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CONTROLLING STOCKS AND FLOWS TO
PROMOTE QUALITY:
THE ENVIRONMENT, WITH APPLICATIONS
TO PHYSICAL AND HUMAN CAPITAL

By Nathaniel O. Keohane, Benjamin Van Roy, and Richard J. Zeckhauser*

1 Introduction

This paper considers the problem of promoting quality in a dynamic setting.
The quality of a valued resource diminishes over time; it may be restored




periodically, or the process of deterioration may be slowed. For example,
environmental quality, which we represent as a stock, diminishes as solid
waste accumulates at a landfill. The flow of waste may be slowed through
recycling, composting, or waste reduction. Eventually, the landfill is capped
and the quality of the site is restored. In the management of physical capital,
quality diminishes as existing capital deteriorates and becomes obsolete. In-
vestment in new capital restores the stock; maintenance slows depreciation.
Human capital behaves in much the same fashion. An engineer whose skills
have become obsolete can be “traded in” through dismissal or downsizing,
and that “trade-in” can be delayed through maintenance efforts, such as
continued job training.

We meld two traditional approaches to promoting quality: controlling
stocks and controlling flows. The first entails restoring the quality of a
resource. The second involves curbing its deterioration. Although both
approaches are widely used in real world settings, analytic models tend to
focus on one strategy or the other. For example, pollution-control models
typically concentrate on balancing the marginal benefits and costs of flows of
pollution. Stock-control measures do not enter these models, or are treated
separately. In contrast, models dealing with physical capital focus on in-
vestment and the stock of capital. Maintenance tends to be ignored, or is
treated as exogenous. And while “trade-in” and “maintenance” strategies
for human capital are widely discussed, they are not considered together in
optimizing models. In each of these settings, both stocks and flows can be
controlled to promote quality. We refer to this class of problems as “SFQ”
problems. To facilitate exposition we focus on environmental quality, but
the lessons are general. Our discussion of applications returns briefly to
promoting the quality of physical and human capital.

In the well-behaved world of economics textbooks, the marginal benefit
and cost curves of reducing pollution depend only on current quality, and
slope, respectively, down and up. A constant level of environmental quality
is maintained where the marginal benefit of reducing pollution, adjusted for
the discount rate and the decay rate of the stock, equals the marginal cost
of abating it.! Once the resource reaches such a steady state, optimal abate-
ment efforts just keep up with net new accumulation. If there is uncertainty
about flow or decay rates, environmental quality will oscillate around some
equilibrium level.

The possibility of restoration significantly affects the optimal manage-

1This is simply the dynamic analog to the familiar static efficiency condition that
marginal benefit equals marginal cost.



ment of a resource. Restoration typically introduces nonconvexities in cleanup
costs, upsetting the simple interior solution just described. Most commonly,
restoration efforts have high fixed costs, introducing economies of scale. For
example, one method of cleaning up a hazardous waste site is to haul the
soil away and incinerate it, in which case the costs vary little with the con-
centration of the contaminant in the soil. Similarly, there are high fixed
costs involved in scraping zebra mussels from a water intake pipe or hauling
hazardous waste to a treatment facility. Or the source of the nonconvexity
may be institutional: establishing a regulatory regime, such as a ban on
fishing in Georges Bank, may entail significant political costs.

Given a nonconvexity, optimization is a more complex process, and
cleanup may proceed in a jerky fashion. The mundane example of desk mess
illustrates the process. A desk gets messier and messier, until restored with
a sudden burst of cleanup activity. A similar cycle characterizes cleanup ef-
forts for many environmental problems. Rather than preserve a steady state
by achieving zero net flow of new environmental bads, we periodically reduce
the stock. Examples include capping a landfill, dredging a harbor, hauling
hazardous waste to a permanent treatment center, or clearing mussels from
the intake pipe of a Great Lakes power plant.

In this paper, we develop a general model of the optimal management of
natural resources when restoration (with economies of scale) is an option. As
a benchmark, we first consider the conventional case, where the stock cannot
be cleaned up directly, so that abatement is the only feasible strategy. We
then introduce the possibility of restoration. We start with the simple case in
which the flow of pollution is exogenous, and only restoration is possible. We
show that this case is formally equivalent to an optimal-inventory problem,
and the optimal restoration policy has the familiar interpretation of an (S, s)
policy.

The focus of our analysis is on the complete SFQ case, in which flows are
controllable and restoration is feasible. We find that when both restoration
and abatement are possible, the optimal policy employs both strategies, and
that neither strategy takes the form it would in the absence of the other.
The same lesson applies when it is physical or human capital whose quality
is being promoted.

The next section reviews the relevant economics literature. Section 3
introduces the basic model, and formally defines our notions of abatement
and restoration. Section 4 develops the theoretical results, analyzing the
optimal policies in the three scenarios described above: the abatement-only
case, the restoration-only case, and the joint abatement-restoration case.
Section 5 illustrates these results with examples of real-world SFQ problems.



It discusses beach contamination, the storage and shipment of atomic wastes,
zebra mussel control, municipal solid waste management, and the handling
of hazardous waste at Harvard University. It also suggests how our model
can be applied to the management of physical and human capital. Section
6 concludes.

2 Previous literature

The literature on the economics of pollution control has focused almost ex-
clusively on the economics of emissions reduction. This emphasis on abating
the flow rather than cleaning up the stock leaves restoration to the engineers
and to the real world, which has seen many wastes removed, landfills capped,
and toxic waste sites restored.?

Nonetheless, a review of the literature on stock pollutants provides use-
ful context for this paper.® Several models (Keeler, Spence, and Zeckhauser
1971; Plourde 1972; Plourde and Yeung 1989; Smith 1972) analyze the prob-
lem in a general-equilibrium setting, attending to the trade-off between pol-
lution control and consumption or capital accumulation. These models gen-
erally assume strict convexity in abatement costs, leading to steady-state
interior solutions in which the flow of new pollution just offsets the natural
decay of accumulated pollution. Similar results obtain in models that frame
the management of a particular pollutant as an optimal control problem,
with abatement as the choice variable (Falk and Mendelsohn 1993). The
steady-state solution is found by equating the marginal cost of abatement
with the present-value marginal benefit of pollution reduction.

Caputo and Wilen (1995) address the problem of cleaning up a fixed pol-
lution stock. Their example is hazardous waste. They consider restoration,
as we define it, although they assume that cleanup costs are convex. They
find that the optimal solution stops short of complete cleanup (and lets nat-

2Two factors may help to explain this treatment. First, the authors of these stud-
ies have typically examined cases in which restoration is essentially infeasible (e.g., the
accumulation of greenhouse gases in the atmosphere). Second, previous models of stock
pollution have employed optimal control theory to solve the complex dynamic optimiza-
tion problem. In doing so, however, authors have typically viewed the flow of pollution
(i.e., emissions) as the choice variable, and the stock as the state variable. In a sense,
the methodology imposed the dichotomy between stocks and flows, and precluded the
consideration of restoration efforts, which involve direct reductions in the stock.

3A pure stock (as opposed to flow) pollutant is one that persists indefinitely in the
environment. More generally, we use the term “stock” or “accumulating” pollutant to
refer to a pollutant for which new flows outpace decay. Examples include atmospheric
greenhouse gases and hazardous waste.



ural degradation finish the process), as long as when pollution approaches
zero so does its marginal damage.

Phillips and Zeckhauser (1998) argue that restoration efforts typically
involve “destination-driven costs,” an extreme case of economies of scale.
Destination-driven costs depend primarily on the ultimate level of environ-
mental quality, rather than the initial level of environmental quality (or the
amount of cleanup needed). In such cases, optimal cleanup does not follow
the usual “marginal benefit equals marginal cost” prescription. Phillips and
Zeckhauser, however, treat the restoration problem in a static, one-time-
only setting. Their analysis addresses the question: “The pollution is there,
or possibly accumulating; what shall we do?” This paper begins from the
premise that pollutants will continue to arrive in the future.

3 Model framework

In this section, we construct a model of environmental degradation and
amelioration that allows us to analyze optimal abatement and restoration
policies. At this level of abstraction, we have in mind a generalized environ-
mental resource with a “quality” level that changes over time. In the case
of accumulating waste, for example, the quality might be measured by the
volume of waste: the smaller the amount, the higher the level of environ-
mental quality.® We represent the quality of the environmental resource at
time t by a real number z;. Larger values of x; represent more desirable
states. We normalize the initial quality level to be equal to zero, so that
zo = 0, and we shall be working mostly with negative values for z.%

Apart from any efforts of a resource manager, two processes acting in
opposite directions affect the level of environmental quality: ongoing damage
to the resource and natural recovery processes, such as the decay of the
accumulated pollution stock. To capture both effects, we model the process
of injury or damage to the resource as a random variable with drift. The
amount of damage incurred up to time ¢, denoted by z:, is assumed to follow
a Brownian motion with drift rate g > 0, variance rate o2, and zy = 0.

*Note that we use “quality” to denote the state of the resource: for example, it may
measure how much pollution has accumulated. How the quality of a resource is wvalued
will be captured in the utility function.

50Of course, the state = can be positive as well — the state evolves according to a
stochastic process, and may improve as well as deteriorate. But since we are concerned
primarily with deterioration, and we normalize z = 0 to be our starting point, negative
values for z will be of primary interest.



Hence, damages evolve according to
(1) 2 = pt — owy,

where w; follows a standard Brownian motion. Intuitively, u can be thought
of as the “average” rate of injury to the resource: for example, the average
flow of pollution minus the natural decay of existing pollution. The random
term in equation (1) captures random variations in the processes of damage
and natural recovery. Accumulated damages reduce environmental quality
x¢. Absent measures that reduce the flow of damage or restore the resource,
quality at time t is ©y = —ut + owy.

We assume that society’s benefit from the resource at any point in time
depends only on the level of environmental quality. Thus, at time ¢ society
derives a flow of utility u(z;) from the availability of the resource.5 We
assume that the social rate of time preference is > 0. We further assume
that the utility function has the following properties.

Assumption 1 The utility function u is twice continuously differentiable,
with v < 0, v/ > 0, v < 0, and u' unbounded above. Furthermore,
Ey [ [ e “u(z)dt] is finite for all x.

