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Marshall's Scale Economies1

Vernon Henderson

Brown University

Draft: September, 1999

This paper estimates the extent and nature of local external economies of scale for key

high tech and traditional machinery industries. Unresolved issues in the literatureConcern

(1) whether urban scale economies derive primarily from local own industry activity, as envi-
sioned by Marshall (1890), or from overall scale and diversity of all local economic activities,

(2) whether scale economies are primarily static or dynamic, (3) what precise attributes of
the local environment generate externalities (which may relate to the micro foundations of

scale externalities) and (4) what exactly are the magnitudes involved. Weexpect the answers

to vary by the type of industry and its stage of development. As emphasized in the liter-

ature (Lucas 1988, Glaeser, Kallal, Scheinkman, and Shleifer 1992, Black and Henderson,

1999), answers to these issues are critical to understanding the nature of urbandevelopment
— sources of urban growth, extent of spatial agglomeration of different industries, product
cycles, industrial mobility across cities, and industrial composition of different cities. Using
plant level data in a panel framework, the intention is to help resolve some of these issues,

by examining how changes in aspects of the local industrial environment inducechanges in
plant productivity, for different industries.

The scale economy estimates for high tech and machinery industries are also related

'Support of the National Science Foundation (Grant No. SBR-9730142) is gratefully acknowledged. I
thank Joyce Cooper for her help and Tim Dunne for advice on the use of the LRD. I thankDuncan Black,
Areendam Chanda and Yukako Ono for excellent research assistance. I thank WillStrange for helpful
comments on an earlier version of the paper entitled "Evidence on Scale Economies andAgglomeration," as
well as participants in seminars at Washington University, Harvard and ClarkUniversity. Comments by Ed
Glaeser spurred me to look at endogeneity issues more carefully. I also benefited from discussions with Tom
Holmes. The research in this paper was conducted while the authorwas a Census Bureau research associate
at the Boston Research Data Center. Research results and conclusionsexpressed are those of the author
and do not necessarily indicate a concurrence by the Bureau of the Census. This paper has been screened
to insure that no confidential data are revealed.
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to two issues concerning urban development, both involving the extent of agglomeration of

economic activity. Almost all manufacturing industries are agglomerated, with many cities

having absolutely no employment in any specific industry and a few having high concentra-
tions. The first issue is whether industries which have greater degrees own industry scale
externalities are more agglomerated than others. Alternatively, for example, agglomeration
could be greater for industries which are drawn to large employment centers either to exploit

backward and forward transport linkages with local final or intermediate good buyers and

sellers (Krugman, Fujita and Venables, 1999) or toenjoy generalized urbanization economies

(Jacobs, 1969). The second issue is whether the most agglomerated industries are the least

mobile, or whether other factors seem to drive mobility. To examine these issues for high
tech and machinery industries in addition to estimating scale economies, I will need to char-

acterize the extent of agglomeration, the extent of industrial mobility, and changes in both
over time.

Issues and the Literature

In considering the dynamics of agglomeration, the literature asks to what extent ex-

isting agglomerations are immutable, locked-in by own industry scale externalities. The

question itself presupposes own industry scale economies are the basis foragglomeration, a
persumption in the urban literature (Henderson, 1974) which thispaper will examine, with

findings contradicting some of my own priors. Using a firm-location matching model of the

evolution of agglomerations, Arthur (1990) predicts that as an industry grows nationally,
local relative employment fluctuations for the industry will dampen, and locational patterns

as measured by local shares of national employment will become fixed. Locations without

an industry can't attract new plants because they offer no scale benefits. In opposition to
this notion is empirical work of Davis, Haltiwanger and Schuh (1996) who postulate that

locations experience on-going allocative shocks, which effectively maintainturbulence in the

system and induce shifts in locational patterns. I test whether fluctuations in city-industry
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employment shares tend to dampen over time, by examining transition processes. I estimate

mobility rates for different industries to see if those subject to greater scale externalities

are slower to shift locations. I examine patterns of agglomeration to see if more agglomer-

ated industries have greater scale economies and to see in what types of locations industries

agglomerate.

These examinations also allow us to determine whether agglomeration tendencies have

changed over the last thirty years. Are industries deconcentrating and spatially spreading

with dedllnes in transport and telecommunication costs; or are they further concentrating
with heightened scale effects and role of localized spillovers through face-to-face interaction?

In fact, have the magnitudes of scale externalities changed over time? Answers to these

questions will help us understand the changing USA economic geography.

Turning to estimation of scale externalities, a number of productivity studies (Cic-

cone and Hall (1996), Henderson (1986), Nakamura (1985), and Sveikauskas (1975)) have

attempted to sort out the nature of externalities. The conceptual issue concerns whom

plants learn from, when externalities involve information spillovers across plants and within

labor markets, facilitated by socialization, business interaction with suppliers and the ex-

change of employees in local labor markets. Do plants learn primarily from other local plants

in the same industry? Such externalities of Marshall are called localization economies, or

sometimes IvLkR [Marshall, Arrow, Romer] externalities in a dynamic context. Do plants
learn instead from local plants outside their own industry through cross fertilization? These

externalities are called urbanization economies, or sometimes in a dynamic form, Jacobs

(1969) externalities, If the latter, is overall diversity important, or are specific inter-industry

networks important? So, for example, do high-tech industries benefit from being in large
cities per se, rather than environments with a diversity of other high-tech industries.

The form of externalities underlies aspects of urban development, If an industry is

subject to just MAR/localization economies, producers are likely to cluster together primar-
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ily in a few cities specialized in traded good production in just that activity, or a closely

intercormected set of related activities. Specialization enhances full exploitation of scale

externalities, while conserving on local land rent and congestion increases. And, indeed,

many standardized manufacturing activities such as textiles, food processing, steel, auto

production, and wood products tend to be found disproportionately in smaller specialized

metro areas (Black and Henderson, 1998). However if an industry is subject more to Ja-

cobs/urbanization economies, to thrive it needs to be in a more diverse, and hence usu-

ally larger local environment. So high-fashion apparel and publishing manufacturers and

financial, business, research and development and management services tend to be found

disproportionately in larger metro areas, If the nature of externalities changes over time

with product development, we may have a product cycle where activity is initially found in

large diverse metro areas but then decentralizes to smaller more specialized metro areas.

The data allow me to analyze key details concerning these issues, never examined

before. For example, do externalities apply more to single—plant finns whoget information

from external sources, than to corporate multi-plant firms who may exploit an internal-firm

information network; or do corporate plants benefit equally from improvements in the local

environment? Do plants learn from existing more mature plants; or does learning depend

on an infusion of newborns, bringing new ideas and experimentation? Does the external

learning, or absorption of spillovers by plants decline with plant age? As a final example,

are externalities very localized, say, emanating just from plants in the own county, or also

from nearby counties in the same metro area?

Another key issue concerns whether externalities are static or dynamic. Dynamic ex-

ternalities are the underpinnings of endogenous growth models (Romer 1993), including those

in urban settings, (Eaton and Eckstein (1997), Black and Henderson (1999)). In an urban

context, each locality builds up a stock of local "trade secrets" dependent on past industrial

activity, a local public good accessed by locating in the city (Glaeser, KIallal, Scheinkman,
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and Shleifer (1992)). Dynamic externalities have strong implications for industrial mobility

(Rauch 1993). New locations have trouble attracting industries subject to dynamic exter-

nalities, because they can't offer a built-up stock of trade secrets and because accumulating

an attractive stock involves costly efficiency loses for initial locators. Location patternsmay
be subject to strong histories.

So far, no productivity studies have investigated dynamic externalities. Studies inves-

tigating their existence (Glaeser et al (1992) and Henderson, Kuncoro and Turner (1995))

examine employment growth patterns between two time periods, asserting that, if the level

of employment in an industry today is correlated with local own industry employment 15

or 30 years ago, that is evidence of dynamic externalities. There are two problems with

this inference. First is conceptual. The typical estimating equation contains twokey mea-
sures — base period own industry employment to control for "mean reversion," induced

for example, by Davis et al (1996) allocative shocks, and a base period own industry con-

centration measure to represent localization externalities. The mean reversion control and

the concentration measure are so closely related, it is hard to distinguish effects. Moreover,

the mean reversion process and how, say, externalities inhibit mean reversion or perhaps

dampen allocative shocks have never been explicitly modeled. That makes the specification

and interpretation of employment growth equations, at best, tentative.

