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ABSTRACT

We investigate the theoretical possibility and empirical regularity of two troublesome anomalies that
frequently arise when cross-price elasticities are estimated for a set of brands expected to be substitutes.
These anomalies are the occurrence of: (a) negatively signed cross-elasticities; and (b) sign asymmetries
in pairs of cross price elasticities. Drawing upon the Slutsky equation from neoclassical demand theory,
we show how and why these anomalies may occur when cross elasticities are estimated for pairs of
brands that are substitutes.  We empirically examine these issues in the context of the widely used
Multiplicative Competitive Interaction (MCI) and Multinomial Logit (MNL) specifications of the
fully extended attraction models (Cooper and Nakanishi 1988). Utilizing a database of store-level
scanner data for 25 categories and 127 brands of frequently purchased branded consumer goods, we
find that about 18% of a total of 732 cross elasticity estimates are negative and approximately 40%
of the 366 pairs of cross elasticities are sign asymmetric. Finally, we find that the occurrence of negatively
signed cross elasticities can be partially explained by a set of hypothesized relationships between cross-price
elasticities and brand share and elasticities of income and category demand.
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1. INTRODUCTION 

One of the most perplexing puzzles empirical researchers confront when analyzing 

category-level data in order to estimate substitution matrices are results that appear to 

contradict both economic theory and managerial insight.  For example, many studies of 

cross elasticities show that the sales of competing products are negatively related to the 

prices of those products. Such estimates not only seem to violate economic theory regarding 

product substitutes but also pose a managerial dilemma: why would the sales of my product 

increase when my competitor lowers his price?  The objective of this paper is to shed light 

on this puzzle and to provide insights into what patterns of results can be expected from 

estimates of price-based substitution matrices. 

More specifically, we address two related problems encountered in many empirical 

studies when one seeks to employ flexible demand specifications for market share models 

(such as the “fully extended” versions of either the Multiplicative Competitive Interaction 

(hereafter MCI) or the Multinomial Logit (MNL) models, also referred to as the Exponential 

Competitive Interaction (ECI) model).1 Flexible demand specifications directly incorporate 

the concept of differential cross-competitive effects and have other desirable properties 

(Cooper and Nakanishi 1988, Cooper 1993, Fok, Frances, and Paap 2002).    

The first problem with flexible specifications of market share response models is that 

they occasionally yield cross-price elasticities that are negative and statistically significant, 

even when there are good reasons for expecting that the brands are substitutes. Second, 

because flexible models allow differential cross effects to be asymmetric with respect to not 

only magnitude, but also sign, the situation arises where, for example, the estimate of the 

                                                 
1 Hanssens, Parsons, and Schultz (2001, p. 124) advocate use of the ECI label rather than MNL to avoid 
confusing the MNL/ECI share model with the logit model of individual-level demand or brand choice. 
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cross elasticity reflecting the influence of i ’s price on j ’s market share has the opposite 

sign to the estimate pertaining to the effect of j ’s price on i ’s market share. This leads to 

an interpretive quandary: such a result seemingly indicates that a pair of brands are 

simultaneously substitutes and complements.   

It is interesting to note that the phenomenon of negative cross-elasticities has been 

documented across a number of studies reported in the marketing science literature. For 

example, in their meta-analysis, Sethuraman, Srinivasan and Kim’s (1999) found that 

negative cross-elasticities accounted for about 10% of the 1,060 cross-price elasticities they 

assembled from 15 published studies. These authors included the negative cross-elasticity 

estimates in their meta-analysis but posited that they are likely due to measurement errors.   

The doubtful presence of negative cross-elasticities in market response models has 

led researchers to develop techniques to reduce or even eliminate their occurrence.  For 

example, Bucklin, Russell and Srinivasan (1998, herein BRS) show positive substitution 

patterns can be assured by relating the cross elasticities to the row-conditional brand 

switching probabilities based on individual level data and aggregated to the corresponding 

market level. Since brand switching probabilities are always positive, the resulting market 

share elasticities are also positive.  In an empirical application for nine brands of liquid 

laundry detergents, BRS also present an unrestricted fully-extended MCI attraction model 

for which 38% of the elasticities that are negative.  Similarly, many multinomial logit and 

probit specifications use a single parameter for the price coefficient.  An appealing feature 

of such models is that the cross elasticities2 are based on the own-price coefficient and as 

long as this coefficient is negative in value, the cross elasticity will always be positive. 

                                                 
2 See Ben-Akiva and Lerman (1985) for derivation of the logit market share elasticities.  The own-price 
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This paper adopts a different perspective and raises the issue of whether these 

negative substitution rates are indeed incorrect, or whether they represent a real 

phenomenon in substitution patterns that can be analyzed and interpreted.  In this spirit, we 

address the issues of both negative and asymmetric-signed cross elasticities in the general 

context of quantity-based market share models. We begin by providing a theoretical 

rationale for these phenomena and then conduct an empirical assessment of predictions 

stemming from this theory.  The following research questions are directly addressed in this 

paper: 

1) Is it theoretically possible for signs of cross-elasticities to be negative for a set of 

brands that are substitutes? As a corollary of negative signs, is it possible for a 

pair of cross elasticities to be asymmetric in sign?   

2) Does empirical evidence support hypotheses stemming from the theoretical 

underlying patterns of signs in cross-elasticities? 

The theoretical findings are based on an application of the well-known Slutsky 

equation from demand theory (Deaton and Muellbauer 1980) to the context of quantity 

based market share models.  As an illustration of this effect, consider the theoretical 

substitution pattern between two competing brands of liquid laundry detergents: Tide (P&G) 

and Wisk (Unilever).  Figure 1 presents the classic indifference curve analysis often used in 

utility theory to explain the difference between compensated and uncompensated tradeoffs.  

The indifference curves are given by the parallel curved lines, U1 and U2.  The horizontal 

axis represents the demand for Tide (XTide) and the vertical axis is demand for Wisk (XWisk).  

                                                                                                                                                      
( )ipii mse −= 1β ims pβ

iie

jpij mse β−= ji ≠ pβ

elasticity is  where  is the market share for brand i,  is the estimated price coefficient 
from the logit model and  is the uncompensated own price elasticity.  The corresponding cross-elasticity is 

 for .  Since is typically negative in estimation the cross elasticity is usually positive.   
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The straight lines (I0,I1 and I*
1) represent budget constraints.  Since the optimal consumption 

bundle is at the point where the highest indifference curve is attained, the best point for this 

set of prices is A.   

                INSERT FIGURE 1 HERE 

The first consequence of a change in the price for Solo (here a price decrease) is a 

shift and rotation of the budget constraint out to I1.  The new optimal point is at B.  The 

uncompensated cross price elasticity for Tide given Wisk’s price change is given by the 

relative change in the demand for Tide given the relative change in the price for Wisk, or 

( ) ( )00 /// SoloSoloTideTide ppXX ΔΔ .  Under consumer demand theory, there is no property that 

restricts this value to be positive.  Indeed, from Figure 1, the quantity demanded of Tide 

actually increases in response to the Wisk price decrease.  The general possibility of 

negative cross-effects has been acknowledged (see Deaton and Muellbauer, 1980) and arises 

because the income effect of the price change overwhelms the substitution effect.   

The substitution effect in Figure 1 is the movement from point A to point C.  This 

substitution effect is often called the “compensated” elasticity (e.g. see Allenby and Rossi 

1991, Montgomery and Rossi 1999b) since it involves the bundle of consumption chosen if 

customers were given enough money (i.e. compensated) to attain the utility available from 

the original choice (A) which means moving the budget constraint to . A well known 

property of the compensated price elasticity is that it must always be positive, although, as 

we will discuss, it is not required to be symmetric – also see Montgomery and Rossi 1999 on 

this point. 

*
1I

What is not well understood is how often and under what circumstances that 

negative cross elasticities arise.  It is also not well known how this relation translates into 
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market share elasticities.  The theoretical analysis presented in this paper is concerned with 

the properties of the decomposed cross-elasticities in the context of market share response 

models.  This analysis reveals that asymmetries are a natural property of market share 

response models.  Moreover, standard consumer demand theory does not rule out the 

possibility of asymmetric and negative signs in market share models.  We extend our 

theoretical analysis to derive the conditions under which one may expect these properties to 

surface in estimation of market share response models.   

In the marketing science literature there are few market response models which 

consider the difference between compensated and un-compensated elasticities.  Notable 

exceptions include Allenby and Rossi (1991b) and Montgomery and Rossi (1999). 

Montgomery and Rossi (1999) develop a method to measure compensated price (brand 

quantity) elasticities directly.  An important feature of compensated elasticities is that they 

must (in theory) be positive since they measure movements along a fixed indifference curve.  

Allenby and Rossi (1991b) develop an individual level discrete choice model for which 

magnitude asymmetries in cross-elasticities are explained by opposing effects of inferior 

versus superior brands’ income elasticities.  Our work closely complements this stream of 

literature by studying market share elasticities with a similar decomposition of elasticities 

into income and substitution effects.  

As the above discussion indicates, conventional wisdom is that negative estimates of 

cross-price elasticities are incorrect (“wrong-signed”).  As a corollary, asymmetric signs for 

cross elasticities must also be implausible.  Our analysis suggests that negative signs can 

occur in cross-elasticities (or absolute cross-effects) whenever a combination of the 

following conditions holds: 
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1) There is a high income elasticity for the competing brand, especially when the 

focal brand’s budget share is large, 

2) There is a high category demand price elasticity for the competing brand, 

3) The Hicksian (or compensated) substitution rate between the two brands is small 

relative to 1) or 2). 

These results are very general – they apply for any quantity- based market share equation, 

regardless of the specification studied.   

We conduct an empirical study to document the extent to which such apparently 

anomalous results occur.  The empirical application is based on data for 25 FMCG 

categories in the context of the fully-extended attraction based models – in particular, the 

MCI and the MNL/ECI specifications for market share. The choice of categories studied is 

such that, a priori, all alternatives are expected to be substitutes – i.e. to yield positive cross-

price elasticities. 

A summary of the empirical estimates consisting of 732 cross-elasticities reveals that 

negative signs occurred in about 18% of possible instances (depending on the model 

specification used) and asymmetric signs occurred in about 40% of cases. Out of 25 

categories studied, for only seven categories were all the cross-elasticity estimates positive.  

Finally, we find that our hypothesized relationships between the cross elasticities and 

income effects, brand share, and category demand elasticity can partially explain these 

patterns in the cross effects.     

The paper is structured as follows.  Section 2 reviews the theoretical background for 

quantity-based market share models from the perspective of the neoclassical theory of 

consumer demand.  Section 3 considers the decomposition of the market share elasticity 
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based on the Slutsky relation and a set of testable hypotheses is derived from this 

decomposition.  Section 4 describes the database for which MCI and MNL/ECI market 

share models are applied to estimate a large cross-section of price elasticities used in testing 

hypotheses.  In Section 5 we present our results and in Section 6 we discuss the implications 

of our theoretical and empirical findings.  Section 7 presents the conclusion from this 

analysis and discusses potential further research. 