Note that when environmental quality is less than zero, so is utility; the
utility function can be thought of as the negative value of a convex loss
function.”

3.1 Abatement Policies

We define abatement as a reduction in the rate of injury to the resource.
In our SFQ framework, abatement corresponds to flow control. End-of-pipe
controls on pollution emissions and changes in the production process that
reduce pollution are both forms of abatement.

5We ignore issues such as population growth or changes in income, which could make
the utility function time-dependent. With a growing population, for example, one might
scale the utility function to the size of the population, so that the absolute value of the
(negative) utility associated with a given level of environmental damage (negative quality)
would increase over time. If abatement costs remained constant, the optimal level of
abatement at a given level of environmental quality would increase over time. On the
other hand, we might expect that abatement costs and the drift rate y might be greater
for a larger population producing more waste.

"Having a utility function with values less than zero simplifies notation, while letting
us still discuss results in terms of “net benefits,” and so on. Of course, adding a suitable
constant term to the utility function would make the values of the utility function positive
over most of its range, and would not affect the results.



The resource manager’s problem is to determine the optimal abatement
rate.® Abating at rate a(z;) reduces the mean rate of injury from p to
w— a(zy). We assume that the abatement rate cannot exceed some finite
ceiling a. That is, infinite abatement is assumed to be impossible, whether
for physical reasons (it cannot be achieved by existing technologies) or bud-
getary ones (the cost of infinite abatement exceeds the resources available).
This assumption is invoked for technical reasons, and is not necessary for
our results.’ In our discussion of optimal policies, in Section 4 of the paper,
we also assume that the ceiling a is greater than the mean flow rate u. Thus
the manager can, if she wishes, maintain a steady state in expectation by
setting a = p.

An abatement policy is a mapping a : R — [0,a@] from the set of real
numbers (the possible values of the state x) to the interval [0, a] (the feasible
levels of abatement). Thus an abatement policy specifies the abatement level
as a function of the state x.!° Under an abatement policy a, the state of

8We use the term “manager” to refer to the person (or department) responsible for
determining abatement and restoration. Such a “manager” may not actually control
the resource directly, but rather may be a regulator who determines the ideal abatement
and/or restoration policy and then employs a policy instrument (direct controls, standards,
taxes, etc.) to get that policy achieved.

9The assumption of a ceiling on abatement simplifies the proof that an optimal abate-
ment policy exists. Somewhat loosely, the technical challenge is that allowing abatement
to be unbounded could, in principle, lead to situations where no policy is optimal (i.e., one
can always do better by choosing a higher level of abatement). Requiring that abatement
be bounded by a constant, as we have done here, ensures the existence of an optimal
abatement policy.

In fact, for the problem considered here, an optimal abatement policy can be shown to
exist even if we allow abatement to be unbounded. In the abate-only case, the concavity
of the value function and the convexity of the abatement cost function are sufficient to
ensure that infinite abatement will never be optimal. In the abate-and-restore case, in
which the value function has a convex region, it is also possible (but more complicated) to
show that the second derivative of the abatement cost function is greater than the second
derivative of the value function, at least for sufficiently high rates of abatement. This
rules out the possibility of infinite abatement being optimal in the abate-and-restore case
as well.

In any case, the assumption of a ceiling on abatement has little practical import, because
the ceiling can always be set high enough that the probability it binds is vanishingly small.

OWe are implicitly confining the manager’s problem to that of choosing the optimal
stationary policy, in which the choice of abatement is a function of the state. An alternative
approach would be to make the manager’s problem one of choosing an optimal stochastic
process {a:} measurable with respect to the filtration generated by {w.}. However, one
can show that such an optimal process can be produced by letting a; = a(z¢). Thus our
assumption that the manager chooses the best among the set of stationary policies does
not affect the practical implications of the analysis.



the resource evolves according to dxy = (a(zt) — p)dt + odws.
The resource manager faces the classic trade-off between the benefits of
higher environmental quality and the costs of achieving it.

Assumption 2 The abatement cost function c : [0, 00) is twice continuously
differentiable with ¢ > 0, ¢(0) = 0, and " > € for some € > 0.

Given an abatement policy a and an initial state x, the expected dis-
counted utility over an infinite horizon can be written as

I [ /t : = (ulay) — c(alwe)))dt| .

We assume that the manager wishes to choose an abatement policy that
maximizes this expectation simultaneously for all z.

3.2 Restoration Policies

Next, consider a setting in which abatement is no longer an option, but
instead it is possible to restore the resource. For example, the manager of
a polluted stretch of coastline may be unable to prevent an ocean vessel
from emptying its bilge offshore, but can replenish the sand on the beach.!!
Similarly, the causes of beach erosion or silt build-up in a harbor may be
natural and outside the manager’s control; restoration may be the only
remedy available.

In our SFQ framework, restoration corresponds to an “all-at-once” cleanup
that affects the stock of environmental quality directly, rather than by re-
ducing the flow of pollutants. In particular, from any state x;, the manager
may choose to restore the resource to the state x = 0.12 Letting 7; denote
the ¢th time at which the resource is restored, the state at time ¢ is given
by Tty = —Mt + owg — Z{i\n<t} Lr; -

We assume that there is a positive fixed cost of restoration, and zero
marginal costs. Thus the restoration cost is independent of the starting-
point of restoration.

HThus exogeneity may be due to jurisdictional boundaries rather than intrinsic prop-
erties of the resource. The degree of institutional separation is clearly a function of scale:
beach pollution that is exogenous from the point of view of a local coastal planner may
be endogenous in the context of an international ocean-dumping protocol.

2 A more general framework would explicitly model the manager’s choice of how much
to restore — that is, how far to clean up the resource. (For example, there might be more
than one possible restoration method.) But in general, such a problem will yield a single
optimal destination, so little is lost by our assumption of one restoration technology. Our
choice of x = 0 as the destination, meanwhile, is merely a normalization and does not
affect the results.



Assumption 3 The cost of restoring quality from any state x: to x =0 is
independent of x; and is given by C > 0.

While such “destination-driven” costs are an extreme form of cost non-
convexity, the basic results of the model still hold under less extreme forms
of scale economies, in which restoration involves constant or increasing mar-
ginal costs as well as a fixed cost.!3

A restoration policy is characterized by a measurable closed subset R of
R. Under a restoration policy R, restoration occurs whenever the state x;
occupies the set R. That is, the resource is restored whenever its quality
falls to a certain point.

Given a restoration policy R and an initial state z, the infinite horizon
expected discounted utility can be written as

ER [/ e u(zy)dt — Z e “1iC .
t i=1

=0

We assume that the manager wishes to choose a restoration policy that
maximizes this expectation simultaneously for all z.

3.3 Combined Abatement—Restoration Policies

Finally, let us consider a setting in which the manager can affect both stocks
and flows independently. That is, abatement and restoration are both feasi-
ble. The state of the resource evolves according to z; = ['_y(a(zs) — p)ds +
OWe = X gijr; <t} Try- Given a combined abatement-restoration policy (a,R)
and an initial state z, the infinite horizon expected discounted utility can
be written as

EsE l/to e (u(xs) — c(a(zy)))dt — ; eanc|

The manager’s objective is to choose a combined abatement-restoration
policy that maximizes this expectation simultaneously for all x.

13Suppose that the restoration cost is given by C(z) = F + v(z), with v(z) a convex
variable-cost function. Unless J(0) — J(z) < C(z) for all z, restoration will be optimal
for at least one state x. If we now let z denote the largest “trigger” (that is, the highest
value of z at which restoration is optimal), then the system will evolve much as in the
case with only a fixed cost. A difference will be that the abatement rate need not go to
zero as the state approaches z.

14 Again, we are implicitly confining the manager’s choice set to the set of stationary
policies. But as in the abatement case, a stationary policy would still be optimal if we
allowed for a broader class of policies. See note 10.



4 Optimal policies

In this section we study optimal policies in the three settings described
above. In the first case, only abatement is possible. This provides a bench-
mark for the results when restoration is feasible. In the second case, flows
are exogenous, and restoration is the only option. This case allows us to
focus on the dynamics of optimal restorations.!> We devote the bulk of our
attention to the third case, in which both abatement and restoration are
feasible. Proofs of all theorems may be found in Appendix A.

4.1 Abatement Policies

Let J be the optimal value function:

© Ta) =sup B2 | [~ e (u(a) - clafen))at).

t=0

where the supremum is taken over abatement policies. J(x) represents the
maximal present value of the future stream of net benefits (utility minus
cost) under the optimal policy, starting from state x.

Theorem 1 Let Assumptions 1 and 2 hold. Then,

1. J <0 and J(x) is finite for every x;
2. J is twice continuously differentiable;

3. J satisfies

0.2
(3) sup. <7J"(l‘) +(g—w)J' () — aJ(z) +u(z) — C(Q)> =0,

for all x;
4. J >0;
5. J"<0;

6. J' is unbounded above;

5The reader will note that in formal terms the restoration-only case is simply a special
case of the abatement-and-restoration case, with the ceiling a = 0. We take advantage of
this fact to simplify our proofs. For expositional clarity we discuss the restoration-only
case separately, before considering both abatement and restoration together.

10



7. there is a function a* : R — [0,a] such that for every x, a*(x) uniquely
attains the supremum in equation (3); and

8. a* is an optimal policy.

From Theorem 1, the optimal value function J satisfies the Hamilton-
Jacobi-Bellman equation (equation (3)).! Thus the value a*(x), which at-
tains the supremum, constitutes an optimal abatement decision at state x.
The following theorem describes this optimal abatement policy.

Theorem 2 Let assumptions 1 and 2 hold. Then,

1. there exists a state T such that a* is decreasing on (Z,00) and a*(z) = a
for all x < &;

2. limy 00 a*(x) = 0; and

3. there exists a state x* such that p < a*(z) for < z* and p > a*(z)
for x > a*.

Theorem 2 establishes that as environmental quality falls, the optimal
rate of abatement increases.!”