Abstracting from the first problem, the second concerns whether a partial correlation

between present employment levels and past concentration implies externalities. Rather the

correlation can arise from a "fixed effect" in estimation, representing unmeasured time in-

variant locational attributes such as resource endowments, local culture affecting thelegal,

tax and institutional environment, and access to national and international markets. Cur-

rent industrial location patterns may be related to historical ones, not because of dynamic

externalities, but because of persistent local comparative advantage. The final section of the

paper will also show what happens when fixed effects methods are applied to the Glaeser
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et al. and Henderson et al. formulations. In this paper, we avoid the mean reversion and

fixed effect problems, by directly examining the effects on changes in plant productivity of

changes in past local industrial environments.

The paper utilizes plant and city-industry level data from the Census of Manufactur-

ers for 1963-1992, and information from the Annual Survey of Manufacturers for certain

non-Census years. The paper is organized as follows. For four high-tech and five standard

machinery industries, for 1963-1992, I first examine the extent of agglomeration and the

evolution and mobility of these industries across metropolitan areas. Then I examine deter-

minants of productivity for these industries from 1972 on, for plants located in 742 urban

counties and 317 metropolitan areas. The effects of various contemporaneous and histori-

cal attributes of scale and diversity of the local industrial environment at the county and

metro level on plant productivity are measured. Finally I link patterns of agglomeration and

mobility to the scale economy results; and I examine aspects of location patterns.

Preview of Key Findings

To aid the reader, I preview key findings of the paper before going into detailed analy-

sis. For manufacturing activities, the paper presents evidence that scale externalities derive

from own industry (localization-MAR) externalities, and are very local. Specifically they

derive from the numbers of own industry plants in the own county, as opposed to, say, an

industry total employment measure or to activity in surrounding counties in the same MSA.

I will argue that the result is consistent with the micro foundations of scale externalities

being localized information spillovers across plants, rather than scale econon'uies in labor

markets. Single plant firms and corporate plants benefit equally from static externalities.

However, in industries where dynamic externalities exist, single plant firms seem to derive

greater benefits from dynamic externalities. Corporate plants may be able to use their own

internal information networks to substitute to some extent for the stocks of local knowledge

spillovers that single plant firms rely on. Finally, in some cases, dynamic externalities may
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derive more from past births of plants, as opposed numbers of pre-existing plants. The

idea that externalities might derive from births of plants has implications for mobility and

agglomeration of industries that have never been modelled.

Manufacturing activities don't seem to benefit from Jacobs-urbanization externalities.

A suggestion is that the search for such externalities might more productively focus on the

service and R&D sectors, which are the activities found disproportionately in large diverse

metro areas.

The extent of spatial agglomeration of individual industries seems to be closely related

to the extent of scale economies for the industries. However, the decline in industrial geo-

graphic concentrations over time seems unrelated to scale externality magnitudes which have

not changed. I also find that even industries without scale economies agglomerate to some

considerable extent, perhaps to trade (backward and forward linkages) with those industries

which do experience scale economies. The hierarchy of agglomeration — first the industries

with scale economies and then, to a lesser extent, those that serve them — has yet to be
modelled in the literature.

'While agglomeration and scale economies are linked, the degree of mobility of industries

seems to be dominated by factors other than scale economy magnitudes. Such factors include

on-going access to raw materials.

1. INDUSTRIAL AGGLOMERATION

For this paper, I assembled data on all three-digit machinery industries (except the

ill-defined SIC 359) and eight three-digit high-tech industries. Industries with small sample

sizes are excluded from analyses. The estimating sample of the largest excluded industry

(SIC 352) was less than 40% of the smallest included industry and for some specifications

was too small to utilize; excluded high-tech industries have tiny samples. The four high-

tech industries that have large national employment are computers (SIC 357), electronic

components (367), aircraft (372) and medical instruments (384). As a comparison group,
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I use the five large employment machinery industries — construction (353), metal working

(354), special industrial (355), general industrial (356) and refrigeration (358). Industries

are defined consistently over time. The data in this section are from the 1963, 67, 72,

77, 82, 87, and 92 Census of Manufacturers, based on plant level data in the Longitudinal

Research Data [LRD] base of the Census Bureau. These data are aggregated up to the

metropolitan and national level to examine evolving patterns of industrial agglomeration

across 317 metropolitan areas for 1963-92 in five-year time periods.

This section will show that high-tech industries are distinctly more agglomerated than

machinery industries. By some measures, machinery industries also deconcentrated further

during the past thirty years. However, surprisingly, high-tech industries are the most mobile.

Evolving Extent of Agglomeration

Measures of the extent of agglomeration of an industry typically focus on the upper
tail of the distribution — the extent to which national employment is concentrated in the

very largest employer-cities. I start with these measures, but will also show that these

measures miss a key aspect of changing patterns of agglomeration. Table 1 describes high-

end industrial agglomeration and its change from 1963 to 1992. Part (A) is for the high-tech

industries and part (B) for machinery industries. While the table compares 1963 to 1992, the

deconcentration and reconcentration tendencies enumerated in the table occur throughout

the time period 1963-92. The table suggests high-tech industries are more concentrated than

machinery industries, with the difference increasing over time.

Colunm 1 of parts (A) and (B) measures primacy — the share of the largest city

employer in national industry employment. Also indicated are the absolute city-industry

employment and the identity of the city. In 1992, average primacy in high-tech is 12%, com-

pared to 5.5% for machinery. Average primacy declines in machinery from 1963 to 1992 but

is unchanged in high tech. h machinery, only metal working has a high degree of primacy;
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and it, alone among machinery industries, could be classified as high tech (Markusen, Hall,

and Glasmeier, 1980).

Column 2 of parts (A) and (B) gives an adjusted Ellison-Glaeser (1997), or normalized

Hirschman-Herfindahl index of concentration for 1963 and for 1992. The index g1(t) for

industry i in time t is

g(t)=> (Eii(t)E(t))2 (1)

where E1 is employment in industry i in city j, P)1 is city j's total manufacturing

employment, P)1 is national employment in i, and E is national manufacturing em-

ployment. The index is the sum over cities of the squared deviations of each city's share of

national employment in industry i from its share of national manufacturing employment.

If for industry i, each city's share of industry i mimics its share of total manufacturing,

industry i is perfectly deconcentrated and the index has a value of zero. The maximum

value of g when an industry is totally concentrated approaches two; in that case, one city's

share of national employment in i is one, while national manufacturing employment is

highly concentrated elsewhere.

For the concentration measure, high-tech industries in 1992 average .028; while the

machinery ones average only .0071. Moreover in high-tech industries, except instruments,

primacy or concentration increases from 1963 to 1992; while in all machinery industries

primacy and concentration declines. Note the primacy and concentration results generally

correspond. Because deviations in (1) are squared, the three-four largest cities for an indus-

try drive the concentration index and changes in it. A question for the paper is whether

the greater high end concentration of high-tech industries is associated with greater scale

externalities, compared to machinery.

These usual measures of concentration only tell us about the extreme right of the

employment distribution. What the primacy or Ellison-Glaeser indices do not tell us is the

thickening in all industries of the middle portions of the employment distribution that has
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occurred over the last 30 years and the decline in number of zero employment cities. In

Figures la and ib, I plot the truncated distributions of the logarithm of shares of national

industry employment across cities for each industry for 1963 versus 1992. Each city's em-

ployment is normalized by national employment to get its share of national employment for

that year, so the focus is on the shape of the employment distribution (not absolute shifts

left and right with changes in national employment). The truncated distribution is for the

logarithm of shares.1

In all industries, there has been a shift into middle employment cities over the last

thirty years (which occurs almost continuously over the time period). In machinery the

distributions of employment shares have become more peaked in the middle with the highest

point at about a share of .0025 (log share = -6), which is typically 500 local employees. In

high-tech, between 1963 and 1992, we go from having no middle peak in 1963 to having one

in 1992, typically around 1000 local employees. As can be seen for most industries, having

more middle (as opposed to minimal) employment share cities means two things here. First

is that there are fewer zero (and minimal) employment cities. In Table 2 the number of zero

employment cities in high-tech falls from an average of 173 to 90 and in machinery from

106 to 51, out of 317 metro areas. The 67% growth in national employment in high-tech

(see column 3, Table 1) could explain the 58% increase in positive employment high-tech

cities. However in machinery, national employment is unchanged, and the number of positive

employment cities still increases by 26%.

