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Abstract

The riskless nature in real terms of in�ation-linked bonds has led to the conclusion that in�ation-linked

bonds should constitute a substantial part of the optimal investment portfolio of long-term investors. This

conclusion is reached in models where investors do not receive labor income during the investment period. Since

such an income stream is often indexed with in�ation, labor income in itself constitutes an implicit holding of

real bonds. As such, the optimal investment in in�ation-linked bonds is substantially reduced. By extending

recently developed simulation-based techniques, we are able to determine the optimal portfolio choice among

in�ation-linked bonds, nominal bonds, and stocks for investors endowed with an indexed stream of income. We

�nd that the fraction invested in in�ation-linked bonds is much smaller than reported in the literature, the

duration of the optimal nominal bond portfolio is lengthened, and the utility gains of having access to in�ation-

linked bonds are substantially reduced. We investigate as well the robustness of our results to time-variation

in bond risk premia, the riskiness of labor income, and correlation between labor income risk and �nancial

risks. We �nd that especially accounting for time-variation in bond risk premia and correlation between labor

income risk and �nancial risks is important for both optimal portfolios and the utility gains of having access to

in�ation-linked bonds.
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1 Introduction

The market for in�ation-linked securities grows rapidly as many governments have decided to issue

in�ation-linked bonds on either local or global in�ation indices, see, for instance, Deacon, Derry, and

Mirfendereski (2004) for a recent overview. Given that in�ation-linked bonds can be viewed upon

as a riskless real investment, it has been argued by both academics and practitioners that in�ation-

linked bonds should constitute a substantial part of the investment portfolio of long-term investors. This

argument has been formalized in Campbell and Viceira (2001) and Campbell, Chan, and Viceira (2003).

These papers present models in which in�ation-linked bonds are prominently present in a long-term

investor�s optimal portfolio. Moreover, Campbell and Viceira (2001) �nd utility gains of having access

to in�ation-linked bonds in the order of magnitude of 1-19% of the optimal consumption to wealth ratio

for various investors.

On the other hand, the life-cycle literature, consider, for instance, the contributions by Cocco,

Gomes, and Maenhout (2005), Gomes and Michaelides (2005), Bodie, Merton, and Samuelson (1992),

Heaton and Lucas (1997), Viceira (2001), Campbell and Cocco (2003), and Munk and Sorensen (2005),

has shown the importance of accounting for both income received by the investor over the investment

period and portfolio constraints. Especially when labor income cannot be capitalized via �nancial

markets due to omnipresent borrowing constraints, labor income forms a non-traded asset that in�uences

portfolio choice. The e¤ects can be separated into two parts. First, Gollier and Pratt (1996) and

Elmendorf and Kimball (2000) have shown that increasing idiosyncratic risk triggers a reduction in the

�nancial risk an investor is willing to bear. As a consequence, the presence of idiosyncratic labor income

risk induces an e¤ective increase in the risk aversion of the individual. Secondly, the correlation between

labor income risk and �nancial risks is important for two reasons. On the one hand, traded assets can

be used to hedge part of labor income risk. As a consequence, the optimal portfolio contains a hedging

demand to o¤set unfavorable changes in labor income. On the other hand, as shown by, for instance,

Munk and Sorensen (2005), the value of human capital becomes investor speci�c, if labor income is non-

tradable. This implicit value is, among other factors, determined as well by the correlations between

labor income risk and �nancial risks that are priced. Hence, di¤erent correlations between labor income

risk and �nancial risks induce di¤erent hedging demands and implicit values of human capital. This

can have serious implications for the composition of the optimal portfolio.

This paper integrates both literatures. We are initially concerned with optimal long-term bond

demand of an investor who is entitled to indexed labor income that is non-tradable. In the absence of

labor income, Campbell and Viceira (2001) have shown that the optimal investment portfolio contains

large fractions invested in in�ation-linked bonds and document sizeable utility gains from having access

to in�ation-linked bonds. Our baseline speci�cation for labor income postulates that real labor income

risk is uncorrelated with �nancial risks, like in the benchmark models of Cocco et al. (2005). The

non-tradable position in labor income is then a mixture of a �xed position in in�ation-linked bonds

and an idiosyncratic risk component. The former component reduces the demand for in�ation-linked

bonds as the investor is interested in the optimal allocation of total wealth, which is the sum of �nancial

wealth and human capital. The second component induces an e¤ective increase in the risk aversion of

the individual, which increases the demand for in�ation-linked bonds, as these instruments constitute
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a riskless real investment. We consider the impact of both e¤ects and in case the demand for in�ation-

linked bonds is indeed reduced in the optimal portfolio, we infer the reduction in utility gains from

having access to in�ation-linked bonds. Moreover, we infer the sensitivity of these results to correlation

between labor income risk and �nancial risks.

Secondly, in several countries in�ation-linked bonds are not available and the investor�s asset menu

is restricted to nominal bonds, leaving the possibility of bonds linked to a di¤erent country�s in�ation

for future research. In this particular case, we investigate the impact of labor income on the demand

for nominal bonds. Long-term nominal bonds are characterized by having a modest exposure to the

real interest rate and a large exposure to expected in�ation. Medium-term bonds, on the other hand,

have a larger real interest rate sensitivity and a smaller expected in�ation exposure. A similar trade-

o¤ as before is present. As labor income imposes a large real interest rate exposure on the investor,

this induces a shift in the optimal portfolio towards long-term bonds, which lengthens the duration of

the optimal nominal bond portfolio. However, the idiosyncratic risk component results in an e¤ective

increase in the investor�s risk aversion, which leads in the investment problem without labor income

to a shorter duration of the optimal nominal bond portfolio, see Campbell and Viceira (2001). The

ultimate e¤ect of incorporating labor income in an investment problem with only nominal bonds is thus

ambiguous.

Finally, recent contributions by Brennan and Xia (2000, 2002), Campbell and Viceira (2001), and

Sangvinatsos and Wachter (2005) have shown that realistic models of �nancial markets generate optimal

portfolios for which the ratio of long-term nominal bonds to equities is increasing in the investor�s

risk aversion. This rationalizes common investment advises as summarized in Canner, Mankiw, and

Weil (1997). We show that this conclusion is robust to the introduction of labor income into the

investment problem. This extends the analysis of Munk and Sorensen (2005) in which it is illustrated

that the ratio of in�ation-linked bonds to stocks is indeed increasing the investor�s risk aversion.

Our model of the �nancial market accommodates time-variation in bond risk premia. After all, there

is abundant empirical evidence that indicates that bond risk premia are not constant over time, see,

among others, Campbell and Shiller (1991), Dai and Singleton (2002), and Cochrane and Piazzesi (2005).

Sangvinatsos and Wachter (2005) show that abstracting from time-variation in bond risk premia in

investment problems leads to substantial utility losses. Similarly, Aït-Sahalia and Brandt (2001) and

Campbell et al. (2003) have shown the importance to account for information on term structure variables

to predict bond risk premia and to construct optimal portfolios. We extend the models of Brennan and

Xia (2002) and Campbell and Viceira (2001) by modeling the price of real interest rate risk and expected

in�ation a¢ ne in the real interest rate and expected in�ation, respectively. We impose this structure

to enhance the interpretation of the implications of time-variation in bond risk premia. The model is

estimated on the basis of US data as of 1959 up to 2002.

We �nd that the in�ation risk premium, i.e., the di¤erence in expected returns between nominal

and in�ation-linked bonds with a particular maturity, is increasing in the level of expected in�ation

and decreasing in the level of real interest rates. The real term premium is increasing in the level of

real interest rate, whereas the nominal term premium is increasing in both the real interest rate and

expected in�ation.

The contribution of this paper is threefold. First of all, we determine the role of nominal and
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in�ation-linked long-term bonds for long-term investors who receive labor income during the period of

investing. We infer the implications for the optimal composition of the optimal portfolio, as well as

for the value added of in�ation-linked bonds. As we consider a �nite horizon problem, we are able to

identify horizon e¤ects that are triggered by time-variation in both interest rates and bond risk premia.

In absence of labor income, this complements the analysis of Campbell and Viceira (2001).

We �nd that the role of in�ation-linked bonds is substantially reduced once we properly account for

labor income. The optimal portfolio is tilted towards long-term nominal bonds or equities, depending

on the assets available for investing. When the investor�s asset menu is con�ned to nominal bonds, it

turns out to be optimal to lengthen the duration of the optimal nominal bond portfolio as we account

for labor income. The utility gains of having access to in�ation-linked bonds are reduced considerably,

especially when the investor�s initial wealth is modest. In terms of horizon e¤ects, we �nd that the

ratio of long-term nominal bonds to in�ation-linked bonds is increasing in the investment horizon. This

results from the fact that horizon e¤ects in expected in�ation tend to dominate the horizon e¤ects

in real interest rates. Concerning the ratio of nominal bonds to stocks, we do �nd that this ratio is

increasing in the risk aversion of the investor. As a consequence, it is possible, at least qualitatively, to

rationalize the recommendations provided by popular investment advisors.