The optimal abatement policy a*(z) has a familiar economic interpreta-
tion.'® Most of the terms in equation (3) are functions only of the state x
and not of the abatement decision ¢; since the state is not a choice variable,
a value g attains the supremum if and only if it also attains the supremum
SUPge(oa) f=(q) of a function fz(q) = ¢J'(x) — c(g). Intuitively, fi(q) can be
understood as the expected net benefit from abatement q. The second term,
¢(q), represents the cost of abatement ¢q. The first term, ¢J'(z), represents
the rate at which the value function increases. This corresponds roughly
to the expected benefit from abating at rate ¢, taking into account present

Y Equation (3) is a close relative of the Bellman equation commonly used in recur-
sive treatments of economic problems. For a rigorous development of recursive methods
and their application to a range of problems in economics, including the (S, s) inventory
problem we discuss below, see Stokey and Lucas (1989).

170f course, at some point the abatement policy will be constrained by the “ceiling” a.

8This and subsequent heuristic explanations of the results in economic terms are less
technically rigorous than the theorems themselves. These discussions aim to connect our
formal results to more familiar results from economics. Intuition’s gain is occasionally
rigor’s loss.

11



and future utility.!® Theorem 2 therefore states that the optimal abatement
policy at any given time picks the abatement rate to maximize the resulting
“expected net benefit,” assuming it is feasible. If not, the optimal policy is
to abate as much as possible — that is, @.

Given the concave utility function, the marginal loss of utility from fur-
ther damages increases as environmental quality deteriorates. Thus the
marginal benefit from abatement increases as x diminishes. The marginal
cost of abatement, however, does not depend on environmental quality, but
only on the amount of the flow abated. With marginal benefit increasing as
x falls, and marginal cost staying constant, the optimal rate of abatement
rises accordingly, as Theorem 2 shows.

The abatement function a*(x) described in Theorem 2 can be compared
to the optimal policy in a deterministic world, in which the unabated flow
of damages never deviated from its mean rate p. In such a world, the op-
timal abatement policy would maintain a level of environmental quality,
x*, where abatement exactly equalled the rate of damage: a*(z*) = u. For
x > x*, a*(r) < p, meaning that environmental deterioration would outpace
abatement efforts, and the state of the environment would decline towards
z*. For © < z*, on the other hand, a*(z) > p and abatement would more
than compensate for damages, yielding a continuous improvement in en-
vironmental quality. Starting from any level of environmental quality, the
optimal policy would reach an equilibrium at a quality level z* satisfying
J'(z*) =  (a*(z*)) = /(u),where the marginal cost of fully abating new
pollution (achieving a zero net flow) just equalled the marginal net benefits
from doing so. This result, of course, agrees with standard results from the
optimal-control literature discussed in Section 2.

Introducing uncertainty changes the realized outcomes, but the optimal
policy can still be understood intuitively in terms of the “target” quality level
x*, where the rate of abatement that maximizes expected net benefits exactly
offsets the expected flow of damages. We call x* an expectation equilibrium,
meaning that it is an equilibrium in expectation: at z*, abatement equals
the expected flow, and thus in expectation the quality level will remain
there. Moreover, x* is stable. Starting from z*, a “high” flow of damages
(i.e., at a rate greater than p) will depress environmental quality below z*.

Heuristically, for a given marginal change in the state dx, the resulting change in
the value function would be J'(z)dz. We can think of abatement g, carried out over an
infinitesimal time period of duration dt, as yielding a marginal improvement in the state
due to abatement dx = gdt. We can think of (qdt)J'(z) as the change in the value function
(over an infinitesimal period of time). Dividing through by dt yields the rate of change in
the value function, ¢J' ().

12



In response, abatement will increase, so that a*(x) > p. Thus the quality
level will return to the target z* in expectation. A “low” flow of damages
will raise quality above its target level, leading to a slackening of abatement
efforts and a tendency back toward x*.

4.2 Restoration Policies

In many cases of interest in the real world, abatement is not possible, but the
resource manager can periodically restore environmental quality. The prime
result of this section, Theorem 3, shows that in such cases the optimal policy
is to allow environmental quality to decline until the state falls to a certain
level, at which point the manager undertakes restoration. Environmental
degradation then resumes, environmental quality starts to decline (albeit
stochastically), and the cycle repeats.?

Let J be the optimal value function:

J(x) = sup EF [/ e~ u(x;)dt — Ze_“TiC ,
R =0

= i=1

where the supremum is taken over restoration policies.

Theorem 3 Let Assumptions 1 and 8 hold. Then, there exist states x and
xt with z < =¥ such that the following statements hold:

1. J <0 and J(x) is finite for every x;

2°In some real-world cases, restoration is done only once, after which the process of
environmental degradation stops. While our model does not explicitly consider such one-
time-only restorations, the implications of the model are reasonably clear for such cases: we
abate at the margin (if possible) and then restore all at once. In other words, we maximize
up until the first restoration, and then eliminate new flows after that. As discussed above,
the costs of eliminating further flows may be treated simply as part of the restoration cost.
In order for one-time restoration to be optimal, however, there would presumably need to
be a nonconvexity in benefits, or at least very high marginal damages from the first few
units of degradation.

Note that some cases which might appear to involve “one-time only” restorations may,
in fact, simply be combined abatement-restoration policies in which the abatement policy
is designed to maintain a fairly high level of environmental quality, implying that the
probability that the resource quality declines far enough to trigger restoration is very
small. For example, when we clean up a river, we may not expect to restore it again;
but this expectation may be implicitly based on our attempts to maintain a high river
quality, rather than on an absolute cessation of the flow of damages. In the case of a
river restoration, one could argue that the possibility remains — however slight — that
unforeseen changes in water currents or waste generation will require future restorations.
See the discussions of combined abatement-restoration policies in Section 4.3 below.
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2. J(xz)=J(0)—C forallx < x;
3. R = (—o0,z| defines an optimal restoration policy;
4. J is twice continuously differentiable on (z,00);
5. J is continuously differentiable;
6. J satisfies
7 1(@) = 1 (@) = aT(z) + u(w) = O
forall x > x;
7.0 > 0;

8. J'(x) >0 for x € (x,00);

9. J"(zt) = 0;
10. J"(z) > 0 for x € (z,z); and
11. J"(z) <0 for x € (2F,00).

The optimal restoration policy is thus defined by a “trigger level” z.
When the state reaches this lower bound, the resource is restored up to
x = 0. The periodic restoration of a resource at a fixed cost is thus a
form of the “optimal stopping problem.”?! Indeed, the optimal restoration
of an environmental resource resembles the familiar solution to the classic
inventory problem: a profit-maximizing firm will follow an (S,s) rule in
managing its inventory, drawing its stock of goods down until some level s is
reached and then replenishing the inventory up to the level S (Arrow, Harris,
and Marschak 1951; Scarf 1960). The “inventory” in the restoration case is
the level (stock) of environmental quality, and a restoration corresponds to a
replenishment of inventory. Despite this resemblance, however, our control-
of-quality problem differs from the inventory problem in a key respect. The
cost in both cases comes from restoring the stock, but the source of the
payoff differs. A firm managing its inventory receives an immediate payoff

21To use Rust’s (1987) term, the restoration problem is an example of a regenerative
optimal stopping problem. Here, a restoration “regenerates” the state of the resource
to £ = 0. Rust contemplated the optimal replacement of bus engines; we discuss the
applications of our model to machine replacement and other aspects of investment in
physical capital in Section 5, below.
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from a change in stock. In our control-of-quality problem, the immediate
payoff derives from the size of the stock.??

How far the quality of the resource must fall before restoration becomes
optimal depends on the cost of restoration C. The following Theorem estab-
lishes that as C increases, the trigger level x decreases. Intuitively, a higher
restoration cost increases the incentive to delay restoration.

Theorem 4 Let z(C) denote the trigger level for a given restoration cost
C > 0. Then x(C) is decreasing in C.

4.3 Combined Abatement—Restoration Policies

We now consider the complete SFQ problem, where the manager can use
both abatement and restoration. The results of this section show that when
both clean-up methods are available, both are employed. Moreover, the
availability of restoration affects the optimal abatement policy, and the pos-
sibility of abatement alters restoration. Theorems 5 and 6 describe the form
of the optimal policy and derive this “non-separability” result. We then
explore how the optimal policy changes with the mean flow of new damages.
Let J be the optimal value function:

J(z) = sup Bt [ /t : e () — cla(zy)))dt — Y e 0|
B i=1

a,R

where the supremum is taken over pairs of abatement and restoration poli-
cies.

Theorem 5 Let Assumptions 1, 2, and 3 hold. Then, there exist states x
and ¥ with x < T such that the following statements hold:

1. J <0 and J(x) is finite for every x;
2. J(x) = J(0)—C forall x < z;
3. J is twice continuously differentiable on (x,00);

4. J is continuously differentiable;

*?Balcer (1973) adds a flow-control instrument to a traditional optimal inventory prob-
lem to analyze comparative statics. Specifically, he makes advertising a choice variable
that positively affects consumer demand. Hence, the level of advertising must be consid-
ered jointly with the selection of the (.5, s) bounds.
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5. J satisfies
(4) . ("—2J"<x) + (g — p)J'(z) — aJ (z) + u(z) — c(q)) =0,
cl0a
for all x > z;
6. J >0;
7. J'(x) >0 for x € (z,00);
8. J"(xt) =0;
9. J"(z) >0 for z € (z,z1);
10. J"(z) < 0 for z € (zF,00);

11. there is a function a* : (z,00) — [0,a] such that for every x € (z,00),
a*(z) uniquely attains the supremum in equation (4); and

12. letting R* = (—o0,z], the pair (a*, R*) is an optimal policy.

This theorem identifies two states: the “trigger” level x and an inflection
point zf. The manager restores the resource when environmental quality
reaches or falls below z, as in the case when only restoration is possible.
The inflection point z' marks a point of transition in the optimal value
function J: below z', Jis convex; above it, J is concave.??

The next theorem describes the optimal combined abatement-restoration
policy (a*, R*) defined by Theorem 5, and compares the optimal abatement
rate with and without the possibility of restoration. To aid the comparison,
let J and @ denote the optimal value function and abatement policy, respec-
tively, when restoration is not an option. (Thus J and @ are defined as in
Theorems 1 and 2.)