For the zero employment MSA's in 1963 to gain employment some shrinkage in the

outer tail of high (but not necessarily highest) employment cities (so as to populate these

middle employment cities) is required. Table 2 illustrates this. In ii industries, the national

shares of employment in cities ranked 4-32 (the top 10 percentiles of city-industry employers

excluding the top 3) fall from 1963-1992, while the national shares of cities below the top 10

1Zero employment cities are assigned employments of one or log shares of about -12. The estimation is
done in S-plus, adjusted for trunction, using a kernel estimator.
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percentiles ("The Rest") increase. However in some industries, the shares of the largest city-

employer (computers, electronic components, and metal working in Table 1) or the largest

three city-employers (computers and aircraft in Table 2) increase. These 1-3 top end cities

drive the change in the Ellison-Glaeser index in Table 1.

In summary, while high-tech industries have become somewhat more concentrated at

the extreme high end of the distributions, in all industries employment has spread out into

middle employment centers. That is accompanied by a decline in the number of small or

zero employment centers, as well as decline in employees from somewhat higher employ-

ment centers. A question is whether these changes are somehow related to changes in scale

externalities. An alternative is that transport costs have declined. Declines in transport

costs can have opposing effects. Agglomeration sizes (of bigger centers) can increase since

producers don't need to spread out to save on transport costs of serving regional markets.

But producers can also locate remotely in low cost towns (and off_shore) and more cheaply

ship to markets.

Mobility.

There are various ways one could look at mobility of industries across locations. Here

I use mean first passage times. I estimate how fast cities transit across cells of a discrete size

distribution for each industry of city shares of national industry employment. I characterize

distributions using five cells, with relative upper cut-off points chosen so cell sizes are 55, 15,

15, 10, and 5 percent of all cities. Upper cut-off points in 1963 average .00014, .00056, .0029,

.015, and open. So 55% of all cities in 1963 each have .014% or less of national employment

of a typical industry, while 16 cities, or 5% of cities in 1963 each have over 1.5% of national

employment. Results are not qualitatively different for other reasonable cell divisions. For

computers and aircraft, too many cities have zero employment to distinguish the bottom

two cells; I combine them to have cell sizes of 70, 15, 10, and 5 for a four-cell discrete

distribution. This idea is to compare mobility in the rankings of cities — for example how
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quickly does a city in the bottom 55 percentiles of city employments move to the top 5

percentiles, for different industries.

I assume distributions evolve according to a homogeneous stationary first-order Markov

process, testing for stationarity. The Markov process captures the Davis et al. (1996)

notion of on-going turbulence in allocative processes. Sources of non-homogeneity, such

as geographic and historical features are estimated in Beardsell and Henderson (1999) for

computers; and are beyond the scope of this paper. Based on transitions for 1963-67, 67-

72, ..., 87-92, I calculate an overall transition matrix, M, where the maximum likelihood

estimates of the transition probabilities, Pu, are the total number of transitions to cell j

from the total number of entries in cell i over all years. To calculate how fast cities move

across cells, or states of the distribution, I calculate mean first passage times. If is the

probability that a city in state cell j for an industry next visits state k at a time t (1/2

decades) later, then the mean first passage time (in 1/2 decades in the data), 'rk, from j

to k is

Tjk=ttk. (2)

The are calculated recursively from the transition matrix coefficients.2

In studying mobility, what are we looking for? First according to Arthur (1990), for at

least growing high-tech industries, mobility rates should dampen over time. For all industries,

21f [M] is the j,k element of transition matrix raised to the power t, Markov chain theory tells us
that

[Mt]jk = ]kk Vt � 1.

Given = [Mjk] and = 0, we can recursively define as (Karlin and Taylor (1975))

01k = [Mt]jk — OlkiM ]kk Vt � 1. (3)

mootThis allows us to calculate the Tjk. At t = 1000, the calculation converges for all industries, (or E=0 Ojk
1 and at t=1000).

12



the stationarity of the transition matrices is never close to being rejected.3 There seems

to be no consistent change in the transition process for 1963-1992, regardless of whether

industries grow, decline or stagnate in the 1963-92 time period. Note also in Table 1, for

most industries, including machinery ones, even the identity of the primate city-industry

changes from 1963 to 1992.

Given a stationary transition process for all industries, how do relative mobility rates

compare? In Table 3(a), we report the average of mean first passage times for machinery

industries. The off-diagonal elements are mean first passage times; the diagonals are mean

first return times (including staying in the own state). For a "typical" machinery industry,

for a city starting in state/cell 1, the expected time for it to first visit state 5 is 211 half

decades; going in reverse it is 30 years. The slow times to move up and much quicker times

to move down simply reflect the asymmetry in cell sizes, starting with 55% for the bottom

cell and declining to 5% for the top. By construction, cities are slow to join the top 5%,

given newcomers are drawn from a large group; but cities are quick to leave the top cell,

given exiters are drawn from a small group.

What is of interest are the inter-industry comparisons. In part (b) of Table 3, I present

the numbers for instruments and electronic components which are similar to each other; and

in part (c) I give the four state distribution numbers for computers and aircraft. Excluding

aircraft, high-tech industries have much quicker times to move up and down. The times

to move from states 1 or 2 to 4 or 5 for electronic components and instruments are much

quicker than the fastest machinery industry. The same statement applies for the reverse —

going from state 4 or 5 to 1 or 2. In comparing computers to other industries, one could

3The x2 statistic for the test is

— lfljk(t)
—2 log EHtH,llk {/" }

with (T — 1)K(K — 1) degrees of freedom. 13Jk is the stationary estimate, fiJk(t) the decade by decade
estimate, mk(t) the number of cities moving from j to k in t, T the total number of years and K the
number of cells.
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compare the time for moving from state 1 to 4 of 108 1/2 decades for computers to the

time to move from state 2 to 5 for machinery (where the quickest industry takes 159 1/2

decades). Aircraft is the only relatively slow moving high-tech industry. It is closely linked

to government with about 35% of sales to government, unlike any of the other industries (all

under 10%), which may help explain its limited mobility.

In summary, we have the following. High-tech industries are more concentrated than

machinery industries. Over time high-tech industries have retained their highest end con-

centration, while machinery industries have spread. Given high-tech industries are more

concentrated relatively and absolutely, we might expect them to have higher degrees of scale

economies and to be less mobile. However excluding aircraft, high-tech industries seem more

mobile, or less anchored than machinery industries. The question we will return to in section

3 concerns why? High-tech industries have grown quickly compared to the stagnant machin-

ery industries, which in itself suggests mobility. However, given mobility is over relative

size distributions and given transition processes are stationary, national employment growth

differences shouldn't affect mobility calculations. Also, high-tech industries on average have

larger plant sizes, another potential source of immobility.

2. MEASURING EXTERNALITIES

In this section, I estimate the nature and extent of agglomeration economies. Specif-

ically I estimate production functions at the plant level, looking for direct effects on pro-

ductivity of the current and historical industrial environment. Based on a first-order Taylor

series expansion (in logs) of a general production function, output of plant k in MSA/county

j at time t, y(t), is hypothesized to be

log yk(t) = & log Xk(t) + log E(t — £) + 5(t) + fkj + fk(t) (4)

I will also look at results for second-order (or translog) specifications and for TFP specifica-

tions of plant internal technology. In (4), log Xk (t) is a vector of plant inputs, log E (t —
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a vector of industrial environment variables in t — £, 6(t) a time fixed effect, fkj a

plant/location fixed effect, and ckj(t) the contemporaneous error term. Equation (4) will

be estimated by panel methods, so inferences about industrial environment variables will

be based on how changes in a plant's environment affect productivity. Also the issue of

exogeneity of RHS variables to the ckJ(t) will receive considerable attention.

The plant's own inputs are labor, capital, and materials. Among Ciccone and Hall's

(1996) objections to a form such as (4) is that plant purchases of service (versus material)

inputs are not recorded in Census data.4 Then, for example, if a city diversifies over time in

services, and plants purchase more outsourced services (accounting, janitorial, photocopying,

payroll, etc.), output could rise, for the same observed inputs. Then we might attribute the

output increase to changes in Jacobs/urbanization diversity measures of externalities, when

in fact no spillovers are involved. I will keep this in mind when interpreting results.

In equation (4), the log Ek (t — £) variables are measures of the external environment.

In assessing the nature of externalities, we want to know if a plant learns from existing

plants, from new plants, within just its county, across the MSA, from the past, etc. For

localization/MAR externalities, for Census years, I constructed county and metro (MSA)

level measures of own industry employment, number of own industry plants of both multi-

and single-plant finns and number of own industry births (since the prior Census), to try to

assess the source of externalities. I examine static externalities, for £ = 0, or log Ek(t);
and I examine dynamic externalities for £ = 1 and 2, or log Ek(t— 1), and log Ek(t—2),
where time intervals are five years. So I am asking if the local industrial environments from

five or ten years ago affect productivity today.

