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ABSTRACT

This paper develops a life-cycle model in which workers choose both consumption levels and job

fatality risks, implying that the effect of age on the value of life is ambiguous. The empirical analysis

of this relationship uses novel, age-dependent fatal and nonfatal risk variables. Workers’ value of

statistical life exhibits an inverted U-shaped relationship over workers’ life cycle based on hedonic

wage model estimates, age-specific hedonic wage estimates, and a minimum distance estimator. The

value of statistical life for a 60-year old ranges from $2.5 million to $3.0 million  n less than half

the value for 30 to 40-year olds.
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 The most strident controversy with respect to the value of life has been whether the 

benefit of reducing risks to the old are less than for younger age groups.  In particular, should 

there be a so-called “senior discount” when assessing the value of reduced risks to life?  While 

the U.S. Environmental Protection Agency (EPA) has traditionally employed a constant value of 

a statistical life to monetize mortality risk reductions irrespective of the age of the affected 

population, in 2003 the Agency conducted analyses of the Clear Skies initiative that included a 

“senior discount.”1,2   This effort to apply such a discount in its Clear Skies initiative analyses 

generated a political firestorm and ultimately led to abandonment of any age adjustments in 

benefit values assigned by the Agency.3 

 Intuitively one might expect that older individuals may value reducing risks to their lives 

less because they have shorter remaining life expectancy.  The commodity they are buying 

through risk reduction efforts is less than for younger people.  Carrying this logic to its extreme, 

the value of a statistical life (VSL) would peak at birth and decline steadily thereafter. 

 Numerous theoretical studies have shown that the age variation in VSL is more complex.  

Increases in earnings capacity with education alter the wage one can earn, and changes in 

consumption levels and wealth over the life cycle influence risk-money tradeoffs in a complex 

manner.  The recent study by Johansson (2002) concluded that the theoretical relationship 

between the VSL and age is ambiguous and could be positive, negative, or zero.  Often 

theoretical studies, however, have imposed additional structure on the analysis, implying that 

there is either an inverted U-shaped relationship between the value of statistical life and age or 

that VSL decreases with age. 

 The simulations by Shepard and Zeckhauser (1984) show a steadily declining value of 

life if there are perfect annuity and insurance markets, while there is an inverted-U VSL-age 
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relationship in an economy with no borrowing or insurance.  Under illustrative restrictive 

assumptions, Johansson (1996) also finds that VSL probably follows an inverted U-shaped 

relationship.  Rosen’s (1988) simulation for ages 36 to 48, however, showed a steadily 

decreasing VSL with age.  Likewise, Arthur (1981) and Cropper and Sussman (1988) present 

simulation results with VSL decreasing with age, as does Jones-Lee (1989) for the case in which 

consumption is constant over the life cycle.  The VSL-age relationship is theoretically 

ambiguous in general, and depending on the additional structure that is imposed on the model or 

in numerical simulations, has been either always negative or characterized by an inverted-U 

shape in the published simulations in the literature. 

 Given that the strongest empirical evidence on VSLs in the United States is based on 

labor market data, one might expect studies of age variations in workers’ VSLs to be instructive 

in resolving the theoretical ambiguity in the VSL-age relationship.  Eight labor market studies 

have included an age-mortality risk interaction term in their hedonic wage analysis, which should 

be negative if older workers value risks to their lives less.  Five of these studies estimated a 

negative and statistically significant coefficient on the age-mortality risk interaction term.4  

While the log(wage) regression results for these studies imply that there is an inverted U-shaped 

relationship of VSL and age, the results often imply implausibly low VSL levels with negative 

VSL amounts at ages ranging from 42 to 60.5  Structural life cycle models of labor market and 

product market decisions adjust the standard hedonic wage models for life expectancy effects 

and assume a constant value per marginal year of life over the individual life cycle and usually 

across individuals as well.  These studies indicate that the quantity of life does matter as they 

have yielded implicit rates of discount with respect to years of life ranging from 2 percent to a 

range of 11 percent - 17 percent.6  The failure of labor market evidence to resolve the age 
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variation issue may stem in part from data limitations.  All these labor market studies are 

hindered by use of fatality risk data that are based on industry averages rather than age-specific 

values, causing potential bias.  If, for example, average industry fatality risks overstate the risks 

faced by older workers, the estimated implied VSL amounts will understate the wage-risk 

tradeoffs that are actually being made. 

Contingent valuation (CV) studies have also investigated the effect of age on the 

willingness to pay for mortality risk reduction from hypothetical government programs.  Several 

studies have employed quadratic age specifications that explicitly address the possibility of an 

inverted U-shaped relationship, including Jones-Lee et al. (1985), Johannesson et al. (1997), and 

Persson et al. (2001).  All three analyses yielded statistically significant coefficients that implied 

an inverted-U for the value of a statistical life over the life cycle.  The VSL in these studies tends 

to peak in the middle stage of life; for example, Johannesson et al. find that the VSL peaks at 

about age 40.  Studies with more restrictive formulations in which age enters linearly have found 

a negative age-VSL relationship, as in Smith and Desvousges (1987), Corso et al. (2001), and 

Hammitt and Liu (2003).  Finally, Krupnick et al. (2002) use age group indicator variables and 

find that VSL is fairly flat until age 70, for which it is lower. 7   

 This paper extends the previous literature in several respects.  Because our focus is on 

risky labor market decisions, we incorporate job risk decisions into a life-cycle consumption 

model in Section I, deriving an expression for VSL in this context.  In Section II, we develop the 

critical input to our empirical analysis – the first age-dependent measure of fatality risk and 

injury risk to be used in a hedonic labor market analysis.  In Section III we develop several sets 

of empirical estimates of the VSL-age relationship: conventional hedonic wage equations, 

regressions with age-mortality risk interactions, wage equation estimates for specific age groups, 
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and a minimum distance estimator that all indicate similar variations in VSL over the life cycle.  

In all of these empirical approaches, the VSL rises and then falls over the life cycle, with a peak 

in the 30s, and a subsequent decline so that the VSL for workers in their early 60s have values of 

about $2.5-$3 million.8  In Section IV, we calculate age-specific values of statistical life-years 

(VSLY) from our age-VSL profiles and find that after VSLYs peak at approximately the same 

age as VSLs peak, they decline monotonically with age.  Section V concludes the paper. 

 

I.  Wage-Risk Tradeoffs over the Life Cycle 

 To motivate the empirical work, we provide a simple model of wage-risk tradeoffs in a 

one-period framework and a life-cycle setting.  The implications of these simple models are not 

unambiguous with respect to the relationship between age and the VSL, although they do 

indicate variations in VSL by age.  The life-cycle model can illustrate the influences that can 

generate an inverted U-shaped relationship between VSL and age. 

As a starting point, and to clearly illustrate the implications of the life-cycle model on the 

wage-risk tradeoff estimated in the subsequent empirical work, we provide a one-period model 

involving the choice of the riskiness of one’s job.9  Assume in the one-period model that only 

two states exist: alive and dead.  We normalize the utility of the dead state to zero so that any 

bequests have some fixed value.  The probability of dying on the job in the period is denoted by 

p .  In this case, the worker’s problem is to choose consumption and job fatality risk to 

maximize expected utility: 

(1) )()1(max
,

cupEU
pc

−= , 

subject to 

(2)  )( pwkc += ,  
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where  

p  represents the probability of dying on the job, 

)(cu  represents the utility of consumption, c , and 0)( ≥′ cu , 0)( ≤′′ cu , 

k  represents (initial) assets, and 

w  represents labor. 

Solving for the optimal consumption and job risk yields this familiar expression for the 

wage-risk tradeoff: 

(3) 
c

p up
uw

)1( −
= ,  

where  

pw  represents the derivative of the wage with respect to mortality risk ( p ), and 

cu  represents the derivative of utility with respect to consumption ( c ).   