Theorem 6 shows that when restoration is feasible, optimal abatement is not a
monotonic function of quality, and reaches a peak at the inflection point . The in-
flection point ! may therefore be worth explaining in more detail. Recall that when
only abatement is possible, the value function is concave, reflecting the concavity of the
underlying utility function. Under a restoration regime, however, the value function is
constant below z, since the restoration always returns the state to x = 0 at a fixed cost.
Because J is differentiable, its slope at z is zero. Above z, J is increasing. In some region
just above z, therefore, J(x) must be convex. This region is bounded by z below and z!
above.
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Theorem 6 Let Assumptions 1, 2, and 3 hold. Then,
1. J < J;

2. a* is increasing on {x € (z,z")|a(x) # @} and decreasing on {x €

(a1, 00)la(x) # a}; and
3. for each state x € (z,00), either a(x) < a(x) or a(x) = a(xr) = a.

The first assertion states that the derivative of the value function — the
marginal increase in the present value of net benefits as the resource’s state
improves — is everywhere less in the abate-and-restore case than in the abate-
only case. The feasibility of restoration raises the value function everywhere,
since its absence represents a constraint on the resource manager. But the
value function increases more at low levels of quality, where restoration is
imminent, than at high levels of quality, where restoration is more distant.

Assertions 2 and 3 establish a non-separability result: the possibility
of restoration alters the optimal path of abatement. Recall from Theorem
2 that when only abatement is possible, the optimal level of abatement
always increases as environmental quality worsens. Assertion 2 shows that
this monotonic relationship fails to hold when restoration is an option. As
environmental quality declines from its high initial level, the optimal rate
of abatement first increases, but then slows as the state approaches the
“trigger” level z from above. This result is intuitive. Restoration reduces
the incentive to abatement the flow of damages: because the quality of the
resource will be restored to zero when the point z is reached, abatement will
yield benefits only until the moment of restoration, as opposed to forever in
the abate-only case. As the trigger point is approached, restoration becomes
ever more imminent; hence the benefits from abatement diminish.

By Assertion 3, the optimal level of abatement when restoration is pos-
sible is everywhere weakly lower than in the abate-only case. This result
follows closely from Assertion 1. When restoration is possible, the present
value of net benefits (i.e., the value function J(z)) increases more slowly as
the state improves. Loosely speaking, the marginal gains from abatement
are lower. Hence less abatement is performed.

These results are illustrated by Figure 1, which shows the optimal abate-
ment policies with and without the possibility of restoration, for a particular
set of functional forms and parameter values.?* Note that when restoration is

24The functional forms and parameter values used for all figures are described in Ap-
pendix B.
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Figure 1: Optimal abatement policies with and without the possibility of
restoration.

feasible, the abatement rate falls all the way to zero at the restoration trigger
point z. This follows from the continuity of the first derivative of the value
function, J'(x), or the “smooth-pasting” condition (Krylov, 1980). Because
restoration will take place at any x < z, the value function J(z) is constant
below z, and thus its derivative is zero. The smooth-pasting condition im-
plies that J'(z) goes continuously to zero as x goes to z. Since abatement
is chosen to maximize the “net benefits” function, f(q) = ¢J'(z) — c(q),
abatement must go to zero as x goes to .

The smooth-pasting condition is intuitive. When the resource quality is
at or below the restoration point x, abatement brings zero benefits, because
the state will be restored to x = 0 anyway.?> The smooth-pasting condition
implies that as the quality of the resource approaches the trigger point z,
the benefits from abatement must decline smoothly to zero. If the benefits
decline to zero, however, the costs must do the same. Thus abatement must
go to zero as well.

Figure 2 shows the corresponding value functions J and J, along with
the value function in the restore-only case. Because the absence of restora-

ZRecall that ¢J'(z) can be thought of as the benefit from abating at rate ¢ when the
state is x.
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Figure 2: Value functions for the abate—only, restore—only, and abate—and-—
restore cases.

tion or abatement as an option represents a constraint on the manager, the
value functions in the abate-only and restore-only cases lie below the value
function in the combined abate-and-restore case.

Figure 3 illustrates the optimal abatement functions for three values of
the mean flow rate pu. The vertical axis measures the fraction of mean flow
abated, and the horizontal axis measures resource quality z. If flows are
low on average (the drift rate p is small), the optimal abatement rate will
rise above mean flow for some range of z, just as it does when abatement
is the only option. In this case, a(x) = p at two points: z* and z**.26 The
higher value, z*, is a stable expectation equilibrium. Once the quality of the
resource hits z*, it will tend to oscillate around that level for small pertur-
bations in the flow of damages. Small stochastic increases in the flow above

26In fact, for some flow rate the optimal abatement function will be tangent to the
horizontal line at p. In this case, a(z) = p at a single value of z, and then falls back to
zero. The resulting “expectation equilibrium” x™ is then stable from the right but not the
left. For x > z*, abatement will be lower than p and the state will tend to return to x*.
For z < z* abatement will also be less than u, implying that in expectation the quality
level will decline to the trigger level for restoration.

The flow rate leading to this “borderline case” is marked by the vertical dotted line in
Figure 5 below.
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Figure 3: Fraction of flow abated as a function of quality, for three flow
rates.

p will lead to countervailing increases in abatement, just as small decreases
in the flow will induce abatement less than u. Nonetheless, the possibility
of restoration still affects the outcome. Since the optimal abatement rate
is lower than if restoration were not an option, the expectation equilibrium
occurs at a lower level of quality. Moreover, a large flow of damages can
upset this equilibrium. In particular, if the resource quality falls below z**,
optimal abatement falls below the mean flow u. If this happens, the quality
level (in expectation) deteriorates steadily to the trigger level z, whence the
resource is restored.

The availability of restoration can also change the optimal abatement
policy in a more fundamental way. Since a*(x) is no longer monotonic when
restoration is possible, abatement need not rise above p; thus an expectation
equilibrium may not exist. In this case, at all values of = above z, abate-
ment merely slows — but does not halt — the net flow of damages. Rather
than maintaining quality at a certain level, the optimal policy lets damages
accumulate over time until the trigger level is reached, and then restores the
resource. This will occur if average flows are high (the drift rate p is large).
When the mean flow rate is high, the cost of offsetting it with abatement
is high as well. At the same time, high flows mean that restoration will be
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more frequent, on average, so that damages will persist in the environment
for a shorter period of time before being cleaned up. Hence at higher flow
rates, restoration is employed more relative to abatement.

Thus, when flows are low, abatement exceeds the average flow over some
values of z, producing an expectation equilibrium at the point where abate-
ment equals the mean flow. Although restoration will occur if quality falls
far enough, we are quite unlikely ever to reach that region. At higher flow
rates, abatement is always less than the average flow, and no expectation
equilibrium exists.?” For low flow rates, then, we may say that abatement
is the “principal strategy.” For high flow rates, restoration is the principal
strategy. But in both cases, the presence of one strategy affects the use of
the other.

Figure 4 shows more directly how the importance of abatement relative
to restoration varies with the flow rate. The horizontal axis measures the
flow rate. The vertical axis measures the time-averaged rate of abatement
as a fraction of the flow of damages, or (equivalently) the fraction of total
damages that is cleaned up by abatement rather than restoration. Thus for a
given flow rate, the height of the curve represents the fraction of cleanup due
to abatement. The remainder of the cleanup, from the curve to the top of the
graph, is due to restoration. (For example, at a flow rate of 3, approximately
20% of the total flow of damages is cleaned up by abatement, with the
remaining 80% cleaned up through periodic restorations.) If flows are low,
abatement offsets flows completely (in expectation) almost everywhere, so
that restoration occurs with very small probability and virtually all of the
damages are cleaned up through abatement. As flows increase, the fraction
of flow abated drops dramatically.

Figure 4 also illustrates how the existence of an expectation equilibrium
depends on the flow rate. For flow rates to the left of the dotted vertical
line, an expectation equilibrium exists. At higher flows, to the right of the
line, no expectation equilibrium exists.

Whether cleanup relies more on restoration or abatement determines how
the quality of the resource varies over time. Figure 5 plots the frequency
distribution of states for the same three flow rates as in Figure 3. When
flows are low, an expectation equilibrium is achieved. States close to this

2TThe focus of our discussion is on the fraction of flow abated, which clearly reaches
a higher peak at low flow rates than at high ones. As Figure 3 shows, the peak of the
abatement function may also be higher in absolute terms when flows are low. At a flow
rate of 3, for example, abatement rises to roughly one quarter of the flow rate, or 0.75
in absolute terms. At p = 0.9, on the other hand, abatement reaches over twice the flow
rate, or 1.8 in absolute terms.
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Figure 4: Fraction of cleanup due to abatement, as a function of the mean
flow rate p.

equilibrium level are much more common than other states, as shown by
the peak of the frequency distribution. At somewhat higher flow rates, no
expectation equilibrium exists, and restorations occur more frequently. As
a result, high-quality states become more common. Nonetheless, since less
abatement occurs when the quality of the resource is high, the most common
states are those somewhat above the restoration point, producing a peak in
the frequency distribution. At a high flow rate, restoration becomes more
important relative to abatement. As a result, all states between the initial
quality level and the restoration point occur with roughly equal frequency.

Figure 5 also demonstrates a seemingly paradoxical result: in the full
SFQ case, when both restoration and abatement are possible, the average
quality of the resource turns out to be higher with a high flow of damages
than with a low (or medium) flow.?® The reason is that restorations are more
frequent when the flow of damages is high, so that high-quality states are
more common. Although this result is interesting, it is not general. In Figure
5, abatement costs are high enough (relative to the cost of restoration) that

280f course, looking only at average quality ignores the costs of abatement and restora-
tion. While the average quality of the resource may be higher with a high flow than with
a low flow, the value function will always be lower with a high flow.
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Figure 5: Frequency distributions of resource qualities (states) under opti-
mal policies for three flow rates.

the expectation equilibrium in the low-flow case is at a fairly low level of
quality (relative to the restoration trigger point). If marginal abatement
costs were less, the expectation equilibrium would occur at a higher level
of quality. If restoration were more expensive, the restoration trigger point
would be lower. Thus the optimal policies, and the quality of the resource
over time, depend on the relative costs of abatement and restoration as well
as the flow rate.