2. CONSISTENCY REQUIREMENTS FOR QUANTITY-BASED MARKET SHARE 
MODELS 

 
The starting point for the theoretical analysis is a discussion of the properties 

governing attraction-based models drawn from marketing and economic theory.  These are 

logical consistency, homogeneity, and symmetry.   In this paper we focus primarily on 

symmetry requirements and develop the symmetry properties of market share models. These 

properties are then analyzed to formulate a set of hypotheses that are subsequently subjected 

to empirical tests. 

 
2.1 Logical Consistency

 By definition, the share of any brand must fall within the zero-one interval (the 

“range” restriction), and shares summed over all brands within a product category must 

always equal one (the “sum” constraint).  The range restriction further requires that the 

maximum of any of the alternatives be greater than zero and less than one.  The scope of this 

paper is focused on cross elasticities estimated within the class of models that satisfy the 

logical consistency requirements (cf., Naert and Bultez 1973, McGuire and Weiss 1976, 

Weverbergh, Naert, and Bultez 1981).   
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Formally, define the market (quantity) share of the  brand as   

where   is quantity sold of brand i.  By definition, the share of any brand must fall within 

the zero-one interval and shares summed over all brands in a category must always equal 

one, i.e.,  

thi ∑ =
=

m

v vii qqs
1

/

iq

                                                       (1) ,...,miss
m

i
ii 1  allfor   ,10  ,1

1
=<<=∑

=

Logical consistency requires a bit more, however.  Let there be a set of factors affecting 

the , denoted by is 1hX h, = ,...,H  where  denotes a particular marketing mix variable (e.g. 

price, advertising) affecting the  brand:   

h

thi

 ( ) ,...,m,i,...,XX,Xgs Hi 121 ==                                                               (2) 

where is a continuous and at least once differentiable function. Since shares must always 

sum to unity, it follows that:  

()g

                                                ,...,Hh
X
sm

i 1    0
1i

∈∀≡
∂
∂∑

=

 (3)               

Hereafter we refer to (3) as the “zero sum” constraint, and note that it is required for logical 

consistency. 

To avoid unnecessary complexity, we focus our attention on price and represent 

price using the X variable.  In the analysis that follows, it will be useful to construct an 

 matrix whose elements correspond to the effects of variable m H× hX  on the market share 

of brand i . Let the rows of this matrix represent m  brands, and let the columns represent H  

explanatory variables affecting the m  brand market shares.  Let a typical element of this F 

matrix be, ihƒ  where:  
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Thus, this F matrix of derivatives is of the form:  

                                      (5) 
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F

Note that the zero sum constraints (3) imply that the column sums of F in (5) must all equal 

zero, i.e.  

                               ∑
=

==
m

1i
H1,...,hallfor0,ihƒ                                                         (6) 

For the remainder of this paper we focus on the role of price in the market share response 

function and (for notational convenience) represent price using the non-subscripted X 

variable.  The focus on price means that 1=H  and that the matrix in Eq. (5) is of dimension 

. 1×m

2.2 Market Share Models and Economic Theory  

Additional restrictions on the if  responses can be derived from the economic theory 

of demand, as was originally noted by McGuire, Weiss and Houston (1977) who proposed 

that “economic consistency” be added to the list of desiderata for market share models along 

with logical consistency.  Except for studies by Houston, Kenetkar, Stacey and Weiss (1991), 

Montgomery and Rossi (1999), and Montgomery (2002), the literature on market share 

response models appears to have paid limited attention to the matter of economic 

consistency. Here we consider two basic properties of demand functions specified by the 
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economic theory of consumer behavior (Deaton and Muellbauer 1980 pp. 43-46): 

requirements for homogeneity, and for symmetry.  

2.2.1 Homogeneity Requirements. Let 1X  through mX  be the prices of brands 1 

through , and let m 1mX +  be money income.  According to basic economic theory (Deaton 

and Muellbauer 1980, Chapter 1), demand functions should not be  

subject to money illusion, but instead should be homogenous of degree zero in  

prices and income. More specifically, suppose that the prices of all m  products  

and money income are increased by the same percentage amount, 

.  In this case, although nominal prices and nominal 

income all change by the same proportion, relative (or “real”) prices and (“real”) income are 

unaffected. According to demand theory, when relative prices and real income are 

unaffected, quantities demanded and therefore quantity shares also remain unchanged. 

Moreover, this result does not require that one make the restrictive assumption that all 

consumers share identical preferences. As has been shown by Sonnenschein (1973), even if 

preferences of individual economic units differ, the aggregate demand functions must still 

be homogenous of degree zero in prices and income, i.e.,  

≅Δ ii XX / ,...1  ln +=∀Δ miX i 1

 
∑∑
+

=

+

=

==
∂
∂ 1

1

1

1

0
ln

m

i
ii

m

i i

i Xf
X

s

 (7) 

Note that the homogeneity requirements (7) imply a different type of sum constraint from 

the column sum restriction (6) required for logical consistency. In particular (7) is a row 

constraint involving a different matrix having one more column and fih Xh elements rather 

than fih in (5). Thus we call the row sum restrictions in (7) homogeneity restrictions, and 

note that they are required to ensure consistency with economic theory.  
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2.2.2 Symmetry Requirements. Is it theoretically possible for a pair of cross elasticities for 

two brands to be asymmetric with respect to their signs? The well-known Slutsky equation 

from neoclassical demand theory provides the framework needed to analyze this question 

(Deaton and Muellbauer 1980, pp. 45-6).  The Slutsky equation decomposes the observable 

cross-effects of a change in the price of good j ( ) on the quantity demanded of good i  

( )  into two components: (a) the “compensated price effect” representing the substitution 

effect along an indifference curve rate where a consumer’s utility (u) remains unaffected; 

and (b) the “income” effect indicating how  increases or decreases with changes in 

income ( , shifting the indifference curve but holding prices constant.  

jX

iq

iq

1)mX +

In Appendix A, the Slutsky equation is derived in terms of quantity market shares 

rather than quantity levels. For an individual consumer, this leads to the following 

decomposition of market share (  cross elasticities ()is )ijE  with respect to price ( ). jX

 

j

m

v v

m

i
j

j

i

j

i
ij

X
)q(

X
q

B
X
q

X
s

E

ln
ln

ln
ln

ln
ln

ln
ln

1

1 constantPricesconstantu

∂

∂
−

∂
∂

−
∂
∂

=
∂
∂

≡

∑ =

+ ==  (8) 

for any , where i ≠ j jB  is the share of the consumer’s total category expenditures or budget 

allocated to good j :  

 
∑ =

= m

v vv

jj

qX

qX

1

jB  (9) 

The first two terms on the right hand side of Eq. (8) are market share analogs to the 

components of the (Marshallian) quantity demand-based Slutsky decomposition: the 

“compensated” cross price elasticity ( ji Xq ln/ln ∂∂ , u = constant) and the competing 
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brand’s budget share (not quantity share) weighted  by the focal brand’s income elasticity 

( , prices = constant). The third term is the elasticity of primary or 

category demand with respect to the price of a particular good, say, j 

.  

)ln/ln( 1+∂∂× mij XqB

lnln )X/)q(( j
m

vv v ∂∂ ∑ =

The sign of the first component of Equation (8) defines whether the relationship 

between the two goods is one of substitutability (positive) or complementarity (negative). 

Moreover, a key result from demand theory is that the compensated price effects must be 

pairwise symmetric with respect to both sign and magnitude (Deaton and Muellbauer 1980, 

pp. 43-46), i.e.  

j)&R(i
X
q

X
q

i

j

j

i =
∂

∂
=

∂
∂  (10) 

Note however, that Eq. (8) does not imply magnitude symmetry with respect to 

compensated cross-price elasticities. That is, it is not the case that  

 unless, coincidentally,

ji Xq ln/ln ∂∂

ij Xq ln/ln ∂∂= jiij qXqX // = . 

For notational convenience, let us define the income elasticity of brand i as 

  
1ln

ln

+∂
∂

=
m

i
i X

q
I   ,      (11) 

the elasticity of primary or category demand with respect to the price of brand j as 

                                      
( )

j

m

v v
j p

q
C

ln
ln

1

∂

∂
= ∑ =             (12) and 

the compensated cross-price elasticity ( constantu,ln/ln =∂∂ ij pq ) by 

                          )&(* jiR
q
X

E
i

j
ij =  .      (13) 
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We can therefore rewrite Eq. (8), the uncompensated cross-price elasticity (Eij) as: 

                ( )jijijij CIBEE +−= *      (14) 

Given this symmetry of compensated price effects, it becomes apparent that a 

sufficient condition for the observable share cross-price elasticities to be asymmetric with 

respect to magnitude is that the sums of the budget share-weighted income elasticity and the 

category demand elasticity for the two goods be unequal, i.e. ji ijE E≠  when:       

                                         ( ) ( )ijijijijij CIBECIBE +−≠+− **  (15) 

Furthermore, it may be seen from Eqs. (8) and (14) that sign asymmetry may obtain 

between a pair of cross-elasticities if the following conditions hold:  

                       
( )
( ) *

*

     :iff  ,0

     :iff  ,0

jiijiji

ijjijij

ECIBE

ECIBE

<+>

>+<
    (16) 

where the ’s are *
ijE compensated price elasticities, as defined by Eq. (13). A parallel set of 

conditions for sign asymmetry may be defined by reversing the inequalities in Eq. (16).  

Thus, if:  (a) the income elasticity of one brand, say i, multiplied by its budget share, 

plus the elasticity of total demand with respect to the price of that brand exceeds its 

compensated cross-price elasticity with another brand, j , and, (b) the latter quantity exceeds 

the sum of the comparable income and category demand elasticities for the other brand, j , 

then the cross elasticities for those two goods will be pairwise asymmetric, both with respect 

to sign and magnitude.  

Having established that such asymmetry is theoretically possible, we naturally ask: 

What can be said about when one might encounter the conditions identified above for 
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magnitude asymmetry (Eq. 15) or sign asymmetry (Eq. 16)?  This issue is addressed in 

Section 3.   

It is worth noting that Allenby and Rossi (1991b) have developed a model of brand 

choice which generates asymmetric responses to price promotions for packaged goods 

brands differing in quality. The key mechanism which gives rise to the asymmetry in their 

context is the sign difference in income effects (Ii and Ij) between a high versus a low quality 

brand.  In an empirical study of margarine brands, these authors report support for their 

model. 