The value of pw  is the VSL, or the change in the worker’s wage with respect to 

occupational mortality risk.  The VSL is given by the utility of consumption divided by the 

expected marginal utility of consumption.  Because a fatal job accident leads to the loss of this 

period’s utility as well as all future utility, one would expect there to be an analog of this result 

for life-cycle models.  The standard approach in the life-cycle VSL literature employs a time-

separable utility function in one consumption good, integrated over the life-cycle subject to a 

discount function and a survival function, as in Shepard and Zeckhauser (1984), Rosen (1988), 

Johansson (1996, 2002), and Johannesson et al. (1997).  These analyses modified the standard 

life-cycle model to reflect the expected utility of the rest of an individual’s life conditional on the 

individual’s current age.  We extend the life-cycle approach to explicitly account for the 
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influence of job fatality risk on the survival function and the worker’s wage.  Expected 

remaining lifetime utility can then be characterized by: 

(4) ∫
∞

−=
τ

τστ dtetpttcuEU rt)](,;[)]([)( ,  

subject to 

(5a) )()()](,[)()( tftctptwtrktk +−+=& ,  

(5b) 0)( ≥tk , 

(5c) 0)(lim =−

∞→

rt

t
etk , 

where  

rte−  represents the discount function,   

)](,;[ tpt τσ  represents the survival function, i.e., the probability of surviving to age t, 

given that the individual has reached age τ ,  

r  represents the return on assets, and 

)(tf  represents the net amount received through an actuarially fair annuity represented 

by the condition: 

0)()](,0;[
0

=∫
∞

− dttftpte rtσ . 

All other terms are simply their period t analogs to the single-period case.10 

 The worker’s expected utility is represented in (4) as the sum of lifetime period utilities 

weighted by a discount factor and the probability that the worker will survive to that period 

conditional on the worker’s current age.  The worker maximizes this expected utility expression 

subject to the constraints: (5a) represents the dynamic budget constraint and it allows for the 

worker’s assets to change over time based on capital income ( )(trk ), labor income ( )](,[ tptw ), 
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consumption ( )(tc ), and net annuity receipts ( )(tf ); (5b) provides a no debt condition; and (5c) 

is the standard no Ponzi game condition.  The actuarially fair annuity envisioned here is similar 

to that in Shepard and Zeckhauser’s (1984) perfect markets case, and it allows for the worker to 

borrow against human capital during early years of life to provide for consumption smoothing. 

The distinctive feature of our formulation is that wages for risky jobs enter the analysis, 

and the level of job fatality risk chosen by the worker is a choice variable in the model, as is the 

level of consumption in each period.  Previous studies instead have focused simply on the life-

cycle consumption choice without embedding in the model a compensating wage differential 

framework. 

The present value Hamiltonian for this problem, conditional on having lived to age τ, is 

given by: 

(6) [ ])()()](,[)()()](,;[)]([)( tftctptwtrktetpttcutH rt +−++= − λτσ   

where )(tλ  represents the present value costate variable.  The first order conditions for the 

Hamiltonian are: 

(7) 0=−=
∂
∂ − λσ rt

c eu
c
H ,  

(8) 0=+=
∂
∂ −

p
rt

p weu
p
H λσ ,  

and 

(9) λλλ r
k
H −=→=

∂
∂− && .  

Substituting equation (7) into equation (8) and solving for pw  yields: 

(10) 
c

p

p

u

tcuw








−=

σ
σ

)]([ .  
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This condition should hold for every period.  With the uncontroversial assumption that 

the probability of surviving to any given age is decreasing in the probability of dying on the job 

in the current year ( 0<pσ ) and the probability of survival (σ ) is always positive, the ratio in 

the denominator is negative, so that the VSL is positive.  Let 0>−=
pσ

σπ , and the expression 

simplifies to: 

(11) 
c

p u
tcuw

π
)]([= , 

which is a clear analog to the single-period wage-risk tradeoff presented in equation (3).  The 

implicit value of a statistical life revealed by workers in a life-cycle context is equal to the utility 

of consumption in that period divided by the marginal utility of consumption in that period, 

where the denominator is weighted by the term π .  Whereas the denominator weight in the one-

period model was simply the probability of survival in that period, )1( p− , for the life-cycle case 

the probability term π  in year t reflects both the fatality risk of the job in year t as well as the 

probability of survival to age t.  While we have included actuarially fair annuities consistent with 

“perfect market” models in the literature (Shepard and Zeckhauser 1984, Johansson 2002), 

equation (11) is general to other characterizations of annuity markets.  Our subsequent discussion 

will consider models with “perfect markets” (as described above) and “imperfect markets,” 

similar to Shepard and Zeckhauser’s Robinson Crusoe case, in which (5a) is rewritten without 

)(tf , the actuarially fair annuity.  Such markets influence the VSL through their impact on the 

worker’s optimal consumption and job risk fatality paths.   

To see more generally how the value of a statistical life varies with age, we rearrange (8), 

differentiate with respect to time (time derivatives are denoted by a dot over the variables in 

question), and substitute into (9), yielding: 
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 (12) 
p

p

p

p

u
u

w
w

σ
σ&&&

+=  

The percentage change over time in the compensating differential for job fatality risk is equal to 

the percentage change over time in utility and the percentage change over time in the change in 

the survival function with respect to job fatality risk.11  We make the uncontroversial 

assumptions that the compensating differential is always non-negative ( 0≥pw ), utility is always 

non-negative ( 0≥u ), and the probability of surviving to any given age is decreasing in the 

probability of dying on the job in the current year ( 0<pσ ).  This expression holds irrespective 

of the assumption of actuarially fair annuity markets, although the assumption regarding these 

markets clearly impacts the change in utility over the life cycle.   

 The sign on equation (12) is ambiguous without imposing restrictions on the survival 

function and specifying the assumptions regarding annuity markets.  If optimal consumption 

were to take an inverted-U path over the life cycle (consistent with an imperfect markets 

assumption), then utility would likewise follow a similar path.  If we assume that pσ&  is 

monotonic, which may not be a strong assumption considering that σ&  is monotonic, then the 

shape of the VSL over the life cycle would be driven by the inverted-U shape of the life cycle 

utility profile.  In this case, if 0>pσ& , then the peak in the VSL would occur earlier in the life 

cycle than the peak in utility, and if 0<pσ& , then the VSL would peak later in the life cycle than 

the utility peak.  If consumption were constant over the life cycle (consistent with perfect 

markets), then the change in the VSL over time would be driven by the change in the survival 

function as it changes with job fatality risk over time.  If pσ&  is not monotonic, then this 

expression becomes even more difficult to sign.   
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This ambiguity is consistent with the life cycle model provided by Johansson (2002) and 

the simulation results based on the life cycle model in Shepard and Zeckhauser (1984).  This 

theoretical ambiguity motivates our interest in investigating empirically how the value of a 

statistical life does vary over the life cycle.  

   

II.  Job Risk Variations by Age 

 To characterize the fatality risks faced by workers of different ages more precisely than is 

possible using average risk values by industry, we construct a risk measure conditional upon age 

and the worker’s industry rather than using an industry basis alone, which is the norm for all 

previous studies of age variations in workers’ VSL.  The source of the fatality measures is the 

U.S. Bureau of Labor Statistics Census of Fatal Occupational Injuries (CFOI).  Beginning in 

1992, BLS utilized information from a wide variety of sources, including Occupational Safety 

and Health Administration reports, workers’ compensation injury reports, death certificates, and 

medical examiner reports to develop a comprehensive database on every job-related fatality.  For 

each death, there is information on the worker’s age group and industry that we use in 

constructing the fatality risk variable.12 

 We structured the mortality risk cells in terms of 2-digit SIC industries and the age 

groups specified in the CFOI data:  16-19, 20-24, 25-34, 35-44, 45-54, and 55-64.13  To construct 

the denominator for the mortality risk variable, we used the Current Population Survey Merged 

Outgoing Rotation Group files to estimate worker populations for each cell in the mortality data.  

The subsequent mortality risk is averaged over the 1992 to 1995 period to minimize any 

potential distortions associated with catastrophic mortality incidents in any one year and to have 

a better measure of the underlying risks for industry-age groups with infrequent deaths.  Our 
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injury risk measure also varies by age, and we constructed it in an identical manner for each 2-

digit industry and for each of the six age groups listed above.  The injuries reported for that cell 

were those that were sufficiently severe to lead to at least one lost workday, or what is usually 

termed lost workday injuries.  For both job risk variables, there are 632 distinct industry-age 

group risk values. 