4J have two other comments on Ciceone and Hall's objections. First, their solution of using aggregate
regional BEA income data may not solve the problem, since BEA has to estimate service data to the
service input problem. Second, they object to (4) for aggregate city-industry data, because of "doubling
counting" — one plant's output is another's inputs in the same industry. Use of plant level data negates the
issue. Moreover even with aggregate data, under the CRS assumptions permitting aggregation, &juation (4)
remains valid. Double counting is obviously an issue for income accounting, but not in specifying production
function forms.
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In terms of urbanization/Jacobs economies, I experiment with both level and diversity

measures, at the MSA level (consistent with Jacobs' (1969) notions). The log level measures

describe local scale outside the own industry of total private employment, total manufactur-

ing employment and employment in related industrial activities as described momentarily.

The diversity measures cover the same activities, but focus on local diversity rather than

scale of such activities, The general diversity measure is related to the Ellison-Glaeser (1997)

index in (1), but covers a different dimension. The index measures lack of diversity or spe-

cialization. Specifically, for MSA in time t specialization/lack of diversity in an industrial

activity is

d(t) = > — ____

PJ1 is employment in industry i in city j, E(t) E,j(t) is total employment in city

j over the relevant i, E(t) is national employment in i and E(t) E1(t) is total

national employment over the relevant i. dj (t) is the sum of squared deviations of industry

i's share in city j of local relevant employment from industry i's national share. If city

j's shares over all industries mimic national shares it is perfectly diverse; and d(t) = 0.

As city j's shares start to deviate from national shares d(t) starts to rise. At the limit

d(t) —s 2, where in city j industry i's share is one, while some other industry's share

of national employment approaches one. In this case the city is completely specialized, or

has no diversity within the relevant set of activities. The Jacobs hypothesis is that as d(t)

rises, plant productivity declines.

In defining the relevant i, I experiment with five measures: (1) overall manufac-

turing employment for 20 two_digit manufacturing industries (the relevant i); (2) overall

private employment (80 two-digit industries); (3) for machinery industries, three-digit level

employment within SIC 3500; and (4) for high-tech industries, employment in high-tech

manufacturing, defined as computers (357), communications (366), electronic components

(367), aircraft (372), missiles and space vehicles (376), search and navigation equipment
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(381), measuring devices (382), and medical instrument (384) and (5) for high-tech indus-

tries, employment in sophisticated private services (engineering and architectural, research

and testing, computer programming, medical and dental labs, and private colleges and uni-

versities).

Estimation Issues

In equation (4), the time fixed effects, 5(t), control for national shocks to productivity

and for inflation. I use nominal measures of output, capital, and materials, avoiding issues

about the accuracy of various national deflaters and the extent of national productivity

change. That's a topic beyond the scope of this paper. The fkj represent time invariant

plant and/or locational fixed effects. Given high fixed effect plants (e.g., those run by talented

entrepreneurs) may congregate in high fixed effect locations (e.g., those with strong regional

amenities, resources, or institutions), I can't disentangle plant and location fixed effects,

although I discuss the issue more in section 3. The fkj will influence the log E5 (t —

and log Xk(t), biasing OLS estimates. Accordingly I estimate equation (5) for unbalanced

panels of plants across counties and MSA's by standard fixed effects methods. Doing so

raises three key issues.

First concerns the sample of plants, where I require each plant to appear in at least two

Censuses. Until 1987, plants in those Census years must also be in the ASM for the same

years to have non-imputed data on key variables. Moreover beyond 1987, most plants which

survive a general filter for imputed data in a Census year (see below) are in the ASM for

that year anyway. The ASM plants in one Census are in a different ASM wave from those in

another Census (where each five-year wave of an ASM runs from a Census year plus two to

the next Census year plus one). In the construction of ASM samples there is weighting where

large corporate plants generally appear in each wave and small single plant-firms generally

are not chosen in two consecutive waves. Thus my sample is weighted towards corporate

plants, a sample for which externalities could be less relevant. To test for this, I also draw
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a sample of single-plant firms in the ASM in non-Census years, picking plants from the first

and last year of each wave and linking their productivity to industrial environments in the

immediately prior Census. Details are given in the data subsection below.

The second issue is that use of fixed effect methods requires sufficient variation in

industrial environment variables, to be able to make inferences about effects of changes in

the environment on productivity, If we have annual data, the variation in diversity indices is

very small. For the data here in five-year intervals, there is sufficient variation. In particular,

for estimating samples, the average of the percentage change of absolute deviations (Id(t)—

d(t — 1)1 /d(t)) for any diversity measure always exceeds 15% between any five-year time

periods in all samples.

The final and critical issue concerns the fixed effects assumption that the log Xk(t)

and log E (t — are strictly exogenous to the 6kj (t). That assumption begs the question

of why log P21(t) measures, such as number of local own-industry plants, vary over time (if

not in response to Ek(t)). I assume both the log E(t) and Xk(t) vary in response to

changes in local factor prices or regional market sizes, making location j a better or worse

place in which to locate. I assume the contemporaneous shocks affecting plant productivity

are independent of these general price and market size changes, which derive from regional

and national general equilibrium adjustments to macro shocks and changes in incomes and

demographics. Also in equation (4), in terms of Xk (t), capital stock is beginning of year so

it and arguably labor and materials (chosen in t before revelation of Ekj(t)) are exogenous

to the fkj(t).5

The potential problem is that there may be local shocks, such as provision of MSA

infrastructure or upgrading in quality of the local labor force, that may affect both plant

productivity and the local (county) industrial environment. I conduct three experiments to

5llowever, if annual data were used, it would be less clear that the Xk(t) are also exogenous to the
— 1) as required — that last period's shock does not affect this period's inputs. My data are spaced

five years apart, so, in fact, it seems reasonable to assume that there is no effective impact of a shock from
five years ago on inputs today.
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test this possibility. None of them suggest a weakening of results on localization economies.

First I re-estimated the model limiting the sample to multi-county MSA's and add in MSA-

time fixed effects. This controls for contemporaneous MSA (but not county) shocks. It

seriously impinges on efficiency since identification is now based only on time variation of

within MSA county differences in environments. Results are footnoted. To more generally

deal with endogeneity of all RHS variables to the fkJ(t), I try 2SLS estimation. For 2SLS in

a panel, instrumentation requires all instruments be strictly exogenous to all ck(t). The

exogenous instruments I had were sufficiently uncorrelated with plant inputs to be useful. A

result from such 2SLS work is to raise externality results to truly unbelievable magnitudes.

So for 2SLS, I restrict the examination to just TFP equations (to remove the log Xk (t) as

RHS variables). Instruments such as market potential of the MSA and county air quality

attainment status are used to deal with possible endogeneity of logE(t — £) variables to

ck(t). Again the strictly exogenous instruments generally are weakly correlated with the

logE1 (t — F) and externality results tend again to rise to unbelievable levels.

Finally, I turn to GMM estimation of the production function in (4). As detailed below,

I first difference the equations, to obtain a set of first differenced estimating equations (e.g.,

92-87, 87-82, etc.). I impose equal slope coefficients across years, but can now instrument

with predetermined variables such as lagged plant inputs, greatly increasing efficiency. The

drawback is that estimation requires plants to remain in the sample for a considerable period

of time, significantly reducing sample size. The GMM estimation also allows us to test for

exogeneity assumptions on instruments.

Data

The data consist of three sets of information, based on the Longitudinal Research Data

[LRD] base, containing the Census of Manufacturers from 1963-92 and the Annual Survey

of Manufacturers [ASM] from 1972-92. For the first set of information for each Census

year, for each county and MSA we can calculate the various industrial environment variables
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mentioned earlier, for 1963, 72, 77, 82, 87 and 92. The second set of information is plant level

data for 1972, 77, 82, 87, and 92. I eliminate all plant-years for "administrative records,"

where all data other than employment arid wages (gotten from Social Security records) are

imputed for certain. Also, I eliminate all non-administrative records where an impute flag

has been assigned by the Center for Economic Studies of the Census Bureau, based on an

assessment that most relevant nonlabor data has been imputed anyways. Generally only

plants in the ASM of a Census year survive and even many of those are eliminated because

of imputations. The result for any industry is that the data cover 15-20% of national urban

plants in the Census. Finally, I impose the requirements that, for these remaining plant-

years, a plant appear in at least two Censuses (so a fixed effect can be identified), and that

recorded values of sales and inputs be nonzero. These requirements further reduce the sample

by 50%, typically eliminating smaller plants not in two consecutive ASM's of Census years,

as well as deaths (noting nearly 50% of plants overall die every five years). So in estimation,

my sample covers about 8% of producing plants, across the nine industries. Still the sample

sizes are large in absolute terms, with wide geographic coverage.