2.2.3 Measurement Considerations.  It also bears noting that Deaton and Muellbauer 

(1980, p. 45) remark that the law of demand does not preclude the possibility that the 

(Marshallian) quantity demand elasticity be positive. Their observation is based on the 

Slutsky decomposition of the Marshallian demand function, and suggests that even though 

the own-price compensated response must always be negative, it is possible (though not 

likely) that this be outweighed by a positive income effect for “superior” goods. Goods that 

follow this behavior are known as Giffen goods, a special sub-class of inferior goods, where 

the good is highly inferior and purchased in sufficiently large quantities to make the overall 

demand effect positive. Although they do not comment on cross-elasticities, their 

argument/logic applies there in an analogous manner.  

A further problem which frustrates attempts to diagnose conditions underlying sign 

asymmetries in empirical work is that the theory underlying the Slutsky decomposition 

relates to the behavior of a single, utility maximizing consumer. Hence, issues of underlying 

heterogeneity must be considered in interpreting cross-elasticities estimated from aggregate 

market share data. In the economics literature, it has been shown that, in general, if 
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consumers differ in their preferences, then one would not expect aggregate demand 

functions to satisfy Slutsky symmetry conditions which apply at the individual level 

(Sonnenschein 1973; and Diewert 1974, 1977, and 1980).  

In a similar vein, Blattberg and Wisniewski (1989) analyze how asymmetries in 

response to price promotions are affected by the distribution of consumers’ preference for 

packaged goods brands differing in quality. Studies of individual household purchasing of 

such goods reveal substantial levels of heterogeneity in preferences (Chintaguna, Jain and 

Vilcassim 1991, Ainslie and Rossi 1998) and in promotional responsiveness (Allenby and 

Rossi 1991a).  The latter authors investigate the bias in cross-price elasticities obtained from 

an attraction-type model estimated with aggregate data when the population of underlying 

consumers is heterogeneous.  A combination of simulation and analytical techniques is used 

to assess the performance of an aggregate “nested” logit model which groups packaged 

goods brands into sub-markets reflecting quality-price differences. They conclude that the 

use of the aggregate level model is justified when three conditions are met: (i) all consumers 

are exposed to the same marketing mix variables; (ii) all brands are close substitutes; and (iii) 

price distributions are not concentrated at extreme values.  

Virtually all of this work in marketing on asymmetric competition implicitly or 

explicitly assumes that the goods under investigation are related to one another only as 

substitutes – complementarities are specifically excluded. As a result, the focus is on 

asymmetries in the magnitude of substitution cross effects. Since only positively-signed 

estimates are expected, negative cross-effects are often dismissed as “wrong-signed” 

anomalies, irrespective of whether they are pairwise symmetric or asymmetric with respect 

to sign. Here we take a different position and argue that such anomalies merit deeper 
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investigation.  Even if there were a bias against presenting and publishing such anomalous 

results in cross-elasticities, they continue to be reported in empirical studies – possibly 

suggesting this phenomenon is more widespread than is currently recognized.3  

Sign asymmetries have been subjected to little in the way of close scrutiny and our 

understanding of the robustness of cross-elasticities estimated from the extended versions of 

the aggregate attraction models is very limited.  More evidence relating to the properties of 

estimates obtained from aggregate attraction models similar in spirit to Allenby and Rossi’s 

(1991a) and Christen, Gupta, Porter, Staelin, and Wittink’s (1997) studies of aggregation 

bias would constitute useful contributions to the existing literature. 

Overall then, whereas theoretical explanations such as differential income effects 

between pairs of goods differing in quality may be invoked to account for asymmetries in 

the magnitudes of cross-price elasticities, it is difficult to offer a plausible substantive 

interpretation for asymmetries in the signs of cross-price effects, other than the operation of 

various threats to the statistical conclusion validity of the estimates, such as aggregation bias, 

over-parameterization, collinearity and the like.  

3. PREDICTIONS FROM THEORY 

The preceding analysis highlights possible reasons for observing seemingly aberrant 

estimates of cross-price elasticities among brands that conflict with an overall pattern of 

substitutability among the brands expected on a priori grounds.  In particular, we single out 

                                                 
3 Meta-analysis studies that review price elasticities have not always distinguished between market share 
elasticities and volume elasticities.  It is well known that since an individual brand’s Marshallian quantity 
demand elasticitiy is the sum of the market share elasticity and the primary demand elasticity (and the purchase 
incidence elasticity if one were to estimate this separately, see Gupta 1988), then the size of the primary 
demand elasticity may outweigh the market share elasticity – even in the case of the own-price elasticity. It is 
straightforward to show that this will occur in the same way for cross elasticities.  Researchers often note that 
the primary demand component of a price elasticity is small relative to the market share component, typically 
citing results of Bell, Chiang and Padmanabhan (1999) or Van Heerde, Gupta and Wittink (2003).    
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three patterns of anomalies where estimates of cross-elasticities depart from the expected 

pattern of substitution. First, we analyze conditions under which negative cross-elasticities 

may arise.  Second, we consider when magnitude asymmetries can be expected among 

positive, sign-symmetric pairs of cross-elasticities. Finally, we discuss the case of sign 

asymmetric cross-elasticities. Using the Slutsky relation from Eqs. (8) through (10), we now 

formulate hypotheses identifying factors that predict the aforementioned phenomena.  

3.1. Positive vs. Negative Signed  Cross-Elasticities 

As defined in (10), the second term, R(i&j), on the right-hand side of Eq. (13) is the 

Hicksian substitution between the two products.  It must always to be positive since this 

measures the movement along a given indifference curve.  Given that price and quantity 

must also always be positive, the first term on the right hand side of Eq. (13) is always 

positive and hence E*
ij in Eq. (16) must also always be positive.   

Our initial hypothesis is related to the first term in the bracketed component of Eq.  

(16), the income elasticity of the focal brand (Ii), weighted by the revenue share of the 

competing brand (BBj).  Since revenue share (BjB ) is always positive and income elasticity (Ii) 

is typically positive (i.e., for superior goods), ceteris paribus, we expect that the greater the 

value of the product, , the more likely it is thatij IB ×  ij IB ×   will be sufficiently positive to 

overcome the (positive) value of the first term in Eq. (16) containing the compensated price 

elasticity (E*
ij) hence, the greater the likelihood that the sign of the cross-elasticity (Eij) will 

be negative. This may occur, for example, when the competing brand (j) is superior, the 

focal brand (i) is a large share brand and the two brands occupy distinct positions, such that 

the compensated substitution effect ( )) is small. Thus, our first hypothesis becomes: jiR &(
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H1: The larger the value of the product (BBj Ii) of the revenue share of the   
        competing brand (BBj) and the income elasticity of the focal brand (Ii),   
        the greater the likelihood that the sign of the cross elasticity of the   
        focal brand’s (i) share with respect to the competing brand’s (j) price  
        (Eij) is negative. 
 

 
One caveat to this logic bears noting. It seems likely that the revenue shares of the 

competing (BBj) and focal (BiB ) brands will be inversely related, since over all brands, shares 

must sum to one.  If the competing brand’s revenue share (BBj) increases, the focal brand’s 

revenue share (BiB ) may decrease. Especially in mature categories (or whenever category 

demand elasticity is close to zero), this means that the quantity sold of the focal brand (qi) 

decreases.  

Since we expect category demand with respect to the price of the competing brand to 

be negative (Cj <0), then the last term in Eq. (14) is positive and hence, ceteris paribus, the 

greater the competing brand’s category expansion effect (a larger absolute value for Cj), the 

less likely it is that the cross-elasticity of the focal brand’s share with respect to the 

competing brand’s price (Eij) will be negative. Therefore, we state our second hypothesis as: 

H2: The greater the absolute value of the elasticity of category demand       
        with respect to the price of the competing brand (Cj), the less the    
        likelihood that the sign of the cross elasticity of the focal brand’s (i)   
        share with respect to the competing brand’s (j) price (Eij) is negative. 
 
When would we expect this category expansion effect to be small?  There is 

evidence that the price elasticity of category demand changes over the product life cycle 

(Hanssens, Parsons, and Schultz 2002, pp. 338-339).  Specifically, the behavior of category 

price elasticity has been found to vary widely across categories according to stage of 

maturity and market structure (Nils, Dekimpe, Steenkamp,and Hanssens 2001). Multi-

category comparisons of the primary demand effect reveal that the primary demand effect is 
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often not significant.  For example, Hoch, Kim, Montgomery, and Rossi (1996) found that 

average (across stores) category demand was inelastic in eleven of eighteen categories of 

food and non-food products sold in supermarkets.  A common result is that the category 

demand effect for mature product categories is relatively small when compared with the 

share effect (see Bell, Chiang and Padmanabhan 1999; Van Heerde, Gupta and Wittink 

2003). For similar reasons, the difference in the category demand elasticity for a pair of 

competing brands may also be expected to be small.  

A third hypothesis we offer to help explain negative cross-price elasticities stems 

from the homogeneity condition (Eq. 7) requiring that the row sums of the substitution 

matrix must be equal to zero. As shown in Berndt and Silk (1993), this requirement is 

satisfied for the MCI model, but not for the MNL/ECI model. The logic behind the 

following hypothesis is found in the requirement that for any row in the matrix (5), the cross 

elasticity terms plus the own-elasticity must sum to zero.  

To see the implications of this requirement, consider the following example with 

three brands, and the first row of the substitution matrix Eq. (5). Let E11 be the own price 

elasticity and E12 and E13 be the cross-price elasticities for brand 1 with respect to the prices 

of brands 2 and 3 respectively. Then the closer the absolute value of E11 divided by the 

maximum (positive) value of the cross-price elasticities is to zero, the greater the likelihood 

that a given cross-price elasticity is negative.   

H3: (MCI model only.)  The smaller the absolute value of the focal    
        brand’s own-price elasticity, relative to the maximum value of its   
        cross-price elasticities with respect to the other brands, the greater     
        the likelihood that the cross-price elasticity is negative.  

 
Finally, we consider how the term in Eq. (14) involving the compensated  

 
substitution rate, E*

ij (see Eq. (13)) might affect the sign of the cross elasticity, Eij. Consider 
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first the influence of the quantity of the focal brand i, qi. The larger qi, the more likely it is 

that Eij will be negative. To see this, note that since ( )R i & j  is positive and symmetric for 

the two brands, it follows that when  is large then the influence of the compensated 

substitution rate is lower--i.e., the denominator of the first term in Eq. (14) increases. 

However, the latter effect may be offset by a fall in the budget share for the competing brand 

(

iq

jB ), accompanying an increase in the budget share of the focal brand i (BBi). Without further 

a priori insight into the association of an increase in quantity sold and the income elasticity 

(given by the shape of the Engel curve), we cannot draw conclusions on the directional 

impact of qi on the sign of the cross-price elasticity. Furthermore, except in industries that 

follow Cournot-style quantity setting behavior, quantity sold cannot be treated as exogenous. 