The second main contribution is to assess the relevance of time-variation in bond risk premia, the

amount of idiosyncratic labor income risk, and correlations between labor income risk and �nancial risks

for the investment problem with labor income. Time-variation in bond risk premia turns out to have

a dramatic impact on both the optimal bond portfolios and the value added of in�ation-linked bonds.

However, the decline in utility gains from having access to in�ation-linked bonds due to incorporation

of labor income into the investment problem is preserved. Next, the impact of changing the amount

of idiosyncratic labor income risk is relatively small. Finally, we �nd that correlation between labor

income risk and real interest rate risk has limited e¤ects on the optimal portfolio composition. On the

other hand, the correlation between labor income risk and either expected in�ation risk or equity risk

has strong implications for the optimal portfolio composition. Changing the correlation between labor

income risk and expected in�ation risk erodes or strengthens the role of labor income as a hedge against

in�ation. We �nd, quite expectedly, that di¤erent correlations induce large changes in the optimal

portfolio. It turns out that the value added of enriching the investor�s asset menu with in�ation-linked

bonds is decreasing in the correlation between labor income risk and expected in�ation risk.

The third contribution is methodologically. We extend the simulation-based approach to portfolio

choice of Brandt, Goyal, Santa-Clara, and Stroud (2005) to include labor income and accommodate

portfolio constraints. Apart from these extensions, we modify an important approximation that has

recently been criticized by DeTemple, Garcia, and Rindisbacher (2003, 2005). The modi�ed approx-

imation overcomes the shortcomings mentioned in DeTemple et al. (2003, 2005), results in a simple

optimization problem that can be solved fast, and improves the accuracy of the approximation pro-

posed in Brandt et al. (2005). Apart from determining the optimal portfolio, we show how the method

can be used to decompose the total optimal portfolio into a myopic demand and several hedging de-

mands, even in the presence of labor income. This facilitates a better understanding of the composition

of the total optimal portfolio.

The plan of this paper is as follows. Section 2 explains the �nancial market in which the investor
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operates. We outline the preference structure of the investor, as well as the labor income process

to which the investor is entitled. In addition, we provide the optimal continuous time solution and

summarize the numerical procedure that we use to solve the constrained problem in the presence of

labor income. Section 3 presents the estimation results of our �nancial market in Section 2. Section 4

considers the investment problem in absence of labor income. In Section 5, we incorporate labor income

into the investment problem. Next, Section 6 investigates the robustness of the results to time-variation

in bond risk premia, idiosyncratic labor income uncertainty, and di¤erent correlations between labor

income risk and �nancial risks. Section 7 concludes and four appendices contain proofs and technical

issues.

2 The economy and investor�s preferences

2.1 The �nancial market

Our �nancial market accommodates time-variation in bond risk premia. The model we propose is closely

related to Brennan and Xia (2002), Campbell and Viceira (2001), and Sangvinatsos and Wachter (2005).

Brennan and Xia (2002) and Campbell and Viceira (2001) propose two factor models of the term

structure, where the factors are identi�ed with the real interest rate and expected in�ation. Both

models assume that bond risk premia are constant. Sangvinatsos and Wachter (2005) use a three factor

term structure model with latent factors and accommodate time-variation in bond risk premia, in line

with Du¤ee (2002). We consider a model like Brennan and Xia (2002) and Campbell and Viceira (2001),

but do accommodate time-variation in bond risk premia.

The securities that are possibly present in the asset menu of the investor are a stock (index), nominal

bonds, in�ation-linked bonds, and a nominal money market account. We start with a model for the

instantaneous real interest rate, r, which is assumed to be driven by a single factor, X1,

rt = �r +X1t; �r > 0: (1)

In order to accommodate the �rst-order autocorrelation in the real interest rate, we model X1 to be

mean-reverting around zero, i.e.,

dX1t = ��1X1tdt+ �|1dZt; �1 2 R4; �1 > 0; (2)

where Z 2 R4�1 is a vector of independent Brownian motions driving the uncertainty in the �nancial
market.

In order to link the real and nominal side of the economy, we postulate a process for the (commodity)

price index �
d�t
�t

= �tdt+ �
|
�dZt; �� 2 R

4; (3)

where �t denotes the instantaneous expected in�ation. Instantaneous expected in�ation is assumed to

be a¢ ne in a second factor, X2,

�t = �� +X2t; �� > 0; (4)

where the second term structure factor exhibits the mean-reverting dynamics

dX2t = ��2X2tdt+ �|2dZt; �2 2 R4; �2 > 0. (5)
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Concerning the stock (index), S, we postulate

dSt
St

= (Rt + �S) dt+ �
|
SdZt; �S 2 R

4, (6)

where Rt is the nominal instantaneous interest rate to be derived later (see (11)) and �S a constant

equity risk premium. We are mainly interested in the optimal bond demand when the investor is

entitled to a particular income stream. This provides the main motivation to abstract from stock return

predictability, despite increasing empirical evidence that there is a certain degree of predictability, see,

for instance, Ang and Bekaert (2003), Campbell and Yogo (2005), and Brennan and Xia (2005).

To complete our model, we specify an a¢ ne term structure for the term structure of interest rates by

assuming that the prices of risk are a¢ ne in the term structure factors. More precisely, in the nominal

state price density, �$,
d�$t

�$t
= �Rtdt� �>t dZt, (7)

we assume that the time-varying prices of risk, i.e. �t, are a¢ ne in the term structure factors X1 and

X2,

�t = �0 + �1Xt; (8)

with Xt = (X1t; X2t). I.e., we adopt the essentially a¢ ne model as proposed by Du¤ee (2002). In the

nomenclature of Dai and Singleton (2000), the model proposed can be classi�ed as A0(2).

This speci�cation accommodates time-variation in bond risk premia as advocated by, for instance,

Dai and Singleton (2002) and Cochrane and Piazzesi (2005). As we assume the equity risk premium to

be constant, we have

�|S�t = �S ; (9)

which restricts �1. We further restrict the risk premia such that the price of real interest rate risk is

determined only by the level of the real interest rate, whereas the price of (pure) expected in�ation

risk depends solely on expected in�ation. We impose this separation of the nominal and real world to

enhance the interpretation of time-variation in bond risk premia and its implications for portfolio choice.

In terms of the model parameters, this implies that the �rst two rows of �1 form a diagonal matrix.

Next, the price of unexpected in�ation risk cannot be identi�ed on the basis of data on the nominal side

of the economy alone. We impose that the part of the price of unexpected in�ation risk that cannot

be identi�ed using nominal bond data equals zero. Since in�ation-linked bonds have been launched in

the US only as of 1997, the data available is insu¢ cient to estimate this price of risk accurately. This

restriction is in line with the recent literature, see for instance Ang and Bekaert (2004) and Campbell

and Viceira (2001).

Interestingly, Kothari and Shanken (2004), Roll (2004), and Hunter and Simon (2005) use data

on TIPS to infer the properties of real bonds. Hunter and Simon (2005) �nd that real bonds do not

signi�cantly extend the investment opportunity set using both conditional and unconditional Mean-

Variance spanning tests. As Hunter and Simon (2005) mention, this conclusion is based on an analysis

of a period in which in�ation has been low.
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Given the nominal state price density in (10), we �nd for the real state price density, �,

d�t
�t

= �(Rt � �t + �|��t)dt� (�
>
t � �

|
�)dZt (10)

= �rtdt� (�>t � �
|
�)dZt.

As a consequence, we obtain for the instantaneous nominal interest rate

Rt = rt + �t � �|��t (11)

= �R + (�
|
2 � �

|
��1)Xt;

where �R = �r + �� � �|��0. The conditions speci�ed in Du¢ e and Kan (1996) to ensure that both
nominal and real bond prices are exponentially a¢ ne in the state variables have been satis�ed. Hence,

we �nd for the prices of a nominal bond at time t with a maturity t+ � ;

P (t; t+ �) = exp(A(�) +B(�)>Xt); (12)

and for a in�ation-linked bond

PR(t; t+ �) = exp(AR(�) +BR(�)>Xt); (13)

where A(�), B(�), AR(�), BR(�), and the corresponding derivations are provided in Appendix A. Note

that the nominal price process of a real bond is scaled by changes in the price index, i.e. the nominal

price process of a real bond evolves as

d
�
�tP

R(t; t+ �)
�

�tPR(t; t+ �)
=
�
Rt +B

R(�)>�X�t + �
>
��t

�
dt+

�
BR(�)>�X + �

|
�

�
dZt. (14)

Campbell and Viceira (2001) and Campbell et al. (2003) infer the role of in�ation-linked bonds in

the optimal asset allocation. The former paper has constant risk premia for both stocks and bonds,

which is more restrictive than the model considered here. Campbell et al. (2003) capture the dynamics

of the �nancial market with a VAR-model. In modeling in�ation-linked bonds, Campbell et al. (2003)

make the assumption that the (log) expectations hypothesis holds for the real term structure. Finally,

Campbell et al. (2003) also abstract from portfolio constraints. More importantly, both papers do not

account for labor income during the investment period. Munk and Sorensen (2005) do account for labor

income, but restrict their analysis to the real side of the economy and the bond considered is therefore

a real bond. Due to the fact that Munk and Sorensen (2005) abstract from in�ation, the di¤erent role

of nominal and in�ation-linked bonds cannot be identi�ed.