Injury and mortality risks are not constant across a worker’s life cycle, making the age 

adjustment in the risk variables potentially important.  Figure 1 depicts the injury risks of major 

1-digit industries by age group.  In almost every industry, the probability of a worker incurring a 

job-related injury decreases with that worker’s age.  In the case of manufacturing workers, for 

example, workers age 20-24 have an annual lost workday injury frequency rate of 3.5 per 100, as 

compared to 1.7 per 100 for workers age 55-64.  This declining pattern of risk with age may 

reflect selection into safer jobs within industries by older and more experienced workers.  Firms 

may place new hires, who are typically younger workers, in riskier jobs than more senior 

workers.  As workers become more senior they often move into more supervisory roles for which 

the risks are lower.  The injury risk-age relationship may also reflect the benefit of experience 

that enables older workers to self-protect and mitigate their exposure to accident risks.   

In contrast to the lost workday injury risk data, however, mortality risks increase with age 

across industries as is evident in Figure 2.  Mortality risks peak for either workers aged 55 to 64 

or those older than 64 in all seven major industries presented in this figure.14  Whereas lost 

workday injury risks for manufacturing workers decline steadily with age, the annual fatality risk 

rate increases with age, as it is 2.65 per 100,000 for workers age 20-24 and 4.62 per 100,000 for 

workers age 55-64.  This positive relationship between job-related fatality risks and age is not the 

result of industry averages failing to reflect accurately the age-related differences within types of 
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jobs.  Even within occupations, the mortality risk peaks for either workers aged 55 to 64 or those 

older than 64, as shown in Figure 3.  Our subsequent empirical analysis uses an industry-age 

breakdown of cells rather than occupation-industry-age because the more refined breakdown 

results in a large number of cells with zero fatalities.  Indeed, using one-digit occupation/two-

digit industry/age group breakdowns would lead to approximately 6,200 cells to capture an 

average of about 6,600 annual fatalities.  Mortality risks also increase with age for different 

causes of the injury, such as gunshot wounds, asphyxiation, electrocution, intracranial injuries, 

burnings, drownings, etc.  There is also a positive age-fatality risk relationship based on the type 

of injury event, such as transportation accidents, falls, fires and explosions, assaults, and 

exposure to harmful substances.  From all three perspectives, job fatality risk is increasing with 

worker age. 

While older workers are less likely to be injured on the job than younger workers, given 

that they are injured, they are much more likely to die from that job-related accident.  This result 

may not be too surprising given that older workers are probably more vulnerable to serious 

injury from any particular incident.  Moreover, accident rates off the job often reflect similar 

patterns, as there is an increase in deaths from falls, automobile accidents, and other risks for the 

most senior age groups.15  The age-specific divergence in injury and mortality risks reflected in 

our risk data will facilitate the estimation of wage premiums for both fatal and nonfatal risks, 

which few previous studies have been able to do. 

 

III. Methods and Results 

 To assess empirically the VSL-age relationship, we have undertaken a variety of hedonic 

wage analyses with the job-related mortality and injury data described in the preceding section.  
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We present the following series of results: (A) standard hedonic wage regressions, including the 

interaction of mortality risk and age; (B) separate age group subsample hedonic wage 

regressions; and (C) a minimum distance estimator based on a series of age-specific hedonic 

wage regressions in the first stage.  For these statistical analyses, we have matched our 

constructed age-specific mortality and injury risk measures with the 1996 Current Population 

Survey Merged Outgoing Rotation Group data file.  We have employed a number of screens in 

constructing our sample for analysis.  The sample excludes agricultural workers and members of 

the armed forces.  We have excluded workers younger than 18 and older than 62, those with less 

than a 9th grade education, workers with an effective hourly labor income less than the 1996 

minimum wage of $4.25, and less than full-time workers, which we defined as 35 hours per 

week or more.  Table 1 summarizes the descriptive statistics of the key variables in our data set.  

The lost workday injury frequency rate for the sample is 0.15 and the annual fatality rate is 4 per 

100,000, each of which is in line with national norms.  

 

A. Hedonic Wage Regressions with Age-Risk Interactions 

 The standard hedonic wage model estimates the locus of tangencies between the market 

offer curve and workers’ highest constant expected utility loci.  The age variation in the wage-

mortality risk tradeoff simultaneously reflects age-related differences in preferences as well as 

age-related differences in the market offer curve.  If older workers are more likely to be seriously 

injured than are younger workers because of age-related differences in safety-related 

productivity, then the market offer curve will reflect that, given that age is a readily monitorable 

attribute.  Because workers’ constant expected utility loci and firms’ offer curves each may vary 

with age, there is no single hedonic market equilibrium.  Rather, workers of different age will 
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settle into distinct market equilibria as workers of different ages select points along the market 

opportunities locus that is pertinent to their age group.16 

Conventional hedonic wage analyses of job risks regress the natural logarithm of the 

hourly wage or some comparable income measure on a set of worker and job characteristics, 

mortality risk, injury risk, and a measure of workers’ compensation.17  Many studies, however, 

have been more parsimonious, omitting nonfatal injury risks and workers’ compensation because 

of the difficulty of estimating statistically significant coefficients for three risk-related variables.  

In the case of the hedonic regressions that interact age with mortality risk, the specification takes 

the following form: 

(13) iiiiiiiii WCqqAgeppHw εγγγγβα +++++′+= 4321)ln( ,  

where  

iw  is the worker i’s hourly after-tax wage rate, 

α  is a constant term, 

H  is a vector of personal characteristic variables for worker i, 

ip  is the fatality risk associated with worker i’s job, 

iq  is the nonfatal injury risk associated with worker i’s job, 

iWC  is the workers’ compensation replacement rate payable for a job injury suffered by 

worker i, and 

iε  is the random error reflecting unmeasured factors influencing worker i’s wage rate.   

We calculated the workers’ compensation replacement rate on an individual worker basis taking 

into account state differences in benefits and the favorable tax status of these benefits.  We use 

the benefit formulas for temporary total disability, which comprise about three-fourths of all 
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claims, and have formulas similar to those for permanent partial disability.18  The terms α, β, γ1, 

γ2, γ3, and γ4 represent parameters to be estimated. 

As an initial step, we have used our age-specific mortality and injury risk data set in a 

standard hedonic wage regression without interacting age with the mortality risk variable, i.e., 

omitting the ii Agep  term in the regression.  This equation can serve both as a benchmark for the 

subsequent age-based VSL estimates and as a means for comparing estimates using age-specific 

mortality risk data to results with fatality risks not conditional upon age.  Table 2, Column 1 

presents the results from this ordinary least squares regression.  All regressors are statistically 

significant at the 1 percent level with the exception of the Native American indicator variable. 

The value of a statistical life is given by 

(14) 000,100*000,2**ˆ1 wVSL γ= .19  

This equation normalizes the VSL to an annual basis by the assumption of a 2,000-hour work-

year and by accounting for the units of the mortality risk variable.  Evaluated at the sample mean 

wage, the coefficient on the mortality risk variable implies a sample mean value of a statistical 

life of $4.23 million (1996$), with a 95 percent confidence interval of $3.20 to $5.28 million.  

This value is within the range of VSLs from hedonic wage regression studies of the U.S. labor 

market reported in Viscusi and Aldy (2003) and is statistically indistinguishable from the VSL 

reported in Viscusi (2004) based on the 1997 CPS and a non-age based mortality risk measure.20   

For all regression results, we report both White heteroskedasticity-corrected standard 

errors in parentheses as well as robust and clustered standard errors accounting for potential 

within-group correlation of residuals in brackets.  Assigning individuals in our sample mortality 

and injury risk variables’ values based on 2-digit industry and age group, and the workers’ 

compensation replacement rate variable’s values based on 2-digit industry, age group, and state 
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may result in industry, age group, and/or state level correlation of residuals in the regressions.  

