 1.08) 
0.26 

(1.14) 
   Total Percent of Budget Spent on Learning about Industry R&D a 
 

1.9% 
(3.0%) 

2.8% 
(3.5%) 

   Total Learning Expenditures on Industry R&D (in millions of ’87 $) b 

   
0.27 

(1.22) 
0.37 
(140) 

Linkages to Industry and University 
 

  

   Percent of Laboratories with Ph.D. or MD Researchers 
  

59.0% 66.2% 

   Fraction of Laboratory Scientists and Engineers Holding the Ph.D. or MD  
 

0.12 
(0.17) 

0.14 
(0.18) 

 
Source: Survey of Industrial Laboratory Technologies 1996. Note: for each variable, the same 
laboratories appear in the calculations for 1991 and 1996.   a Percent of budget as estimated by the 
laboratory. b Estimated percent of budget times R&D budget estimated by the laboratory. 
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external R&D.  Ph.D. emp loyment as a share of laboratory workforce rose slightly, from 13% to 14%, over the 

sample period.  The percent of laboratories that employed Ph.D. researchers increased somewhat more, from 59% to 

66%.  Together these findings suggest that the Ph.D. share of smaller laboratories increased over the sample period. 

Table 4 combines the statistics of tables 2 and 3 for the subsample of laboratories that employ at least one 

Ph.D.  Doctoral laboratories are larger than average: the number of scientists and R&D budget are 50% larger than 

in table 2, as are patenting and the value of new products.  Some of this reflects industry distinctions, but most of it 

survives industry effects in the regressions reported below. 

Not surprisingly, employment of Ph.D.s and direct learning expenditures are related to each other.  To see 

this compare table 3 with table 4.  Expenditures on learning, and especially academic learning, are larger both as a 

percent of budget and in dollar terms. 

 So far I have focused on learning expenditures, but now consider internal research.  Internal research is the 

portion of R&D budget ostensibly not devoted to learning: 

(13)  ∑
=

=
MAi

ieExpenditurLearningR&D BudgetsearchInternal 
,

, -  Re  

where A and M again refer to academia and industry. 

B. Construction of Potential Spillovers     

 The empirical work focuses on innovation and learning by R&D laboratories.  In support of such an 

investigation, the data were designed to contain citations to particular sciences, universities, and areas of technology 

that the R&D managers view as important.  I use this information to construct the spillovers. 

 The academic spillover is the easiest to construct.  Respondents identified up to five of 18 science and 

engineering fields that they regarded as most relevant to their laboratory12.  Matching R&D expenditures by field of 

science are taken from the NSF-CASPAR database for the top 225 research universities ranked by size of their R&D 

programs.  These data cover nearly all of academic R&D and span the period 1972-199513. 

 

                                                                 
12 Science disciplines include astronomy, chemistry, physics, other physical sciences; computer science, 
mathematics and statistics; atmospheric sciences, earth sciences, and oceanography; and agriculture, biology, and 
medicine.  Engineering disciplines include aeronautical, chemical, civil, electrical, mechanical, and other 
engineering.   
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Table 4 
Learning Effort and Size Of Doctoral R&D Laboratories 

 (Standard Deviations in Parentheses) 
 

Year Characteristic 
 1991 1996 

R&D Inputs 
    

  

    Number of Scientists and Engineers 
 

181.0 
(461.8) 

203.4 
(504.7) 

    Number of Ph.D. (or MD) Scientists and Engineers 
  

28.6 
(131.6) 

32.1 
(120.0) 

    R&D Budget (in millions of ’87 $) 
 

16.8 
(48.9) 

18.4 
(47.7) 

R&D Outputs 
  

  

    Patents Granted from the Survey 
 

7.7 
(13.6) 

11.4 
(21.9) 

    Patents Granted from the Survey, Supplemented by estimated 
    USPTO Patents by Firm and Laboratory Location 
 

12.8 
(37.7) 

17.5 
(46.7) 

    Sales from New Products Originating in the Lab (in millions of ’87 $) 
 

143.0 
(634.8) 

197.7 
(779.5) 

Learning Effort, Laboratory with University 
 

  

   Direct Percent of Budget Spent on University R&D 
 

0.9% 
(1.7%) 

1.2% 
(2.0%) 

   Direct Learning Expenditures on University R&D (in Millions of ’87 $) 
 

0.18 
(0.58) 

0.24 
(0.73) 

   Total Percent of Budget Spent on University R&D 
 

2.1% 
(3.8%) 

2.7% 
(4.4%) 

   Total Learning Expenditures on University R&D (in Millions of ’87 $) 
 

0.31 
(0.96) 

0.41 
(1.26) 

Learning Effort, Laboratory with Industry 
 

  

   Direct Percent of Budget Spent on Industry R&D 
 

1.1% 
(1.8%) 

2.0% 
(2.3%) 

   Direct Learning Expenditures on Industry R&D (in Millions of ’87 $) 
 

0.27 
(1.28) 

0.37 
(1.39) 

   Total Percent of Budget Spent on Industry R&D 
 

2.5% 
(3.2%) 

3.9% 
(3.8%) 

   Total Learning Expenditures on Industry R&D (in Millions of ’87 $) 
 

0.40 
(1.49) 

0.54 
(1.70) 

Source: Survey of Industrial Laboratory Technologies 1996. Note: for each variable the same laboratories appear in 
the calculations for 1991 and 1996. 

                                                                                                                                                                                                                 
13 For more on the university data see Adams and Griliches (1996,1998).  
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The academic spillover is the sum of federally funded academic R&D accumulated into stocks over a period of 17 

years (the most available) for up to five sciences that managers regard as important.  The choice of federally funded 

R&D separates university R&D from company-financed R&D in industry.  This separation is important to maintain, 

since smaller universities depend heavily on industry support (Mansfield, 1995).  I refer to this measure of academic 

spillovers as federally funded academic R&D. 

The laboratories also report up to five universities that were most influential for their R&D.  I sum federally 

funded 17-year R&D stocks across these universities for as many as five sciences.  I call this, federally funded 

academic R&D in closely affiliated universities. 

The industry R&D spillover is a more involved calculation that relies partly on the Census-NSF R&D 

survey of industrial research.  The estimated spillover is the sum of company R&D stocks over 35 product groups 

weighted by the importance of each group to the laboratory14.  Thus,  

(14)  ∑=
j jj RdustryRest of InR&D in the

~
 γ . 

Here jR
~

 is the stock of R&D over a period of 13 years (the most available) in product j, net of parent firm R&D. 