5 Applications to the environment, and to physi-
cal and human capital

In this section, we explore the results of our theoretical models in a range
of real-world cases. We start by considering examples of SFQ problems in
natural resources and the environment. We then show how our model applies
to the optimal management of two more conventional resources, physical and
human capital.
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5.1 SFQ problems in the environmental arena

We now turn to real-world examples illustrating restoration with and with-
out the possibility of abatement.

5.1.1 Exogenous flows

When flows are exogenous, the resource manager only controls the stock of
the resource. While this is a limiting case of the SFQ model, the restoration-
only case has widespread application to the environmental arena. When it
applies, the optimal policy contradicts the usual dictum to equate marginal
benefits and marginal costs. For example, consider a stretch of ocean shore-
line subject to seaborne pollution (medical waste, perhaps, or the tarry
bilgewater from ocean-going tankers). The “conventional” model of stock
pollution would suggest that the manager ought to strive for a steady-state
level of quality, which implies daily cleansing. If there are economies of scale
in clean-up, however, the quality of the shoreline should be allowed to vary
over time: pollution accumulates, the beach is cleaned up all at once, pollu-
tion builds up again, and the cycle repeats. The higher the restoration cost,
the greater the accumulation of waste before cleanup.

Atomic waste from nuclear power plants, as well as from atomic weapons
production and disposal, medical centers, and so on, presents a similar pat-
tern.?? Hauling waste from a nuclear power plant involves expensive safety
precautions, no matter how small the shipment. This makes frequent waste
shipment uneconomic. Hence under an optimal policy, wastes accumulate,
imposing increasing risks as they do, and then are periodically removed.
The trigger level for shipment will increase with the cost of shipping relative
to the period costs of damages from the accumulated waste.

5.1.2 Restoration and controllable flows

When both restoration and flow control are possible, we enter a full SFQ
world. We showed above that the availability of restoration tempers abate-
ment efforts. Moreover, if a steady-state target for environmental quality
exists, it will be lower than if restoration were not feasible. We consider
three examples: the removal of zebra mussels, the management of municipal
solid waste, and the collection and shipment of hazardous waste generated
in chemistry labs at Harvard University.

290f course, in actuality nuclear power plants in the United States have been storing
waste on site as a “temporary” measure while awaiting a permanent disposal site (whose
construction has been held up by geological uncertainty and political recalcitrance).
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Zebra mussels. Zebra mussels (Dreissena polymorpha) are small fresh-
water mollusks, which clog water intake and distribution systems by adher-
ing in large clusters to pumphouses, plumbing systems, and other pieces of
equipment. The control of zebra mussels by power plants, water works, and
other large users of water in the Great Lakes area of the United States is
estimated to have cost from $750 million to $1 billion over the past decade.?’

The feasibility of preventing mussels from settling varies in different parts
of a power plant, and the control strategies vary accordingly. The flow of
zebra mussels is effectively exogenous in the pumphouses of power plants,
where water diverted from lakes or rivers is stored and pumped into cooling
water systems. Mussels grow on walls, debris screens, valves, and pumps,
obstructing the flow of water. They can be scraped off once they settle, but
they cannot be prevented from settling.?! Mechanical measures — physical
scraping or “hydrolasing” with high-powered water hoses — involve high fixed
costs: sending down a team of divers or even dewatering the pumphouse
(thus shutting down the plant). An (S,s) policy is followed. Mussels are
allowed to settle and grow, and periodically are removed. Removal is done
every year or two in western Lake Erie, their densest habitat.

Inside the plumbing systems of power plants and water works, mussels
are inaccessible to mechanical removal, but chemical removal is feasible. In
such locations, both flow and stock controls are employed. For either, a
chemical, such as chlorine, is injected into the water supply. Continuous
low-level chlorination is an abatement policy. It kills juvenile mussels, and
prevents their settlement. Periodic (annual or semi-annual) injections of
high concentrations are a restoration (stock-control) strategy used to kill off
adult mussels that have settled.??

Municipal solid waste management. Next, consider the optimal man-
agement of municipal solid waste. The typical approach to managing garbage

3%Personal communication, Charles O’Neill, Project Director, National Zebra Mussel
Information Clearinghouse, New York Sea Grant, March 24, 2000.

31Gince these areas are open to lakes or rivers, chlorine and other chemical means would
be ineffective in preventing settlement (and are ruled out anyway by environmental laws
regulating water quality). Other measures, such as paints or surface materials designed
to impede zebra mussel attachment, have not worked.

32Continuous chlorination is typically effective enough that additional periodic treat-
ments are unnecessary. This may be seen as an instance where flow control measures
maintain a high-quality expectation equilibrium, and restorations are extremely rare.
Nonetheless, if zebra mussel settlement were to occur (due, perhaps, to a breakdown in
the chlorination regime), a one-time injection of chlorine at higher concentrations would
be employed as a restoration measure.
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is to build a landfill and slowly fill it over time, diverting some waste from
it through recycling or composting. In our framework, diversion and source
reduction reduce the flow of waste, and thus represent “abatement.” Cap-
ping a full landfill and building a park or a housing development on the site
constitutes “restoration.”®® In a typical scenario, waste diversion remains
roughly constant over time, or changes only with changing preferences (i.e.,
a desire to increase levels of recycling) or price signals (e.g., land becomes
more expensive, or recycled materials become more valuable).

Setting aside administrative obstacles or costs of policy adjustment, op-
timal waste management would have the abatement rate — the rate of waste
diversion — vary over time. Consider the simplest case where the daily cost of
a unit of waste is constant. When a landfill is first opened, diversion should
be relatively high. That is because waste dumped early will be around for
the landfill’s entire life. This implies that the discounted expected damages
it imposes will be high relative to the damages from garbage arriving later.
As the landfill nears capacity, waste diversion should slow, since the waste
will impose damages only until the time of restoration, when the landfill is
turned into a park.?*

Hazardous waste management at Harvard University. The man-
agement of hazardous waste in the chemistry department at Harvard Uni-
versity provides another illustration of an SFQ problem.?> The department’s
laboratories generate two types of waste, which are managed separately: a
continual stream of solvents (used routinely in laboratory experiments), and
more sporadic flows of a variety of toxic and reactive substances. Both types
of wastes accumulate at individual laboratories. Hauling the wastes away
for disposal — “restoration,” in this context — involves economies of scale.

33With solid waste management, successive waves of accumulation and restoration take
place on a series of dump sites, as opposed to the cyclical cleansing and soiling of a single
resource. Our model can be extended to accommodate the multiple-site case by having
the exposure costs and restoration costs rise as we move to successively more expensive
landfills. Essentially, this would append results from the theory of nonrenewable resources
to our models (Dasgupta and Heal, 1979; Hotelling, 1931). Abatement today would be
influenced by the shadow price of future restorations.

34This pattern — net dumping is speeded up as restoration approaches — plays out at the
much smaller scale of the individual household. If garbage is picked up every Wednesday,
then Tuesday not Thursday is the day to empty the refrigerator of leftovers.

35The authors thank Henry Littleboy, Health and Safety Officer (in Harvard’s Faculty
of Arts and Sciences Office of Environmental Health Services) overseeing hazardous waste
management in the Chemistry Department, and Dr. Alan Long, Director of Laboratories,
for their generosity in answering questions and providing information about hazardous
waste management in the Harvard chemistry department.
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How often should wastes be collected? Should they be shipped directly
from individual labs, or consolidated in central collection depots first? How
should waste generation be controlled?36

The department’s laboratories generate 200-250 gallons of solvents each
week. Researchers collect the chemicals in 5-gallon cans, which are stored
in “mini-main accumulation areas” (locked closets with safety equipment)
near each lab. Once a week, an outside contractor makes the rounds in the
department, collects 5-gallon cans from the mini-main outside each lab, and
hauls them away. Harvard pays a fixed charge of $23 or $27 per 5-gallon
container, depending on the type of solvent.

Solvents used to be picked up less frequently: once every two weeks in
the mid-1990s, and once a month in the early part of the decade. Rather
than being collected from individual labs,; 5-gallon cans were collected in a
storage area first. The vendor would then “bulk” the solvents, combining
the contents of the cans into 55-gallon drums. Because such an approach
requires less frequent visits by the contractor, it might be expected to cost
less, per gallon of waste, than weekly collections. Records of actual costs,
however, show that average disposal costs have gone down under the weekly
collection regime. Very rough cost estimates suggest that monthly pick-ups
cost approximately $7 per gallon in 1990; bimonthly collections cost a little
under $6 per gallon in 1996; and weekly collections currently cost about $5
per gallon. While this fall in cost appears to reflect increasing competition
among vendors and better negotiating by Harvard, rather than diseconomies
of scale, it suggests that cost savings from less frequent shipments would be
slight.?7

Weekly collection is also preferable on other grounds. Solvents are highly
flammable, and the potential for calamity from a storage room full of 5-gallon
cans is much higher than it is from individual containers scattered around
the department’s buildings. Thus, as wastes accumulate, period utility falls
sharply, while the per-unit costs of restoration are lessened only slightly (if
at all) by waiting for larger shipments.

All other chemical wastes are hauled away in “lab packs”: waste con-

360f course, chemical waste storage and disposal are heavily regulated by the Environ-
mental Protection Agency. Existing regulations require the separate handling of different
types of wastes (e.g., corrosives as opposed to pyroforics), and prohibit the storage of
waste longer than ninety days. Nonetheless, the law provides some leeway for environ-
mental managers to decide how best to dispose of their waste. At Harvard, for example,
the prohibition on long-term storage is not a binding constraint, because limited storage
space makes more frequent collection necessary.

3TThis process continues: disposal charges for weekly collection of 5-gallon cans fell from
$30-35 to $23-27 when a contract was signed with a new vendor in February, 2000.
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tainers are collected from the labs, grouped by waste type, and then packed
with similar wastes in larger drums. Rather than pouring the contents of
the containers into the drums, technicians place the containers themselves
into the drums and surround them with packing material. Thus, several
5-gallon cans of toxic flammable liquids might be collected in a 55 gallon
drum. Flows of wastes shipped in lab packs are more variable than those of
solvents; five 30-gallon drums of organic flammable liquids may be shipped
out one week, and then none for the next month.