Given this ambiguity, we are unable to formulate a directional prediction concerning the 

influence of qi. Therefore, we include this variable as a covariate in the analysis discussed 

below.   

3.2 Pairwise Sign Asymmetric Cross-Elasticities 

Lastly, we turn to sign asymmetries in pairs of cross elasticities. Here the Slutsky 

equation (see Eqs. 16 or 17) does not provide clear, a priori guidance as to what will cause 

the signs to be asymmetric, since such an outcome will depend on a set of complicated, 

nonlinear and implicit relationships governed by the functional forms of ijE  and jiE .  

Absent the necessary foundation for formulating hypotheses, we resort to conducting 

exploratory empirical analyses wherein we relate the presence of sign symmetry vs. sign 

asymmetry in pairs of cross-elasticities to the constructs represented on the right-hand side 

of Eq. (14).   
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4. DATABASE AND ESTIMATION OF MCI AND MNL SHARE MODELS 

We begin this section with a description of the database employed in our empirical 

analysis. Following that, we discuss the specification of the MCI and MNL/ECI share 

models used to estimate cross-elasticities. Lastly, we discuss the specification of the models 

used to estimate the income and category demand elasticities required to implement 

empirically tests of our hypotheses. 

4.1. Database 

The source of the data analyzed here is the Dominick’s Finer Foods database, 

provided by the James M. Kilts Center, Graduate School of Business, University of Chicago. 

We investigate 127 brands from 25 sub-categories. The sub-categories are purposely 

selected so as to be composed of relatively homogeneous choice alternatives. That is, for 

each retailer category studied (laundry detergents, toilet tissue etc.) we identify sub-

categories within which we expect all brands should be highly substitutable.  Table 4.1 

provides a list and description of the sub-categories, including the number of brands in each 

sub category, as well as the number of store-weeks of data available.  

                        INSERT TABLE 4.1 HERE 

 A total of 86 stores are in the Dominick’s chain, and we have a maximum of 105 

weeks of data available for any sub-category.  In some sub-categories stockouts were 

observed, such that for given weeks the choice sets available to consumers were constrained. 

To avoid possible bias arising from these constrained choice sets, we use only the weeks and 

stores when the entire sub-category was available to consumers on the shelves. The data 

utilized includes measures of price per volume, price per unit, presence of promotions, and 

both quantity and unit sales. This approach may not capture dynamic or temporal effects of 
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pricing and promotions, but we see this is as a missing observation problem and therefore 

leave that for future research.  

An important issue is the choice of the set of substitutable items comprising each of 

the sub-categories. The phenomena of sign and magnitude asymmetries in cross elasticities 

may be rather trivial for a set of brands that were a priori complementary to one another (as 

an example, consider the subcategories pasta and pasta sauce). Thus, we restrict the scope of 

this research to market share attraction models for only substitutable items and choose 

categories where it is reasonable to assume that discrete choices are made within a category 

by a majority of consumers. As may be seen from Table 4.1, we consider, for example, 

different types of dishwashing detergent to be separate sub-categories, e.g., automatic 

dishwasher detergent and regular dishwashing detergent brands. For some categories, we 

also separate out the form of the product (e.g. liquid vs. powder), since households may 

purchase multiple forms for different use occasions. Often, there will be only one UPC at 

this level.  Relating this discussion back to our earlier definition of the Hicksian 

compensated substitution effect, we select sub-categories in such a way that we are 

reasonably confident that the term  .0)&( >jiR

In order to minimize aggregation effects, we do not aggregate data across stores—in 

line with the finding in Christen, Gupta, Porter, Staelin, and Wittink (1997) that an 

aggregation bias arises in estimates for nonlinear models when sales data are summed across 

stores, and weighted average price of the UPCs are employed.    

4.2. Specification of MCI and MNL Share models    

We estimate own and cross elasticities for the fully-extended specifications for the 

MCI and MNL/ECI attraction models.  Details on the derivation details and properties of the 
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fully extended versions of the attraction models are discussed in Fok, Franses and Paap 

(2002).  In attraction models of market response, market share for a brand depends on its 

attractiveness relative to the sum of the attractions of all competing brands (Bell, Keeney, 

and Little 1975).  Attraction is specified as a function of a set of marketing mix variables 

and  other covariates.  For the fully extended model, each brand’s attraction is related to a 

set of covariates for all brands, i.e., 

MCI:                                                          (17a) ∏∏
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where ui is the intrinsic attractiveness for brand i,  is the value for covariate h for brand j 

at time t and 

hjtx

hijβ  are parameters relating the sensitivity of the attraction to changes in the 

covariate.  The error component is itε  and can take on a rich structure to accommodate a 

host of econometric issues (cf. Fok, Frances, and Paap 2002).  The estimation procedure 

involves a “log-centering” linear transformation proposed by Cooper and Nakanishi (1988, 

pp. 28-29).4

The covariates in our model include retail price, in-store promotions and a number of 

seasonal and event-based indicator variables.  After log-centering, the reduced form models 

for the MCI and MNL/ECI models, respectively, are:  

MCI: 

                                                 
4 The log-centering procedure applied to the fully extended model is possible because of the scale invariance of 
the geometric mean (or SIGM) property of attractions.  This property is developed in Berndt and Silk (1993). 
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MNL/ECI: 
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where c = category, s = store, M=month, t = week, = number of brands in category c, 

{i,j}= brand subscripts, s

cm

csit is brand  i‘s share in t, csts~  is the geometric mean of the shares of 

the brands in c for t,  is the retail price for brand (consistent with our notational 

convention used throughout the paper),  is lagged market share for brand 

csitX

1, −tcsjs j , and 

{cpn,bns,pco} are metrics for promotions, i.e. coupon, bonus buy and a simple (promotional) 

price reduction, respectively.  We originally coded promotions as dummy variables – a zero 

or one if a promotion is present for any UPC. The final promotion variable used in 

estimation is a weighted index of the promotions run across UPCs within a product line (e.g. 

Little 1998).  The weights represent the share of the UPC for the brand over the entire 

observation series. Due to the narrow definition used for the categories studied, the number 

of UPCs per brand is often low and therefore the weighted promotional index is highly 

correlated with the non-weighted promotional variables.  The components ( cieciM μμ + ) 

represent brand specific monthly and event-based unobserved variables.  

 For the MCI model, we then add a one to the promotion metric before taking logs, 

since this would otherwise require taking a log of zero for weeks/stores where no promotion 

was present.  Because of the linear additive link function, the MNL/ECI model does not 
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require us to add a one to the promotion variable.  In both cases, the purpose of these 

covariates is to control for store-level promotional activities.  

The other controls used in the market share specifications are mainly seasonal 

indicator variables.  We use a rich set of variables to account for unobserved demand shocks.  

First, to account for unobserved monthly activities for these stores, we add in a set of 

monthly indicator variables.  Second, we add in “event” based indicator variables.  These 

events include major retailing chain-wide events that often have a considerable effect on 

store traffic. Examples of such events include Thanksgiving, Halloween, Easter, etc. .  The 

presence of lagged responses is a common concern with sales models, although not so much 

with market share models. Nevertheless, the models include lagged market share terms for 

m-1 brands in each category.   

For the empirical analysis, we use brand level data for each store and each week.  

We perform no aggregation across stores and weeks and minimal aggregation across SKUs.  

In estimating the parameters of Eq. (18), we constrain the estimates to be equal across stores 

and across weeks.  While it is also valid to study micro-level parameters (e.g. see 

Montgomery 1997), our interest is more at the brand-market level (e.g. the Chicago DMA) 

than in identifying factors useful for fine-tuning the price structure at the store level.  
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4.3 Estimates of Cross-Price Elasticities  

Price elasticities are calculated based on the estimated attraction coefficients ( ) 

for all brands competing against a focal brand.  The elasticity expressions for the MCI and 

MNL models are given by (Cooper and Nakanishi 1988, pp. 144-145): 
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where vw  is the mean market share for brand v, jX  is the mean value of retail price, and the 

“hat” above each value indicates that the parameter is estimated.  The metrics ),( jv Xw  are 

arithmetic means of the quantity market share across the 52 weeks and the arithmetic mean 

of the prices for the competing brands, also across the 52 weeks.  A total of 732 cross-price 

elasticities were estimated for the 25 sub-categories listed in Table 4.1. The number of 

cross-elasticity estimates per sub-category depends on the number of brands available in a 

category, which varies from a minimum of 3 to a maximum of 12.  Note that the number of 

observations (stores × weeks) upon which the cross-elasticity estimates are based varies 

from a minimum of 3,910 to a maximum of 9,030.  

Table 4.1 also summarizes pertinent information about the signs of the MCI and 

MNL/ECI estimates. The relative incidence of negative-signed and sign-asymmetric cross-

elasticities is very similar for the MCI and MNL/ECI models, both in total and with respect 

to how these anomalies are distributed across the 25 sub-categories. Of the 732 cross-

elasticity estimates, 16.9% are negative for the MCI model and 17.8% for the MNL/ECI 

model.  When the estimates are treated as pairs (732/2 = 366), the percentage of sign 
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asymmetric cross-elasticities is 40.7 and 43.7 for the MCI and MNL/ECI models, 

respectively. The proportion of the cross-elasticities within a category that are negative is 

quite stable across categories, being zero in seven of the 25 categories and ranging from 

10% to 30% in the remainder. The incidence of sign asymmetric pairs is similarly stable 

across categories, again being zero in 7 of the 25 categories and varying from 4% to 10% of 

the pairs in the other categories.   

Table 4.2 documents the distribution of the pairs of sign symmetric and sign 

asymmetric estimates according to their statistical significance, as judged by whether the 

ratio of the cross-elasticity estimate to its standard error was equal to or exceeded 2.0 in 

absolute value. Whereas for pairs of positive, sign symmetric cross-elasticities, both 

estimates are statistically significant for more than 60% of the pairs, such is the case for less 

than 30% of the negative, sign symmetric pairs, and for less than half of the sign 

asymmetric pairs. Again, the distributions of the MCI and MCI/ECI estimates are very 

similar with respect to statistical significance. 

          INSERT TABLE 4.2 HERE  

4.4 Estimation of Category Demand and Income Elasticities
 

A separate econometric model is estimated to obtain the category demand elasticities.  

For each category we specify a log-log model for category demand ( ) for 

each category (c), brand (i), store (s) and week (t): 
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where ∑=
= cm

i cistciscst XwX
1

is a price index with expenditure share weights (constant over 

time) cisw .  The parameter  represents the category demand parameter with respect to the 

category price index and in fact is the estimated category demand elasticity.  The category 

price elasticity for brand i can be found by differentiating Eq. (20) with respect to the price 

(or ).   

Q
cδ

ii XQC ln/ln ∂∂=

In generating the income elasticity we had several choices for our metric of income.  