The third data set picks plants at the beginning and end of each ASM wave: (1974, 78),

(79, 83), (84-88) and (89-93). For these plants analysis is restricted to non-affiliate plants:

single-plant finns. The sample has some problems. First, the assignment of environmental

variables is from the prior Census year, not the data year. Different plant years can be

assigned the same externality measure. For example, 1978 and 1979 both are assigned the

same "contemporaneous" environmental variables from the 1977 Census (although generally

plants do not appear in successive waves, so as to appear in both 78 and 79). Second, capital

stock variables are not available for 1988, 89 and 93, SO I assign the end of year numbers

for 1987 to 1988 and to 89 and for 1992 to 1993. Third, SIC classification must be defined

for the Census prior to the wave (e.g., from 1977 for 1979 and 1983 plants), because non-

Census year records in the LRD are not updated for changes in SIC definitions. So if a plant
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switches industry (composition of output), from, say, 1977 to 1983 we won't know to exclude

it. Despite these problems, I believe the results will suffice to tell us if externality results

for non-affiliate plants differ markedly from the Census year sample dominated bycorporate

plants.

In estimation, output is annual production (sales adjusted for beginning and ending

year inventories of finished products and work-in-progress and for resales). Inputs are total

hours worked (production workers hours plus 1800 times the number of nonproduction work-

ers), materials used in annual production, and beginning of year book value of machines,

equipment, and buildings (where for 1987 and 1992, buildings can't be separated out). Be-

ginning of year book value may not be the best measure of capital stock; but using perpetual

inventory methods would require plants to be surveyed in all years 1972-92, which would

reduce the sample sizes to tiny levels. Moreover, with fixed effects, changes in book values

pretty accurately measure changes in capital stock.

Overview Results

For this paper, I estimated many different models for different industries, by a variety

of statistical techniques. In this section I present overview results on the key issues, com-

paring four industry groups: Census year high-tech plants (mostly plants of multi-plant,

or "corporate" firms), ASM high-tech single-plant firms called "non-affiliate" plants, Census

year machinery plants, and ASM machinery non-affiliate plants. Within each group, the

individual own industries remain the three-digit ones. For example, within high-tech, for

a computer plant, localization/MAR economies is measured by a count of, say, computer

plants or computer employment in the county or in the MSA. Within each group, individual

industries are pooled in estimation of equation (4), constraining the a and j3 to be the

same within the group, but allowing separate time-industry dummy variables (6 (t), for

industry i). It turns out that, within each of the four industry groups, coefficients for the

individual industries are reasonably similar. I will report when there are important devia-
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tions of individual industries from the group results; and, later, I will break out some specific

results on individual high-tech industries.

In this section, I start with basic fixed effect results, detailing my primary findings on
localization economies — the key results in the paper. Then I present the basic findings on

urbanization economies. Table 4 contains the first set of results. Plant-MSA fixed effects and

individual-industry time fixed effects are not reported for these unbalanced panels. Sample

sizes, counts of plants, and number of geographic areas — counties and MSA's are given.

County coverage for the key industrial environment externality variable ranges from 157 to

487. In terms of plants' own technologies, coefficients for plant inputs are pretty much as

expected, including the low capital coefficients which occur with fixed effect estimation (see

discussion below on functional forms in Table 4b). Coefficients on inputs sum to less than

1, in the range .83 - .95, indicating decreasing returns to scale (given unobserved fixed plant

inputs such as "entrepreneurship").

The focus for results in this and in all other tables is on the external industrial environ-

ment measures. For reasons which will become apparent, I measure localization economies by

the count of own-industry plants in the own county — in essence a count of different nearby

sources of information spillovers. Significant localization economies exist in the Census high-

tech and machinery groups, as well as (at a 8% level) in high-tech non-affiliates. Moving

from OLS (not reported) to fixed effect estimates increases standard errors dramatically,

raises coefficients in high-tech and lowers them in machinery.

Primary Results. In Table 4, high-tech industries have scale elasticities of .08, so that

an increase in the number of plants in a county from, say, 5 to 50 raises plant output by

18.5%, ceteris paribus, a very strong benefit from local own industry agglomeration. For

Census plants, scale effects in high-tech are significantly larger than in machinery, a key

finding of the paper. In fact, for individual machinery industries no significant localization
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economies are found.6 Having greater localization economies in high-tech is consistent with

high-tech industries being more agglomerated. For corporate plants versus non-affiliates

in high-tech, localization economies are the same magnitude, in contrast to priors, where

it seemed non-affiliates lacking internal firm cross-plant information networks, would rely

more on the external environment. However, this is not the final word on this comparison
— differences will emerge when I turn below to dynamic externalities and look in a later

section at individual high-tech industries.

Specification Issues. Why do I measure localization economies by the count of own industry

plants in the county? An alternative is to use own industry employment, which yielded

much weaker results. The reason is apparent in columns (i) and (ii) of part (a) of Table 5.

There, for each county, I factor total own industry employment into the number of plants and

average plant employment. As column (ii) reveals, average employment in other plants does

not contribute to own plant productivity, while numbers of other plants do. This suggests

scale externalities derive more from very local information spillovers generated by numbers

of plants, rather than externalities in labor markets, which would be represented by total

employment (perhaps at the MSA level). Another issue is that we can test whether births

and pre-existing plants in the county and births and pre-existing plants outside the county

but within the MSA affect productivity equally. This breakdown is given in colunms (iii)
- (vi) of part (a) of Table 5. For effects outside the county there is no pattern to results.7

Within the county, effects of births and pre-existing plants are not statistically different, so

we lump the two together, to obtain the measure in Table 4.

A second issue concerns whether younger (more dynamic?) non-affiliate plants could

provide more spillovers than corporate plants to other plants (either corporate or non-

affiliate); or the opposite could be the case — the mature corporate plants could provide

6For Census plants coefficients (and standard errors) for SIC 353-358 are .017 (.030), .018 (.028), -.016
(.039), .025 (.023) and .013 (.028).

7Pre-existing plants in an MSA, who are competitors, may reduce the value of shipments, an effect
opposing externalities. For plants outside the own county this negative effect could dominate.
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more spillovers. Columns (i) arid (ii) of part (b) of Table 5 test for this. The ratio of non-

affiliate to corporate plants has inconsistent effects and completely insignificant coefficients.

All plants seem to contribute equally to spillovers. I also experimented with whether exter-

nalities diminished with local scale. I tried a quadratic form to county own industry plants

and I also experimented with "stagnation" possibilities, where effects diminish in counties

who are in the top 8 ranked own industry employment counties nationally for longer periods

of time. The various experiments suggested no diminishing of effects in any industry group.

Finally, there is the specification of own plant technology. One way to handle the

problem of possible endogeneity of the log Xk (t) to kj (t) is to look just at the productivity

residual, TFP, as a function of the industrial environment. Then the LHS of the estimating

equation becomes log 1/k (t) —&(t)logX (t) where & (t) are the national shares of output for

factors in year t.8 The results are given in column (ii) of part (b) of Table 5. Coefficients

on county own industry plants are not significantly different from those in Table 4. The

main objection to the TFP form is that it presumes that (a) the production technology is

an exact Cobb-Douglas and (b) cost-minimizing levels of each input (including capital)° are

used each period.

The objection to the exact Cobb-Douglas form underlying TFP equations is explored

by estimating a trans-log production function Oust in logX 's), or second-order Taylor

series expansion in logarithms. In general, the linear, quadratic and interactive terms are all

significant suggesting a strict Cobb-Douglas may be inappropriate. However, the results do

not always have plants operating in well-behaved regions technology space. Given the high

degree of multicollinearity, better estimators would require factor share equations (for, say

labor and materials) to anchor the functional form (as well as, potentially, constraints to

8Given negative outcomes of Hausman specification tests of using plant random effects estimation with
just MSA fixed effects, estimation includes plant/MSA fixed effects. This suggests MSA's with higher
esternalities — more plants — may attract better (high fixed effect) plants. We explore this issue further
in Part 3 of the paper.