Lab pack hauls, like solvent shipments, now take place weekly. Until
the end of 1999, chemical wastes were collected from individual labs and
stored together in a “main accumulation area.” When that storage room
was filled — every three to five weeks, on average — the waste would be
shipped out. The building housing the main accumulation area, however,
is slated for demolition. The storage room was cleared out this winter, and
no replacement has been found. Because the waste is now collected directly
from the individual labs, which lack storage space, lab packs are taken away
each week.

While this arrangement may reflect the implicit value of laboratory space
at Harvard, it will almost certainly raise the costs of waste disposal. Lab
pack costs demonstrate considerable economies of scale, reflecting the under-
lying fixed costs of labor and transportation. A 55-gallon drum of corrosive
flammable liquids costs $320 to ship; a 30-gallon drum costs $215, and a
single 5-gallon container $95. Similarly, shipping a 55-gallon drum of conta-
minated silica gel costs $220, compared with $45 for a 5-gallon can. In the
recent weekly collections, many types of waste have been shipped in rela-
tively small containers: 30-, 16-, or even 5-gallon containers. Although costs
vary widely, weekly lab packs tend to cost $1800 to $3000 each week. When
lab packs were conducted monthly, on the other hand, 55-gallon drums were
routine. Records of monthly lab packs in 1996 and 1998 show costs of
roughly $5000 to $7000 per month, about one-third less.?®

At least in principle, several methods exist to control flows. First, the
quantities of chemicals used could be curtailed. Doing so would require less
suitable experiments, fewer experimental trials, or greater efforts to prevent
spills. Second, laboratories could manage their inventories more efficiently.
Forgotten or misplaced stocks of unused chemicals linger on shelves until

38The proper comparison, of course, should take the volume of waste into account. If
generation has increased since the dates of those earlier lab packs, then the cost savings
from monthly collection will be overstated. The high variability of flows, and the relatively
short experience with weekly lab pack hauls, make a precise comparison difficult, but recent
flows appear to be roughly comparable to those when lab packs took place monthly.
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their expiration, while new chemical stocks are ordered. Separate store-
rooms for each lab lead to redundancy. At some cost, inventories could be
combined, or managed to match use more closely. Finally, some fraction
of the waste stream could be purified and reused rather than thrown away,
albeit at significant cost.

Although some abatement would be desirable for Harvard’s chemistry
labs, little concerted effort is made to curb flows. A partial explanation is
that until recently, individual laboratories did not pay the costs of disposal,
and thus had little incentive to cut back on chemical use. Individual labs
recently began to pay a volume-based charge for both solvents and lab packs.
Limited experience indicates that the use of chemical wastes — in particular,
solvents — is fairly inelastic, suggesting high costs of substantial abatement.

5.2 Physical capital: investment and maintenance

Physical capital is subject to both stock and flow adjustments. Stock adjust-
ments include adding to and replacing capital. Maintenance is the principal
mechanism of flow adjustment; it slows depreciation. The optimal control of
the quality of physical capital is central to a variety of problems, including
the replacement of capital equipment, private investment decisions, and the
purchase of durable goods. Treatments of these problems have focused on
stock adjustment. Depreciation is either ignored, or treated as exogenous.
In this section, we illustrate the parallels between a range of physical capital
problems and the environmental quality problem considered above.
Consider the “machine-replacement problem”: a firm owns a piece of
capital equipment, which deteriorates or becomes obsolete over time and
periodically must be replaced. If replacement is the firm’s only option,
this problem is equivalent to an optimal inventory problem, and an (S, s)-
style rule is optimal. When the machine’s productivity falls to a certain
point, perhaps measured in relation to the quality of a new machine, it is
replaced. Rust (1987) and Cooper and Haltiwanger (1993) explore dynamic
programming models of machine replacement that produce this result.??
Two factors are implicit in their formulations. First, supplementing an old
machine with a new one is not an option. Second, and more important

39While both papers consider the machine replacement problem, neither dwells on it.
Rust is concerned primarily with deriving an econometric specification to infer the pa-
rameters of utility and cost functions of managers from observed replacement patterns.
Cooper and Haltiwanger are interested in exploring the aggregate implications of machine
replacement across multiple firms. Neither paper incorporates maintenance as a choice
variable in the formal analysis.
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for our purposes, depreciation is exogenous — that is, maintenance is not
considered.*?

General treatments of optimal investment under uncertainty also derive
“trigger” rules similar to (5, s) policies. When the resale price (scrap value)
of capital equipment is below its purchase price, and future demand for
output is uncertain, optimal investment is determined by upper and lower
bounds on the marginal revenue product of capital (Abel and Eberly 1994,
1996). The optimal rule is to purchase capital when the marginal revenue
product exceeds the upper bound, and sell capital when the marginal rev-
enue product falls below the lower bound. In the polar case of complete
irreversibility, the lower bound is zero, and hence there is a single “trigger”
above which investment is optimal (Pindyck 1988). Between the bounds,
investment is zero, and depreciation proceeds apace.

The purchase and maintenance of consumer durables can be treated in
similar fashion. Let wealth be variable, and assume a cost to adjust the
stock of a durable, say a house. Consumers have a desired ratio of house
value to wealth, possibly varying with wealth. If wealth moves up (or down)
sufficiently, it becomes worthwhile to incur the transactions costs of selling
one’s old house, and move into a new more (or less) expensive one. This
problem is examined in detail by Grossman and Laroque (1990).

In all three of these problems, maintenance, which stems the expected
downward flow in quality, may be subject to choice. Moreover, apart from
the need to consider the capital’s scrap value, the costs of capital replacement
and maintenance follow our assumptions above: the cost of a new piece of
equipment is independent of the quality of the equipment it is replacing, and
the costs of maintenance are likely to be convex in the rate of maintenance.
Thus, the analysis above applies. Replacement and maintenance strategies
should be jointly considered and jointly implemented.

The scrap value of physical capital will in general depend on quality.
Our model above readily accommodates this consideration. The optimal
value function, J(z), would merely be computed with scrap value included
for each value of x.

In section 5.4 below, we present a formulation that captures both the
physical capital and human capital SFQ problems. It allows for both tech-

“OThe optimal replacement of deteriorating assets — the general formulation of what
we call the “machine replacement problem” — has also attracted considerable attention
in the operations research literature. In the terms of our model, however, researchers
in this literature (like Rust and Cooper and Haltiwanger in economics) have focused on
restoration, rather than putting restoration and abatement together. For surveys, see
Pierskalla and Voelker (1976) and Sherif and Smith (1981).
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nological advance and scrap value.

5.3 Human capital: worker training

Investments in human capital — at least from the perspective of the firm —
present an SFQ problem. Workers age, tire, and burn out. More important,
in industries with rapid technological advance, workers’ skills can quickly
become obsolete. A firm can train its workers to maintain their productivity,
but at some point it may lay off its older workers, or redeploy them to
tasks where the latest technical skills are less essential, and replace them
with recently trained workers. In the human capital context, training is
the counterpart of curbing flows, while replacement amounts to restoration.
The costs of these two activities must be balanced. Like environmental
restoration, replacement entails significant fixed costs — severance payments,
for example, or higher costs from experience-rated unemployment insurance.

Parallel to our model of pollution abatement, a firm’s optimal invest-
ment in its workers is likely to vary over time, with reduced training as the
workers near the trade-in point. Similarly, the literature on human capital
has observed that a worker’s expenditures on training should be high early
in her career, since she will receive the payoffs from her investment over a
longer period of time (Becker, 1964; Ben-Porath, 1967).

Interestingly, it may be the relative quality of the worker that deterio-
rates, rather than the absolute quality. (Similarly, technological obsolescence
may be the force promoting the replacement of physical capital.) The down-
ward drift in our model need not be a steady decline in a worker’s actual
productivity or a resource’s quality; it may derive instead from a failure to
keep up with a moving benchmark. If technological innovation raises the
level of skills required by workers (as well as the level of skills acquired by
newly trained ones), or diffusion of a new technology raises competitors’
productivity, a firm faces an incentive to update or upgrade its capital just
as surely as if the capital itself were deteriorating.

5.4 Optimal replacement and maintenance of physical or hu-
man capital: An example

We consider a physical capital example readily extrapolated to illustrate
human capital as well. A firm must decide how much to spend to maintain
its single machine and when to replace it. As a machine ages, its productivity
tends to deteriorate: parts rust, gears wear, and so on. Despite this general
downward trend, however, actual productivity may fluctuate with changes
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in operating conditions, downtime, operating efficiency, the state of workers
operating the machine, and so forth. Thus the productivity of an installed
machine can be modeled as a Brownian motion with downward drift.

Similarly, the productivity of new-vintage machines can be modeled as
a Brownian motion with positive drift. While we may assume that tech-
nology generally improves over time, there are two reasons why it may not
follow an unimpeded upward path. First, the quality of craftsmanship may
falter; a key producer may retire or leave the industry. Second, firms have
heterogeneous needs. Workers differ from firm to firm, and the quality of
other inputs into production may vary. As a result, some machines will work
better than others for a given firm. Thus at the individual firm level, the
productivity of the new vintage will have an upward drift, but may move
down as well as up from one period to the next.

Consider a firm that produces output using a single machine at zero
marginal cost, and sells output at a constant price of 1. At each time ¢,
the firm operates a machine with an output rate 3. The output rate of an
installed machine evolves according to

dy; = (g — p)dt + odw 4,

where ¢; is the maintenance rate at time t, u is the average rate of deterio-
ration, o2 is the variance rate of deterioration, and wy ¢ follows a standard
Brownian motion. Maintaining the machine at a rate of ¢ costs ¢(q), a
convex function.

At every point in time, the firm can choose to replace its installed ma-
chine with a new one. The output rate of a new-vintage machine purchased
at time ¢ is given by ;. This state of the art follows a Brownian motion
Y; = Yo+ Bt —pway, where 8 > 0 is the average rate of technological advance,
p2 is the variance rate, and wso; is a standard Brownian motion that is in-
dependent from wy ;. There is a fixed cost C' of purchasing a new machine.
The firm collects a scrap value of S(y: —7;) on the old machine; the further
it is behind the current state of the art, the less it is worth.*!