We summarize the �nancial market for future reference. Denote the state vector containing both

term structure factors by Xt and de�ne

Xt =

"
X1t

X2t

#
; �X =

"
�|1

�|2

#
; KX =

"
�1 0

0 �2

#
: (15)

We have the following dynamics of the state variables

dX = �KXdt+�XdZ: (16)
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Assume that asset menu consists of the stock (index), n nominal bonds, and m real bonds. Denote

the vector containing the prices at time t of n nominal bonds by Pt and the vector containing the m

real bonds PRt . The dynamics are then given by

d

2664
Pt

PRt

St

3775 = diag
0BB@
2664
P

PR

S

3775
1CCA
0BB@
0BB@Rt�m+n+1 +

2664
B�X

BR�X

�|S

3775�t
1CCA dt+

2664
B�X

BR�X

�|S

3775 dZt
1CCA ;

where B 2 Rn�2 and BR 2 Rm�2 containing the factor exposures of nominal and real bonds. We
denote the volatility matrix of the traded assets in the sequel by �.

2.2 The investor�s labor income and preferences

The investor operating in the �nancial market of Section 2.1 is endowed with an income stream, which

will be denoted by Yt in real terms. We postulate for the dynamics of labor income, in line with

Viceira (2001),
dYt
Yt

=

�
g � �

2
Y

2

�
dt+ �Y dZ

Y
t : (17)

Moreover, in line with the baseline case of Cocco et al. (2005), we assume initially that ZY is inde-

pendent of Z. In Section 6.3, we infer the impact of correlations between labor income innovations and

either the real interest rate, expected in�ation, or equity risk. More general models have been proposed

to model labor income by, for instance, Campbell and Cocco (2003), Cocco et al. (2005), Gomes and

Michaelides (2005), Woolley (2004), and Munk and Sorensen (2005). The main extensions encompass an

age-dependent or interest-rate dependent income growth, transient shocks to labor income, substantial

income drops in case of being laid o¤. Since we do not aim to model life-cycle behavior of individuals

in this paper, we abstract from these re�nements.

We assess the impact of the income process on the optimal portfolio of an investor that is active

in the before-mentioned �nancial market. The e¤ect of being entitled to a certain income stream is

well-understood in simple �nancial markets, see for instance Viceira (2001), Cocco et al. (2005), and

Gomes and Michaelides (2005). In general, there are two important determinants of the e¤ect of labor

income on the optimal asset allocation. First of all, the correlations between labor income risk and

�nancial risks are important and have two e¤ects. Once the investor is able to hedge labor income

uncertainty with �nancial assets, the optimal portfolio will contain an additional hedging demand, see

for instance Viceira (2001) and Munk and Sorensen (2005), to hedge labor income uncertainty. For

instance, if stock returns are positively correlated with labor income uncertainty, a negative investment

in stocks can be used to hedge labor income uncertainty. After all, a negative shock to labor income is

then accompanied with a positive return on the investment portfolio. The second e¤ect of introducing

correlations is that the (implicit) value of human capital is a¤ected, whenever labor income is correlated

with �nancial risks that are priced.

The second relevant component is the amount of idiosyncratic labor income uncertainty. The liter-

ature on background risk, see for instance Gollier and Pratt (1996) and Elmendorf and Kimball (2000),

has illustrated that background risk substitutes for �nancial risk. Hence, an increase in the idiosyncratic

labor income risk induces an e¤ective increase in the risk aversion of the individual.
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Our main contribution to this literature is our more �exible model of the �nancial market in which

we allow for both stochastic interest rates and in�ation rates, as well as time-variation in bond risk

premia. Therefore, we can assess the possibly di¤erent impact of labor income on the optimal portfolio

when the investor can choose between either nominal bonds or both nominal and in�ation-linked bonds.

In addition, we can assess the e¤ect of labor income on the value added, as measured in utility terms,

of having access to in�ation-linked bonds.

The individual obtains utility from real terminal wealth that has been accumulated during the

investment period [t; T ]. Consequently, the problem faced by the individual can be formalized as

V1

�
t; T;

Wt

�t
; Xt

�
= max

xs2K;s2[t;T ]
Et

 
1

1� 

�
WT

�T

�1�!
(18)

=
1

1� 

�
Wt

�t

�1�
F (t; T;Xt);

subject to the dynamic budget constraint

dWt

Wt
= (Rt + x

|
t��t) dt+ x

|
t�dZt; (19)

where xt 2 Rn+m+1 denotes the fraction of nominal wealth invested in the di¤erent assets.
The CRRA utility index summarizes the preferences of the individual and K is the set to which the

portfolio fractions of �nancial wealth invested, xt, are constrained, which is in this case K = Rn+m+1.
Wt denotes the nominal (�nancial) wealth of the investor at time t. In this paper we focus on the problem

where utility is obtained only from terminal wealth and abstract from intermediate consumption. The

application we have in mind is an individual saving for retirement. In an individual context, one may

argue that people saving for retirement often contribute a �xed fraction of labor income, say 20%,

on the basis of some form of mental accounting or precommitment. In this case, the income process

is proportional to the labor income process to which the individual is entitled. Gomes, Michaelides,

and Polkovnichenko (2004) show in a life-cycle context that the utility costs of �xing the savings rate

exogenously are surprisingly small, given that the savings rate is set properly.

2.3 Optimal portfolio choice without labor income

We consider �rst the investment problem for an investor without labor income and without trading

constraints, i.e. K = Rn+m+1. In this case, the maximization in (18) can be solved analytically in
continuous time.

The situation without labor income and unconstrained continuous time investing is a special case

of the model of Sangvinatsos and Wachter (2005). Their results regarding the optimal portfolio in

the continuous time setting are discussed in Appendix B, where we show in addition that the optimal
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investment in the risky assets can be decomposed in a convenient way, namely

x�t =
1


(��|)�1 ��t +

�
1� 1



�
(��|)�1 ���| {z }

Myopic demand

+
1


(��|)�1 ��1

�
Fr
F

�
| {z } +

1


(��|)�1 ��2

�
F�
F

�
| {z };

Hedging demand real rate Hedging demand expected in�ation

(20)

and Appendix B shows that the function F is exponentially quadratic in both term structure factors.

FX denotes the partial derivative of F with respect toX. Equation (20) shows that the optimal portfolio

has three components. The �rst part of the �rst component,

1


(��|)�1 ��t; (21)

is the standard myopic demand that maximizes the continuous time Sharpe ratio
p
�|t�t. The second

part of the �rst component, �
1� 1



�
(��|)�1 ���; (22)

replicates unexpected in�ation as far as possible. Both components (21) and (22) constitute the myopic

demand. The other two components are hedging demands. As shown by Sangvinatsos and Wachter

(2005), these hedging demands are induced by time-variation in the investment opportunity set to the

extent that real interest rates and prices of risks are a¤ected. In order to assess the relevance of both

hedging portfolios, Sangvinatsos and Wachter (2005) propose to set certain parameters to zero in FX=F .

A disadvantage of this approach is that the di¤erent components no longer sum to the total hedging

portfolio. In our model of the �nancial market, the factors have a clear �nancial interpretation which

facilitates an alternative decomposition of the total hedging portfolio. As such,

1


(��|)�1 ��1

�
Fr
F

�
; (23)

provides the hedging demand that arises due to time-variation in the real interest rate and

1


(��|)�1 ��2

�
F�
F

�
(24)

constitutes the hedging portfolio that comes from time-variation in expected in�ation rates. Obviously,

additivity of the two hedging components to the total hedging demand is preserved, which is a desirable

property. An additional advantage is that this construction of hedging demands allows a natural

extension to the discrete time setting, possibly with labor income. It should be noted that time-

variation in the real rate triggers two hedging demands. First of all, if prices of risk are constant,

time-variation in the real interest rate introduces a hedging demand, as shown by Brennan and Xia

(2002) and Campbell and Viceira (2001). Secondly, prices of risk co-vary with the real interest rate,

which leads to an additional hedging demand. Time-variation in expected in�ation induces a hedging

demand only due to the fact that prices of risk co-vary with expected in�ation.

Secondly, we consider an investor who can trade annually and is prohibited to take short positions,
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i.e.1 K = fx j x � 0; x>� � 1g. The reduced trading frequency and portfolio constraints can be moti-
vated, for instance, by the presence of transaction costs. For this constrained discrete time investment

problem, we maximize (18) subject to the budget constraint in real terms,

wt+1 = wt

�
x>t r

e
t+1 + r

f
t+1

�
, (25)

where ret+1 = Ret+1�t=�t+1 denotes the real excess return, r
f
t+1 = P (t; t + 1)�1�t=�t+1 represents

the real return on the nominal money market account, and wt = Wt=�t denotes real wealth. The

corresponding value function in (18) is denoted by V2. Using Bellman�s principle of optimality, we �nd

V2(t; T;Xt; wt) = max
xt2K

Et (V2(t+ 1; T;Xt+1; wt+1)) (26)

Exploiting the homogeneity of the power utility index, provides

V2(t; T;Xt; wt) = w
1�
t V2(t; T;Xt; 1): (27)

Substituting these results in (26), we �nd

V2(t; T;Xt; 1) = max
xt2K

Et

 
V2(t+ 1; T;Xt+1; 1)

�
wt+1
wt

�1�!
(28)

= max
xt2K

Et
�
V2(t+ 1; T;Xt+1; 1)

�
x>t r

e
t+1 + r

f
t+1

�1��
.