The jγ  are laboratory-specific, so that the industry spillover is laboratory-specific. The jγ are fractions of 

technologies in each SIC group that are important both to the laboratory and as sources of technology transfer.  The 

technologies have been mapped to four digit SIC codes by CorpTech (Corporate Technology Information Services, 

1994).  Therefore, the technology codes can be aggregated to the SIC groups used in the Census-NSF R&D data. 

Equation (14) requires jR
~

—R&D in product group j in the rest of industry.  To compute jR
~

 I rely on 

Compustat to correct the Census-NSF R&D data for changing samples and falling response rates (see Adams and 

                                                                 
14  The 35 industries include agricultural chemicals; aircraft; communications equipment; construction and materials 
handling equipment; drugs; electrical components; electrical industrial apparatus; engines and turbines; electrical 
transmission and distribution equipment; fabricated metals; farm and garden equipment; primary ferrous metals; 
food and kindred products; inorganic and organic chemicals; missiles and space vehicles; motor vehicles; 
metalworking equipment; soap, paint, and miscellaneous chemicals; other electrical equipment, including appliances 
and wiring; computers and office equipment; optical, surgical, and photographic instruments; ordnance; special and 
general industry machinery; ships, railroads, and other transportation equipment; petroleum refining; plastics, resins, 
and fibers; primary nonferrous metals; audio, video, and radio equipment; rubber and plastics; search and detection 
equipment and lab apparatus; stone, clay, and glass; textiles; prepackaged software; computer services; and 
telecommunications services.  The first 32 industries are the Census applied product fields in manufacturing.  The 
last three industries, taken from Compustat, are R&D-intensive sectors outside manufacturing.  Each of the 35 
groups can be assigned to a two or three digit SIC major industry group.    
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Peck, 1994). The calculation of jR
~

 begins with the distribution of R&D across 32 product fields reported in the 

Census-NSF data.  I sum these data over firms by product field.  This yields an estimate jR  of R&D in product j.   

The rest of the calculation corrects errors in jR . 

The Compustat extension that achieves this correction is comprised of the three equations, 

(15)  

∑

∑
=

×=

×=

j

ijj

i

j

ij

ij
ij

ij
j

j
ij

RR

R
R

R
R

S
S

R
R

~~

.
ˆ

ˆ~

ˆ
 

 

Definitions of the terms are 

j. in D&R aggregate of estimate final R

i firm of D&R total to controlled j, product in i firm of D&R estimated R

i firm of D&R total to controlled not j, product in i firm of D&R estimated  R

Compustat from icompany   of D&RR

data business of line Compustat fromj  in i firm of  salesS

data business of line Compustat fromj  in  salesaggregate S

j product in D&R Census aggregateR

j

ij

ij

i

ij

j

j

=

=

=

=

=

=

=

~

~

ˆ

 

The first equation of (15) multiplies the aggregate R&D to sales ratio in product j by sales of firm i in that 

product, yielding imputed R&D, ijR̂ , of the firm in product j.  This assumes that the ratio of firm R&D to sales in a 

given product group equals the industry ratio.  And yet the first stage estimates of firm R&D by product do not sum 

to total firm R&D. 

The second equation handles the adding up problem.  I multiply company R&D reported from Compustat, 

iR , by the first stage shares of firm R&D in product j.  By necessity these second stage estimates add up to total 

firm R&D.  The third equation of (15) sums the corrected estimates across firms to reach estimated company-

financed R&D by applied product, jR
~

.  I deflate jR
~

and accumulate flows into stocks over a 13-year period (the 

most available) using a depreciation rate of 15%. Finally I subtract 13-year stocks of parent firm R&D from jR
~

to 

obtain R&D in the rest of industry. 
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In addition to R&D in the 32 product fields defined by Census, I include deflated stocks of company-

financed R&D (depreciated at 15%) in prepackaged software, software services, and telecommunications services, 

all taken from Compustat. The Census-NSF R&D data do not cover firms in these important high technology 

products.  Deflated R&D stocks in these three products improve the quality of the industry spillover by expanding 

its coverage outside manufacturing.  

The result of all these calculations is (14), R&D in the rest of industry. This is the best measure of industry 

spillovers available to us, even though it contains sizable errors.  As we have seen, the underlying Census-NSF R&D 

data suffer from incomplete coverage of product groups, from variable rates of sampling, and from a falling 

response rate over time15. 

Table 5 reports means and standard deviations of spillover variables for the laboratories. All the spillovers 

increase from 1991 to 1996, with industrial spillovers increasing at the most rapid rate.  As expected, academic 

spillovers are less than industrial spillovers, and of course spillovers from closely affiliated universities are smaller 

than general academic spillovers.  Not surprisingly, spillovers to doctoral laboratories are larger than average.  

IV. Innovation, Learning, and Internal Research 

 Tables 6-10 report regression-style estimates that explain innovation, learning, and internal research.  

Tables 6 and 7 use negative binomial regression to explain numbers of patents granted to the laboratories, while 

tables 8 and 9 use tobit, OLS, and various probit techniques to explain learning and internal research.  Table 10 

concludes with the analysis of the value of new products and cost savings contributed by the laboratories.  

I begin with the regression analysis of patents in tables 6 and 7.  As is typically the case for count data, 

many of the laboratories do not patent, mean numbers of patents are close to zero, and there are large differences 

among the laboratories in the numbers of patents issued. 

Given the differences a regression method is required that can handle over-dispersed count data.  Negative 

binomial regression generalizes Poisson regression by allowing for over-dispersion of counts between the 

                                                                 
15 The interaction of the Census R&D data with Compustat R&D remedies problems of variable sampling and 
response in the Census data.  It does this by requiring that estimated firm R&D by industry sum to total firm R&D in 
Compustat.  This last figure is clean of response rate problems, but notice that Compustat R&D omits government-
financed R&D.  This is concentrated differently among industries than company-financed R&D. 
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Table 5 
Academic and Industrial R&D Spillovers 

(Standard Deviations in Parentheses) 
 

Year  
Spillover Variable 

 
1991 1996 

All Laboratories 
 

  

   Spillover of R&D from Closely affiliated Universities (17 year, 
      federally funded R&D stocks in millions of ’87 $) 
 

237.1 
(456.3) 

290.5 
(542.2) 

   Spillover of R&D from all Universities (17 year, federally funded 
      R&D stocks in millions of ’87 $) 
 

8,779.3 
(6,186.6) 

11,075.8 
(7,668.0) 

   Spillover of R&D from the Rest of Industry (13 year, company funded 
      stocks in  millions of ’87 $) 
  