9For capital usage, I use a rental ratio of 0.15 to be applied to book value — a plausible value (Becker
and Henderson, 1999).
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ensure plants stay in well-behaved regions). That is beyond the scope of this paper. Rather

we simply note that the externality results in cohmm (iv) of part (b) of Table 5 are similar to

those in Table 4. While in the version in Table 5, effects are smaller than in Table 4, in other

versions (using price deflators) they are larger.1° So we rely on the Table 4 specification,

with its first order approximation.

Changes in Externalities Over Time. It is possible that the magnitudes of externalities have

changed over time. For example, improvements in information and communication technolo-

gies could make information spillovers more or less important, depending on whether they

are complements or substitutes (Gasper and Glaeser, 1996). For the first three industry

groups, in columns (i) and (ii) of Table 6, the differential between earlier and later years is

zero. Only for machinery non-affiliates does it appear earlier effects could be more negative

than the later (zero); but for this industry group the bottom line is simply that there are no

significant externalities.

Dynamic Externalities. The focus in Table 4 is on static externalities — the impact on

current productivity of changes in the current industrial environment. What about the

effect of past environments? Do past environments affect current productivity, reflecting,

say, their contribution to a stock of local trade secrets. In Table 7 I test for the effect of

changes in the local industrial environment from 5 (t-i) and 10 (t-2) years ago. There are

no effects from 10 years ago, but for non-affiliate high-tech industries strong effects from 5

years ago appear. In fact, those effects are stronger, with an elasticity of .11, than any of

the static (t) externalities. This could be an anomaly, but results presented below suggest

it is not.

Urbanization Economies. Finally, there are urbanization economies. For individual indus-

tries, the scale and diversity of all other manufacturing, of general high-tech industries, of

'0With a trans-log, use of time dummies to control for inflation doesn't strictly do the trick, given inter-
active and quathatic terms. We also re-estimated the equation deflating output and materials by the CPI,
getting similar but somewhat larger coefficients to those in Table 4.

25



Table 6. Changes in Externalities Over Time

early year
log (own (72, 77, 82)
county differential
plants) log (county

plants)

(i) (ii)

High-Tech .084** -.0060
Census Year (.020) (.0074)

High-Tech ASM .082* -.0031
non-affiliates (.047) (.019)

Machinery .016 .0070
Census Year (.014) (.0058)

Machinery ASM -.016 -.0001
non-affiliates (.025) (.011)



T
ab

le
 7

. 
D

yn
am

ic
 E

xt
er

na
lit

ie
s 

lo
g 

(o
w

n 
in

du
st

iy
 pl

an
ts

 in
 th

e 
co

un
ty

) 

t 
t-

1 
t-

2 

H
ig

h-
T

ec
h 

.0
68

**
 

.0
13

 
.0

23
 

C
en

su
s p

la
nt

s 
(.

02
0)

 
(.

02
0)

 
(.

01
6)

 

H
ig

h-
T

ec
h 

.0
90

* 
.1

08
**

 
.0

11
 

A
SM

 n
on

-a
ff

ili
at

es
 

(.
04

7)
 

(.
03

9)
 

(.
03

2)
 

M
ac

hi
ne

iy
 

.0
28

**
 

-
.
0
1
6
 

.
0
0
4
8
 

C
e
n
s
u
s
 p

la
nt

s 
(.

01
4)

 
(
.
0
1
4
)
 

(
.
0
1
2
)
 

M
a
c
h
i
n
e
i
y
 

-.
01

8 
.
0
1
5
 

-
.
0
0
3
2
 

A
S
M
 no

n-
af

lh
lia

te
s 

(.
02

5)
 

(.
02

0)
 

(.
02

5)
 



three-digit machinery industries, and of modern service activity generally had no impact

on productivity.11 Columns (i) - (iv) of Table 8 present a selection of results for the four

industry groups, focusing on the key urbanization measures — all other manufacturing and

all other high-tech. Only all other manufacturing scale (but not diversity) had a significant

impact on machinery Census plants (although not for any individual machinery industry).

Lagged values (dynamic externalities) show no effects anywhere.

Given this limited outcome, I went to County Business Patterns data for 1977-92 and

constructed a measure more in line with Jacobs (1969) —overall diversity of total (excluding

the own industry) MSA economic activity. Diversity is over 80 two-digit industries. The

estimating equations drop 1972. Diversity of the overall MSA environment has consistently

negative signs in column (vi), but is never statistically significant. Moreover on its own, the

coefficients in square brackets, it is completely insignificant in all formulations.

Finally, I turned to the most primitive measure, scale of the overall urban environ-

ment. It has strong positive effects in machinery, Census plants. There is no positive effect

in high-tech where the literature expects such externalities, whether for the group or for

individual industries and whether for Census or non-affiliate plants. For Census machinery,

the elasticity is very large, around 0.15. A breakdown of this into individual machinery in-

dustries shows specific industries drive the results. Coefficients (and standard errors) of .334

(.121), .064 (.111), .095 (.097), .061 (.095), and .234 (.127) for construction, metal working,

special industrial, general industrial and refrigeration are obtained for Census plants, so ef-

fects are only reasonably significant in two industries. However I note for non-affiliate plants

the breakdown is -.147 (.188), .208 (.121), .100 (.180), .491 (.249), and -.227 (.212). The

significant and positive effects in construction and refrigeration for Census plants become

negative for non-affiliates, an unsettling result. A concern in interpretation is that the results

do not reflect urbanization economies, but the greater plant use of (unmeasured) purchased

service inputs that occurs in larger scale metro areas (Ciccone and Hall, 1996).

"The only exception is that the diversity of high-tech employment affects instruments significantly.

26



T
ab

le
 8.

 
U

rb
an

iz
at

io
n 

E
co

no
m

ie
s 

lo
g 

(a
ll 

D
iv

er
si

ty
 

lo
g 

(a
ll 

D
iv

er
si

ty
 

ot
he

r m
an

u.
 

of
 m

an
u.

 
ot

he
r h

ig
h-

 
D

iv
er

si
ty

 o
f 

lo
g 

(a
ll 

al
l o

th
er

 
em

pl
oy

, 
em

pl
oy

. 
te

ch
. e

m
pl

oy
. 

hi
gh

-t
ec

h.
 

ot
he

r p
ri

va
te

 
em

pl
oy

. 
M

SA
) 

M
SA

 
M

SA
) 

em
pl

oy
, 

em
pl

oy
. M

SA
) 

M
SA

 
[s

ep
ar

at
el

y 
en

te
re

d]
 

(i
) 

(i
i)

 
(i

ii)
 

(i
v)

 
(v

) 
(v

i)
 

H
ig

h-
T

ec
h 

-.
00

23
 

.4
21

 
-.

01
1 

-.
07

4 
-.

02
6 

-.
67

2 
C

en
su

s 
pl

an
ts

 
(.

04
2)

 
(.

33
1)

 
(.

01
4)

 
(.

08
5)

 
(.

07
2)

 
(1

.6
8)

 

[-
.0

32
 

-.
79

5 
(.

07
1)

 
(1

.6
5)

1 

H
ig

h-
T

ec
h 

-.
05

0 
.2

42
 

-.
03

9 
.2

04
 

-.
10

8 
-5

.2
7 

A
M

 no
n-

af
fi

lia
te

s 
(.

10
6)

 
(.

76
0)

 
(.

03
8)

 
(.

33
8)

 
(.

16
9)

 
(4

.7
1)

 

[-
.1

39
 

-5
.7

5 
(.

16
8)

 
(4

.7
0)

] 

M
ac

hi
ne

iy
 

.0
76

**
 

-.
11

1 
N

.A
. 

N
.A

. 
.1

74
**

 
_l

.6
5*

 
C

en
su

s 
pl

an
ts

 
(.

02
7)

 
(.

17
5)

 
(.

04
9)

 
(.

91
0)

 

[.
15

l 
-.

94
9 

.0
45

) 
(.

85
9)

] 

M
ac

hi
ne

jy
 

.0
55

 
-.

00
66

 
N

.A
. 

N
.A

. 
.1

38
 

-2
.4

0 
A

SM
 n

on
-a

ff
ili

at
es

 
(.

04
7)

 
(.

33
7)

 
(.

13
9)

 
(2

.1
2)

 

[.
09

3 
-.