First, we could measure sensitivity of quantity demanded to actual income and measure 

using a survey-based demographic database, such as Consumer Expenditure Survey from 

the Bureau of Labor Statistics or the census.  This is a common approach used in consumer 

demand theory (cf. Hausman, Leonard and Zona 1994, and Deaton and Muellbauer 1980).  

The problem with using available demographic data is the lack of temporal and cross-

category variance.  While we expect an aggregate measure of income to affect the total 

amount spent on groceries within a year, we do not expect this variable to have much 

explanatory power for disaggregated subcategory choices.  We therefore draw on the 

approaches used by past research (e.g., see Allenby and Rossi 1991b, and Deaton and 

Muellbauer 1980) and use the total amount spent on the subcategory as our metric for 

income.  This income metric is also consistent with the definition of income ( ) in 

Appendix A. 

1+mX

The estimation equation used to generate income elasticities is a log-log quantity 

specification, controlling for prices and for other demand side shocks, and is also a function 

of the total category income: 
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where  is the brand (and store) intercept,  are month and event indicator 

variables,  is the lagged quantity and  is total expenditure on this category.  For 

the log-log quantity model, the income elasticity for brand i is directly given by the 

parameter, . 

q
cisα q

cie
q
ciM μμ ,

1, −tcsiq cstmX ,1+

q
ciϕ

5.  CROSS-CATEGORY ANALYSES OF ANOMALIES IN ESTIMATES OF  
CROSS-PRICE ELASTICITIES: HYPOTHESIS TESTS AND RESULTS 

 
We begin this section by defining measures of the explanatory variables used in the 

cross-category analyses to account for the types of anomalies in cross-price elasticities 

discussed above. We then outline the statistical models used in implementing the hypothesis 

tests and exploratory analysis related to each type of anomaly.  Finally, we present our 

empirical findings. 

5.1 Definitions of Explanatory Variables 

 We employ the following measures for the key constructs identified in the preceding 

analysis as factors influencing the sign and magnitude of cross-elasticities. 

( ) (∑ =
=

m

j jjiii qXqXB
1

/ )  = brand i’s share of total category expenditures where each  

         is a sum across stores and weeks; iiqX

Ci = elasticity of category demand with respect to the price of focal brand i, estimated 

        by the coefficient obtained when the natural logarithm of the total category   

        volume ( ) is regressed on the natural logarithm of the price of brand i  ∑ =

m

j jq
1

ln
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        (ln Xi), Ci  ≤ 0. See Eq. (20). 

Ii = elasticity of demand for brand i with respect to total category expenditures, 
   
      estimated by the coefficient obtained when the natural logarithm of quantity    
 
      purchased of brand i (ln qi) is regressed on the natural logarithm of total    
 
      category expenditures ( ), I∑ =

m

j jjqX
1

ln i ≥ 0. See Eq. (21). 

 
E*

ii= Eii/max(Eij), for all j ≠ i, the ratio of the price elasticity of brand i’s own-demand     

         to the maximum (positive) value of its cross-price elasticities with respect to  

         the other brands, E*
ii < 0.  

mc = the number of brands in category c, mc > 1. 
 
 Ci and Ii are pooled (across stores and weeks) estimates from the category demand 

and quantity demand models, respectively, discussed earlier in Section 4.4.  The variable E*
ii 

is taken from the estimation of the MCI and MNL/ECI models.  Both the number of brands 

(mc) and the budget shares BBi are observed.  Table B4.4 in the supplemental Appendix B 

presents summary statistics for the estimates values of the income elasticities (Median: 

0.737, Std. Dev.: 0.346) and category demand elasticities (Median: -0.349, Std Dev.: 0.434) 

across the 127 brands marketed in the 25 product categories. 

5.2. Testing Hypotheses (H1-H3) Relating To Negatively vs. Positively Signed  Cross 
Elasticities  

  Hypotheses H1-H3 were derived from the Slutsky relation for the cross effect 

term, ijE , per Eq. (14): 

                            ( ) ( ) 0)&(/ <+−= jijijij CIBjiRqXE       

 
We employ two distinct models in implementing tests of H1-H3. The first is a binary 
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logit model specified as follows (the data is pooled across categories and each category is 

represented by c): 

                          ( ) ( ) ( )( )ccc
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where dc’ are dummy variables for C-1 (C = 6) categories comprising the cross-section of 

products listed in Table 4.1.  Note that the dependent variable is defined as the probability 

that a cross-elasticity is negative, where the binary dependent variables used in the 

estimation was set equal to one if a cross-elasticity was negative (  ), and zero, if 

positive. As may be seen from Table 4.1, 124 of the 732 (17 percent) cross-elasticity 

estimates for the MCI share model were negative while 130 of the 732 (18 percent) cross-

elasticity estimates for MNL/ECI share model were negative. The hypothesized relations 

discussed in Section 3.1 predict that: 

0<c
ijE

                                        H1: φ > 0;   H2: η> 0;   H3: θ >0.  

The first six variables on the RHS of Eq. (24) (the intercept, the set of category level 

dummies, the ratio of price of the ith brand to quantity sold for the jth brand, the number of 

brands in the category, and the main effects of budget share and income) serve as control 

variables for the (unobserved) Hicksian demand component, (X/q)R(i&j).  An alternative 

way to capture the Hicksian demand component is, of course, to specify an intercept 

parameter for each pair of brands.  However,  no matter how many categories are studied, 

the number of parameters required to do so is extremely large, leading to numerical 

convergence problems and low degrees of freedom and power for testing hypotheses.   
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Since the underlying dependent variable is continuous, we also tested H1-H3 based 

on a linear regression model, estimated via generalized least squares (GLS). The latter 

estimation adjusts for a possible lack of independence among the observations and facilitates 

correction for the presence of heteroskedasticity.5   
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Summary statistics for the variables specified in Eq. (24) are presented in the supplemental 

Appendix B, Table B5.1A1. From that table, it may be seen that although the means (0.521 

and  0.062) and the standard deviations  (1.253 and 0.135) of the MCI and MNL/ECI cross-

elasticity estimates,  respectively, are quite different, the relative variability of the two sets 

of estimates is similar (coefficients of variation: 2.400 and 2.177, respectively). The two sets 

of cross-elasticity estimates are also fairly highly intercorrelated (r = 0.667). The simple 

correlation between Eij and the binary dependent variable for the logit model is -0.636 for 

the MCI estimates and -0.407 for the MNL/ECI estimates. Note that the hypothesized signs 

of the coefficients for the relevant variables in Eq. (24) are the reverse of those for the 

binomial logit, i.e., 

                        H1: φ′ < 0;   H2: η′< 0;   H3: θ′ < 0. 

 Parameter estimates for the binomial logit Eqs (22) and (23) and the regression 

model in Eq. (24) are presented in Table 5.1. In the case of the binomial logit results, H1 and 

                                                 
5 Interdependence among a cross-section of observations of Eij may arise here because for each brand, there is 
a set of cross-elasticities between that brand and all the other competing brands within the same category. To 
illustrate, for a category of 10 brands, there will 9 cross-elasticities for each brand. Bijmolt and Van Heerde 
(2001) make use of an iterative GLS method for multilevel or hierarchical models, due to Goldstein and 
Rashbash (1992), to account for such interdependencies. When we applied this procedure to the data in this 
study, tests indicated that the estimated within-group covariance was close to zero.   
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H2 are supported by the estimated coefficients for  and  respectively; the relevant 

coefficients for both the MCI and MNL/ECI estimates have the predicted signs and are 

statistically significant (p < 0.01, one-tail tests).  However, H1 is supported by the GLS 

results for the MCI cross-elasticities but not for the MNL/ECI specifications, where the sign 

of estimated coefficient (φ′) for  is the opposite of that predicted, albeit not statistically 

significant.  

c
i

c
j IB c

iC

c
i

c
j IB

                                                INSERT TABLE 5.1 HERE 

The GLS results for both the MCI and MNL/ECI cross-elasticities are inconsistent 

with H2; the sign of the coefficient estimate (η′) for  is positive, rather than negative as 

hypothesized (again, the estimate is not statistically significant).  Diagnostic tests indicate 

that collinearity is not the source of the “wrong” signs here. 

c
jC

The results pertaining to H3 for the MCI cross-elasticities are also mixed. The 

estimated GLS coefficient (θ ′) for E*
ii has the hypothesized sign and is statistically 

significant while that from the binomial logit (θ) is the opposite of that hypothesized (albeit 

again not statistically significant). Recall from the discussion in Section 3.1 that H3 is not 

applicable to the MNL/ECI model. 

5.3 Analysis of Pairwise Sign Asymmetric Cross-Elasticities 

Having obtained modest evidence in support of our three principal hypotheses, we now 

consider empirical findings for those situations in which theory did not provide 

unambiguous predictions.  As a point of departure for the exploratory analyses of sign 

asymmetries, consider the difference between a matched pair of cross-elasticities: 
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 An exploratory analysis of possible factors influencing sign asymmetry between 

pairs of cross-elasticities was conducted again using both a binary logit and a linear 

regression model. For the logit model, the dependent variable is the probability that both 

members of a pair of cross-elasticities have the same, rather than opposite signs.  

( ) ( )( )ccc
ij

c
ji KKEE exp1/exp  Symmetric)Sign  &Pr( +=    (26) 

( ) ( ) (
( ) ( ) ( ) c

ji
cccc

c
c

C

c

c
j

c
i

cc
cc

c

CDIBDID

BDmqqqXdK

εηφδ

γτλβα

+Δ+Δ+Δ+

Δ++Δ++= ∑
−

=

432

1

1

1'
''

            

/ )
   (27) 

Included as control variables are dummy variables ( ) for C-1 sub-categories,   'cd
 
the term  ( ) ( ) { } ( )c

j
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i
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i

c
j

c
i

cc qqqXqXqqqX // −≡Δ  that interacts with the unobservable 

Hicksian component  R(i&j) in Eq. (17), and the number of brands (mc). The other four 

binary variables on the right-hand side of Eq. (27) are defined as follows:   

            ( ) 11 =Δ cBD , if ; = 0, otherwise. c
i

c
j BB >

            ( ) 12 =Δ cID , if ( )c
j

c
i II > ; = 0, otherwise. 

            ( ) 13 =Δ cc IBD , if ( )c
j

c
i

c
i

c
j IBIB > ; = 0, otherwise.  

            ( ) 14 =Δ cCD , if ( )c
i

c
j CC > , = 0, otherwise. 

 
The binary dependent variable employed in estimating Eq. (26) was defined as: ( ) 1=SSD if 

 and  have the same sign; = 0, if the pair is sign asymmetric.  c
jiE c

ijE
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As may be seen from Table 4.1, for the 366 pairs of cross-elasticities estimated for 

each share model, sign symmetry was observed for 59 percent (217) of the MCI estimates 

and for 56 percent (206) of the MNL/ECI estimates. 