These �rst two investment problems consider investors who are not entitled to any form of income

during the period of investing. Sangvinatsos and Wachter (2005) solve the unconstrained continuous

time problem in absence of labor income and portfolio constraints2 . Campbell and Viceira (2001)

consider the optimal portfolio choice between long-term bonds in a discrete time setting, but do not

account for labor income or time-variation in bond risk premia. Campbell et al. (2003) do allow for

time-variation in risk premia, but they cannot easily accommodate portfolio constraints. Moreover, the

results presented in Campbell and Viceira (2001) and Campbell et al. (2003) are derived in in�nite

horizon models. Therefore, an analysis of horizon e¤ects is possible only implicitly and we extend their

results therefore as well by addressing the investor�s investment horizon.

2.4 Optimal portfolio choice with labor income

We now consider an investor who receives a certain stream of labor income during the period of investing.

We consider the investment problem in which the investor can trade annually and investing is subject

to borrowing and short-sale constraints, i.e. K = fx j x � 0; x>� � 1g. In the presence of labor income,
it has been shown by, for instance, Bodie et al. (1992) that it is optimal to borrow excessively against

future labor income, especially in early stages of the life-cycle. For reasons of moral hazard, this is

generally infeasible in practice.

1 It has been argued by, among others, Davis, Kubler, and Willen (2003) and Cocco et al. (2005) that borrowing to

invest is often possible to a limited extent in practice, albeit that the borrowing rate exceeds the lending rate, i.e. so-called

endogenous borrowing constraints. We con�ne ourselves to exogenous borrowing constraints throughout this paper.
2Sangvinatsos and Wachter (2005) consider the essentially a¢ ne 3-factor model that has been advocated by Duf-

fee (2002) and enrich this model with an in�ation and stock (index) process. We consider a more parsimonious model in

which the factors have a clear �nancial interpretation in order to enhance the interpretation of the results.

10



For convenience, we assume that the investor receives labor income annually. The discrete time

counterpart of (17) is given by

Yt+1 = Yt exp(g + �t+1); �t+1
i:i:d:� N

�
0; �2�

�
, (29)

where the innovations in the labor income process are initially uncorrelated with innovations in the

�nancial market, as in the baseline case of Cocco et al. (2005). In Section 6.3 we discuss the e¤ects of

labor income shocks that are correlated with market shocks.

For the investment problem where the investor receives labor income during the period of investing,

we maximize (18) subject to the budget constraint

wt+1 = wt

�
x>t r

e
t+1 + r

f
t+1

�
+ Yt+1. (30)

The corresponding value function in (18) is denoted by V3. The homogeneity of the utility index

can be used in this case to show that the optimal portfolio is independent of the permanent component

of labor income,

V3(t; T;Xt; wt; Yt) = Y
1�
t V3(t; T;Xt; �wt; 1); (31)

where �wt = wt=Yt, i.e. normalized real wealth. If we substitute these results in (26), we �nd

V3(t; T;Xt; �wt; 1) = max
xt2K

Et

 
V3(t+ 1; T;Xt+1; �wt+1; 1)

�
Yt+1
Yt

�1�!
(32)

= max
xt2K

Et
�
V3(t+ 1; T;Xt+1; �wt+1; 1) exp(g + �t+1)

1�� :
2.5 Summary of the numerical approach

As analytical solutions are absent for the problems in a discrete time setting, numerical techniques have

been used to solve such asset allocation problems. In life-cycle models, numerical dynamic programming

is the leading solution technique. The numerical issues given our number of state variables and sources

of uncertainty should not be underestimated. The present section discusses the main ideas of our

solution technique and details can be found in Appendix E.

Brandt et al. (2005) have shown how to extend the simulation-based valuation methods of Longsta¤

and Schwartz (2001) and Tsitsiklis and vanRoy (2002) to the area of portfolio selection. Both in valu-

ation of American options and in dynamic asset allocation problems, the solution can be derived easily

once certain conditional expectations are known. In pricing American options, this is the continuation

value of the option, whereas in case of portfolio selection, the conditional expectation of future utility

is of particular interest. However, in both problems, the conditional expectations cannot be calculated

analytically in most cases.

The idea is to approximate conditional expectations by a projection on a set of basis functions in

the state variables. In order to estimate the projection coe¢ cients, we simulate �rst of all M paths

of both state variables and asset returns. The projection coe¢ cients are subsequently estimated via

a cross-sectional regression across all simulated paths. Once the conditional expectations have been

approximated, the principle of dynamic programming is used to solve for the optimal portfolio.

11



We adjust the approach of Brandt et al. (2005) considerably in order to be able to handle portfolio

constraints and labor income. Apart from these extensions, we modify an approximation proposed in

Brandt et al. (2005). In general, it is very time-consuming to optimize over the optimal portfolio in

every branch, as every function evaluation requires a cross-sectional regression over theM paths, where

M is typically large. Brandt et al. (2005) suggest to determine a fourth order Taylor expansion of

the utility index. In solving for the optimal portfolio on the basis the resulting polynomial, Brandt et

al. (2005) suggest an iterative procedure to optimize e¢ ciently over all paths at a certain time point

simultaneously. Yet, as noted as well by DeTemple et al. (2003, 2005), this iterative procedure is not

guaranteed to converge.

We circumvent this approximation by exploiting the fact that the projection coe¢ cients that fol-

low from the cross-sectional regression across all paths are smooth functions of the portfolio weights.

Therefore, we determine a polynomial expansion of the projection coe¢ cients in the portfolio weights.

This results in a quadratic optimization problem that can be solved fast. This alternative approxima-

tion turns out to be highly accurate and avoids the iterative procedure. Appendix E compares both

approximations for an example proposed in Brandt et al. (2005). The results indicate that our approach

enhances the approximation of Brandt et al. (2005), especially when the trading frequency is relatively

low, which is the prime case where the approximation of Brandt et al. (2005) tends to be inaccurate.

Secondly, due to the presence of the income stream, the portfolio becomes dependent on the level of

normalized real wealth. We solve this problem by combining the conventional approach of discretizing

the state space with the simulation-based approach. We specify a grid for wealth at each point in time

and combine these grid points with the simulated values of the state variables. We refer to Appendix E

for a rigorous discussion of the simulation-based approach to portfolio choice in the presence of portfolio

constraints and an income stream.

The before-mentioned numerical procedure can be extended to decompose the optimal portfolio

into myopic and hedging demands that are induced by either time-variation in the real interest rate or

expected in�ation. In absence of labor income, the myopic demand has been de�ned as the optimal

portfolio allocation that solves a single period investment problem. Therefore, the total hedging demand

that arises in a multi-period problem is obtained by subtracting the myopic demand from the total

demand. As shown by Samuelson (1969), the optimal portfolio in a multi-period problem coincides

with the optimal solution in a single period problem, if interest rates are constant and asset returns are

i.i.d. Therefore, the myopic demand can be calculated as well by solving the multi-period problem in

which we reset the state variables to their initial values at every time step in the simulation procedure.

In Appendix C, we show that this approach can be specialized to the case where the investor only

hedges time-variation in the real rate or expected in�ation. However, as discussed in detail in Appendix

C, such decompositions do not necessarily sum to the total demand. In our empirical application,

the di¤erences are negligible and the decomposition signi�cantly enhances the understanding of the

composition of the total demand.

In this investment problem with labor income, the conventional de�nition of hedging demands,

namely the optimal strategy that solves the single period problem, cannot be used. After all, an

investor with multiple periods ahead has a di¤erent entitlement to labor income than an individual

that faces a single period investment problem. However, in absence of labor income, resetting the state
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variables results in the same optimal portfolio, independent of the investment horizon, as the single

period (myopic) portfolio. Therefore, we extend the concept to the case with labor income and reset

the state variables after a single period simulation in order to determine the myopic demand in the

presence of labor income. This enables a decomposition of the optimal portfolio choice into the myopic

and total hedging demand. As before, the total hedging demand can be decomposed into a hedging

demand induced by time-variation in the real rate and time-variation in expected in�ation rates. We

refer to Appendix C for further details.

3 Data and estimation

In this section, we estimate our speci�cation of the �nancial market in Section 2.1. Section 3.1 describes

the data that we use in estimation, while in Section 3.2, we provide the estimation results and illustrate

the �t of the model.