Letting 7; be the ith time at which a new machine is purchased, the
production rate for the firm evolves according to y; = yo + fstzo(qs —p)ds +
TWIE = Y filn <t}(yt — Y7, ). The firm’s objective is to maximize the present
discounted value of expected profit, which equals the revenues from expected

*LGiven the constraint that each factory can only use one machine, relative productivity
affects scrap value. An alternative but more complex formulation would have relative
productivity matter because price declined with total output in the market.
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production minus the costs of maintenance and replacement:

max F [/I:; e~ (y; — c(qr)) + Z e T (S(y —7y) — C)] )

i=1

where we have normalized the output price to 1. This problem can be
formulated as a stochastic control problem with state variables ¢; and g,
and the corresponding value function

ﬂum—am%@uiemw—d%»+2k“waw—m—cﬂ.

a6 i=1

We can formulate the problem more succinctly in terms of the difference in
quality between the currently operated machine and the state of the art.
Let zy = y; — v;; then x; is a Markov process evolving according to

t 9 9\ 1/2
(5) xt:onr/_o(qs—,u—ﬂ)der(a +p) wp — Z Tt

{i|mi<t}

for some standard Brownian motion w;. Note that z; is negative when
the old machine is inferior to the new vintage. Define a “differential value
function”

w>vw=mﬂgvﬂﬂwrmm+if%wm—m}

qt,Ti t=0 i=1

The difference between V and J does not depend on the state, since V(z) =
J(y,y) + E[[;Zge *7;] . Thus the differential value function V' captures
the relative quality of states as well as J does, and a pair (¢:, 7;) attains the
supremum for V if and only if it attains the supremum for J.

Applying the results of Section 4, the optimal policy will combine main-
tenance (abatement) with periodic replacement (restoration). We solve this
problem numerically for particular parameter settings, provided in Table 1.

The optimal policy replaces the machine when its quality falls far enough
below that of the new vintage. Between new machine purchases, the mainte-
nance rate on the installed machine declines with its quality. Thus optimal
maintenance on a newly installed machine is relatively high, but falls as the
machine deteriorates and further still as replacement becomes imminent.
Figure 6 illustrates the maintenance rate for the parameter values in Table
1. Note that the rate of repair does not fall all the way to zero, as it did
in the earlier abatement case. This is a consequence of scrap value. Be-
cause old capital equipment has resale value which increases in its quality =,

33



rate of technological advance I} 1

variance rate of technological advance  p? 16
deterioration rate I 0.9
variance rate of deterioration o? 4
discount rate o 0.01
maintenence cost c(q) 20q°
maintenence ceiling a 20
cost of new machine C 1000
scrap value S(x) 900 min(e®/10,1)

Table 1: Parameter settings for the capital replacement and maintenence
problem.

maintenance always offers marginal benefits (even if only from increasing the
scrap value).*? Moreover, for higher quality levels the rate of repair levels
off at some constant, rather than decreasing in quality as it did earlier. This
follows from the linearity of the profit function (as opposed to the strictly
concave utility function used earlier).

The resulting output path for an individual firm is illustrated by Figure 7,
which plots a simulation of the realized values for the paths of y; and ¥; over
time. Each machine replacement is marked by a vertical jump in the firm’s
output 3. The difference in quality, z;, is plotted near the bottom of the
figure, and demonstrates the periodic replacements. Because depreciation
and technical change are stochastic, the time between replacements varies
widely. When deterioration is unusually rapid and the new-vintage machines
improve dramatically, replacement is more frequent. When deterioration
and obsolescence are more gradual, an installed machine is retained for a
relatively long period before being scrapped and replaced.

The output of new-vintage machines, g, drifts steadily upward over
time. In general, the firm’s output, ¥, lags behind, periodically catches
up when the firm buys a new machine, and then lags behind again as the
installed machine deteriorates and obsolesces. Occasionally, however, the
output of the installed machine exceeds that of the new vintage. This might
be the case, for example, when experience teaches the workers how better to
operate the installed machine (i.e., learning by doing), while changes in the

42More technically, to the right of the restoration trigger , the derivative of the value
function J’ is equal to that of scrap value, which is positive for all z. A smooth-pasting
argument can be used to show that the derivative of the value function is continuous, and
therefore the derivative cannot go to zero as x approaches the trigger. Thus the rate of
repair does not go to zero either.
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new vintage prove to be of little use for the firm in question. In the event,
the installed machine is retained for much longer than would otherwise be
the case. Moreover, maintenance is higher over this period. As Figure 6
shows, maintenance is higher when the output of the installed machine is
high relative to that of the new vintage.

The SFQ formulation is virtually the same if we consider a worker rather
than a machine and assume, reasonably, that the cost of “trading her in,”
e.g., severance or buyout payments, is inversely related to her quality (scrap
value).

5.5 Multiple involved parties

Most of the examples above involve private decisions by firms. But SFQ
models should also be understood by those who regulate systems. The
government, for example, might be interested in promoting formal education
and subsidizing training to bolster labor productivity. Policies in the two
areas should be melded. When interventions affect stocks, or flows, but not
both, indirect effects must also be considered. For physical capital, reducing
the cost of restoration (e.g., through investment tax credits) will discourage
maintenance, and vice versa.

The scope of government intervention varies across problems. In the case
of pollution control, the pollution is a significant externality, but an arms-
length approach will succeed. If the regulatory regime charges the external-
ity cost to society on a continuous basis, e.g., through a quality-dependent
pollution tax, the polluter will employ a hypothetical social planner’s opti-
mal mix of restoration and abatement policies.

In many contexts where both restoration and abatement are possible,
multiple decision makers may be operating with different incentives. A
global optimization may be required to get the incentives and decisions right.
For example, we examined the human capital problem from the standpoint
of the firm. The firm views the worker to a substantial extent as an asset,
whereas the worker views herself as the source of value. The employer will
invest in training to the extent it staves off the various costs of switching to a
new worker. But the worker who is forcibly retired might far prefer to keep
working. Conceivably, workers’ concerns would be adequately recognized
if the firm could communicate and commit to particular worker trade-in
policies. If not, and if the worker reaps a rent from working at the firm,
depreciated workers will be laid off too readily. Hence, wages will have to be
higher to compensate, and the firm will suffer from its inability to commit.

The government, an involved third party through its tax collections, so-
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cial welfare programs, and social security payments, and of course its concern
for the welfare of its citizens, might prefer that the workers continue as well.
If worker training is to be provided optimally, taking account of its effects on
labor turnover and retirement, all involved parties should help pay for it. In
practice, before the worker gets to the firm she and the government pay for
training (schooling); once at the firm, training is financed by the firm and
the government (through reduced taxes). School-leaving decisions and re-
tirement decisions bring equivalent problems of nonalignment of payers and
beneficiaries. SFQ models can identify the optimal mix of replacement and
training for workers, and help design policies that better produce it. More
modestly, they help to organize policy discussion when the maintenance of
quality is a concern.

6 Conclusion

In a wide range of settings, both stocks and flows can be controlled to af-
fect the quality of a resource — whether a natural resource, physical capital,
or human capital. In these cases, the SFQ model applies. Managing the
resource entails curbing the downward drift in quality and the periodic re-
plenishment of the stock.

Though our model can address physical and human capital, both subject
to depreciation, we focus primarily on the optimal management of an envi-
ronmental resource subject to continuing degradation. Cost structures play
a key role in our analysis. Abatement is taken to follow conventional convex-
ity assumptions, so that the cost of abatement depends on the magnitude
of stanched flow. Restoration, by contrast, is assumed to offer significant
economies of scale in the magnitude of cleanup.

We focus on the intertwined roles of abatement and restoration, ana-
lyzing the limiting cases when only one of these methods is available to
provide context for our results. When only abatement is possible, the opti-
mal policy (as has been well documented in the literature) is to progress to a
steady-state, or (given stochastic processes) to what we call an “expectation
equilibrium,” where abatement efforts just offset expected damage to the
resource. When only restoration is possible, the optimal policy establishes a
“trigger level” of environmental quality. Damage accumulates and the qual-
ity of the resource declines until the trigger level is reached; the resource is
restored to a high level of quality, and the process repeats.

The most interesting case arises when both restoration and abatement
are available and the full SFQ model comes into play. The optimal policy
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calibrates the use of these two instruments. The greater the flow, and the
lower the restoration cost, the more restoration is relied upon. Abatement
and restoration are not separable: that is, the feasibility of restoration affects
the optimal abatement path, and the feasibility of abatement influences the
nature of restoration decisions.

We have also shown that the principles emerging from the management of
natural resources offer insights into the optimal management of both physical
and human capital. The balance between maintaining a piece of capital
equipment and replacing it, or between training a worker and replacing her,
follow much the same logic as harmonizing abatement of pollution flows and
restoration of a resource.
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APPENDIX A: Proofs of Theorems

Proof of Theorem 1

We have J < 0 because u < 0 and ¢ > 0. Furthermore, for each z, J(z) >
—o0 because Ey [[X, e **u(z)dt], the expected utility in the absence of
abatement, is finite. We have verified Assertion 1.

Given the finiteness of J, it follows from standard results in the theory of
controlled diffusions (see, e.g., Theorem 5 on pages 24-25 of (Krylov, 1980))
that J is twice continuously differentiable, and that

o2
sup <§J”(ﬂ«“) + (¢ —p)J' () — aJ (z) +u(zx) — C(Q)> =0
q€(0,a]

for all z, rendering Assertions 2 and 3.

Using straightforward sample—path arguments, it is easy to establish
that J is increasing and strictly concave and that J' is unbounded above,
as consequences of similar properties enjoyed by u. Assertions 4, 5, and 6,

follow.
Let a function f, be defined by f.(q) = ¢J'(x) — ¢(q). Note that f.(0) =

J'(z) > 0 and f = —¢” < —e for some e. Hence, for any z, the supremum
(7) sup fa(q)
q€[0,a]

is uniquely attained by some a*(z) € [0,@]. It is easy to see that a*(x) also
attains the supremum in the Hamilton—Jacobi-Bellman equation. The fact
that a* is an optimal policy follows from standard results in the theory of
controlled diffusions. We thereby have Assertions 7 and 8.

Q.E.D.