 Parallel to the structure of the binary logit model in Eqs. (26) and (27), the following 

linear regression model was also estimated by means of GLS, where here the dependent 

variable and regressors are continuous, rather than binary as in the logit model. 
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  Summary statistics for the explanatory variables included in the binary logit and 

regression models are presented in the supplemental Appendix B, Tables B5.2A1-B5.2B3. 

Parameter estimates for binomial logit Eqs. (26) and (27) and regression model Eq. (28) are 

given in Table 5.2. 

 Overall, the exploratory analysis conducted using these two models failed to reveal 

any covariates that were consistently associated with sign asymmetry in MCI and MNL/ECI 

cross-elasticity estimates. While the signs of the estimated coefficients for the covariates 

obtained for the MCI cross-elasticities tended to be consistent with those for the MNL/ECI 

for each of the logit and regression models, the signs were not consistent across models.  

Moreover, the covariates that appeared to be statistically significant in the binomial logit 

model tended to be different from those significant in the regression model. 

   INSERT TABLE 5.2 HERE 

5.4 Summary of Hypothesis Test Results 

 We summarize results of the various tests of our hypotheses discussed above in 

Table 5.3.  Confirming evidence for H1 was obtained in three of the four tests. The tests for 
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H2 were supported by the binomial logit model but not supported by the regression models.  

H3 (MCI only) was only supported by the results from the regression models.  Whereas the 

binomial logit model produced hypothesis test outcomes that are qualitatively similar for 

both the MCI and the MNL/ECI cross-elasticity estimates, the regression model test results 

for MCI and MNL/ECI were equally split between agreeing with respect to confirming H2 

and conflicting with respect to support vs. rejection of H1. 

    INSERT TABLE 5.3 HERE 

 If the binomial logit results are discounted on grounds of being subject to possible 

threats arising from heteroskedasticity and non-independence of the underlying observations, 

then greater reliance should be placed on tests arising from the regression model where 

adjustments were made to address those issues. Doing so, one is led to conclude that with 

the exception of H2, all the hypotheses obtain support from the tests conducted with MCI 

cross-elasticities. More specifically, the GLS estimates of the regression model for MCI and 

MNL/ECI are concordant with respect to H2 (disconfirmation), but discordant with respect 

to H1; recall that H3 is applicable only to the MCI cross-elasticities. As was pointed out 

earlier, the correlation between the MCI and MNL/ECI cross-elasticities is substantial and 

their coefficients of variation are of similar magnitude.  The data for the regressors in the 

MCI and MNL/ECI models used to test H1 are identical.  Hence, at this point we are unable 

to account for the conflicting results obtained with respect to the latter pair of hypotheses.  

 

                                      6.   DISCUSSION  

 Market share models are commonly used to measure market level substitution 

patterns. A troubling issue encountered in such studies is that seemingly anomalous results 
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can and do arise. As Montgomery and Rossi (1999) observed: “Unrestricted least squares 

estimates of own and cross-price elasticities are often of an incorrect sign and unreasonable 

magnitude, particularly if the analysis is performed at a relatively low level of aggregation, 

such as the account or store level” (p. 413). This paper advances understanding of such 

troubling observed anomalies in two ways.  

First, we demonstrate that the presence of negative cross-elasticities is at least 

theoretically possible and can be explained by the relative magnitudes of the share-weighted 

income elasticity, the unobserved Hicksian compensated rate of substitution, and the 

category demand effect.  Second, we further show that asymmetries in the signs for adjacent 

pairs of cross elasticities are also theoretically possible and explicable in the same way.  

This latter finding implies that it is possible for a pair of brands to be simultaneously a 

substitute and a complement to one another.   

 The value of these theoretical insights in large measure depends upon the extent to 

which the aberrant effects addressed occur in empirical work. Using market share attraction 

models, we estimated cross-elasticities for 25 categories of consumer packaged goods, 

involving a total of 127 brands. Our findings reveal that among the 732 cross elasticities 

estimated, about 17-18% are negative. In only seven of the 25 categories were all the 

estimated cross elasticities positive.  In light of this incidence of negative signs, it is not 

surprising that in about 40% of the 366 pairs of cross-elasticities, the estimates were 

asymmetric with respect to sign.   

Our theoretical analysis of the Slutsky equation led to the formulation a set of 

hypotheses that could account for the occurrence of negatively-signed cross-elasticity 

between a pair of brands that are substitutes in the sense that the unobserved Hicksian 
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compensated price elasticity is positive. As summarized in Table 5.3, some empirical 

support was found for each of our three hypotheses. In the case of pairwise sign asymmetric 

cross elasticities, we concluded that the Slutsky equation was of little help in predicting the 

phenomenon of sign asymmetry. Instead, we undertook an exploratory analysis in search of 

empirical regularities but found none, as our theoretical analysis had suggested.     

6.1 Implications 

Given these findings, what advice can we offer? Rather than dismissing negative 

cross-elasticity estimates out of hand, we propose that investigators assess whether they can 

be explained by the combination of an income effect, substitution effect and the category 

demand effect, as indicated by H1-H3.  Drawing on the elasticity estimates from this study, 

we illustrate the usefulness of such additional analyses. For example, in the case of the 

powdered laundry detergent category, we find a negative cross elasticity of -0.45 for Tide 

with respect to the price of Oxydol (both, incidentally, P&G brands).  Although Oxydol has 

a revenue share of approximately 10%, Tide has a relatively large income elasticity of 

around 1.1.  Moreover, the elasticity of Oxydol’s price changes on category demand is -0.31.   

These effects work in combination to produce a negative cross elasticity for Tide with 

respect to Oxydol.  

Analysis of the antecedents of asymmetries in cross-price elasticities identified in 

this study can also be useful to assist managers in understanding key properties of a brand’s 

competitive position such as its clout and vulnerability. A focal brand is said to be 

vulnerable when the cross elasticity of the focal brand with respect to some action taken by a 

competing brand is high and positive. A positive cross-elasticity reflects vulnerability in the 

sense that it is measures how much share that a competing brand’s price changes can draw 

 39



from the focal brand. Clout is the converse of vulnerability; viewed in terms of the 

substitution matrix, it is the opposite diagonal, and represents how much share that the focal 

brand can draw from the competitor.  

While more complex methods are available (cf. Cooper and Nakanishi, 1988, Chapt. 

6 and Kamakura and Russell, 1989), a simple 2 by 2 contingency table analysis will serve to 

illustrate how determinants of asymmetric cross-price elasticities affect a brand’s clout and 

vulnerability.  First, assume that the two brands are approximately symmetric with respect to 

their compensated cross-elasticities.  Second, assume that there is no category expansion 

effect of price (i.e. in Eq. 14, Ci=0). The two remaining dimensions are the income elasticity 

of the focal brand and the expenditure share value of the competing brand.  Extending the 

previous example of Tide competing against Oxydol, we identify low and high vulnerability 

regions as follows: 

 Focal brand income elasticity ( ) TideI

 Low High 

High Low to moderate vulnerability Low vulnerability  

C
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(B

O
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l) Low High vulnerability Low to moderate 

vulnerability 

 

 We conjecture that the special case of negative cross-elasticities is most likely to 

arise in the upper right hand quadrant, where the focal brand, Tide, enjoys such low 

vulnerability that the competing Oxydol brand turns out to be complementary to Tide.  This 

illustration highlights that an understanding of the antecedents of cross-elasticities can be 

useful in diagnosing the level of clout and vulnerability a brand may possess. Development 
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of a more general taxonomy of the factors underlying clout and vulnerability is beyond the 

primary focus of the present paper, negative cross-elasticities. 

The kind of informal analysis outlined above appears broadly consistent with 

Montgomery and Rossi’s (1999) position that while restrictions from economic theory 

should not be expected to hold exactly in practice, they do nevertheless represent useful 

source of prior information from which the analyst should draw.   

6.2 Limitations and Directions for Further Research 

Several limitations and directions for further research deserve to be mentioned.  First, 

we acknowledge that we are able to report only partial support for our hypotheses.  At least 

in part, this may be due to the intrinsic non-linearity that is inherent among the set of 

variables used to test these hypotheses.  For example, it is likely that a change in expenditure 

share also affects a change in the compensated price elasticity because both make use of the 

quantity variable.  Of course, it is also the case that absence of evidence is not the same as 

evidence of absence. Thus, even though the hypothesized relationships may be correct, the 

empirical implementation may not have been adequate to identify and reliably quantify the 

relationships.   

Second, our theoretical results hold for any quantity market share response model.  

However, our empirical study considered only two types of fully extended attraction models. 

This leaves open the important question of what are the properties of other types of market 

share response models that are also used to measure substitution patterns, such as random 

coefficient logit models (e.g. Besanko, Gupta and Jain 1998, Nevo 2001), classic demand 

models such as log-log quantity models (cf. Christen, Gupta, Porter, Staelin and Wittink 

1997, Montgomery and Rossi 1999) or aggregate probit models (cf. Chintagunta 2001).  
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Third, the implications of our results for models in the new empirical industrial 

organization literature merit consideration (Kadiyali, Sudhir, and Rao 2001).  Since some 

cross elasticities in a substitution matrix may be negative, how does this condition affect the 

measurement and analysis of competitive structure?  A negative cross elasticity between two 

competing brands implies that the two brands are complementary in purchases.  Our paper 

shows that these results are not necessarily invalid.  The presence of negative cross 

elasticities may, however, yield some counter-intuitive interrelationships among competitors. 

The implications for equilibrium analysis of substitution matrices that include negative cross 

elasticities should be investigated. 

7.   CONCLUSIONS 

Researchers often examine empirical findings with respect to their “face validity.”  

Judgments about face validity are generally grounded in some theoretical insights about 

what result should be expected/unexpected and/or what is plausible/implausible.  In this 

paper, we have emphasized the properties of homogeneity and symmetry from neoclassical 

demand theory as desiderata for estimates of cross-elasticities. While asymmetry is 

generally accepted as an inherent property of a substitution matrix, our results demonstrate 

that both negative signs and sign asymmetry in substitution patterns are theoretically 

possible.  These theoretical insights were empirically verified with market data. Our 

analyses suggest that almost one in five of the cross elasticities are negative.  For only seven 

out of the 25 categories studied did we find all cross elasticities to be positive.  Asymmetric 

signs across pairs of cross elasticities occurred about 40% of the time.  While we have 

reported a substantial amount of progress in developing a theoretical understanding of the 

conditions under which negative and sign asymmetric cross-elasticities can occur, more 
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needs to be done to better predict when they are likely to occur, and in such situations, how 

to interpret them.   
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Figure 1: A graphic illustration of the difference between compensated and uncompensated 
substitutions for Tide liquid laundry detergents versus Wisk liquid laundry detergents.  A 
decrease in the price for Wisk leads to an outward shift in the budget constraint from I0 to I1. 
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                                                                       Table 4.1 
DESCRIPTIONS OF CATEGORIES AND SUB-CATEGORIES 

AND COUNTS Of CROSS ELASTICITY ANOMALIES 
 

Category/Sub-Category Number 
Brands 

Number 
Observ. 