3.1 Data

In order to estimate our speci�cation of the �nancial market, we use monthly data as of January

1959 up to May 2002. The monthly US government yield data are the same as in Du¤ee (2002) and

Sangvinatsos and Wachter (2005) up to December 1998. These data are taken from McCulloch and

Kwon up to February 1991 and extended using the data in Bliss (1997) up to December 1998. We

extend these time series up to May 2002 using the data that have been obtained via Rob Bliss3 . We

use six yields with maturities 3 months, 6 months, 1, 2, 5, and 10 years.

Data on the price index has been obtained from the website of the Bureau of Labor Statistics. We use

the CPI-U index to represent the relevant price index for the investor. The CPI-U index represents the

buying habits of the residents of urban and metropolitan areas in the US4 . We assume, in line with the

literature, that the price index used to index in�ation-linked bonds coincides with the price index that

is relevant for the investor. Finally, we use returns on the CRSP value-weighted NYSE/Amex/Nasdaq

index for stock returns.

3.2 Estimation

The Kalman �lter with unobserved state variables X1t and X2t is used to estimate the model by maxi-

mum likelihood. Following De Jong (2000), Brennan and Xia (2002), and Campbell and Viceira (2001),

we assume that all yields have been measured with error. Details on the estimation procedure are in

Appendix D.

The relevant processes in estimation are Yt = (Xt; log �t; logSt) for which the joint di¤usion can be

written as

d

2664
Xt

log �t

logSt

3775 =
0BB@
2664
02�1

�� � 1
2�

|
���

�R + �S � 1
2�

|
S�S

3775+
2664

�KX 02�2

e>2 01�2�
�>2 � �

|
��1

�
01�2

3775
2664
Xt

log �t

logSt

3775
1CCA dt+�Y dZt, (33)

3We are grateful to Rob Bliss for providing the yield data.
4See www.bls.gov for further details.
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with

�Y =

2664
�X

�|�
�|S

3775 . (34)

An unrestricted volatility matrix, �Y , would be statistically unidenti�ed and, therefore, we impose

that the volatility matrix is lower triangular, in line with Sangvinatsos and Wachter (2005), i.e.

�Y =

266664
�1 0 0 0

�12 �2 0 0

��(1) ��(2) ��(3) 0

�S(1) �S(2) �S(3) �S(4)

377775 . (35)

Given this normalization, we can easily accommodate the parametric restrictions on the prices of

risk. First of all, we assume that the price of real interest rate risk and the price of expected in�ation

risk are driven only by respectively the real interest rate and expected in�ation. Hence, we �nd

�t = �0 + �1Xt (36)

=

266664
�0(1)

�0(2)

0

�

377775+
266664
�1(1;1) 0

0 �1(2;2)

0 0

� �

377775Xt;

where the � in the last row indicate that these parameters are chosen to satisfy the restriction that the
equity risk premium is constant (�|S�0 = �S and �

|
S�1 = 0).

The estimation results are presented in Table 1, together with the standard errors on the basis of the

outer product gradient estimator. The parameters �u1 ,:::, �u6 are the volatilities of the measurement

errors of the bond yields at the six maturities that have been used in estimation.

Insert Table 1

We �nd �rst of all that the level parameters, i.e. �R and ��, are close to the estimates reported by

Sangvinatsos and Wachter (2005) (respectively 5:6% and 4:0%)5 . It is well-known that the means of

the short rate and expected in�ation resulting from these models are usually low relative to the sample

counterparts. However, we con�rm the �nding of Sangvinatsos and Wachter (2005) that when we adopt

the essentially a¢ ne model for the term structure and we incorporate in�ation data into the estimation,

the means are estimated properly.

In line with Brennan and Xia (2002) and Campbell and Viceira (2001), we �nd that expected

in�ation is a much more persistent process than the real interest rate (i.e. �1 > �2). The instantaneous

correlation between expected in�ation and the real interest rate is slightly negative (�15%), in line with
Brennan and Xia (2002) and Ang and Bekaert (2004). Hence, the Mundell-Tobin e¤ect is supported

by our estimates. We �nd that innovations in stock and bond returns are negatively correlated with

in�ation innovations, in line with Sangvinatsos and Wachter (2005).

5Sangvinatsos and Wachter (2005) use data from 1952 up to 1998 to estimate their model for the �nancial market.
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Concerning the prices of risk, we �nd that the unconditional price of real interest rate risk is higher

than the unconditional price of expected in�ation risk, i.e.
���0;(1)�� > ���0;(2)��, which is in line with

Campbell and Viceira (2001) and Brennan and Xia (2002). This implies that the Sharpe ratio of

nominal bonds will be lower than the Sharpe ratio of real bonds, simply due to the fact that real bonds

have no exposure to the expected in�ation factor, which is awarded a lower compensation for risk. The

equity risk premium is estimated to be 5:4%, re�ecting the historical equity risk premium.

Apart from the unconditional term premia, we are interested in the impact of the enriched structure

by allowing time-variation in bond risk premia. As pointed out by Dai and Singleton (2002), time-

varying risk premia can be caused by time-varying volatilities and time-varying prices of risk. We

con�ne ourselves to time-variation in the prices of risk. We �nd that the price of real interest rate

risk signi�cantly decreases with the level of the real interest rate and the price of expected in�ation is

signi�cantly decreasing in the level of expected in�ation. These estimates imply that nominal bonds

become more attractive relative to real bonds when expected in�ation is high. After all, in these cases,

the price of expected in�ation risk is low. As nominal bond returns are negatively correlated with

expected in�ation, the in�ation risk premium is high when expected in�ation is high, where we de�ne

the in�ation risk premium as the di¤erence between the risk premium on a nominal bond and a real

bond with the same maturity, in line with Campbell and Viceira (2001). Next, we �nd that the price of

real interest rate risk is negatively correlated with the real interest rate. This implies that the real term

premium arising from real interest rate risk is high if the real interest rate is high. Interestingly, due to

the Mundell-Tobin e¤ect, real bonds of a particular maturity have a larger real interest rate exposure

than nominal bonds with the same maturity. As a consequence, a high real interest rate implies a low

price of real interest rate risk and, therefore, the risk premium on real bonds increases more than on

nominal bonds. Thus, a high real interest rate tends to dampen the in�ation risk premium, whereas

high expected in�ation rates tend to amplify the in�ation risk premium. The same e¤ects regarding the

interplay between the real rate, expected in�ation, and the in�ation risk premium result as well from

the general equilibrium model of Buraschi and Jiltsov (2005).

We summarize several implications of the estimates that are reported in Table 1. First of all, we

consider the risk premia on both nominal and real bonds, as well as their volatilities and the in�ation

risk premium. Table 2 provides the results when the factors equal their unconditional expectation.

Insert Table 2

First of all, the nominal bond risk premia are in line with the estimates reported in Campbell and

Viceira (2001). Secondly, real bonds tend to be much safer than nominal bonds, which is caused by

the fact that real bonds do not have exposure to the expected in�ation factor. Thirdly, the uncon-

ditional in�ation risk premium for a 3M bond equals 22bp and 101bp for a 10Y bond. Buraschi and

Jiltsov (2005) estimate the short-term in�ation risk premium to be 25bp and the long-term at 70bp in

a general equilibrium setting. Ang and Bekaert (2004) report an estimate of 97bp and Campbell and

Viceira (2001) 110bp for long-term bonds. Hence, our estimates of the in�ation risk premium are in

line with the literature.

Table 3 provides the correlations between returns on nominal and real bonds, as well as between

bond and stock returns. In addition, Table 3 reports the correlation between the risk premia on both
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nominal and in�ation-linked bonds that we consider and the returns on the (possibly) traded assets.

Insert Table 3

We �nd that stock returns and nominal bond returns are positively correlated, in line with Sangvinatsos

and Wachter (2005). Sangvinatsos and Wachter (2005) report a correlation between stock and nominal

bond returns with di¤erent maturities that varies between 19:1�21:2%, which is close to our estimates.
The correlation between nominal bond returns resembles their estimates as well. We �nd that the

correlation among in�ation-linked bonds is high, which is caused by the fact that we postulate a single

factor term structure model for the real term structure. In addition, the correlation between long-term

real bonds and nominal bonds is modest. This results from the fact that long-term nominal bonds have

mainly exposure to expected in�ation, whereas long-term in�ation-linked bonds have only exposure to

the real interest rate, see Figure 1. Since expected in�ation and the real interest rate are negatively

correlated, we �nd a small negative correlation between long-term nominal and in�ation-linked bond

returns.

Panel B of Table 3 provides the implied correlations between the risk premia of both nominal and

in�ation-linked bonds that we consider and the returns on the traded assets. First of all, in�ation-

linked bond returns are negatively correlated with the real interest rate. Hence, a negative price of real

interest rate risk translates into a positive risk premium for in�ation-linked bonds. Since the price of

real interest rate risk is negatively correlated with the real interest rate, the real bond risk premium is

positively correlated with the real interest rate. Therefore, real bond returns are negatively correlated

with the risk premium on real bonds.

Nominal bonds, on the other hand, are exposed to both the real rate and expected in�ation factor.