Proof of Theorem 2

Once again, let f be defined by fz(q) = qJ'(z)—c(q), so that a*(z) uniquely
attains the supremum in [0,a] of f,. (Recall that f.(0) = J'(z) > 0 and

" = —¢” < —e¢ for some ¢€.) Consider the less constrained problem

(8) sup fz(2).

z€[0,00)

Since f” < —e, the supremum is always attained by some z € (0,00). Let
b(x) denote the optimum for a given state z. Because f.(0) > 0, b(z) > 0.
Furthermore, since f..(z) decreases as z increases, b is decreasing.
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It is easy to see that a*(z) = min(b(x),a). Since J' is unbounded below,
for any z > 0 there exists a state x such that f.(z) > 0, implying that b is
unbounded above, and therefore, there exists a state & such that a*(z) =@
for x < Z. Assertion 1 follows.

Recall that J < 0 and J’ > 0, so that lim, , J'(z) = 0. Hence for
any z > 0, there exists a state x such that f.(z) < 0, implying that
lim, o b(z) = 0 and that Assertion 2 holds. The fact that b is decreas-
ing implies that there exists a state 2* such that p < b(x) for < z* and
> b(x) for x > z*. Since p < @, we have Assertion 3.

Q.E.D.

Proof of Theorem 3

Since the restoration-only case is a special case of the abatement-and-restoration
case, with the abatement constraint a = 0, this theorem is a corollary to
Theorem 5. We therefore omit the proof.

Proof of Theorem 4

Let J(x,C) denote the optimal value of state x given a restoration cost
C > 0. It is easy to show by a sample path argument that for any =z,
J(z,C) is decreasing in C. Fix Cy > Cy > 0 and assume for contradiction
that z(Cy) > z(C4). Let 7 = inf{t|z; = 2(Cy)}. We then have

70,65 = Eo|[ e tulmdi+ eI w(Co), C)

= m[ [ a0

+Eo [T (J(z(C2),Ca) — J(z(Ca), Ch))]
= J(0,C1) + Eg [e™°T (J(2(Cy),C2) — J(x(C2),Ch))]
< J(O, Cl) JrJ(&(CQ),CQ) — J(&(CQ),Cl).

It follows that

J(O, CQ)—J(£<CQ),CQ) < J(O,C1)—J(£(Cg),01) S J(O,C1)—J(§(Cl),01),
(9)

where the final inequality relies on our assumption that z(Cs) > z(C).
Theorem 3 asserts that for any C > 0, J(0,C) — J(z(C),C) = C. In-

equality 9 therefore implies that Cy < C, which yields a contradiction.
Q.E.D.
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Proof of Theorem 5

We have J < 0 because u < 0, ¢ > 0, and C' > 0. Furthermore, for each
z, J(z) > —oo because E, [ [, e~ *u(z¢)dt] is finite. We have established
Assertion 1.

Because restoration sets the state to 0 and costs C, J(z) > J(0) — C
for all x, and an optimal policy R can be defined to be the set of all
x such that J(z) = J(0) — C. Let us establish that any optimal pol-
icy R is nonempty — that is, that at some level of environmental qual-
ity the manager restores the resource. Assume, for contradiction, that
the optimal restoration policy R is empty. Then, we would have J(z) =
sup, B2 [ [ =y e~ (u(zt) — c(a(x)))dt] , which corresponds to the optimal
value function for the case where only abatement is possible. By Theorem
1, J would be unbounded below, contradicting the fact that J(z) > J(0)—C.

By straightforward sample-path arguments, it is easy to show that J
is continuous and nondecreasing. Hence, there exists a state z such that
J(xz) = J(0) = C for all z <z and J(z) > J(0) — C for all z > z, rendering
Assertion 2. It follows that the restoration component of an optimal policy
is given by R* = (—o0, z].

It follows from Theorem 3 on page 39 of Krylov (1980) that J is twice
continuously differentiable on (z,00) and differentiable everywhere. Fur-
thermore, .J satisfies

2
sup (%J”(m) + (g —p)J' () — aJ(z) + u(x) — c(q)) =0
q€[0,a]
for all x > z. Hence, Assertions 3, 4, and 5 are valid. It is easily verified
by sample-path arguments that J is increasing on (z,00), and Assertions 6
and 7 follow.

It follows from Assertions 2 and 4 that J'(z) = 0. Since J'(z) > 0 for
all x > z, we have J”(z) > 0 on some range = € (z,y) for some y > z.
Furthermore, since J is bounded above, J”(z) must be negative for some
x > z, and by continuity of the second derivative, there is a well-defined
minimal inflection point ' = min{z > z|J”(z) = 0}, which by definition
satisfies Assertions 8 and 9.

Let a function f; be defined for z > z by f.(q) = ¢J'(z) — ¢(q). Note

that f// = —¢” < —e for some e. Hence, for any z, the supremum
(10) sup  fz(q)
q €[0,a]

is uniquely attained by some g € [0,a|. For each state z > z, let a*(x)
be the value attaining the supremum, and note that (a*, R*) constitutes
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an optimal policy since the values a*(z) also attain the supremum in the
Hamilton—Jacobi-Bellman equation (equation 4). This validates Assertions
11 and 12.

We are left with the task of establishing Assertion 10. Given scalars
A >0 and z > zf + A, we define two processes

¢
T, =2 —I—/ (a*(zy ) — p)dt + owy,
s=0

and
¢

vl =x+2A + (a*(zF) — p)dt + owy,
s=0

each evolving on [0, 7], where T is given by
7 = inf{tle; =z or 27 =z}

Let
t

rp=x+A+ ((a*(mj)Jra*(ms_))/Q—u)dtJrawt,
s=0
and note that x; = (x + x;)/2 for all t € [0,7]. It is easy to show that 7
is finite with probability one.
Define “sample costs” associated with the three processes:

(2, w) = /t ’ eat<u(g;t)—c<(a*<xt+)+a*<mt))/2))dt+eMJ(mT),

=0
T aw) = [ e (utah) - oo (@) )t + I,

I taw) = [ e (utar) - ela (@) )t + (),

=0
where w denotes the sample path of the underlying Brownian motion w;.
We will show that for almost all w and any z € (zf, 00),

J(z,w) > % <j+(x,w) + j_(x,w)) .
We consider two separate cases that together comprise a set of probability
1. The first is when 7 # z. In this event, we have z7 = zf = 2, > af,
and the desired inequality follows directly from concavity of u and convexity
of c.

The second case is when =z = z'. Given our assumptions on ¢, the
fact that a* is bounded above, and the fact that J is bounded and twice
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continuously differentiable on (z,00), it can be shown that for any y > z,
la*(y) — a*(y + A)| = O(A). It follows that sup,cp . |a*(z; ) — a*(z)| =
O(A) and 2 — 2 = O(A). We then have

Jaw) = [ e (uw) - el(a’ @) + 0" (e ))/2) )t + eI o)

where the second-to-last expression relies on the fact that J”(27) =
that i — zf = O(A). Tt follows that for almost all w and any z € (z
J(z,w) is concave in z.

By Bellman’s principle of optimality, we have

0 and
.I.

,00),

J(z) = E[J (z,w)], J(z+2A) = E[J"(z,w)], and J(z + A) > E[J(z,w)].

1
J@+A)> 3 (J(@) + J(z+28) +o(A2)),
and therefore J”(x) < 0 for z > zf.

Q.E.D.

Proof of Theorem 6

As a step toward establishing Assertion 1, we will show that J < J. It is
easy to see that J < J. From Theorem 5, we have J'(z)=0< j’(@) This
implies that J(z) < J(z). For < z, we then have J(z) = J(z) > J(z) >
J(x). For # > z, on the other hand, the fact that J(z) < J(z) follows
from our observation that .J(z) < J(z) coupled with standard sample-path
arguments.

Consider two states y and z with x < y < z. By Bellman’s principal of
optimality (see, e.g., Krylov), we have

T

T =swp Bz | [* et ulam) = clale))it + ()
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and

J(z) = Sal’llg E®E [/;0 e~ (u(xy) — cla(xy)))dt + e_aTJ(y)}

— sup B | [ e uwn) — elala))dt + eI (y)|.

where 7 is the first time at which z; = y. (The final equality holds because
x>z fort < 7.)

Let a be an optimal policy for the case where only abatement is possible.
We then have

J(z)—J(z) = sngg [/t

=0
—sup B2 | [* e ulan) = clalen))it + ()

B [ /t TO = (u(zy) — ola” (z0)))dt + e_“TJ(y)]

B | [ et ulan) ~ ela” (@)t + ()

*

= B [ (I(y) - ()]
< Jy) - J(y).

It follows that J’ < J’, which gives us Assertion 1.

We now turn to Assertion 2. Once again, let a function f; be defined for
x>z by fu(q) = ¢J'(x) — ¢(q). Recall that f = —¢” < —e for some € and
that for each z > z, a*(z) uniquely attains the supremum of f;, as well as
that of the Hamilton-Jacobi-Bellman equation. For any z,y € (z, ') with
r <y, fila*(z)) > fi(a*(z)) = 0, since J” > 0 on (z, z1). Consequently,
unless a*(x) = @, we have a*(y) > a*(z). An entirely analogous argument
establishes that a*(y) < a*(z) if ¥ < = < y and a*(y) # @. Assertion 2
follows.

Finally, consider Assertion 3. Let f, be defined by

T

e (ulzy) — c(alm)))dt + eO‘TJ(y)}

IN

f2(q) = ¢J'(z) — c(q).

Recall that for any z, the supremum of f; is uniquely attained by a(x).
Since J' > J', for every x > z, we have f.(a*(x)) > fi(a*(z)). This implies
that if a*(z) < @ then a(x) > a*(z). Hence, we have Assertion 3.

Q.E.D.
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variance o2 9
discount rate « 0.005
utility u(x) — ¢ 0.05(z+150)
abatement cost | ¢(q) 40q?
abatement ceiling | @ 20
restoration cost C 13000

Table 2: Parameter settings for computations in Section 4.

APPENDIX B: Computations of Section 4.3

Computations that generated the plots appearing in Section 4.3 were con-
ducted using specific functional forms and fixed parameter values. The
exception was the flow rate u, which varied as indicated in the figures. The
functional forms were a quadratic function for the abatement cost and a neg-
ative natural exponential function for utility. The fixed parameter values
and exact functional forms are provided in Table 2.

Value functions were computed via policy iteration on a “locally consis-
tent” approximating Markov chain (see, e.g., Kushner and Dupuis, 1992).
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