72,687.0 
(63,478.9) 

97,053.7 
(84,562.6) 

Doctoral Laboratories 
  

  

   Spillover of R&D from Closely affiliated Universities (17 year, 
      federally funded R&D stocks in millions of ’87 $) 
 

337.6 
(536.2) 

412.3 
(633.6) 

   Spillover of R&D from All Universities (17 year, federally funded 
      R&D stocks in millions of ’87 $) 
 

9,737.4 
(7,067.4) 

12,267.3 
(8,773.1) 

   Spillover of R&D from the Rest of Industry (13 year, company funded 
      stocks in millions of ’87 $) 
  

77,062.0 
(64,903.2) 

102,349.5 
(85,863.7) 

Sources: Survey of Industrial Laboratory Technologies 1996, NSF CASPAR database of universities, Census-NSF 
R&D Survey, and Compustat.  Note: for each variable the same laboratories appear in the calculations for 1991 and 
1996. 
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observations16.  Tests of over-dispersion support the negative binomial over the Poisson in all the regressions 

reported in tables 6 and 7. 

The dependent variable of table 6 is patents granted to the laboratories, supplemented by estimated patents 

for firms and laboratories if the patent data are missing.  When I use patents granted from the survey alone, the 

results are similar to those shown, though slightly less significant given the smaller sample.  All the equations 

include year and industry dummies.  In addition, all include two dummies that control for laboratory specialization.  

The first controls for specialization in testing rather than research.  For laboratories primarily devoted to testing the 

dummy equals 1.  For all other laboratories the testing dummy equals  0.  As one would expect, patenting is less in 

laboratories whose main function is testing.  The second dummy equals 1 when a laboratory is jointly housed with a 

manufacturing facility.  Otherwise the jointly housed dummy equals 0.  While negative, this variable is never 

significant in the patent equations.  All the equations include besides a dummy coded 1 if patents are imputed for the 

laboratory from the U.S. Patent Office data and 0 otherwise.  This variable has a positive coefficient, reflecting in 

part the large size of laboratories whose patents are assigned. 

Finally, in some of the equations I include a third variable that captures specialization.  This is the fraction 

of academic fields cited by respondents as important, which are outside engineering.  This variable picks up science 

orientation of the laboratory. However, this is insignificant. 

Besides the above controls I include two measures of size of the parent firm.  Both are taken from 

Compustat.  The first is the logarithm of recent sales in the firm.   This is the depreciated stock of firm sales in 

millions of 1987 dollars over the preceding 13 years (the most available), assuming a depreciation rate of 15 percent.  

The second size variable is the logarithm of company-financed R&D in the rest of the firm.  This is the 13-year 

stock of firm R&D outside the laboratory in millions of 1987 dollars assuming a depreciation rate of 15 percent.  

Equations 6.1 to 6.4 of table 6 report “exogenous” spillover regressions.  As in equation (2) patents are 

functions of laboratory R&D, firm size and R&D, and potential spillovers.  Equations 6.5 to 6.8 are endogenous 

spillover regressions in which I divide R&D budget into learning and internal research components.  Under the null  

                                                                 
16 Assume that the number of events conditional on λ is Poisson distributed, and that the λ parameter follows the 
Gamma distribution. Integration over λ yields the unconditional distribution for the number of events, and this 
follows the negative binomial distribution.  For a derivation see Johnson and Kotz (1969).  For a discussion of the 
application of the Poisson family of distributions to patents, see Hausman, Hall, and Griliches (1984).  
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hypothesis of endogenous spillovers one would expect learning expenditures to matter in addition to internal 

research, because they transmit spillovers to patents.  Likewise, spillovers should be less significant in the 

endogenous specifications. 

Equations 6.1 and 6.2 are the simplest specifications in the table.  These include controls for year, industry, 

and laboratory specialization, laboratory R&D, and the two measures of firm size.  Since the controls have already 

been explained, I concentrate on laboratory R&D and firm size.  The coefficient of the logarithm of laboratory R&D 

is the elasticity of patents with respect to laboratory R&D in this regression method17. While highly significant, the 

point estimate is 0.6, significantly less than 1.0, indicating diminishing returns to laboratory R&D, or errors in the 

measurement of the importance of inventions, or perhaps, a declining propensity to patent.  However the results in 

table 10 paint a different picture.  There the elasticity of value of new products or of cost savings with respect to 

laboratory R&D is not significantly different from 1.0.  These results suggest that the value of innovation follows 

constant returns to scale, and that not measuring value is the source of the problem.   

I enter the logarithm of recent sales in 6.1 without R&D in the rest of the firm, and its effect on patents is 

positive and highly significant.  But when R&D in the rest of the firm is also introduced, as in 6.2, the significance 

of recent sales disappears.  R&D in the rest of the firm contributes to laboratory patents, probably through shared 

projects with other laboratories in the firm.  At most, recent sales of the firm capture the effect of rest of firm R&D. 

Equations 6.3 and 6.4 add the spillovers of section III to 6.1 and 6.2.  Of the three, company financed R&D 

in the rest of industry is positive and significant, federally funded academic R&D is marginally significant, and 

R&D in closely affiliated universities is never significant.  Adding the spillovers to the regressions lowers the 

coefficient on laboratory R&D slightly. 

The endogenous spillover specifications consist of equations 6.5 to 6.8.  Equations 6.5 and 6.6 break up 

laboratory R&D into direct learning expenditures (see section III) on industrial and academic R&D and the 

remainder of budget, or internal research.  All three components of R&D budget are highly significant. The results 

are striking: learning expenditures assume a large proportion of the effect of patents, while own research, which  

                                                                 
17 The mean of dependent variable in negative binomial regression is λi.  This is parameterized as 
 

βλ ii x′=log . 