Moreover, both exposures are negative and the exposure to expected in�ation exceeds the real interest

rate exposure substantially, see Figure 1. The price of expected in�ation risk is positively correlated

with the real rate, but negatively correlated with expected in�ation. As a negative price of real interest

rate and expected in�ation risk translates into positive bond risk premia, nominal bond returns are

negatively correlated with nominal bond risk premia. Medium-term nominal bonds have a substantial

real interest rate exposure, which induces a negative correlation between in�ation-linked bond returns

and medium-term nominal bond risk premia. Long-term nominal bonds, on the other hand, have hardly

any exposure to the real rate, but mainly to the expected in�ation factor. Due to the fact that the

price of expected in�ation risk is positively correlated with the real rate, we �nd that long-term nominal

bond risk premia are positively correlated with in�ation-linked bond returns.

In Table 4, we compare several summary statistics that follow from the discretized model to their

raw sample counterparts. This provides additional insights in the �t of the model. Table 4 provides

an overview of several important statistics for stock returns, in�ation, 3M, 1Y, 5Y, and 10Y nominal

bonds, on a monthly basis.

Insert Table 4

We �nd that the processes for stock returns and in�ation are �tted properly. It is well-known that

the means of the yields are often underestimated in models with constant risk premia and which do not

exploit the information in in�ation data to estimate the parameters. We therefore adopt the essentially

a¢ ne term structure model as proposed by Du¤ee (2002) which largely solves the problem, once we

16



incorporate in�ation data into the estimation. Alternatively, Campbell and Viceira (2001) model bond

risk premia to be constant and set the means equal to their sample counterparts.

Concerning the parameters of the income process, we rely on Viceira (2001). Hence, we choose the

expected log growth in real income equal to three percent and the volatility of the log income growth

is equal to ten percent per year. Initially, we assume that the correlation between the innovations of

the labor income process and the �nancial assets is equal to zero, in line with the baseline speci�cation

Cocco et al. (2005). We infer in Section 6.2 the e¤ects of the amount of idiosyncratic labor income

risk. In Section 6.3, we assess the impact of correlations between labor income innovations and �nancial

risks.

We consider an investor saving for retirement and allocating a fraction � of its labor income to the

retirement account. Hence, we exogenously �x the savings rate. Gomes et al. (2004) illustrate in a

life-cycle context that exogenously �xing the savings rate results in small utility costs, provided that

the savings rate is set properly. Moreover, it is noteworthy that choosing a di¤erent level � only matters

for the initial wealth considered. After all, the homogeneity property of the power utility index enables

a factorization of the value function of the form V ( �w0; �) = �
1�V ( �w0=�; 1). Hence, the results remain

valid if one wants to consider a di¤erent savings rate, albeit that the interpretation of initial wealth has

to be adjusted accordingly.

Denote the labor income at time t by Lt and assume

Lt+1 = Lt exp(g + �t+1);

and Yt+1 = �Lt+1, implying

Yt+1 = Yt exp(g + �t+1).

We set the savings rate equal to � = 20%. In many countries, mandatory pension schemes enforce

a substantial fraction of income to be invested for retirement purposes. In addition, employers often

contribute a signi�cant amount to pension funds. In an optimized life-cycle context, this fraction will

obviously vary over time, implying that youngsters will save less than older people, see for instance

Cocco et al. (2005) and Gomes and Michaelides (2005). We consider investment horizons up to 30

years, which means that we abstract from the early part of the life-cycle in which accumulation of funds

is generally modest. For instance, Cocco et al. (2005) report savings in the order of magnitude of 6

months of labor income during the �rst decade of the life-cycle.

As mentioned earlier, the optimal portfolio is no longer independent of normalized wealth when we

account for the income stream of the investor. Therefore, we have to determine the optimal portfolio for

di¤erent initial values of normalized wealth. We consider two cases, namely one where the individual

has accumulated only twenty percent of an annual salary, i.e. �w0 = 1, and secondly, the case where the

individual has saved 5 annual incomes, i.e. �w0 = 25. By doing this, we consider rather extreme cases

and the main e¤ects are identi�able. It is important to note though that when the investment horizon

increases, the investor has relatively more periods in which labor income is received. Hence, the value

of human capital is larger in these cases. This implies, together with the fact that the role of labor

income will be smaller if initial wealth is larger, we expect the results for �w0 = 25 and short investment

horizons to resemble closely the results without labor income.
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4 Optimal portfolio choice without labor income

In this section, we examine the optimal portfolio choice when the investor does not receive labor income

during the investment period. First of all, we determine the optimal portfolio choice for an investor

who can trade continuously and is not subject to borrowing or short-sale constraints. Subsequently, we

consider the discrete time problem, in which the optimal portfolio has to satisfy borrowing and short-

sale constraints. To infer the optimal bond demand, we restrict the menu of assets to contain solely

bonds in Section 4.1. In Section 4.2, we consider the optimal allocation between stocks and bonds,

where we con�ne the bond part of the asset menu to be either nominal or real. These menus of assets

have also been considered by Campbell and Viceira (2001) and enable us to assess the impact of labor

income on the long-term bond demand as well as the stock-bond mix in Section 5. Throughout, we

consider the investment horizons T = 1; 5; 10; 20, and 30. We characterize three types of investors on

the basis of their preference to bear risk, namely aggressive ( = 3), moderate ( = 5), and conservative

( = 7).

4.1 Optimal bond demand

Table 5 provides the optimal portfolio for an investor who can trade continuously and is not subject

to portfolio constraints. The asset menu contains 3Y nominal bonds, 10Y nominal bonds, and cash.

Table 6 considers the optimal portfolio when the menu of assets is enriched with a long-term in�ation-

linked bond. Since the �nancial market in Section 2.1 postulates a two factor term structure model,

two nominal bonds with di¤erent maturities su¢ ce to create any exposure to the real interest rate and

expected in�ation factor. When a single in�ation-linked bond is added to this asset menu, the �nancial

market is completed and unexpected in�ation risk can be hedged as well. Hence, any additional bond

is redundant in this problem. Using the decomposition of the optimal portfolio in (20), we can identify

the hedging demands induced by time-variation in either the real interest rate or expected in�ation. In

addition, we report the exposures to the real interest rate and expected in�ation implied by the optimal

portfolio.

Table 5 shows that the myopic demand contains a long position in 3Y nominal bonds that is �nanced

by a short position in 10Y nominal bonds and borrowing cash. These positions are induced by the

investor�s desire to have a substantial exposure to the real interest rate. This is mainly caused by the

large price of real interest rate risk in comparison to the price of expected in�ation risk for aggressive

investors, whereas conservative investors aim at synthesizing an in�ation-linked bond. As follows from

our estimation results in Table 1, we �nd expected in�ation to be more persistent than the real interest

rate. As a consequence, B2(�) will be larger than B1(�) in absolute values for every � in absolute terms6

and B1(�)=B2(�) is decreasing in � , see Figure 1. Therefore, to establish a large exposure to the real

interest rate and thereby keeping a modest exposure to expected in�ation, the investor needs to hold

long the 3Y nominal bond and short the 10Y nominal bond.

Concerning the hedging demands, Table 5 provides the decomposition of the hedging portfolio

as proposed in (20). We �nd substantial horizon e¤ects, but the allocations implied by the myopic

6We will denote the exposure of a nominal bond to the real interest rate by B1 and the exposure to expected in�ation

by B2.
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demand are extremely large and tend to dominate the optimal portfolio. The last two columns of

Table 5 provide the exposures to the real interest rate and expected in�ation as implied by the optimal

portfolio. Comparing these numbers to Figure 1, we �nd that especially the exposure to the real interest

rate is exceptionally large. There does not exist a single nominal bond with a particular maturity that

can be used to create such a real interest rate exposure. The expected in�ation exposure, on the other

hand, tends to be more reasonable in the sense that these exposures are attainable with a single nominal

bond. Such extreme positions in the di¤erent nominal bonds have been reported as well by Brennan

and Xia (2002), Campbell and Viceira (2001), and Sangvinatsos and Wachter (2005) 7 .

Insert Table 5

Insert Table 6

Table 6 assesses the role of in�ation-linked bonds in the optimal portfolio. We enrich the asset

menu with an in�ation-linked bond with a maturity of 10 years. As two nominal bonds with di¤erent

maturities su¢ ce to create any exposure to the real interest rate and expected in�ation factor, the role

of real bonds is con�ned to the hedging demand for unexpected in�ation. This improved ability to

hedge unexpected in�ation implies that the exposures to the real interest rate and expected in�ation

change marginally.

Insert Table 7

Apart from optimal portfolios, we can determine the utility gains8 from enriching the investor�s asset

menu with in�ation-linked bonds. The results are presented in the �rst column of Table 7. These utility

gains have been determined as the fraction of initial wealth the individual must have in addition in case

of the nominal asset menu to be indi¤erent to the asset menu that does contain in�ation-linked bonds.

In the presence of labor income, we determine the fraction of total wealth an individual is willing to

sacri�ce in order to gain access to in�ation-linked bonds.