The reported within-group adjusted standard errors reflect a grouping of the observations based 

on 2-digit industry and state.  We have also undertaken these regressions with group adjustments 

based on 2-digit industry, state, and age group.  The standard errors yielded by this correction 

always fall within the range of the two sets of reported standard errors in this paper.  While this 

within-group correlation correction generates larger standard errors and thus larger confidence 

intervals than those reported in Table 2, they do not change any of the qualitative determinations 

of statistical significance.  Most studies in the hedonic wage literature have not accounted for this 

within-group correlation, and consequently may tend to overstate the significance of the risk 

premium estimates.21   

To account for the influence of occupational injury insurance on the compensating 

differentials for occupational injuries and fatalities, we have included the expected workers’ 

compensation replacement rate in all regression specifications.  We calculated this variable for 

each individual based on the respondent’s characteristics and state benefit formulas.  The 

variable represents the interaction of a worker’s injury rate and that worker’s estimated workers’ 

compensation wage replacement rate based on the worker’s wage, state of residence, and 

estimated state and federal tax rates.  The replacement rate variable accounts for the favorable 

tax status of workers’ compensation benefits, which are comparable in tax terms to wages.  Since 

the expected replacement rate is a function of a worker’s wage, this variable could be 

endogenous in our regressions although tests for endogeneity were not conclusive.22  We have 

conducted two-stage least squares regressions including an instrumental variables estimate of the 

expected worker’s compensation replacement rate.  These specifications yield very similar 
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coefficient estimates, estimated variances, and estimated VSLs to the OLS specifications as 

shown in Table 2. 

Table 2, Columns 3 and 4 present the regression results for specifications that include the 

interaction of age and risk.  As in the linear mortality risk regressions, all regressors are 

statistically significant at the 1 percent level except for the Native American indicator variable.  

The positive coefficient associated with the mortality risk variable and the negative coefficient 

on the interaction of age and mortality risk imply that the compensating differential for bearing 

mortality risk on the job should decrease with age, ceteris paribus.  The wage, however, is not 

constant over the worker’s life cycle, and the VSL derived from a semi-log model is a linear 

function of the wage rate.  The estimated VSL implied by these regressions follows an inverted-

U shape.  The risk-age interaction curve in Figure 4 illustrates the relationship between VSL and 

age based on these estimates.23  The VSL peaks at a value of $5.93 million at age 29, and 

remains positive until age 61.  It should be noted, however, that this result might be a 

consequence of the limitations imposed by the constraining functional form of an age-risk 

interaction term. 

While accounting for the interaction of mortality risk and age clearly influences the 

estimated VSL over the life cycle, it does not appear to influence the point estimate of the mean 

VSL for the sample.  As the last row in Table 2 illustrates, estimates using the linear mortality 

risk formulation and the mortality risk plus age-risk interaction yield virtually identical VSL 

estimates by OLS and by 2SLS.  

While these initial results accounting for age-specific mortality risks through both the 

construction of the mortality and injury risk variables and the specification of the hedonic wage 

regression suggest that the VSL varies substantially over the life cycle, a simple interaction of 
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age and risk may be too rigid a characterization of the age-specific income-risk tradeoff.  The 

implausible negative VSLs for individuals aged 61 and 62 years in our analysis and for earlier 

age groups in all previously published analyses especially cast doubt on this approach.  

 

B. Hedonic Wage Regressions with Age Group Subsamples 

 The large CPS sample provides the opportunity to examine the wage-risk tradeoff with a 

number of age-specific subsamples.  We have employed the same specifications as presented in 

columns (1) and (2) of Table 2, which do not include an age-fatality risk interaction, to estimate 

a hedonic wage model with the following age group subsamples: 18-24, 25-34, 35-44, 45-54, and 

55-62.  This formulation maintains the assumption that within-age categories job mortality risk 

has a linear impact on the natural logarithm of the wage, but it imposes less structure on the 

relationship between the compensating differential for mortality risk and age than did the 

interaction approach presented in columns (3) and (4) of Table 2.  Unlike the earlier results, the 

estimated returns to mortality risk for an 18-year old will not influence the estimated returns for a 

55-year old in the separate age group regressions.   

 Table 3 presents the results for the ordinary least squares regressions involving these five 

age group subsamples.24  The job mortality risk variable is statistically significant in all five 

regressions.  The estimated VSLs for each age group are based on age-group-specific average 

wages and are presented in the last row of the table.  As in the risk-age interaction results above, 

the age-group regressions reflect an inverted-U for the VSL-age relationship for 18-62 year-olds.  

Unlike the age-risk interaction results, the age-specific regressions in Table 3 reveal a peak in the 

VSL at an older age – in the 35-44 age group – as well as higher VSLs for the youngest and 

oldest age groups.  This higher VSL for older workers may illustrate the limitations of the widely 
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used risk-age interaction approach. The coefficient estimates for mortality risk and the 

interaction of risk and age are driven primarily by those aged 25-54, which comprise more than 

80 percent of our entire sample, and may produce a VSL function over age that may fit the 

denser part of the data well but not the VSLs for those at the ends of the age distribution of our 

sample. 

 To determine if these differences in VSLs presented in Table 3 are statistically 

significant, we employed the same variant of a Wald statistic presented in note 20.  The VSL for 

the 18-24-year old age group is statistically different from the VSLs for the 25-34 and 35-44 year 

old age groups (W18-24,25-34 = 6.76, W18-24,35-44 = 7.08, and 2
1χ  = 6.63 at the 1 percent level and 

2
1χ = 3.84 at the 5 percent level), but cannot be distinguished statistically from the VSLs for the 

older two age groups.  The VSL for the 25-34 age group is statistically different from the VSLs 

for the older two age groups (W25-34,45-54 = 4.40, W25-34,55-62 = 5.58), but cannot be distinguished 

from the VSL for the 35-44 year old age group.   The VSL for the 35-44 age group is also 

statistically different from the VSLs for the older two age groups (W35-44,45-54 = 4.94, W35-34,55-62 

= 6.13).  The VSLs for the two oldest age groups cannot be distinguished from each other.25   

This more flexible approach of estimating VSLs by age group indicates that the VSL does vary 

with respect to age and takes an inverted-U shape.26  

 

C. Minimum Distance Estimator 

We have extended this age-specific regression analysis in subsection B through a two-

stage minimum distance estimator with smaller intervals of age.  This approach allows us to infer 

information about the VSL with respect to age from regressions with smaller slices of the sample 

even though these regressions may individually provide imprecise estimates of the compensating 
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differential for risk.  If age-specific VSLs follow a systematic pattern over the life cycle, then we 

should be able to fit these to a function of age.  Our minimum distance estimator implements this 

strategy.  In the first stage, we estimate one-year and five-year age interval hedonic wage 

regressions and use the mortality risk coefficient estimates to construct age-specific VSL 

estimates.  In the second stage, we estimate these VSLs as a function of a polynomial in age, and 

employ the inverse of a diagonal matrix of the variance estimates of these VSLs as a weight 

matrix based on Chamberlain’s (1984) analysis of the minimum distance estimator and the 

choice of the inverse of the variance-covariance matrix as the optimal weight matrix.27   

The minimum distance estimator solves the following: 

(15) )](ˆ[]ˆ[])(ˆ[min 1 θθ
θ
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LSV ˆ represents the VSLs estimated from the N age-specific hedonic wage regressions, and )(θa  

represents a polynomial function in age.  While the minimum distance approach typically 

involves estimating an initial stage of reduced form parameters to facilitate the estimation of a 

structural model in the second stage, we have chosen to impose as little structure as possible on 

the reduced form estimates by simply fitting the VSL estimates to polynomial functions in age.   