 
Thus xij = log zij implies that βij is the elasticity of the dependent variable with respect to zij. 
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Table 6 
Patents Granted 

(Asymptotic Normal Statistics in Parentheses) 
 

 
Specification 

 
 

Exogenous Spillovers 
 

 
Endogenous Spillovers 

 
 

Variable or Statistic 
 
 

 
Eq. 6.1 

 
Eq. 6.2 

 
Eq. 6.3 

 
Eq.6.4 

 
Eq. 6.5 

 
Eq. 6.6 

 

 
Eq. 6.7 

 
Eq.6.8 

 
Estimation Method 
 

 
Negative Binomial Regression 

 
Year and Industry Dummies 

 
Yes 

 
Yes 

 

 
Yes 

 
Yes 

 

 
Yes 

 

 
Yes 

 

 
Yes 

 
Yes 

Lab is Primarily a Testing Facility (1 if yes, 
0 if no) 
 

-1.75 
(-2.4) 

 

-1.44 
(-2.0) 

-1.76 
(-2.5) 

 

-1.52 
(-2.1) 

-1.68 
(-2.4) 

-1.43 
(-2.1) 

-1.56 
(-2.2) 

 

-1.30 
(-1.9) 

Lab Housed With Manufacturing (1 if yes, 
0 if no) 
 

0.01 
(0.1) 

-0.02 
(-0.1) 

-0.04 
(-0.2) 

-0.06 
(-0.4) 

-0.03 
(-0.2) 

-0.08 
(-0.5) 

-0.01 
(-0.1) 

-0.09 
(-0.5) 

Patents Imputed (1 if yes, 0 if no) 
 
 

0.63 
(2.6) 

0.61 
(2.6) 

0.56 
(2.3) 

0.54 
(2.3) 

0.79 
(3.0) 

0.83 
(2.9) 

0.78 
(2.9) 

0.86 
(3.0) 

Importance of Science Relative to Engineering 
(Range: 0 to 1) 
 

     -0.21 
(-0.5) 

 -0.37 
(-0.8) 

Log (Recent Sales of the Firm) 
 
 

0.18 
(3.8) 

0.04 
(0.6) 

0.20 
(4.2) 

0.08 
(1.3) 

0.18 
(3.7) 

0.05 
(0.8) 

0.18 
(3.7) 

0.05 
(0.7) 

Log (Company Financed R&D in the Rest of 
the Firm) 
 

 0.08 
(3.2) 

 0.07 
(2.6) 

 0.07 
(2.8) 

 0.07 
(2.8) 

Log (Laboratory R&D budget) 
 
 

0.60 
(10.5) 

0.64 
(11.1) 

0.55 
(9.9) 

0.60 
(10.3) 

    

Log (Direct Learning Expenditures, Industrial 
R&D) 
 

    0.16 
(3.5) 

0.16 
(3.7) 

  

Log (Direct Learning Expenditures, Academic 
R&D 
 

    0.11 
(2.5) 

0.11 
(2.4) 

  

Log (Direct  Internal Research) 
 
 

    0.31 
(4.1) 

0.36 
(4.6) 

  

Log (Total Learning Expenditures, Industrial 
R&D) 
 

      0.16 
(4.1) 

0.16 
(4.3) 
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Table 6 
Patents Granted 

(Asymptotic Normal Statistics in Parentheses) 
 

 
Specification 

 
 

Exogenous Spillovers 
 

 
Endogenous Spillovers 

 
 

Variable or Statistic 
 
 

 
Eq. 6.1 

 
Eq. 6.2 

 
Eq. 6.3 

 
Eq.6.4 

 
Eq. 6.5 

 
Eq. 6.6 

 

 
Eq. 6.7 

 
Eq.6.8 

Log (Total Learning Expenditures, Academic 
R&D 
 

      0.10 
(2.8) 

0.11 
(2.9) 

 
Log (Total Internal Research) 
 
 

       
0.31 
(4.2) 

 
0.35 
(4.6) 

Log (Company Financed R&D in the Rest of 
Industry) 
 

  0.06 
(2.9) 

0.06 
(2.9) 

0.05 
(2.5) 

0.05 
(2.4) 

0.05 
(2.3) 

0.04 
(2.1) 

Log (Federally funded Academic R&D) 
 
 

  0.37 
(2.2) 

0.33 
(1.9) 

0.24 
(1.3) 

0.23 
(1.1) 

0.20 
(1.1) 

0.22 
(1.1) 

Log (Federally funded Academic R&D in 
Closely Affiliated Universities) 
 

  0.003 
(0.2) 

0.001 
(0.1) 

-0.011 
(-0.7) 

-0.011 
(-0.7) 

-0.010 
(-0.6) 

-0.010 
(-0.6) 

 
Number of Observations 
 

 
288 

 
288 

 
288 

 
288 

 
268 

 
268 

 
268 

 
268 

 
Log Likelihood 
 

 
-730.3 

 
-725.7 

 
-721.9 

 
-718.8 

 
-646.2 

 
-642.7 

 
-644.9 

 
-641.1 

Note: data are derived from Survey of Industrial Laboratory Technologies 1996, the Census-NSF R&D survey, 
Compustat, and the NSF CASPAR database of university research.  See the text for a discussion of the variables. 
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accounts for most of R&D budget, falls sharply.  Industrial learning is the more powerful of the two learning 

expenditures.  This result is consistent with the fact that industrial R&D is the largest spillover source.  Equation 6.6 

adds R&D in the rest of the firm and science orientation of the laboratory, though the latter is insignificant.  As 

before, R&D elsewhere in the firm eliminates the effect of firm sales, indicating the importance of other R&D units 

in the firm to patents. Equations 6.5 and 6.6 include the spillovers.  Since learning effort is held constant the 

spillovers are now less significant.   Equations 6.7 and 6.8 replace direct learning expenditures with total learning 

expenditures18.   The new measures of learning are a better fit to laboratory patents based on the log likelihood; 

otherwise the results are similar to 6.5 and 6.6.  Consistent with this better fit the spillover constructs are still 

weaker. They are at best marginally significant in 6.7 and 6.8. 

The large effect of learning expenditures in table 6, while consistent with the hypothesis that learning 

contributes to laboratory productivity, is still a cause for concern.  The percent of budget contributed by each type of 

learning expenditure is small—on the order of 1-5% depending on the measure.  And yet the elasticities of patents 

with respect to the learning expenditures are a third to a half of the elasticity for internal research, a much larger 

component of R&D budget. 

Three hypotheses are candidates to explain the outsized effect of learning on patents.  First, learning 

expenditures may capture excluded aspects of laboratory specialization or size that have little to do with learning.  I 

am fairly sure that variables of this kind are not driving the results, because the equations include a battery of 

controls for laboratory specialization and size.  I include testing, joint housing with manufacturing, and laboratory 

orientation towards science as controls for laboratory specialization.  I include laboratory R&D, R&D in the rest of 

the firm, and firm sales as controls for size.  