90
7 

(.
08

0)
 

(1
.1

7)
] 

Sa
m

pl
e 

si
ze

s 
fo

r 
77

-9
2 

(e
xc

lu
de

s 
72

) a
re

 re
sp

ec
tiv

el
y 

42
23

, 
11

70
, 7

96
8,

 a
nd

 4
18

2.
 



There is also the issue of endogeneity of overall MSA scale to the ck(t) affecting

plant productivity. As we will see next, I do not have time varying exogenous variables

with which to instrument for overall MSA scale in 2SLS. For GMM, predetermined (lagged)

variables can be used as instruments, but GMM yields completely insignificant coefficients

for urbanization economle8.12 For these reasons, the high urbanization economies in Table

8 for machinery are not a highlighted result. But they are suggestive.

The Exogeneity Issue.

Despite controlling for fixed effects, are there local shocks (k(t)) which affect the

logXk(t) and logE,(t), as well as productivity, in the estimating equation? To study

this issue, I conducted four experiments. The first allowing for MSA (but not county)

time fixed effects (shocks) as well as plant fixed effects yields results similar to Table 413

The next two instrument for RHS variables. In the first I attempted 2SLS, where with

fixed effects, instruments in any year must be exogenous to the ck(t) for all years. I

had insufficient exogenous variables to instrument for plant inputs;14 so I focused on the

TFP equation where the only RHS variable is own industry county plants (where with fixed

effects, variables and instruments are demeaned). Instruments are market potential of the

MSA overall arid for high-tech, and county non-attainment status in ozone regulation, where

an attaimnent status designation goes back to 1972. Becker and Henderson (1999) show

location decisions of polluting plants are sensitive to attainment status designation. Market

'2Estimation (see Table 9 below) by GMM (or Census high-tech and for Census machinery plants yields
coefficients (and standard errors) on urbanization scale economies of -.109 (.521) and .354 (.356).

'3For the sample of multi-county MSA's, I added in (individual industry) MSA-time fixed effects to the
equations in Table 4, to control for MSA-wide shocks, as they might affect plant inputs or the number of plants
in county. Identification comes solely from time variation of within-MSA county differences in environments
and inputs and county shocks are not controlled for . Localization effects are lower in the high-tech (.037)
and machinery (.0056) Census samples, although much larger in the high-tech non-affiliate sample (.164).
Within the Census high-tech group, the weaker result is driven by just one industry — instruments. For
computers, electronic components, aircraft and instruments, the coefficients on own industry county plants
are for ordinary fixed effects (see Table 10 below) .100, .102, .026, .062 and for MSA-time fixed effects added
are .146, .079, .050, -.109.

'4The only time (and county) varying instrument for the three plant inputs is manufacturing wages.
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potential for MSA is the sum of total employment in other MSA's deflated by the distance

from j to each MSA. Market potential for high-tech replaces total employment by high-

tech employment (SIC 357, 366, 367, 372, 376, 381384).15 For these exogenous instruments,

2SLS coefficients for county own industry plants for high-tech Census, high-tech non-affiliate,

machinery Census, and machinery non-affiliate are 1.87, .335, -.646, and -3.65, all significant.

However, the explanatory power of the first stage — (time variation in county own industry

plants as explained by time variation in the instruments) is only about .05 in machinery

and .20 in high tech. To help increase this I added in as an instrument (time variation in)

county all other industry employment in manufacturing from two time periods ago (lagged

to try to enhance exogeneity). For the four respective industry groups, coefficients are 1.36,

.110, .302 and -.606, all significant. First stage explantory powers are respectively .24, .43,

.07 and .07. Only in high-tech non-affiliates is (a) the coefficient of .110 believable (and

consistently with results in Tables 4 and 5 not overstating localization economies) and (b)

efficiency reasonable. Given the difficulty with 2SLS work, I turned to GMM, which is more

flexible in the choice of instruments and which accounts for heterogeneity.

For GMM, I differentiate equation (4) across adjoining years to get Alogyk(t) =

a/SiogXk(t) + >io BjtalogE5(t — £) + A6(t) + &k(t), where for example /SlogE(t —2) =

logE(t — 2) — logE(t — 3). In estimation each year (92-87, 87-82, 82-77) is treated as

a separate equation, with coefficients (other than Ao(t)) constrained to be equal across

years. Instrumenting (lagged 1972 inputs) loses us a year (77-72) in estimation. I treat

predetermined variables as exogenous and the length of the instrument list increases from

year to year. (E.g., for plant inputs, only 1972 values are exogenous to the 77-82 equation,

but 1972, 1977 and 1982 are exogenous to the 92-87 equation.) Instruments for each plant-

year include predetermined values of plant inputs, MSA manufacturing employment, county

'5Even these instruments are difficult to assert as being strictly exogenous, especially across equations
within a year (i.e., across MSA's).
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non—attainment status, MSA manufacturing wages and county own industry plants.16 The

model is estimated by GMM using DPD (1998 version, Areilano and Bond 1991), accounting

for heterogeneity and serial corrlation.

In estimation I work with two samples. First is a balanced panel which requires plants

to be in the sample from 1972-92. The advantage of balancing the panel is that there

are more instniments available — by 1992 instruments include three sets of predetermined

variables (1972, 77 and 82). Given the problem of instrumenting in 2SLS, having a good

set of instruments seems critical. The disadvantage is the great reduction in sample size,

to about 1/10 of that in earlier tables. The second sample is an unbalanced panel, which

greatly expands sample size relative to the balanced panel by adding in a variety of plants

that only appear in three Censuses (e.g., plants appearing in 1972-82, 77-87, or 82-92). The

disadvantage is that these additional plants have very limited instruments — one year of

predetermined values. The basic model in Table 4 is estimated by GMM for the Census

samples only. For non-affiliates, which tend to appear in the ASM sample only 2-3 times in

a row, sample sizes for GMM are too small.

Results for high-tech and machinery Census plants are given in Table 9. For the

balanced panels, high-tech localization economies are higher than in Table 4 at 0.164 (y

0.079) and are significant. For machinery localization economies are also higher than in

Table 4 but are insignificant. For the unbalanced panels, coefficient magnitudes are similar;

but, with the limited instrumenting, standard errors are relatively large.

As a fourth experiment, I tested in the GMM estimation for strict exogeneity of the

logXk(t) and 1ogE(t) (to Ck(t) in all years), compared to just assuming predetermined

values are exogenous. Hausman tests could not reject strict exogeneity of the 1ogE(t)

(county own industry plants) in either sample nor strict exogeneity of the logXk(t) in high-

tech. These Hausman tests, as well as Sargan tests on over-identifying restrictions, indicate

that the strict exogeneity requirements in Table 4 are not a major problem. Regardless

'6Note since equations are differenced and fixed effects eliminated, level values can be used as instruments.

29



Table 9. Exogeneity Issues

log (number of county own industry plants)

(a) GMM with balanced panels

coefficient sample size

High-tech .164 N 147
Census sample (.078) T = 3

Machinery .096 N=336
Census sample (.060) T = 3

(b) GMM with unbalanced panels

High-tech .129 1615 (581 plants)
Census sample (.091)

Machinery .086 3186 (1104 plants)
Census sample (.066)



of whether contemporaneous versus predetermined variables are treated as exogenous in

the current year, all estimations passed Sargan tests on over-identifying restrictions. Serial

correlation tests in all estimations also indicated that errors in the levels equations (the

ekj(t) in equation (4)) are serially uncorrelated.

Given the efficiency problems in instrumenting, the sample size reduction with GMM,

and the Hausman and Sargan test results supporting strict exogeneity, I strongly prefer

the fixed effect results. And the evidence from instrumenting certainly suggests fixed effect

results are not overstating the extent of scale externalities.

Births, Dynamic Externalities, and Non-Afluiate High-Tech Plants

The results obtained in Tables 4 and 5 suggest that non-affiliates do not benefit more

from static externalities than corporate plants, or that newborn plants do not generate

greater spillovers than pre-existing plants. However, when we looked at dynamic externalities

in Table 7 for high-tech plants, evidence suggests greater external benefits for non-affiliated

than corporate plants. Second, while, in Table 5 for static externalities, there was no evidence

of greater externalities generated by births than existing plants, the investigation did not

deal with dynamic externalities. In this section I re-examine differential responses between

non-affiliate and corporate plants and I also look at birth (flow) effects, separate from plant

(stock) effects, in terms of externalities generated. There remains no evidence of dynamic

externalities for machinery in any of formulations below, so results are only reported for

high-tech industries.