No. Cross- 
Elasticities 

  MCI 
   Neg.  
  Sign  
 Cross 
  Elas. 
     

MCI 
Sign 
Asymm. 
Pairs  

MNL 
Neg. 
Sign 
Cross 
Elas. 

MNL 
Sign 
Asym. 
Pairs 
 

Pain Relievers 
• 24 Tablets 
• 50 Tablets 
• 100Tablets 

 
     3 
     4 
     3 

 
8,925 
7,480 
9,030 

 
       6 
      12 
       6 

 
      0/6a 

      0/12 
      0/6 

 
   0/3b 

   1/6 
   0/3 

 
0/6a 

0/12 
0/6 

 
 0/3b

 1/6 
 0/3 

Toothbrushes      4 9,030       12       0/12    0/6 0/12  0/6 

Dishwashing Detergents 
• Automatic Liquid,50 oz. 
• Automatic Liquid, 65 oz. 
• Automatic Powder, 50 oz. 
• Automatic Powder, 65 oz. 
• Regular, 12 oz. 
• Regular, 22 oz. 
• Regular, 32 oz. 
• Regular, 42 oz. 

 
      2 
      3 
      4 
      5 
      4 
      8 
      8 
      4 

 
9,030 
9,030 
9,030 
9,030 
9030 
9,030 
9,030 
7,396 

 
       2 
       6 
      12 
      20 
      12 
      56 
      56 
      12 

 
      0/2 
      2/6 
      2/12 
      7/20 
      2/12 
     10/56 
    10/56 
     1/12 

   
   0/1 
   0/3 
   3/6 
  6/10 
   1/6 
 11/28 
 11/28 
   2/6 

 
 0/2 
 1/6 
2/12 
7/20 
2/12 
12/56 
12/56 
 1/12 

 
0/1 
0/3 
4/6 
5/20 
1/6  
14/28 
14/28 
1/6 

Laundry Detergents 
• Liquid, 64 oz. 
• Liquid, 96 oz. 
• Liquid, 128 oz. 
• Powder, 42 oz. 
• Powder, 70 oz. 
• Powder, 98 oz. 
• Powder, 136 oz. 
 

 
12 
8 

11 
5 
3 
3 
3 

 
 6,120 
 6,545 
 7,565 
 3,910 
 4,956 
 7,482 
 4,956 

 
    132 
      56 
    110 
      20 
        6 
        6 
        6 

 
    18/132 
      6/56 
   26/110 
      1/20 
      1/6 
      1/6 
      1/6 
 

 
 37/66 
  9/28 
25/55 
  2/10 
   1/3 
   1/3 
   1/3 

 
20/132 
7/56 
25/110 
1/20 
1/6 
1/6 
1/6 
 

 
36/132 
12/56 
24/55 
2/10 
2/3 
1/3 
2/3 

Paper Towels 
• 1 Roll 
• 3 Rolls 

 
     10 
       4 
    

 
 9,030 
 8,944 

 
       90 
       12 

 
    22/90 
      1/12 

 
   20/45 
     1/6 

 
 22/90 
   1/12 

 
21/45 
  1/6 

Toilet Tissue 
• 4 Rolls 
• 6 Rolls 
• 9 Rolls 
• 12 Rolls 
 

 
       9 
       3 
       2 
       2 

 
 6,708 
 7,480 
 4,165 
 9,030 

 
        72 
          6 
          2 
          2 

 
     12/72 
       1/6  
       0/2 
       0/2 

 
    16/36 
      1/3 
      0/1 
      0/1 

 
13/72 
  1/6 
  0/2 
  0/2 

 
18/36 
  1/3 
  0/1 
  0/1 

TOTAL: 25          732  124/732 149/366 130/732 160/366 

 
          a Read: zero of 6 cross-elasticities have negative signs. 
          b Read: zero of 3 pairs of cross-elasticities are sign asymmetric. 
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Table 4.2 
SUMMARY OF SIGN AND STATISTICAL SIGNIFICANCE OF 366 PAIRS OF CROSS-

PRICE ELASTICITY ESTIMATES FROM 25 SUB-CATEGORIES*

 
 

TOTAL NUMBER OF PAIRS OF CROSS-PRICE ELASTICITY ESTIMATES: 
     366 

 

                     Sign Symmetric                              Sign Asymmetric 

                          MCI:  217                             MCI:  149 
                         MNL: 206            MNL: 160 
 

                                                                                                                   MCI     MNL      

  Positive  Negative  Both Sig.       71         79 
                    MCI MNL        MCI MNL               - sig./ + n.s.   21         17 
Both sig.      115            115            9                10                 + sig./ - n.s.    43         38 
One sig.         58              49           14                14                 Both n.s.        14         26                       
Both x-sig.       8                8           13               10  

Totals           181            172          36               34              Totals              149         160  

 

* Statistical significance for a cross elasticity is evaluated using a two tailed t-test with 
p=0.05.  
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Table 5.1 
TESTS OF HYPOTHESES H1-H3 

Estimated Coefficients 
(Ratio of Coefficient to Standard Error) 

  
Binomial Logit1         

 
Generalized Least Squares2  
             

Dependent 
Variable 

 
Pr (Eij < 0) 

 
Eij 
 

Variable  MCI MNL Variable MCI MNL 
BBj -15.423 

(5.835) 
-16.021 
(5.820) 

BBj 5.381 
(7.725)

  0.212 
(7.019) 

Ii -0.979 
(1.882) 

-0.923 
(1.810) 

Ii  0.326 
(1.422)

 0.003 
(0.678) 

BBj * Ii

H1 

 9.999c 

(2.815) 
 9.620c 

(2.627) 
BBj * Ii

H1 

-2.010b 

(1.735)
 0.009 
(0.203) 

Cj 

H2 

 0.574c 

(3.143) 
 0.337b 

(2.122) 
Cj

H2 

0.004 
(0.079 

 0.002 
(1.837) 

E*
ii

H3 

-0.022 
(0.131) 

  n.a. E*
ii

H3 

-0.159c 

(2.430)
    n.a. 

Xj / qi -0.155 
(0.532) 

 1.099 
(3.480) 

Xj / qi -0.058 
(0.922)

 -0.008 
(3.370) 

mc -0.080 
(1.333) 

 -0.076 
(1.536) 

mc 0.018 
(0.817)

 0.001 
(1.549) 

Category 
Dummy 
Variables 

 
1 sig. 

 
1 sig. 

Category 
Dummy 
Variables

 
None 

 
1 Sig. 

Intercept 1.306 
(2.000) 

1.419 
(2.321) 

Intercept -0.584 
(2.372)

-0.008 
(1.147) 

 
Log Likelihood 

-390.791 -392.562 S.E.E. 1.103 0.125 

McFadden R2     0.128    0.135 R2 (adj.) 0.225 0.136 
Percent  
Correctly 
Classified 

 
70.63 

 
 69.95 

  
n.a. 

 
n.a. 

                               
                                            a p<0.10         b p<0.05      c p<0.01 one tail tests, n=732. 
                     1 Robust standard errors computed using quasi-maximum likelihood methods. 
              2 White heteroskedasticity-consistent standard errors and covariances. 
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Table 5.2 
ANALYSES OF SIGN-ASYMMETRIC CROSS ELASTICITIES 

Estimated Coefficients 
(Ratio of Coefficient to Standard Error) 

  
Binomial Logit1 

 

 
Generalized Least Squares2     
         

Dependent     
Variable             

Pr (Eij & Eji
Sign Sym.) 

 

 
(Eij- Eji) 

Variable  MCI MNL Variable MCI MNL 
D1(ΔB) -0.860b 

(2.431) 
-0.520b 

(1.534) 
ΔB -0.837 

(0.371) 
-0.162 
(1.264) 

D2(ΔI) -0.768b 

(2.368) 
-0.466b 

(1.519) 
ΔI 0.103 

(0.183) 
 0.015 
(0.509) 

D3(ΔBI)  0.251 
(0.971) 

0.152 
(0.596) 

ΔBI -0587 
(0.216) 

-1.024c 

(4.390) 
D4 (ΔC) -0.080 

(0.269) 
-0.012 
(0.041) 

ΔC 0.894c 

(13.964)
   0.071c 

(12.716) 
Δ(Xq)/(qiqj) -0.029 

(0.064) 
-0.032 
(0.093) 

Δ(Xq)/(qiqj) -0.049 
(0.245) 

-0.078c 

(5.348) 
mc 0.216c 

(4.343) 
0.139c 

(3.450) 
mc 0.016 

(0.644) 
-0.002 
(1.086) 

Category 
Dummy 
Variables 

 
1 Sig. 

None 
 Sig. 

Category 
Dummy 
Variables 

None 
 Sig. 

 
1 Sig. 

Intercept -1.679 
(3.119) 

-1.033 
(2.209) 

Intercept -0.056 
(0.260) 

0.025 
(1.065) 

Log 
Likelihood 

-233.821 -243.213 S.E.E. 1.436 0.141 

McFadden R2  
 

0.055 0.030 R2 (adj.) 0.326 0.433 

Percent  
Correctly 
Classified 

 
62.84 

 
58.47 

  
n.a. 

 
n.a. 

                                 a p<0.10         b p<0.05      c p<0.01 two tail tests, N=366 pairs. 
                1 Robust standard errors computed using quasi-maximum likelihood methods. 
           2 White heteroskedasticity-consistent standard errors and covariances. 
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Table 5.3 
SUMMARY OF HYPOTHESES TESTING RESULTS 

                     
                                                                                                 Binomial       Generalized           
                                                                                                    Logit           Least Sqrs.  

Hypothesis Explanatory Variable MCI MNL MCI MNL
H1: Neg. Cross Elas. ij IB ×  √    √    √    x 
H2: Neg. Cross Elas. Cj  √    √    x    xx 
H3: Neg. Cross Elas. E*

ii   x  n.a.    √ n.a. 
 