The value added of in�ation indexed bonds is limited in this case to the ability to hedge unexpected

in�ation. In line with Brennan and Xia (2002), we �nd the value added of in�ation-linked bonds to be

rather limited to at most 1% for conservative long-term investors.

7Hence, the extreme positions tend to arise due to the investor�s desire to have an relatively extreme exposure to the real

interest rate. Similar results have been found in Brennan and Xia (2002) and Van Hemert, De Jong, and Driessen (2005).

We remark that these results suggest an interesting role for (real) interest rate derivatives, like interest rate and in�ation

swaps. After all, it is often remarked that the extreme positions arising from these kind of models are impossible in

practice due to all kind of market imperfections. However, swaps are frequently used by institutional investors. These

contracts can be seen as a very particular long-short position in bonds and hence can play a key role in constructing

optimal portfolios to attain the desired exposures.
8Formally, we solve for � in
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where W1T denotes optimal terminal wealth when the investor has no access to in�ation-linked bonds and W2T indicates

optimal terminal wealth when the asset menu does contain in�ation-linked bonds.
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Next, we consider an investor who can trade on an annual basis and is subject to borrowing and

short-sale constraints. Especially the inability of the investor to short particular assets or to borrow

cash to invest in risky assets may increase the value added of real bonds substantially, see Campbell

and Viceira (2001). Hence, we compare the same asset menus as before, in which the investor can select

either between 3Y and 10Y nominal bonds, or this menu is enriched with a 10Y in�ation-linked bond.

In both cases, a nominal money market account is available to the investor as well. However, as can

be deduced from Figure 1, the exposures attainable with the latter asset menu are exactly the same

as with an asset menu that contains only 10Y nominal and in�ation-linked bonds, when short-selling

and borrowing cash is prohibited. We remark that this is an empirical �nding and may not be the case

for di¤erent values of the model parameters. Therefore, we con�ne henceforth the asset menu in the

presence of in�ation-linked bonds to contain only 10Y nominal and 10Y in�ation-linked bonds, without

loss of generality.

Table 8 reports the optimal portfolio allocations when investors are subject to borrowing and short-

sale constraints and can trade only annually for both asset menus. We use 100 batches of M = 10000

simulations and report the average portfolio weights across all simulations.

Insert Table 8

At least three aspects of Table 8 are noteworthy. First of all, as the risk aversion of the individual

increases, the investor tilts the optimal portfolio towards 3Y nominal bonds. As 10Y nominal bonds

have a large expected in�ation-exposure, these securities are considered to be risky for conservative

investors. As 3Y nominal bonds have a larger real interest rate exposure than 10Y nominal bonds,

the investor shortens the duration of the optimal nominal bond portfolio as the risk aversion increases.

This is in line with Campbell and Viceira (2001). If in�ation-linked bonds are available, this e¤ect is

more prominent. In�ation-linked bonds allow the investor to build a larger real interest rate exposure

without incurring a larger expected in�ation exposure. We �nd indeed that as the risk aversion of the

investor increases, the optimal portfolio shifts gradually towards in�ation-linked bonds.

Secondly, when we consider the impact of the investment horizon, we �nd substantial horizon e¤ects.

For instance, when the investor can select between 3Y and 10Y nominal bonds, we �nd that an aggressive

investor with a horizon of �ve years allocates 25% to long-term nominal bonds, whereas an investor with

an investment horizon of thirty years allocates 58% of its wealth to 10Y nominal bonds. Hence, we �nd

that the duration of the optimal nominal bond portfolio is increasing in the investment horizon, in line

with Brennan and Xia (2002). This is apparent as well from the allocation between 10Y in�ation-linked

and 10Y nominal bonds. After all, lengthening the duration of a nominal bond portfolio is tantamount

to a reduction in the real interest rate exposure and an increase in the expected in�ation exposure. We

indeed �nd that increasing the investor�s investment horizon triggers a shift from long-term in�ation-

linked to long-term nominal bonds.

Thirdly, the decomposition of the optimal portfolio into a myopic demand and two hedging demands

for either variation in the real interest rate and expected in�ation provides a further understanding of the

total bond demand. Interestingly, we �nd that the investment in 3Y nominal and 10Y in�ation-linked

bonds largely channels through the myopic demand. The demand for 10Y nominal bonds emerges due

to the investor�s desire to hedge time-variation in expected in�ation. This hedging demand is generally
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long in 10Y nominal bonds and short in either 3Y nominal or 10Y in�ation-linked bonds. This results

from the fact that time-variation in expected in�ation a¤ects the investment opportunity set via the

price of expected in�ation risk, which is the most signi�cant determinant of the risk premium on long-

term nominal bonds. Table 3 shows that 10Y nominal bonds are negatively correlated with its risk

premium and hence a positive position in 10Y nominal bonds can be used to hedge time-variation

in expected in�ation. Interestingly, as mentioned in Appendix C, it is not necessarily the case that

the myopic and hedging demands sum to the total portfolio. However, we �nd empirically that the

di¤erence is marginal.

Finally, we remark that the standard errors resulting from the simulation-based approach are rel-

atively small. The standard errors are at most 45bp. We �nd that the standard errors are increasing

with the investment horizon, the riskiness of the asset mix, and there is a mixed e¤ect of increasing the

risk-aversion of the investor. Brandt et al. (2005) remark that when the relative risk aversion of the

individual increases, standard errors decrease due to a more prudent investment strategy. On the other

hand, the increased curvature of the value function tends to amplify the dispersion. We experience the

same trade-o¤ as an increase in the relative risk averseness has ambiguous e¤ects for the accurateness

of the optimal portfolio9 .

The second column of Table 7 determines the utility gains when the investor�s asset menu contains

real bonds as compared to the case where the investor can only select between nominal bonds. We �nd

that the utility gains are sizeable, in line with Campbell and Viceira (2001). In all cases, the investor

bene�ts from having access to real bonds. The larger the investment horizon and the more conservative

the investor, the larger the utility gains. For instance, a conservative long-term investor gains almost

8%, whereas a moderately risk averse long-term investor gains somewhat more than 6%.

Hence, our �ndings are largely in line with Campbell and Viceira (2001). However, as we consider

a �nite horizon investment problem, we are able to identify the horizon e¤ects. Interestingly, we �nd

that constrained investors allocate increasingly less wealth to in�ation-linked bonds as the investment

horizon increases. Hence, the horizon e¤ects triggered by time-variation in expected in�ation tend to

dominate the horizon e¤ects caused by real interest rates. This becomes especially apparent using the

decomposition as outlined in Appendix C.

4.2 Optimal portfolio choice between stocks and bonds

In Tables 9 and 10 we consider the optimal portfolio choice between equities and long-term bonds,

where the long-term bond is either nominal or real. In both cases, the investor has available a nominal

cash account as well. In Table 9, we consider initially an investor who can trade continuously and who

is not subject to borrowing and short-sale constraints. We decompose the optimal portfolio according

to the decomposition proposed in (20).

Insert Table 9

When the investor can choose between stocks and long-term nominal bonds, we �nd that stocks

constitute a prominent part of the optimal portfolio which is mainly driven by the high equity risk
9Detailed results on the accuracy of the simulation-based approach are available upon request.

21



premium. As the investor becomes more conservative, both stocks and long-term nominal bonds are

relatively risky. Therefore, the investor chooses to invest a substantial part in cash, in line with Campbell

and Viceira (2001) and Sangvinatsos and Wachter (2005). Interestingly, our decomposition shows that

long-term nominal bonds are of little help to hedge real interest rate risk. As Figure 1 indicates, long-

term nominal bonds have mainly exposure to expected in�ation and only a modest exposure to the real

interest rate.

We identify strong horizon e¤ects for the demand for nominal bonds. As follows from Table 3,

nominal bond returns are negatively correlated with nominal bond risk premia. As a consequence, a

long position in nominal bonds can be used to hedge adverse changes in nominal bond risk premia.

The horizon e¤ects induced by time-variation in the real interest rate are very weak. Remark that the

hedging demands are not necessarily monotone in the relative risk aversion parameter. After all, when

the investor becomes more conservative, hedging becomes more important, which induces an increase

in the hedging portfolio. On the other hand, the speculative demand reduces and therefore hedging

time-variation in risk premia becomes less relevant, which leads to a reduction in the hedging portfolio.

Next, we consider the optimal portfolio when the investor allocates wealth between stocks, 10Y

in�ation-linked bonds, and cash. In this case, the myopic demand is characterized by enormous in-

vestments in in�ation-linked bonds. Moreover, since in�ation-linked bonds are negatively correlated

with both the real interest rate and the risk premium on long-term in�ation indexed bond, the hedging

demand for long-term real bonds is positive. As a consequence, the optimal portfolio contains large

investments in in�ation-linked bonds, regardless of the investor�s investment horizon or risk preferences.

Table 10 considers the case where the investor can trade annually and is short-sale and borrowing

constrained.

Insert Table 10

When the investor�s asset menu contains stocks, long-term nominal bonds, and cash, we �nd the

constraints only to be binding for aggressive investors. For the moderately risk averse as well as for the

conservative investor, the fraction invested in equities is close to the exact continuous time solution.