For the first stage of the minimum distance estimator, we undertook the standard hedonic 

wage regressions for age-specific subsamples covering one- and five-year intervals from our 18 

to 62-years of age sample.  The set of regressors in these subsample regressions is identical to the 

linear mortality risk regression specification used with the entire sample, with the exception of 
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omitting the Age and Age2 variables in the one-year interval regressions.  With the one-year 

interval subsamples, we estimated age-specific compensating differentials for mortality risk in 45 

separate regressions.  Likewise, we estimated age group-specific compensating differentials for 

mortality risk in 9 separate regressions with the five-year interval subsamples.  For the one-year 

interval regressions, sample sizes range from 665 to 3,737 and R2s range from 0.17 to 0.59.  For 

the five-year interval regressions, sample sizes range from 5,234 to 18,189 and R2s range from 

0.21 to 0.54.  For the 45 mortality risk coefficient estimates from the one-year interval 

regressions, 9 are statistically significant at the 1 percent level, 7 are significant at the 5 percent 

level, and another 4 are significant at the 10 percent level. For the 9 mortality risk coefficient 

estimates from the five-year interval regressions, 6 are significant at the 1 percent level, 2 are 

significant at the 5 percent level, and 1 is significant at the 10 percent level.28,29  For the second 

stage, we estimated the VSL using the mean wage for that age or five-year age interval.  We 

specified )(θa  in a variety of analyses as a polynomial in age of order two to order six. 

To illustrate this approach, Table 4 presents the first stage VSLs and second stage 

coefficient and variance estimates for the five-year interval with third-order polynomial in age 

estimator.30  The first stage results for the five-year interval approach are interesting in their own 

right, since they are all statistically significant and depict a clear inverted-U over the life cycle.  

The estimated coefficients were used to graph the VSL over the life cycle depicted in Figure 5, 

and the estimated variance-covariance matrix was used to fit the confidence intervals.  While the 

third-order polynomial shows a slight increase in the VSL starting at about age 58, this increase 

is not statistically significant and is a consequence of the polynomial fitted to the data.  Note that 

the point estimate for the 58-62 age group is smaller than the point estimate for the 53-57 age 

group in the first stage of the analysis.   
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Figure 6 presents the fitted VSLs as a function of third-order polynomials in age with 

their 95 percent confidence intervals for the one-year interval analysis.  For both the one-year 

and five-year interval approaches, the value of a statistical life takes an inverted-U shape over the 

life cycle.  For the older workers in our sample, the confidence interval widens for both the one-

year and five-year interval periods.  While these two interval periods vary in terms of their peak 

VSL and the VSLs for young workers, they both yield similar VSLs of approximately $2.5 

million for 62-year olds.  This result is comparable to the subsample VSL estimate for the 58-62 

age group in Table 4, and slightly less than the $2.9 million VSL estimate for the 55-62 age 

group presented in Table 3. 

Finally, we tested the two propositions that characterize current policy applications of the 

value of life: (1) the value of a statistical life is constant over the life cycle (as reflected in most 

Environmental Protection Agency benefit-cost analyses, including September 2003 revisions to 

its assessment of the Clear Skies initiative), and (2) the value of a statistical life is always 

decreasing with age (as reflected in the life-year approach used by the Food and Drug 

Administration and some of the Environmental Protection Agency’s sensitivity analyses).  To 

test the former hypothesis, we specified the age polynomial function as a constant and employed 

the overidentifying restrictions test presented in note 30.  For both the one-year and five-year 

interval periods, we reject the hypothesis that the value of life is constant over the workers’ life 

cycle.  In the case of the one-year interval estimator, the test statistic ranges from 443 to 540 for 

comparisons of the constant function with polynomials of order two through six.31  In the case of 

the five-year interval estimator, the test statistic ranges from 54.3 to 81.6 for the same 

comparisons.  For the latter hypothesis, we specified the age polynomial function as linear, but 

such an approach yielded a negative coefficient estimate that clearly could not be distinguished 
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from zero.  The test of overidentifying restrictions rejected the linear specification in comparison 

to all higher order polynomials.  It should also be noted that all order two through order six 

polynomials resulted in similar inverted U-shaped relationships between the value of a statistical 

life and age. 

 

IV. Implications for the Value of a Statistical Life-Year 

 The preceding section illustrates the estimated VSL-age profile consistent with the theory 

model presented in Section I and with previous simulations published in the literature.  The 

implicit assumptions underlying the value of a statistical life-year (VSLY) approach, which 

require the value of life to be decreasing with age at all ages, are rejected by our data.  In light of 

the common application of VSLYs in evaluations of medical interventions, Food and Drug 

Administration regulations, and in the sensitivity analyses of Environmental Protection Agency 

regulations, we have estimated age-specific VSLYs based on our age-specific VSLs. 

 To construct values of statistical life-years, we have annuitized age-specific VSLs based 

on age-specific years of life expectancy for 1996 (L) and an assumed discount rate of 3 percent 

(r):32   

(16) Lr
rVSLVSLY −+−

=
)1(1

  

Table 5 presents these calculations for the one-year interval minimum distance estimator 

depicted in Figure 6 and for the age group subsample results presented in Table 3.   Figure 7 

depicts graphically the VSLYs derived from the one-year interval minimum distance estimator 

VSLs. 

VSLYs follow a similar inverted U-shaped relationship over the life cycle as depicted for 

VSL.  While the increase in VSLY is clearly expected for young workers (VSL is increasing and 
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life expectancy is decreasing), the monotonic decrease in VSLY after its peak indicates that age-

specific VSLs are decreasing at a faster rate than life expectancy.  The peak VSLY occurs two 

years later in the life cycle than the peak VSL for the one-year interval minimum distance 

estimator.  In both of the illustrations, the VSLY is decreasing with age after its peak.  The 

variation across age is lower for VSLYs than for VSLs.  For example, the peak VSL in the age 

group regressions ($7.62 million) is 2.6 times larger than the VSL for the oldest age group ($2.93 

million), but the corresponding peak VSLY is only 1.9 times larger than the VSLY for the oldest 

age group.  While VSLY decreases with age after its peak based on our analyses, it does so at a 

decreasing rate. 

 

V. Conclusion 

 The implications of wage-risk tradeoffs for the dependency of VSL on age is consistent 

based on all three sets of empirical estimates: the age-risk interactions, estimation for separate 

age groups, and a minimum distance estimator derived from age-specific VSLs.  For each case, 

the VSL rises and then falls with age, displaying an inverted U-shaped relationship.  The 

minimum distance estimator results are perhaps most instructive, as they indicate a reasonably 

flat inverted-U.  In terms of the appropriate “senior discount,” workers in our sample in their 

early 60s have a VSL of $2.5-$3.0 million, which is about 30-40 percent lower than the market 

average and between one-third and one-half the size of the VSLs for prime-aged workers. 

 The result that the VSL rises and falls with age is of both theoretical and policy interest.  

Theoretical analysis of VSL over the life cycle suggests such a relationship may exist, 

particularly in situations in which there are insurance and capital market imperfections.  The 

results are supportive of these models rather than those that generate steadily declining VSL with 
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age, such as some models with perfect annuity and insurance markets.  VSL is not steadily 

declining with age even though the amount of expected lifetime at stake, which is the good being 

traded, steadily declines with age.  As the life-cycle models indicate, this result is not surprising 

since the VSL-age linkage depends on factors such as the life-cycle consumption pattern, which 

also displays a similar temporal structure. 

 In terms of policy implications, this analysis does not provide support for approaches that 

focus only on the remaining quantity of life as the valued attribute.  Both the value per life-year 

approach and the quality-adjusted life year methodology yield a steadily decreasing VSL with 

age, whereas the revealed preferences of workers’ risk decisions indicate a quite different 

relationship that rises and then declines with age.  Explicit construction of age-specific values of 

statistical life-years from our age-VSL profiles show that the value of a statistical life-year varies 

with age.  Likewise, there is no support for the standard practice of transferring VSLs from 

studies based on the average of the labor market to risk contexts specific to the elderly 

population.  There is an inverted U-shaped relationship with a fairly flat upper tail in our sample.  

Individuals make decisions over risk and income that clearly indicates that the value of their life 

varies with age, but the relationship is not a simple one.   
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1 In the “senior discount” analyses, the EPA provided two alternatives to account for age.  One 

approach was based on a standard value of a statistical life-year approach that explicitly accounts 

for life expectancy.  The second approach assumed that individuals over age 70 had a value of 

statistical life equal to 63 percent of the value for those under 70. 