                  √ = Confirming evidence: estimated coefficient for variable has      
                         hypothesized sign and is statistically  significant, p ≤  0.05, 1 tail test. 
 
                  x =  Contradictory evidence: estimated coefficient has opposite sign 
                          from that hypothesized, but is not statistically significant, p > 0.10, 
                          two tail test. 
 
                xx = Contradictory evidence: estimated coefficient has opposite sign 
                        from that hypothesized and  is statistically significant, p ≤  0.10, 
                        two tail test. 
 
                n.a. = Not applicable. 
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APPENDIX A: Derivation of the Slutsky Equation in Share Elasticity Form 

Following Deaton and Muellbauer (1980, p. 45), we may write the well-known 
Slutsky equation from consumer demand theory (in the notation used throughout this paper) 
for any i and j:  
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Given that the Slutsky equation (A.1) relates to quantities demanded but the present interest 
is in market shares, we need to move from a quantity elasticity to a quantity share elasticity, 
where “share” refers to good i’s share of total demand, i.e., where 

 m,...,i,
q

q
s m

1v
v

i
i 1   =∀=

∑
=

 (A.3) 

And, by (A.2) we can use  as the Hicksian demand iq ( )X,uhq ii = .  Note that:  
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Substituting the Hicksian demand function into (A.3) and differentiating good i ’s share with 
respect to j ’s price, we obtain:  
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Hence:  
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The second term in the brackets on the right hand side of (A.6) is the elasticity of total 
demand with respect to the price of good j. Further, it is readily shown that the first term in 
the brackets on the right hand side of this equation (A.6) is the familiar Slutsky equation 
written in elasticity form, i.e.:  
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where jB  is the budget share of the j th good,  
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Substituting (A.7) into (A.6) yields:  
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Note that in general, whenever the conventional price elasticity in (A.6) is asymmetric, so 
too is the share elasticity in (A.8). But in addition, the share elasticity (A.8) will be 
asymmetric if the elasticity of total quantity with respect to price differs considerably 
between goods  andi j . 
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Appendix B: Ancillary Summary Statistics 

 
 

Table B4.4 
SUMMARY STATISTICS FOR ESTIMATES OF 

INCOME AND CATEGORY DEMAND ELASTICITIES 
(n = 127 brands) 

 
 

 
  Income 
 Elasticity

Category Demand 
        Elasticity 
 Mean 0.671        -0.349  Median 0.737        -0.225  

Max 1.337         0.240  
Min 0.052        -1.841  
Std Deviation 0.346         0.434  

 
 

Table B5.1A1 
SUMMARY STATISTICS FOR VARIABLES  IN MODELS USED TO TEST H1-H3 

(n=732 Cross Elasticity Estimates) 
 
 

 
 

  Eij
MCI 

D(Eij<0) 
  MCI 

  Eij
MNL 

D(Eij<0) 
  MNL 

 E*
ii

MCI 
 E*

ii
MNL 

   Bj    Ii BBjIi    Cj Xi/qj    m 

Mean   0.521   0.302   0.062  0.311 −1.046 −0.455 0.139 0.493   0.078 −0.382 0.271   8.623 
Median   0.427   0.000   0.009  0.000 −0.960 −0.356 0.094 0.398   0.039 −0.191 0.125   9.000 
Max   6.635   1.000   0.711  1.000   0.778   0.070 0.782 1.337   0.726   0.437 3.715 12.000 
Min −7.107   0.000 −0.325  0.000 −3.232 −2.124 0.023 0.086 −0.018 −4.346 0.001   2.000 
Std. Dev.   0.459   0.459   0.135  0.463   0.636   0.463 0.131 0.343   0.103   0.632 0.430   2.872 

   

Coef. of 
Var. 

  2.400   1.520   2.177  1.489   0.608   1.018 0.942 0.696   1.321   1.655 1.587 0.333 

 55



Table B5.1A2 
ZERO-ORDER CORRELATIONS AMONG VARIABLES IN MODELS  

USED TO TEST H1-H3 
(N = 732 Cross Elasticity Estimates) 

 
 

 Eij
MCI 

D(Eij<0) 
  MCI 

  Eij
MNL 

D(Eij<0)
  MNL 

   Bj    Ii BjIi    Cj      E*
ii

(MCI/MNL) 
 Xi/qj m 

            
Bj 0.463 −0.286  0.607 −0.407  ------       
Ii 0.082 −0.116  0.064 −0.288 −0.203 ------      

 BjIi 0.325 −0.218  0.443 −0.118   0.826   0.587 ------    
 Cj 0.026   0.075  0.094   0.085   0.096 −0.447 −0.052 ------   

E*
ii

(MCI/MNL) 
−0.051 
----- 

  0.037 
   ----- 

------ 
 0.005 

------ 
  0.045 

  0.038 
  0.043 

−0.022 
−0.456

  0.010 
−0.142

−0.199 
  0.318 

   ------ 
   ------ 

  

 Xi/qj 0.108 −0.013   0.019 −0.001   0.298 −0.073  0.167 0.097     0.217 
    0.300 

------ 

-- m −0.172   0.155 −0.202   0.131 −0.538 −0.541 −0.690 −0.074     0.018 
    0.057 

−0.212

 
 
 
 
 

Table B5.2A1 
SUMMARY STATISTICS FOR VARIABLES IN MODELS USED TO ANALYZE SIGN-

ASYMMETRIES IN MCI CROSS ELASTICITIES 
(n = 366 Pairs of MCI Cross Elasticity Estimates) 

  
 Binomial Logit Model  Regression Model 

  D 
(SS) 

  D1

(ΔB) 
  D2 

 (ΔI) 

  D3 

(ΔBI) 
  D4 

(ΔC) 
    ΔE    ΔB    ΔI ΔBI ΔC ΔXq/qiqj m 

Mean 0.407 0.544 0.464 0.467 0.481  −0.040   0.010 −0.064 −0.006 −0.157 −0.040   8.622
Median 0.000 1.000 0.000 0.000 0.000    0.051   0.011 −0.031  −0.001 −0.034 −0.003   8.000
Max 1.000  1.000 1.000 1.000 1.000    6.545   0.688   1.132   0.371   4.176   2.859 12.000
Min 0.000 0.000 0.000 0.000 0.000  −7.194 −0.451 −1.191 −0.410 −4.319 −1.868   2.000
Std. Dev. 0.492 0.499 0.499 0.500 0.497    1.749   0.169   0.412   0.078   0.862    0.397   2.874
Coef. of  
Variation 

1.209 0.917 1.075 1.071 1.122  43.725 16.900   6.438 13.000   5.490    9.925   0.333
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Table B5.2A2 
ZERO ORDER CORRELATIONS AMONG VARIABLES IN BINOMIAL LOGIT 

MODEL USED TO ANALYZE SIGN-ASYMMETRIES IN MCI CROSS ELASTICITIES 
(n = 366 Pairs of  MCI Cross Elasticity Estimates) 

 
 D(SS)   D1(ΔB)   D2(ΔI)  D3(ΔBI)   D4(ΔC) ΔXq/qiqj    m 
D(SS)   1.000       
D1(ΔB) −0.022   1.000      
D2(ΔI)  −0.058 −0.621   1.000     
D3(ΔBI −0.007   0.264   0.116    1.000    
D4(ΔC) −0.011 −0.641   0.438 −0.305   1.000   
ΔXq/qiqj − 0.043 −0.489   0.442  −0.225   0.438 1.000  
m   0.214    0.157 −0.074 −0.005 −0.123 −0.172 1.000 
 
  

Table 5.2A3 
ZERO ORDER CORRELATIONS AMONG VARIABLES IN REGRESSION MODEL 

USED TO ANALYZE SIGN-ASYMMETRIES IN MCI CROSS ELASTICITIES 
(n = 366 Pairs of MCI Cross Elasticity Estimates) 

 
 ΔE   ΔB   ΔI  ΔBI   ΔC ΔXq/qiqj    m 
ΔE 1.000       
ΔB −0.483   1.000      
ΔI   0.403 −0.743   1.000     
ΔBI −0.285   0.706 −0.133  1.000    
ΔC   0.567 −0.665   0.656 −0.282   1.000   
ΔXq/qiqj   0.305 −0.649   0.550 −0.362   0.483 1.000  
m −0.013   0.096 −0.147    0.102 −0.088 −0.172 1.000 
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Table B5.2B1 

SUMMARY STATISTICS FOR VARIABLES IN REGRESSION MODEL USED TO 
ANALYZE SIGN-ASYMMETRIES IN MNL CROSS ELASTICITIES  

(n = 366 Pairs of MNL Cross Elasticity Estimates) 
  
 Binomial Logit Model Variables Regression Model Variables 

  D′ 
(ΔE) 

  D1

(ΔB) 
  D2 

 (ΔI) 

  D3 

(ΔBI) 
  D4 

(ΔC) 
   ΔE    ΔB    ΔI ΔBI ΔC ΔXq/qiqj     m 

Mean 0.437 0.544 0.464 0.467 0.443   0.003   0.010 −0.064 −0.006 −0.157 −0.040   8.623
Median 0.000 1.000 0.000 0.000 0.000 −0.000   0.011 −0.031  −0.001 −0.034 −0.003   9.000
Max 1.000  1.000 1.000 1.000 1.000   0.721   0.688   1.132   0.371   4.176   2.859 12.000
Min 0.000 0.000 0.000 0.000 0.000 −0.616 −0.451 −1.191 −0.410 −4.319 −1.868   2.000
Std. Dev. 0.497 0.499 0.499 0.500 0.497   0.188   0.168   0.412   0.078   0.862    0.397   2.874
Coef. of  
Variation 

1.137 0.917 1.075 1.071 1.122 62.667 16.800   6.438 13.000   5.490    9.925   0.333

 
 

Table B5.2B2 
ZERO ORDER CORRELATIONS AMONG VARIABLES IN BINOMIAL LOGIT 

MODEL USED TO ANALYZE SIGN ASYMMETRIES IN MNL CROSS ELASTICITIES 
 (n = 366 Pairs of MNL Cross Elasticity Estimates) 

 
 D′(ΔE)   D1(ΔB)   D2(ΔI)  D3(ΔBI)   D4(ΔC) ΔXq/qiqj    m 
D′(ΔE)    1.000       
D1(ΔB) −0.011   1.000      
D2(ΔI) − 0.048 −0.621   1.000     
D3(ΔBI) −0.008   0.264   0.116    1.000    
D4(ΔC) − 0.009 −0.641   0.438 −0.305   1.000   
ΔXq/qiqj    0.035 −0.489   0.442  −0.225   0.438   1.000  
m    0.179    0.157 −0.074    0.005 −0.123 −0.172 1.000 
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Table B5.2B3 

 
ZERO ORDER CORRELATIONS AMONG VARIABLES IN REGRESSION MODEL 

USED TO ANALYZE SIGN-ASYMMETRIES MNL CROSS ELASTICITIES 
(n = 366 Pairs of MNL Cross Elasticity Estimates) 

 
 ΔE   ΔB   ΔI  ΔBI   ΔC ΔXq/qiqj    m 
ΔE   1.000       
ΔB −0.663   1.000      
ΔI   0.487 −0.743   1.000     
ΔBI −0.452   0.706 −0.133  1.000    
ΔC   0.616 −0.665   0.656 −0.282   1.000   
ΔXq/qiqj   0.315 −0.649   0.550 −0.361   0.483   1.000  
m −0.012   0.096 −0.147   0.102 −0.088 −0.172 1.000 
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