A second and more plausible hypothesis is that learning expenditures are underestimated in the data.  There 

is evidence to support this hypothesis.  Total learning expenditures have at least as strong an effect on patents as 

direct learning expenditures, even though total expenditures exceed direct expenditures.  As I increase the fraction of 

time spent learning by Ph.D. researchers in (14) from 0.2 to 0.4 or 0.6 the results stay about the same. This suggests 

that I underestimate informal learning expenditures.  Table 8 provides further evidence on this point.  The table 

shows that internal research as well as learning responds to spillovers, implying that learning activity permeates 

                                                                 
18 Compare (11) and (12): these define, respectively, direct and total learning expenditures.  
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R&D budget.  The difficulty of separating learning from internal research occurs for a good reason, the inherent 

joint-ness of the two activities.  

A third hypothesis I believe also has validity.  Since learning expenditures are products of the fractions 

spent on learning and R&D budget, these expenditures may simply pick up the effect of R&D budget.  To examine 

this hypothesis I introduce logarithms of fractions of budget spent on learning in the patent equations, which are 

independent of the logarithm of laboratory R&D budget.  This is done in Table 7.   Equations 7.1 and 7.3 introduce 

direct and total fractions of budget spent on learning about industrial and academic R&D.  The learning fractions are 

highly significant in both equations.  The industrial learning fraction remains the more potent of the two, consistent 

with the larger size of industrial spillovers.  Notice also that the effect of R&D budget declines from about 0.6 in 6.1 

to 6.4 of table 6, to 0.53 in 7.1 and 7.2.  This is a drop of 0.07, or 12 percent of the effect of laboratory budget.  

Turning the result the other way, learning activities seem to account for about 12 percent of budget. 

I conclude that learning effects are outsized in table 6 for two reasons.  First, respondents underestimate 

learning expenditures.  They ignore activities like the reading of scientific journals that are jointly carried out with 

internal research.  They do not regard these activities as a cost of learning, though they require scarce time and are 

essential to invention.  Second, learning expenditures cannot be separated from total R&D budget.  However, the 

results in table 7 suggest that, as a fraction of budget, learning does matter for patents.  As it turns out, research “not 

invented here” has a crucial bearing on how industry goes about the business of invention. 

Also in table 7, I combine the fractions of budget spent on learning about academic and industrial R&D 

into a single learning fraction.  Respondents may find it hard to separate the two types of learning, and one would 

like to test for this. The results, equations 7.2 and 7.4, produce a slightly better fit than equations 7.1 and 7.3, and the 

combined fraction spent learning has a positive and highly significant effect on patents.  These results suggest that 

respondents find it a challenge to separate industrial from academic learning, though the problem does not appear to 

be a serious one. 

Table 8 fits the various components of laboratory R&D budget to the data19.  The logarithms of laboratory 

learning and internal research are treated as functions of firm sales, R&D elsewhere in the firm, and the various 

spillovers.  The fitted equations are the log-linear approximations to laboratory R&D found in (8) of section III.   

                                                                 
19  I am estimating patents and R&D in a recursive system.  This is because I assume that R&D precedes patents, 
implying that learning, and internal research, are predetermined in the patent equations. 
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Table 7 
Patents Granted As a Function of Fractions Spent on Learning 

And Laboratory R&D 
 (Asymptotic Normal Statistics in Parentheses) 

 

 
Variable or Statistic 

 
Eq. 7.1 

 
Eq. 7.2 

 
Eq. 7.3 

 

 
Eq. 7.4 

 
Estimation Method 
 

 
Negative Binomial Regression 

 
Year, Industry, Test, Lab, Patent Imputation Dummies 
 

 
Yes 

 

 
Yes 

 
Yes 

 

 
Yes 

 
Industrial and Academic Spillovers 
 
 

Included Included Included Included 

Log (Recent Sales of the Parent Firm) 
 
 

0.07 
(1.1) 

0.08 
(1.2) 

0.07 
(1.1) 

0.08 
(1.2) 

Log (R&D in the Rest of the Firm) 
 
 

0.06 
(2.5) 

0.06 
(2.4) 

0.06 
(2.4) 

0.06 
(2.5) 

Log (Direct Learning about Industrial R&D as a 
fraction of Laboratory Budget) 
 

0.21 
(3.3) 

   

Log (Direct Learning about Academic R&D as a 
fraction of Laboratory Budget) 
 

0.17 
(2.4) 

   

Log (Combined Direct Learning as a fraction  of 
Laboratory Budget) 
 

 0.32 
(4.4) 

  

Log (Total Learning about Industrial R&D as a 
fraction of Laboratory Budget) 
 

  0.22 
(4.0) 

 

Log (Total Learning about Academic R&D as a 
fraction of Laboratory Budget) 
 

  0.15 
(2.7) 

 

Log (Combined Total Learning as a fraction  of 
Laboratory Budget) 
 

   0.29 
(4.7) 

Log (Laboratory R&D Budget) 
 
 

0.53 
(8.6) 

0.55 
(9.3) 

0.52 
(8.6) 

0.56 
(9.5) 

Number of Observations 
 

268 268 268 268 

Log Likelihood 
 

-644.5 -643.0 -642.6 -642.0 

Note: data are derived from Survey of Industrial Laboratory Technologies 1996, the Census-NSF R&D survey, 
Compustat, and the NSF CASPAR database of universities.  See the text for a discussion of the variables.
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Table 8 
Determinants of Learning and Internal Research Expenditures 

(t-Statistics in Parentheses) 
 
 

Learning Expenditures, 
Industrial R&D 

 

 
Learning Expenditures, 

Academic R&D 

 
Internal Research 

Expenditures 

 
Direct 

 

 
Total 

 
Direct 

 

 
Total 

 
Direct 

 

 
Total 

 
 
 
 

Variable or  
Statistic 

 
Eq. 8.1 

 

 
Eq. 8.2 

 
Eq. 8.3 

 
Eq. 8.4 

 
Eq. 8.5 

 
Eq. 8.6 

 
Estimation Method 
 

 
Tobit 

 
Tobit 

 
OLS 

Year, Industry, Test, Jointly Housed Dummies Yes 
 

Yes Yes Yes Yes Yes 

Log (Stock of Recent Sales of the Company) 
 
 

0.40 
(3.3) 

0.41 
(3.0) 

0.74 
(4.3) 

0.83 
(4.2) 

0.43 
(8.2) 

0.43 
(8.2) 

Log (Stock of R&D in the Rest of the Firm) 
 
 

-0.09 
(-1.7) 

-0.09 
(-1.4) 

-0.09 
(-1.2) 

-0.10 
(-1.1) 

-0.09 
(-3.9) 

-0.10 
(-4.0) 

Log (Company Financed R&D in the Rest of 
Industry) 
 

0.11 
(2.3) 

 

0.14 
(2.6) 