2 Similarly, the European Union and Canada have endorsed age adjustments as well.  See 

Johansson (2001) and Hara Associates (2000). 

3 For a sense of the political reaction and USEPA’s decision to discontinue the use of an age-

based value of statistical life, refer to “EPA Drops Age-Based Cost Studies,” New York Times, 

May 8, 2003; “EPA to Stop ‘Death Discount’ to Value New Regulations,” Wall Street Journal, 

May 8, 2003; and “Under Fire, EPA Drops the ‘Senior Death Discount,’” Washington Post, May 

13, 2003. 
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4 These studies are reviewed in Section 8 of Viscusi and Aldy (2003). 

5 Consider the following results from representative regression models from these studies.  The 

VSL is negative for all workers over age 42 based on Thaler and Rosen (1975), at age 48 based 

on Viscusi (1979), at 49 for Arnould and Nichols (1983), at 56 for Meng (1989), and at 60 for 

Baranzini and Ferro Luzzi (2001).  The other three studies, based on analyses of the Indian labor 

market (Shanmugam 1996/7, 2001) and the Canadian labor market (Meng and Smith 1990), 

found statistically insignificant coefficient estimates. 

6 Viscusi and Aldy (2003) provide a review of those studies, which include labor market and 

product market studies, such as Moore and Viscusi (1990) and Dreyfus and Viscusi (1995). 

7 Their finding that a 70-year old’s willingness-to-pay (WTP) is about one-third less than the 

WTP of those aged 50 to 70 years was a key input in the Environmental Protection Agency’s 

recent analysis of the Clear Skies initiative.  Two important caveats merit attention.  First, as the 

authors note, the intercept in the WTP bid regression model, which represents the age effect of 

the ≥70-years old age group on WTP, is not statistically significant, although the age group 

indicator variable coefficients are all significant for age groups 40-49, 50-59, and 60-69.  Thus, 

the estimate of the ≥70-years old age group VSL is based on a rather imprecise estimate, as is the 

comparison between the <70-years and ≥70-years populations.  Second, the age group indicator 

variable coefficients imply an inverted-U for VSL over the life cycle.  The authors indicate (in 

note 22) that with a more stringent data cleaning criterion, they estimate quadratic age regression 

specifications that yield an inverted-U with statistically significant coefficient estimates on the 

age and age2 variables.  Note that while other studies’ sample screens include all adult-aged 

individuals, the Krupnick et al. study focuses on individuals 40 to 75 years of age.   
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8 All VSL estimates are presented in 1996 dollars in this paper.  All VSL estimates should be 

increased 14.7 percent to convert them to 2002 dollars, based on the CPI-U deflator. 

9 See Viscusi (1979), Rosen (1988), and Viscusi and Aldy (2003), among many others, for 

details on such one-period models. 

10 To simplify notation, we have followed Shepard and Zeckhauser and assumed that the rate of 

time preference in the discount function is equal to the rate of return on assets, and that this rate 

is time-invariant.  Allowing for the rate of time preference to differ from the return on assets 

would not substantively impact the primary conclusion of this analysis that the VSL-age 

relationship is ambiguous. 

11  Note that the survival function, )](,;[ tpt τσ , and the discount function, rte− , implicitly enter 

equation (12) through their influence on the optimal consumption and job fatality risk paths. 

12 The availability of the CFOI data set has allowed analysts to construct job-related mortality 

rates in a variety of ways.  Viscusi (forthcoming) used this occupational fatality data set to 

construct mortality rates by industry and by industry and occupation, while Leeth and Ruser 

(forthcoming) constructed job-related mortality rates by race, gender, and occupation. 

13 We have omitted the CFOI’s  ≤ 15 and ≥ 65 age groups in our empirical analyses. 

14 We have omitted the mining industry from Figures 1 and 2.  Mining risk levels greatly exceed 

those for the industries shown, and inclusion of mining would obscure the trends in the other 

industries.  For injury risks in the mining industry, the probability of an injury is always 

decreasing in age.  For mortality risks, the probability of death in the mining industry peaks in 

the early 20s, but is increasing in age for individuals 35 to 64 years old. 

15 While most fatal accident rates for the elderly are higher than for younger groups, the 

relationship between age and accidents is often not monotonic.  For example, motor vehicle 
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accidents have a U-shaped pattern, with the lowest rate being for 45-64 year olds.  Death rates 

from falls steadily rise with age.  See the National Safety Council (2002), especially pages 8-12 

for age-related accident statistics. 

16 This analysis generalizes the hedonic model analysis for heterogeneous worker groups using 

the model developed for an evaluation of smokers and nonsmokers by Viscusi and Hersch 

(2001).  Their worker groups differ in their safety-related productivity as well as in their attitudes 

toward risk.  

17 See Viscusi and Aldy (2003) for a review of these studies. 

18 The procedures for calculating the workers’ compensation benefit variable are discussed in 

more detail in Viscusi (forthcoming), which also provides supporting references. 

19  For the specifications that include Mortality Risk and Mortality Risk interacted with Age, the 

age-specific VSL would be characterized by: 000,100*000,2**)*ˆˆ( 21 ττ γγ wAgeVSL += , 

where we account for the age-specific mean wage in the calculation. 

20 Viscusi (forthcoming) estimated a VSL of $4.7 million (1997 dollars) for his entire sample 

based on occupation-industry mortality risk (CFOI) data.  The test statistic for the comparison of 

the two VSLs is a variant of the Wald statistic: 2
1~1)]ˆ()ˆ([2)ˆˆ( χ−+−= jLSVVariLSVVarjLSViLSVW .   

This test yields W=0.381, which is not statistically significant at any conventional level. 

21 Refer to Hersch (1998), Viscusi and Hersch (2001), and Viscusi (forthcoming) as examples of 

papers in this literature that account for this type of correlation. 

22 We used the state’s average worker’s compensation benefit and an indicator variable for 

whether the state has a Republican governor as instruments.  These appear to be valid 

instruments: they are both statistically significant determinants of the replacement rate (at the 1 
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percent level) while controlling for all other explanatory variables in the hedonic wage 

regression, neither variable offers any statistically meaningful explanation of the log(wage) 

(statistical significance at the 30 and 45 percent levels), and a test of overidentifying restrictions 

indicate that the instruments are not correlated with the error term (test statistic = 0.234).  While 

we have presented these two-stage least squares results, Hausman tests do not support the 

conclusion of endogeneity.  The test statistic for the worker’s compensation replacement rate is 

1.42.   

23 For the age-risk interaction specification, we have estimated age-specific VSLs using age-

specific mean wages. 

24 We have also conducted the same two stage least squares specifications as in column (2) of 

Table 2.  These have very modest impacts on the results: there is virtually no difference in 

qualitative conclusions about statistical significance, and the estimated VSL point estimates 

differ from the OLS results by less than $0.5 million in all five regressions. 

25 We also conducted the same tests based on the regression equation coefficient estimates on the 

mortality risk variable and their variances.  These tests yield the same results for these age group 

comparisons except for the tests for the 18-24 year old and the next two age groups.  With the 

coefficient-based tests, the Wald statistics for these two comparisons are not significant.  The 

differences between the coefficient-based and VSL-based Wald tests appear to be driven by the 

significant growth in labor income through the early to middle stages of the worker’s life cycle. 

26  We also evaluated whether the higher VSLs for individuals in the 25-44 age range reflect 

major life-cycle events such as marriage or having children, and not variations in age.  We 

replicated the regression model presented in Table 2, Column 3 by including a Mortality 

Risk*Married term in one specification and a Mortality Risk*Children term in another 
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specification (in which we also included Children, defined as under 18 children residing with the 

worker, as an independent explanatory variable).  If either of these interactions are positive, and 

if it influences the magnitude and/or statistical significance of the Mortality Risk*Age 

interaction, then the effects of age on the VSL revealed in the preceding analyses may have 

actually reflected the effects of the family, and not one’s age, on the estimated VSL.  In the 

former case, the interaction of mortality risk and the married indicator variable was not 

statistically significant, and the coefficient estimates on Mortality Risk and Mortality Risk*Age 

were virtually unchanged from the specification reported in Table 2, Column 3.  In the latter 

case, we tested the effect of children by characterizing this variable as an indicator variable for 

whether the worker has any children and as a discrete variable for the number of children the 

worker has.  In both cases, the interaction of Mortality Risk and Children was statistically 

significant and negative, but it did not have a meaningful impact on the VSL, and the coefficient 

estimates for the Mortality Risk and Mortality Risk*Age interaction variables were still 

statistically significant at the one percent level and their magnitudes essentially unchanged.  We 

also included Mortality Risk*Married and Mortality Risk*Children interactions in the age group 

regressions, but these were virtually all statistically insignificant.  The variations in VSL by age 

do not appear to be driven by changes in family status. 