The first step is to extend the formulation in columns (iii) to (vi) in Table 5, so as

to distinguish birth versus existing plant effects and own county versus surrounding county

effects, with dynamic externalities (one lag). There is no evidence of dynamic externali-

ties from activity in surrounding counties. For high-tech Census plants I find lagged own

county births and pre-existing plants contribute equally (coefficients of .017 and .019). For

non-affiliates while the difference in coefficients is not quite statistically significant, the (sig-
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nificant) coefficient for lagged births is .087 while that for pre-existing plants is .0096. Note

it is difficult to sort out effects of births from pre-existing plants. Levels and changes in these

variables are strongly correlated, given most births are "replacement" births which replace

the 50% of plants that die out on average every five years. Given these features, I decided

to look at results separately for own county births, as well as plants.

Results are given in Table 10. The birth results have smaller sample sizes because

1972 is dropped as an estimating year since we don't know births in t —2 for that year.

For Census plants, dynamic birth effects are larger than plant effects and coefficients are

statistically significant; but, for non-affiliates, birth and plant effects are very similar. Thus

there seems to be, at best, modest evidence that birth effects can be more important than

plant effects.

However, we continue to conclude that non-affiliates benefit more than corporate plants

from externalities, at least dynamic ones. The difference in coefficients for plant effects is

significant at t —1. This accords with the intuition that non-affiliates are more reliant on the

external environment, utilizing the accumulated stock of local trade secrets. I also examined

whether younger plants, per se, benefit more from externalities than older plants, but found

no decline in externality benefits with age.

Table 10 also examines individual high-tech industries, for the Census sample. I don't

report results for non-affiliates for individual industries because of problems with limited

sample sizes. The individual industry results are interesting. Aircraft does not seem to

experience positive externalities. Birth effects in instruments and perhaps electronic compo-

nents appear stronger than plant effects, while for computers the opposite is the case. The

general conclusion is that specific industries respond differentially to static versus dynamic

externalities and to externality sources — births versus plants.

3. INDUSTRIAL AGGLOMERATION AND SCALE ECONOMIES

Combining results in sections 1 and 2, there are conclusions and two additional issues.
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In terms of conclusions, localization/MAR scale externalities arise from the number of local

own industry plants, or points of information spillovers. Overall static externalities seem

to affect older corporate and younger non-affiliates plants equally; and both seem to offer

the same externality benefits to others. However, once we allow for dynamic externalities,

overall and industry by industry in high-tech, non-affiliates seem to benefit from externalities

more than corporate plants, which have their own firm information networks. High-tech and

most individual machinery industries do not benefit from urbanization-Jacobs economies

from manufacturing and related industry diversity and scale, nor overall urban scale and

diversity. The high-tech industries experience greater local external scale economies than

machinery arid, as such, are also more agglomerated, than the machinery industries as would

be expected. However, the on-going spread of industries, especially machinery ones, is not

related to changes in scale economies over time. Instead they may be related to declines

in transport costs/weights of inputs, allowing producers to spread out and move nearer

customers.

A particularly surprising conclusion is that the high-tech industries subject to large-

scale economies are more mobile (except for aircraft) than the machinery industries. In fact,

electronic components which is arguably the most mobile industry is also an industry experi-

encing major dynamic externalities. Why is this? I offer two reasons. First, greater mobility

in high-tech might arise from the tentative finding that for some individual high-tech in-

dustries new births are a source of positive spillovers — new blood injecting new life into

localities. That suggests that local plant-turnover is important to sustaining productivity.

Also new locations may not be at such a distinct disadvantage in attracting plants com-

pared to existing agglomerations; new locations can generate spillovers by births, creating

externalities as they grow. While this process has never been formally modelled, it suggests

locational mobility is much easier than Arthur (1990) envisioned.

Of course, the differential in mobility between high-tech and machinery may be ex-
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plained by aspects of machinery production, where backward and forward linkages are im-

portant. The five machinery industries relatively intensively use heavy inputs —primary

iron and steel and primary non-ferrous metals, where the former is based on raw materials

heavily concentrated around the Great Lakes. For the machinery industries, the ratio of

these heavy inputs to output averages .125 (with a range for individual industries from .097

to .153); and the ratio of heavy inputs to all inputs averages .234 (with a range from .177

to .279). For high-tech, the corresponding numbers are .049 (range .016 to .071) and .089

(range .026 - .120). Apart from agglomerating near material sources to save on transport

costs with input linkages, the machinery industries may be relatively immobile because these

sources are locationally fixed (i.e., the Markov transition process is not homogeneous, but

varies with resource endowment conditions).

The results in the paper shed light on two additional issues. First, in contrast to

Glaeser et al. (1992) and Henderson et al. (1995) we find no evidence of urbanization-

Jacobs economies in high-tech industries from overall MSA scale or diversity. Given these

high-tech industries are subject to on-going rapid technological developments, some have

argued that greater productivity requires an infusion of ideas from outside the own industry,

which would be enhanced in larger, more diverse urban environments. I find little evidence

of this. For the own industry employment growth rate regressed against base period values

of log of all other industry employment, all other industry diversity, log of own industry

employment (with mean reversion and localization/MAR economies not disentangled), and

time-industry dummy variables, Table 11 give us OLS and MSA fixed effect results for

growth from 77-82, 82-87, and 87-92 for high tech. Similar results occur if we replace the

own industry scale measure of employment by numbers of plants.

In Table 11, while MSA scale is important to industry growth in OLS, with fixed effects

it is not. For diversity, fixed effect results are supportive of urbanization-Jacobs economies,

in contrast to my productivity findings. This suggests diversity is important in location
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decisions (diversity of suppliers of inputs) but not in providing actual externalities. I also

report results for machinery, where fixed effects results are not supportive of urbanization-

Jacobs economies at all (in contrast to Table 10 findings). Even if MSA scale does improve

productivity in machinery, that doesn't mean recent growth of MSA's is correlated positively

with machinery employment growth. Machinery growth may not be competitive in faster

growing MSA's. In short I believe productivity formulations yield quite different results

from growth ones because the former examines productivity effects of externalities, while

the latter examines spatial allocation, or location processes in a general equilibrium context

with many determinants.

The second issue concerns whether firms in an industry go to urban sites with better

industry-specific city amenities. The alternative is that industry agglomerations are spread

randomly across potential sites, with resulting patterns being "accidents of history." I have

a measure of MSA specific time invariant amenity benefits for each industry. FIom the esti-

mation of the productivity relationship (I use the specification in Table 4 for all industries),

I get a location-plant fixed effect, fkj. I average these fixed effects across plants in each

industry in each MSA to get an MSA fixed effect for each industry, j'j.17 The question is

whether MSA's with higher fi's have higher employment in an industry? The answer bears

on two questions. Are site amenities a basis for agglomeration and/or do industries which

agglomerate for other reasons go to the best urban sites?

'7There is an issue if we decompose fkj into .fk and fj, whether fk' are correlated with f 's —
better plants go to better amenity locations. Without scale effects and absent locational amenities, plants of
differing abilities would locate randomly — they would have no need (1) to cluster together or (2) to cluster
so highly ability plants are segmented from lower ability ones (Black, 1998). Absent scale effects but with
locational amenities, with or without differences in fk's, plants would tend to cluster in locations with
higher fj's. These locations offer higher inherent productivity and thus thaw in plants. ilowever, not all
plants go to one location with the highest f since locations because "congested" —with agglomeration,
wages, land and environmental costs rise. If the .fk vary as well, one can envision segmentation, where
higher fk plants go to higher f locations, because they can better afford the higher congestion costs —
or they benefit more from higher ft's than lower ability plants. Regardless we can say, if the fj and own
industry employment levels are positively correlated, then absent scale economies, this implies locational
amenity differences exist. Such amenities are then a basis of agglomeration.
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In Table 12 for the four industry groups, I show the correlations between the fj's and

both 1992 MSA own industry employment levels and growth in own industry employment

from 1972 to 1992. We are looking for positive correlations with employment levels; but

correlations with growth may be zero or negative. Even if industry stocks are in high amenity

locations, growth may be at the margins everywhere or at inferior sites, given better ones are

congested. For machinery industries the pattern holds; correlations with levels are positive,

and larger than with employment growth. For high-tech all correlations are low, although

employment growth is positively completed with MSA-fixed effects. With regional shifts in

high skill labor and population, the identity of the best high-tech employment centers may

have changed with time, with the best plants focusing on high growth areas. However, I

would again cite the result that births may generate high-tech productivity improvements.

Maybe the best plants seek the fastest growing locations with the most births in high-tech

industries.
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