-0.01 
(-0.2) 

0.00 
(0.1) 

0.03 
(1.4) 

 

0.03 
(1.3) 

Log (Federally funded Academic R&D) 
 
 

1.03 
(2.5) 

1.36 
(2.9) 

1.41 
(2.4) 

1.51 
(2.2) 

0.55 
(3.1) 

0.55 
(3.1) 

Log (Federally funded Academic R&D in 
Closely Affiliated Universities) 
 

0.07 
(2.2) 

0.08 
(2.2) 

0.28 
(5.4) 

0.32 
(5.3) 

0.04 
(2.4) 

0.03 
(2.4) 

Number of Observations 
 
 

268 268 268 268 268 268 

Percent of  Observations Left Censored at Zero 
 

0.31 0.31 0.56 0.56 -- -- 

Root MSE 
 

2.96 3.28 3.73 4.38 1.35 1.35 

 
Log Likelihood 
 

 
-536.6 

 
-557.0 

 
-404.1 

 
-424.0 

 
-- 

 
-- 

 
Adjusted R2 

 

 
-- 

 
-- 

 
-- 

 
-- 

 
0.36 

 
0.36 

Note: data are derived from Survey of Industrial Laboratory Technologies 1996, the Census-NSF RD-1 survey, 
Compustat, and NSF CASPAR database of universities.  See the text for a discussion of the variables.   
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I estimate learning expenditures using tobit analysis rather than ordinary least squares, because 31 percent 

of the R&D laboratories report zero expenditures on learning about industrial R&D, while 56 percent report zero 

expenditures on learning about academic R&D.  The internal research equations use ordinary least squares since this 

part of budget is not censored.  All equations include dummy variables for year and industry.  All include dummies 

for testing and joint housing with a manufacturing facility, though these are insignificant in table 8.  

Equations 8.1-8.2 report findings for industrial learning expenditures. As throughout the table, recent sales of the 

firm promote learning effort, whereas R&D in the rest of the firm has no effect on learning about industrial research.  

This is in contrast to patents, where rest of firm R&D was the significant variable, and not sales.  The difference 

partly reflects the dominance of incentives to perform R&D in table 8, whereas in the patent regressions of tables 6 

and 7, R&D budget already captures incentives.  Another difference is that R&D elsewhere in the firm has a direct 

bearing on outputs such as patents, but little bearing on learning effort.  Turning to the spillover variables, company 

financed R&D elsewhere in industry stimulates industrial learning, but academic spillovers also have this effect. 

This is perhaps not surprising.  Basic research in industry is large, about half that of universities during the 1990s20.  

Thus there is some overlap in the type of research conducted in the two sectors.  

Equations 8.3-8.4 report estimates for academic learning expenditures. Qualitative patterns are similar to 

the results for industrial learning.  The main exception is that industrial spillovers have no effect on academic 

learning.  This is consistent with the notion that industrial learning may be specific to industrial spillovers. 

Quantitative comparison of the results for industrial learning with those for academic learning requires 

estimates of marginal effects.  In tobit analysis marginal effects are the estimated coefficients multiplied by the 

fraction of observations that are not censored21.  The fraction not censored is 0.69 for industrial learning and 0.44 for 

academic learning. Thus, for example, the marginal effect of recent sales is only slightly greater for academic 

learning than industrial, 0.34 versus 0.28.  Surprisingly, federally funded academic R&D has a slightly smaller effect 

on academic than industrial learning, about 0.64 versus 0.82.  However, the marginal effect of federally funded 

R&D in closely affiliated universities is almost three times larger for academic learning, 0.13 versus 0.05.  Overall 

the results suggest that industrial spillovers increase industrial learning effort more than academic.  The specificity 

                                                                 
20  See National Science Board (1998), appendix Table 4-7, page A-125. 
21 Where β is the Tobit coefficient and 1-Φ is the fraction of observations not censored, the expected marginal effect 
is β•(1-Φ).  Compare this result with OLS, where β is both the regression coefficient and the marginal effect.  
Greene (2000), Theorem 20.4, page 909 contains a proof of this result. 
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of academic learning effort is not as clear, perhaps because of the presence of basic research in industry. Still, 

academic learning responds strongly to federally funded R&D in closely affiliated universities. 

 It is much more important to see that the results strongly suggest that learning expenditures respond to 

learning opportunities, so that spillovers are endogenous.  Since tables 6 and 7 indicate that learning expenditures 

are a determinant of patents, spillovers have a secondary effect on innovation that bolsters their primary effect.  I 

return to this theme in section V of the paper. 

Equations 8.5 and 8.6 show the estimates for internal research.  Until now R&D in the rest of the firm has 

had no discernable effect on laboratory effort. But in these results the effect is negative and highly significant, 

perhaps reflecting the substitution of other units’ R&D for the laboratory.   Another finding is that academic 

spillovers increase the internal research of the laboratory.  In fact, academic research pervades laboratory R&D, 

while industrial spillovers specifically promote industrial learning expenditures.  The influence of university 

research is therefore strongly understated by academic learning expenditures. 

Equations 8.1 to 8.4 have used learning expenditures as the dependent variable.  To separate learning effort 

from budget I grouped the fractions of budget assigned to learning and treated them as an ordered categorical 

variable. The categorized learning fractions were then fitted to the data using ordered probit.  To save space I do not 

provide a separate table, but simply state that the results generally confirm the findings using tobit analysis.   The 

industrial spillover significantly increases the fraction of budget devoted to learning about industrial research but not 

the fraction devoted to academic learning. As above, academic spillovers tend to increase both academic and 

industrial learning fractions.  Also as before, the spillover from closely affiliated universities exerts an extraordinary 

effect on the academic learning fraction. 

Table 9 reports estimates of the determinants of Ph.D. employment.   The idea is to see whether spillovers 

increase the fraction of laboratory workforce consisting of Ph.D. researchers, since Ph.D. scientists have a 

comparative advantage in learning about external research.  The technique is grouped probit. The sample consists of 

laboratories that employ Ph.D. scientists.   The dependent variable in equations 9.1 to 9.4 is the fraction of the 

workforce composed of Ph.D. scientists22.  