27 By construction, our approach generates a diagonal variance-covariance matrix.  Using 

independent regressions to estimate the VSLs in the first stage results in zero covariances among 

the VSL estimates. 

28 All regressions are estimated with White heteroskedasticity-corrected standard errors. 
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29 While not a focus of this paper, the coefficient estimates associated with the injury risk 

variable and the workers’ compensation replacement rate variable are statistically significant at 

the 1 percent level in all of the one-year and five-year interval regressions. 

30 We have employed a test of overidentifying restrictions to assess the appropriate order of the 

polynomial in age.  If we assume that θ  is a Kx1 vector, then a restricted parameter vector, α , 

which is Rx1 where R<K, can be estimated by some function, )(αb .  The following test statistic 

can then be used to evaluate the restrictions on the parameter vector: 

211 ~)]ˆ(ˆ[ˆ)]'ˆ(ˆ[)]ˆ(ˆ[ˆ)]'ˆ(ˆ[ RKaLSVVaLSVNbLSVVbLSVN −
−− −−−−− χθθαα  

For the five-year interval minimum distance estimator, one could not reject the third-order 

polynomial in favor of any higher order polynomial based on this test.  For the one-year interval 

minimum distance estimator, the fifth-order polynomial was preferred (it could not be rejected 

for the sixth-order polynomial, while one would reject the third-order and fourth-order 

polynomials in favor of the fifth-order polynomial).  We have presented the third-order 

polynomials for both approaches to facilitate comparison.  The fifth-order polynomial for the 1-

year interval estimator still takes an inverted-U shape, with a peak of $7.6 million at age 34 and 

it declines monotonically from there until age 62 when the VSL is about $880,000. 

31 Note that 2χ ≤ 16.81 at the 1 percent level for the various tests comparing the constant 

function with the higher order functions. 

32 We have also calculated VSLYs based on a 7 percent discount rate (the current preferred rate 

by the Office of Management and Budget for evaluating government regulations).  The higher 

discount rate yields larger VSLYs and a more pronounced inverted U-shaped VSLY-age 

relationship. 
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Table 1. Descriptive Statistics for the Sample  
Variable Description Mean 

(Standard Deviation) 
Log(Wage) Natural logarithm of after-tax hourly wage or hourly 

equivalent of salary. 
$2.26 
(0.51) 

   
Age Age of worker in years.   38.7 

(10.7) 
   
Black Indicator variable for whether worker is black. 0.10 

(0.30) 
   
Native American Indicator variable for whether worker is Native 

American. 
0.010 
(0.10) 

   
Asian Indicator variable for whether worker is Asian. 0.037 

(0.19) 
   
Hispanic Indicator variable for whether worker is Hispanic. 0.079 

(0.27) 
   
Female Indicator variable for whether worker is female. 0.44 

(0.50) 
   
Education Education level of worker.  Education = 12 

represents a high school graduate. 
14.1 
(2.34) 

   
Married Indicator variable for whether worker is married. 0.61 

(0.49) 
   
Union Member Indicator variable for whether worker is a union 

member. 
0.17 
(0.37) 

   
Public Sector Job Indicator variable for whether worker is employed in 

a public sector job. 
0.064 
(0.24) 

   
Urban Resident Indicator variable for whether worker resides in an 

urban area. 
0.79 
(0.41) 

   
Mortality Risk Annual occupational mortality risk, per 100,000 full-

time workers 
4.1 

(5.3) 
   
Injury Risk Annual injury risk for full-time workers. 0.015 

(0.013) 
   
Workers 
Compensation 
Replacement Rate 

Injury Risk*Expected Workers’ Compensation 
Benefit for the worker in his or her state of residence. 0.012 

(0.011) 

N = 116,632 
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Table 2. Linear and Risk-Age Interaction Hedonic Wage Regression Results 
Variable OLS 

(1) 
2SLS 

(2) 
OLS 
(3) 

2SLS 
(4) 

Age 0.0435 
(0.00070)* 
[0.00085]* 

0.0425 
(0.0011)* 
[0.0024]* 

0.0434 
(0.00070)* 
[0.00085]* 

0.0424 
(0.0011)* 
[0.0024]* 

     
Age2 -0.000454 

(8.7x10-6)* 
[1.1x10-5]* 

-0.000443 
(1.2x10-5)* 
[2.4x10-5]* 

-0.000448 
(8.8x10-6)* 
[1.1x10-5]* 

-0.000437 
(0.000013)* 
[2.6x10-5]* 

     
Black -0.112 

(0.0036)* 
[0.0041]* 

-0.111 
(0.0037)* 
[0.0044]* 

-0.112 
(0.0036)* 
[0.0041]* 

-0.111 
(0.0037)* 
[0.0044]* 

     
Native American -0.0199 

(0.011) 
[0.016] 

-0.0206 
(0.011)*** 

[0.016] 

-0.0198 
(0.011) 
[0.016] 

-0.0205 
(0.011)*** 

[0.016] 
     
Asian -0.0733 

(0.0058)* 
[0.0079]* 

-0.0711 
(0.0060)* 
[0.0093]* 

-0.0732 
(0.0058)* 
[0.0079]* 

-0.0709 
(0.0061)* 
[0.0094]* 

     
Hispanic -0.0830 

(0.0042)* 
[0.0065]* 

-0.0826 
(0.0042)* 
[0.0066]* 

-0.0832 
(0.0042)* 
[0.0065]* 

-0.0828 
(0.0042)* 
[0.0066]* 

     
Female -0.186 

(0.0024)* 
[0.0040]* 

-0.180 
(0.0057)* 
[0.014]* 

-0.186 
(0.0024)* 
[0.0040]* 

-0.180 
(0.0057)* 
[0.0014]* 

     
Education 0.0502 

(0.00060)* 
[0.00091]* 

0.0488 
(0.0013)* 
[0.0031]* 

0.0501 
(0.00060)* 
[0.00091]* 

0.0487 
(0.0013)* 
[0.0032]* 

     
Married 0.0694 

(0.0023)* 
[0.0026]* 

0.0617 
(0.0069)* 
[0.017]* 

0.0695 
(0.0023)* 
[0.0026]* 

0.0618 
(0.0069)* 
[0.017]* 

     
Union Member 0.126 

(0.0028)* 
[0.0057]* 

0.125 
(0.0030)* 
[0.0062]* 

0.126 
(0.0028)* 
[0.0057]* 

0.125 
(0.0030)* 
[0.0062]* 

     
Public Sector Job 0.106 

(0.0048)* 
[0.011]* 

0.110 
(0.0058)* 
[0.015]* 

0.104 
(0.0048)* 
[0.011]* 

0.108 
(0.0057)* 
[0.014]* 

     
Urban Resident 0.0965 

(0.0026)* 
[0.0043]* 

0.0928 
(0.0041)* 
[0.0092]* 

0.0965 
(0.0026)* 
[0.0043]* 

0.0927 
(0.0041)* 
[0.0092]* 

     
Mortality Risk 0.00189 

(0.00024)* 
[0.00052]* 

0.00178 
(0.00026)* 
[0.00058]* 

0.00563 
(0.00091)* 
[0.0012]* 

0.00618 
(0.0011)* 
[0.0018]* 
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Variable OLS 
(1) 

2SLS 
(2) 

OLS 
(3) 

2SLS 
(4) 