Notice that the dummy variable for joint housing with manufacturing is negative and significant in all the 

equations.  This shows that jointly housed laboratories are oriented towards development rather than basic and  

                                                                 
22  For a discussion of grouped Probit see Maddala (1983), Chapter 2. 
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Table 9 
Relative Employment of Ph.D. Scientists 

(t-Statistics in Parentheses) 
 

 
Log (Ph.D. Scientists /Non-Ph.D. Scientists) 

 

 
Variable or 

Statistic 
  

Eq. 9.1 
 

 
Eq. 9.2 

 

 
Eq. 9.3 

 

 
Eq. 9.4 

 
 
Estimation method 
 

 
Grouped Probit 

Year, Industry Dummies 
 

Yes 
 

Yes Yes Yes 

Lab Housed With Manufacturing (1 if yes, 
0 if no) 
 

-0.53 
(-4.9) 

-0.64 
(-5.3) 

-0.64 
(-6.1) 

-0.68 
(-6.0) 

Log (Lab R&D Budget) 
 
 

 -0.09 
(-2.0) 

 -0.05 
(-1.0) 

Log (Recent Sales of the Firm) 
 
 

-0.00 
(-0.1) 

0.03 
(1.0) 

-0.12 
(-3.5) 

-0.10 
(-2.4) 

Log (Company Financed R&D in the Rest of the 
Firm) 
 

  0.06 
(5.0) 

0.06 
(4.6) 

Log (R&D in the Rest of Industry) 
 
 

0.03 
(2.7) 

0.03 
(3.0) 

0.02 
(2.0) 

0.02 
(2.2) 

Log (Federally funded Academic R&D) 
 
 

0.84 
(5.1) 

0.84 
(5.1) 

0.58 
(3.5) 

0.59 
(3.6) 

Log (Federally funded Academic R&D in Closely 
Affiliated Universities) 
 

0.06 
(5.6) 

0.06 
(6.0) 

0.05 
(5.3) 

0.05 
(5.4) 

Number of Observations 
 

187 187 187 187 

Root MSE 
 

0.49 0.49 0.46 0.46 

Adjusted R2 

 
0.53 0.54 0.59 0.59 

Note: data are derived from Survey of Industrial Laboratory Technologies 1996, the Census-NSF 
R&D survey, Compustat, and the NSF CASPAR database of university research.  See the text for a 
discussion of the variables. The dummy variable for testing is omitted because none of the Ph.D. 
laboratories specialize in testing. 
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applied research.  For this reason laboratories that are jointly housed with manufacturing employ a smaller fraction 

of Ph.D. scientists.  

The key finding of table 9 is that R&D spillovers, especially those originating in academia, are the most 

important drivers of Ph.D. employment. In addition, R&D in the rest of the firm increases the fraction comprised of 

Ph.D. researchers.  This suggests that larger R&D firms carry out more skill intensive research.  However, when 

firm R&D is held constant, as in 9.3 and 9.4, larger sales of the firm decrease the share of Ph.D. employment. 

Holding R&D constant, firm size seems to increase the demand for production engineering and not research. 

The empirical work concludes with the analysis of data on value of new products and cost savings 

originating in the laboratory.  The findings, shown in table 10, are different than before, and the sample more 

restricted.  Though I find a strong effect of overall laboratory budget, the effects of learning effort and spillovers are 

not separately identified, and hence omitted from the table. 

Our best guess is that the lack of an effect for learning and spillovers follows from the multi-stage nature by 

which value of new products and cost savings come about.  Inevitably, data of this kind are more distant in time and 

space from current patents and the division of R&D within the laboratory.  Most of the evidence concerns research 

laboratories within firms, which are usually a small part of enterprise.  And yet the value of new products and cost 

savings are the result of applying labor, capital, and other inputs that are frequently arrayed throughout the parent 

firm and suppliers.  As a consequence, many of the relevant inputs are difficult to identify.  In addition to this, the 

value of new products is a stock variable composed of the value of products introduced in the past. At the very least 

this suggests the use of panel data on inputs, including past learning effort and internal research of the laboratory.    

 Table 10 contains the results.  Equations 10.1 and 10.2 report OLS regressions for the logarithm of the 

value of new products. The logarithm of laboratory R&D is positive and significant in these equations, while R&D 

in the rest of the firm is insignificant. The elasticity of value of new products with respect to laboratory R&D is 

indistinguishable from 1.0, implying that the value of new products increases in proportion to laboratory R&D.  This 

contrasts with the results for patents, where the patent R&D elasticity is on the order of 0.6, and significantly less 

than 1.0.  The difference in elasticities highlights the importance of attaching values to patents. Larger laboratories 

seem to have more valuable patents. 

 Since the value of new products has a stock dimension, owing to the introduction of new products over 

time, I difference these data. I take the five-year difference of the value of new products in 1996 and 1991 and of 
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R&D in the laboratory and the rest of the firm.  I estimate growth of the value of new products as a function of 

growth in R&D effort in the firm and laboratory.  The five-year differences have two effects on the results.  First, 

individual fixed effects of the laboratories are eliminated.  And second, the data focus now on recent products as 

well as recent research.  Equations 10.3 and 10.4 display the results for 102 laboratories that report all relevant data 

in both years.  Laboratory R&D budget enters more weakly in differenced form, though it would be significant in a 

larger sample, and R&D in the rest of the firm is significant for the first time.  These results are closer to the results 

for patents, also a flow variable, where laboratory R&D and R&D in the rest of the firm both contribute, with 

laboratory R&D the more important of the two. 

 The presentation of the findings concludes with OLS regressions explaining the logarithm of the value of 

cost savings created by the laboratory.  Equations 10.5 and 10.6 contain the results.  As held true for new products, 

the value of cost savings increases in proportion to laboratory R&D and the elasticity of cost savings with respect to 

laboratory R&D is not significantly different from 1.0.  Rest of firm R&D is insignificant in 10.6.  The principal 

message of table 10 is that R&D laboratories seem to be subject to constant returns to scale production processes for 

the value of their innovations. 

V. Discussion 
 

Let us take stock of the results and interpret them in the light of the key equations, (3), (8), and (9).  To 

begin with, the results for patents provide support for the endogenous innovation function (3).  According to the 

estimates in tables 6 and 7, outcomes of learning from academia and industry, as well as internal research, are 

recombined in the innovation function.  To this extent, the results convey the spirit if not the letter of Weitzman 

(1998), who argues that aggregate growth proceeds by combinatorial means.  As he shows, this growth eventually 

dominates any exponential growth process.  The innovation function in this paper as well, where disparate ideas are 

brought together in unexpected ways, is effectively recombinant and mutually reinforcing of the different learning 

processes.  For inside (3), ideas from multiple sources in academia and industry, as well as ideas hatched within the 

laboratory, effectively meet and give rise to still other ideas. With laboratories in a large number of companies so 

engaged all at once, the economy is a sea of recombinant growth. 

  Second, the results of tables 8 and 9 suggest that learning expenditures, fractions of budget disposed 

towards learning, and learning resources all increase in response to potential spillovers.  It follows that the indirect 

innovation function (9) exhibits returns to scale that exceed that of the original innovation function (3). This result  



 33 
 

 
 

 

Table 10 
Log (Value of New Products) and Log (Value of Cost Savings) 

(t-Statistics in Parentheses)   
 

 
Log (Value of New 

Products) 

 
Five Year Difference in 

Log (Value of New 
Products) 

 
Log (Value of Cost 

Savings) 

 
 

Variable or 
Statistic 

 
Eq.10.1 

 
Eq. 10.2 

 
Eq. 10.3 

 
Eq. 10.4 

 
Eq. 10.5 

 
Eq. 10.6 

 
Estimation  Method 

 
OLS 

Year, Industry, Test, Jointly Housed 
Dummies 
 

Yes 
 

Yes No No 
 

Yes Yes 

Log (R&D in the Rest of  the Firm) 
 
 

 0.03 
(0.6) 

   -0.09 
(-1.5) 

Log (Laboratory R&D Budget) 
 
 

1.19 
(8.7) 

1.18 
(8.4) 

  0.90 
(4.8) 

0.96 
(5.0) 

Five Year Difference in Log (R&D in 
the Rest  of the Firm) 
 

   0.22 
(2.8) 

  

Five Year Difference in Log 
(Laboratory R&D  Budget) 
 

  0.71 
(1.8) 

0.82 
(2.2) 

  

Number of Observations 
 

216 216 102 102 158 158 

Root MSE 
 

3.06 3.07 2.06 2.00 3.31 3.30 

Adjusted R2 

 
0.28 0.28 0.02 0.09 0.22 0.23 

F Statistic 
 

11.4 10.2 3.4 5.8 6.5 6.1 

Note: data are derived from Survey of Industrial Laboratory Technologies 1996, the Census-NSF R&D survey, 
Compustat, and NSF CASPAR database of university research.  See the text for a discussion of the variables.  
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formally resembles that of Becker and Murphy (1992) in their analysis of growth by means of specialization.   

However, the results differ from theirs, in that learning from disparate sources places a limit on specialization.  In 

this sense, the results bear a closer resemblance to those of Cohen and Levinthal (1989) in their work on innovation 

and learning, the two faces of R&D. 

I now combine the results of the different tables to obtain point estimates of the primary and secondary 

effects of industrial and academic spillovers.   Since the tables are the first to undertake estimates of this kind, the 

following calculations should be viewed as tentative and illustrative in nature.  The measurement of secondary 

effects will allow us to gain a quantitative reading on the magnification of spillovers by the response of learning 

effort to learning opportunities represented by the spillovers.  Recall that these effects are combined in the exponents 

of the indirect innovation function (9), which is reproduced below for convenience: 

(9)  ∑∑∑∑∑ ++++= i i
i inii iFiFi iAiAi iMiM

wv

nFAMn eMBKK KDn γβγβδγβδγβδ*  

Using the results of table 6 and 8, the primary effect of industrial spillovers is 05.0=Mδ .  The secondary effect is  

02.003.031.000.011.009.016.0 =×+×+×=++ FMFAMAMMM γβγβγβ . 

These results  multiply the iMγ coefficients by fractions of observations that are not censored (see table 8). 

In any event, the contribution of industrial spillovers is largely the primary effect. 

 I now repeat this exercise for academic spillovers.  Remember that these include federally funded R&D 

both in general and for closely affiliated universities of the laboratories.  The primary effect is 22.0=Aδ .  The 

secondary effect is  

43.069.031.077.011.089.016.0 =×+×+×=++ FAFAAAMAM γβγβγβ . 

In quantifying these secondary effects I once again multiply the iAγ coefficients by fractions of observations 

not censored (see table 8) to obtain marginal effects.  The results suggest that the secondary contribution is more 

important for academic spillovers.  More important, they show that secondary effects of spillovers are comparable 

with the primary effects.  Thus the returns to scale to innovation are enhanced by the endogeneity of knowledge 

spillovers. 

 One further note concerns the comparison of the two spillover effects.  The above calculations suggest that 

the academic spillover effect is about 0.65, about nine times larger than the industrial effect of 0.07.  However, these 

estimates are elasticities of patents with respect to one-percent increases in each type of spillover.  Given that the 
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industrial spillover is on average nine times larger than the academic spillover (see table 5), per dollar, the two 

effects are about equal at the mean of the sample.      

Finally, a complete sequential story that accounts for the process by which firms discover new products and 

processes is desirable, but out of reach at this time.   The stages by which research progresses within the firm cannot 

be traced, since the data are not sufficient to link the value of new products and of cost savings backward to the 

myriad of learning activities as described by repeated access to spillovers.   Instead laboratory R&D budget, which 

demonstrates a high degree of serial correlation, is the dominant effect on the value-based measures of innovation 

reported in table 1023.  This part of the analysis is clearly in need of further improvement.  At the very least this will 

require a panel of data on firms that is of a very detailed nature. 

VI.    Conclusion        

 This paper has presented theory and evidence concerning endogenous R&D spillovers.  While more can be 

done on this topic, I hazard a few conclusions from the work to date.  First, academic research does seem to have a 

profound significance for the rate of innovation and for the amount of learning carried out by the laboratory.  

Consistent with this point of view, an increasing fraction of the laboratories in the sample have included doctoral 

scientists and engineers in their research programs over time.   Second, the evidence is consis tent with the idea that 

spillovers, especially academic spillovers, are endogenous.  I find that learning expenditures increase in response to 

spillovers.  Third, the results imply that learning is somewhat specific, in that learning aimed at a particular spillover 

seems to respond intensively to that source.  But I also find that academic spillovers exert a broader impact on 

laboratory R&D than industrial spillovers.  Fourth, the findings are supportive of a sequential view of learning and 

innovation, in which spillovers and firm R&D lead to increased learning, learning and own research lead to 

innovation, and a stream of innovation supports the cumulative introduction of new products over time.  Fifth, not 

all laboratories have the same orientation and not all have the same demand for learning about external R&D.  Part 

of this has to do with the particular industry and with presumed opportunities for learning, but part has to do with a 

mission of the laboratory that is skewed towards testing rather than research, perhaps because other, larger facilities 

within the same firm shoulder the main load of research.

                                                                 
23 See Adams and Jaffe (1996) for evidence on the high degree of serial correlation in R&D data at the firm and 
divisional level. 
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