Mortality Risk*Age 
- - 

-9.23x10-5 
(2.0x10-5)* 
[2.4x10-5]* 

-0.000109 
(2.5x10-5)* 

[4.5x10-5]** 
     
Injury Risk 44.073 

(0.37)* 
[1.04]* 

52.297 
(6.92)* 

[18.20]* 

44.106 
(0.37) * 
[1.03] * 

52.317 
(6.92)* 

[18.23]* 
     
Workers Compensation 
Replacement Rate 

-53.826 
(0.46)* 
[1.27]* 

-63.997 
(8.55)* 

[22.52]* 

-53.889 
(0.46)* 
[1.27]* 

-64.049 
(8.56)* 

[22.57]* 
     
Constant  0.446 

(0.016)* 
[0.024]* 

0.500 
(0.048)* 
[0.12]* 

0.440 
(0.016)* 
[0.024]* 

0.493 
(0.047)* 
[0.12]* 

     
R2 0.532 0.528 0.532 0.528 
     
N 116,632 116,632 116,632 116,632 
     
Mean In-Sample VSL 
(95 percent confidence 
interval) (millions 96$) 

$4.23 
($3.20 - $5.27) 

$3.99 
($2.85 - $5.13) 

$4.28 
 

$4.05 
 

Dependent Variable: natural logarithm of hourly labor income. 

All specifications include 9 1-digit occupation indicator variables and 8 regional indicator variables.   

Robust (White) standard errors are presented in parentheses and standard errors accounting for within-group 

correlation are presented in brackets.  The 95 percent confidence intervals are based on the robust standard errors.  

Figure 4 presents the 95 percent confidence intervals for the specification in column (3).   

* Indicates statistical significance at 1 percent level, two-tailed test. 

** Indicates statistical significance at 5 percent level, two-tailed test. 

*** Indicates statistical significance at 10 percent level, two-tailed test. 
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Table 3.  Age Group Subsample Hedonic Wage Regressions 
 18-24 

Age Group 
25-34 

Age Group 
35-44 

Age Group 
45-54 

Age Group 
55-62 

Age Group 
Mortality Risk 0.00255 

(0.00079)* 
[0.00090]* 

0.00350 
(0.00046)* 
[0.00068]* 

0.00314 
(0.00048)* 
[0.00088]* 

0.00153 
(0.00046)* 

[0.00072]** 

0.00120 
(0.00061)** 

[0.00070]*** 

R2 0.286 0.448 0.515 0.534 0.550 

N 11,641 32,774 35,611 26,731 9,875 

Mean In-
Sample VSL 
(95 percent 
confidence 
interval) 
(millions 96$) 

$3.42 
($1.34 - $5.49) 

$7.06 
($5.26 - $8.87) 

$7.62 
($5.32 - $9.92) 

$3.92 
($1.60 - $6.24) 

$2.93 
($0.016 - $5.85)

Dependent Variable: natural logarithm of hourly labor income. 

All specifications include the same set of control variables as those presented in columns (1) – (4) in Table 2.   

Robust (White) standard errors are presented in parentheses and clustered standard errors are presented in brackets.  

The 95 percent confidence intervals are based on the robust standard errors. 

* Indicates statistical significance at 1 percent level, two-tailed test. 

** Indicates statistical significance at 5 percent level, two-tailed test. 

** Indicates statistical significance at 10 percent level, two-tailed test. 
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Table 4. Minimum Distance Estimator Based on 5-Year Interval VSLs 
1st Stage 

Age Group   VSL 
(millions 1996$) 

18-22 $3.13* 
  

23-27 $4.14* 
  

28-32 $5.76* 
  

33-37 $5.68* 
  

38-42 $4.83* 
  

43-47 $3.63* 
  

48-52 $3.12** 
  

53-57 $2.85** 
  

58-62 $2.51*** 
  

2nd Stage 
Variable Coefficient Estimate 

age 1.88x106 
(1.41x106) 

  
age2 -4.54x104 

(3.59x104) 
  
age3 335.24 

(293.26) 
  
constant -1.92x107 

(1.76x107) 
  
N 9 

Asymptotic standard errors are presented in parentheses.   

* Indicates mortality risk variable coefficient used to construct VSL statistically significant at 1 percent level, two-

tailed test. 

** Indicates mortality risk variable coefficient used to construct VSL statistically significant at 5 percent level, two-

tailed test. 

*** Indicates mortality risk variable coefficient used to construct VSL statistically significant at 10 percent level, 

two-tailed test. 
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 Table 5.  Age-Specific Value of Statistical Life-Years Based on Fitted VSLs from Minimum 
Distance Estimator and Age Group Subsample Regressions 

Age VSLY, based on  
One-Year Interval MD 

Estimator 

VSLY, based on Age Group 
Regressions (Table 3) 

18 $40,330 
 

19 $68,742 
 

20 $94,897 
 

21 $119,246 
 

22 $141,993 
 

23 $162,929 
 

24 $181,806 
 

$126,653 

25 $199,615 
 

26 $215,276 
 

27 $229,281 
 

28 $242,206 
 

29 $253,225 
 

30 $263,149 
 

31 $271,467 
 

32 $278,669 
 

33 $284,167 
 

34 $288,609 
 

$277,604 

35 $292,304 
 

36 $294,566 
 

37 $295,686 
 

38 $295,626 
 

39 $295,182 
 

40 $293,547 
 

41 $290,627 
 

42 $287,278 
 

$332,735 
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43 $283,021 
 

44 $278,284 
 

 

45 $272,567 
 

46 $266,785 
 

47 $259,950 
 

48 $253,498 
 

49 $245,922 
 

50 $238,194 
 

51 $230,281 
 

52 $222,707 
 

53 $214,411 
 

54 $206,412 
 

$198,766 

55 $198,778 
 

56 $190,912 
 

57 $183,985 
 

58 $177,441 
 

59 $171,300 
 

60 $166,230 
 

61 $162,974 
 

62 $159,722 
 

$179,277 

Note: All VSLYs estimated assuming a 3 percent discount rate and age-specific average 

remaining life expectancy estimated for 1996 (refer to Table 3 in Anderson 1998 for details).
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Figure 1. Lost Workday Injury Risk by Age and 1-Digit Industry,
1992-1995 Averages
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Notes: Constructed by authors with injury risk data for lost workday injuries from the BLS Injuries, Illnesses, and 
Fatalities Program, 1992-1995, and CPS MORG data files, 1992-1995.
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Figure 2. Mortality Risk by Age and 1-Digit Industry, 
1992-1995 Averages
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Notes: Constructed by authors with mortality risk data from the BLS Census of Fatal Occupational Injuries, 1992-1995, 
and CPS MORG data files, 1992-1995.
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Figure 3. Mortality Risk by Age and 1-Digit Occupation, 
1992-1995 Averages
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Notes: Constructed by authors  with mortality risk data from the BLS Census of Fatal Occupational Injuries , 1992-1995, 
and CPS MORG data files, 1992-1995.
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Figure 4. Value of a Statistical Life Based on Risk-Age Interaction 
Specification, with 95 Percent Confidence Interval
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Notes.  Based on regression specification (3) in Table 2. VSLs constructed with age-specific mean after-tax wages.  95 percent 
confidence interval based on robust standard errors.
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Figure 5. Value of a Statistical Life, Minimum Distance Estimator Based on 5-
Year Interval VSLs, with 95 Percent Confidence Interval
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Notes: First stage based on 9 (5-year interval) hedonic wage regressions to construct VSL estimates.  
Second stage based on fitting VSLs to a third-order polynomial in age.
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Figure 6. Value of a Statistical Life, Minimum Distance Estimator Based on 1-
Year Interval VSLs, with 95 Percent Confidence Interval
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Notes: First stage based on 45 year-specific hedonic wage regressions to construct age-specific VSLs.  
Second stage based on fitting VSLs to a third-order polynomial in age.
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Figure 7. Age-Specific Value of Statistical Life Years
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Notes: VSLYs constructed from 1-year interval fitted minimum distance estimator VSLs assuming a 3 percent discount rate 
and age-specific average remaining life expectancy estimated for 1996 (refer to Anderson 1998). 