This can be regarded as well as a robustness check of the simulation-based approach.

Next, we do �nd that long-term conservative investors should have a higher ratio of long-term

nominal bonds to stocks in the optimal portfolio, which is qualitatively in line with common investment

advises as summarized in Canner et al. (1997). Nevertheless, quantitatively, the ratio can be very

di¤erent for di¤erent investment horizons or risk preferences. We �nd that the fraction invested in

long-term nominal is reduced as the investor becomes more conservative. This is caused by the fact

that long-term nominal bonds are risky due to their large expected in�ation exposure. This e¤ect is

ampli�ed when the investor can only trade in discrete time, which explains why the fraction invested in

the discrete time setting is somewhat lower than in continuous time. Regarding the composition of the

optimal portfolio, we �nd that conservative investors invest mainly in 10Y nominal bonds for hedging

motives. The investment in stocks turns out to be largely for speculative purposes. As before, we �nd

that time-variation in the real rate hardly generates hedging demands.

Consider next the optimal asset allocation when the investor can invest in stocks, 10Y in�ation-linked

bonds, and cash. Since real bonds do not have the risky expected in�ation exposure of nominal bonds,
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more conservative investors invest large fractions in real bonds, reducing the investment in equities and

cash as compared to the asset menu with nominal bonds. For the reported precision, we are not able

to detect any horizon e¤ects. The reason is that investor do not have a strong incentive to hedge real

interest rate risk in the constrained, discrete time setting and none of the assets can be used to hedge

time-variation in expected in�ation. This is re�ected by the absence of hedging demands. The investor

behaves myopically, provided this asset menu. In line with Munk and Sorensen (2005), we �nd that the

ratio of in�ation-linked bonds to stocks is increasing in the risk aversion of the investor.

Concerning the accuracy of the simulation-based portfolio choice, we �nd that the standard errors

remain modest, even though the risky stock investment results in a somewhat larger dispersion of the

estimated optimal portfolios. Nevertheless, the largest standard error we experience is 1.03% for the

case where the investor is conservative and the investment horizon equals 30 years.

We conclude this section by remarking that the �ndings reported resemble the results of Campbell

and Viceira (2001) for a �xed investment horizon. We show that their results largely carry over to

the case where the investor obtains utility of terminal wealth and bond risk premia are time-varying.

We complement their analysis by identifying the horizon e¤ects, allowing for time-variation in bond

risk premia, and providing a convenient decomposition of the total optimal portfolio that turns out to

provide interesting insights in the constrained, discrete time problem.

5 Optimal portfolio choice in the presence of labor income

We consider the investment problem of an investor who receives a certain income stream during the

investment period. We distinguish in this section two cases, namely one where initial wealth is low

relative to the initial income, i.e. �w0 = 1, which corresponds to having accumulated twenty percent of

an annual salary in our set-up. Secondly, we consider the case where initial wealth is relatively high,

i.e. �w0 = 25, which corresponds to an accumulated wealth of �ve annual incomes. As the role of labor

income is likely to be smaller as initial wealth is relatively larger and since the value of human capital

is lower for shorter investment horizons, we expect the latter case to resemble more closely the results

without labor income, especially for short investment horizons10 .

We consider the same asset menus as in the previous section. Recall that in the benchmark case

we consider, it has been assumed that real labor income risk is idiosyncratic and the factors equal

their unconditional expectation. In Section 6, we infer the robustness of these results to time-variation

in bond risk premia, the amount of labor income uncertainty, and �nally correlations between labor

income uncertainty and �nancial risks.

5.1 Optimal bond demand

In the presence of labor income, Tables 11 and 12 provides the optimal asset allocation between either

3Y and 10Y nominal bonds or between 10Y in�ation-linked and 10Y nominal bonds. In both cases, a

nominal money market account is available to the investor as well.

Insert Tables 11 and 12
10This can also be viewed upon as a robustness check of the numerical procedure that we propose.
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In order to understand the results, it is useful to recall the two main additional e¤ects when the

investor is endowed with labor income. First of all, the non-tradable position in labor income is a

mixture of a �xed position in in�ation-linked bonds and an idiosyncratic risk component. The former

component increases the real interest rate exposure of the investor, which tends to decrease the desire

for assets with a large real interest rate exposure, like in�ation-linked bonds and 3Y nominal bonds.

The second component induces an e¤ective increase in the risk aversion of the investor, which tilts the

optimal portfolio to either 3Y nominal or in�ation-linked bonds, as we have seen in Section 4.1. Hence,

the resulting e¤ect remains an empirical question. The second important e¤ect is that when labor

income uncertainty is correlated with traded assets. First of all, these �nancial assets may be used to

hedge unfavorable income changes, see, for instance, Viceira (2001) and Munk and Sorensen (2005).

Secondly, when labor income risk is correlated with �nancial risks that are priced, the (implicit) value

of human capital will be a¤ected.

In our baseline speci�cation, we assume that labor income uncertainty is idiosyncratic. In Section

6.2, we assess the e¤ect of the amount of idiosyncratic labor income risk, whereas Section 6.3 infers

the e¤ects of correlations between labor income innovations and either the real interest rate, expected

in�ation or equity risk.

Tables 11 and 12 show that the impact of labor income on the optimal nominal bond portfolio is

substantial. When initial wealth is low, see Table 11, which is especially the case for young individuals,

we �nd that the optimal portfolio is heavily tilted towards long-term nominal bonds. For instance,

a conservative investor with an investment horizon of twenty years invests 70% in 3Y nominal bonds

and 30% in 10Y nominal bonds. In the presence of labor income and low initial wealth, these �gures

change to 2% in 3Y nominal bonds and 98% in 10Y nominal bonds. Hence, the implied real interest

rate exposure is the dominant factor here. This triggers a demand for �nancial risks, other than the

real interest rate. As 10Y nominal bonds are characterized by a larger expected in�ation exposure and

a smaller real interest rate exposure, we �nd that the duration of the optimal nominal bond portfolio

is lengthened due to the presence of labor income. Interestingly, the decomposition of the optimal

portfolio in Table 11 illustrates that for aggressive investors, the shift in the optimal portfolio channels

largely via the myopic demand. For moderately risk averse and conservative investors, for who hedging

time-variation in expected in�ation is important, it turns out that the shift in the optimal portfolio

is driven to a large extent by hedging motives as well. In addition, remark that the additivity of the

portfolio components to the total portfolio is (almost) preserved in the presence of labor income.

When initial wealth is relatively high, see Table 12, which is mainly the case for older investors, we

�nd that the results are close to the case without labor income, especially for short investment horizons.

Next, we enrich the asset menu with 10Y in�ation-linked bonds. We then �nd a dramatic reduction

in the optimal fraction invested in in�ation-linked bonds when initial wealth is relatively low, see Table

11. The optimal portfolio allocates large fractions to long-term nominal bonds, contrasting the case

without labor income. For instance, a moderately risk averse investor with an investment horizon of 20

years invests half of its wealth in in�ation-linked bonds. Once we account for labor income, all wealth is

invested in long-term nominal bonds. In line with the portfolio problem without labor income, we �nd

that when the investment horizon increases, the optimal portfolio shifts from long-term in�ation-linked
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bonds to long-term nominal bonds. When initial wealth is high, see Table 12, the e¤ects are mainly

visible for an investor with a long investment horizon. This is a result of the fact that the human capital

of the investor is larger in this case. Again, we �nd that for aggressive investors, the optimal portfolio

changes channel via the myopic demand. For moderately risk averse and conservative investors, hedging

motives turn out to be important as well.

To assess the impact of labor income on the value added as measured in utility terms, Table 7

reports the utility gains of having access to in�ation-linked bonds. We �nd that the value added of

having access to real bonds is reduced by approximately 30-40% in comparison to the case where the

investor is not entitled to a labor income stream. For instance, the utility gains of a risk averse investor

with an investment horizon of 30 years are reduced from 7.68% to 4.34%. When we consider the case

where initial wealth is relatively high, we �nd that the reduction in utility gains is generally below

10% in order of magnitude. Hence, albeit that the introduction of labor income implies a substantial

reduction in the utility gains of having access to in�ation-linked bonds, the utility gains remain sizeable.

In sum, we �nd that properly accounting for labor income reduces the fraction invested in in�ation-

linked bonds and reduces the utility gains that the investor experiences from having access. This e¤ect

is most prominent for long-term conservative investors with relatively low initial wealth. When the

investor�s asset menu is con�ned to nominal bonds, we �nd that the duration of the optimal nominal

bond portfolio is lengthened as labor income is incorporated into the investment problem.

5.2 Optimal portfolio choice between stocks and bonds

We consider the asset menu that contains either equities and 10Y nominal bonds or equities and 10Y

in�ation-linked bonds. In both cases, a nominal money market account is available to the investor as

well. Tables 13 and 14 provides the optimal portfolios corresponding to these asset menus.

Insert Table 13 and 14

We �nd that the optimal portfolio is shifted almost fully towards equities when initial wealth is

low, see Table 13. This result has been established for equities and in�ation-linked bond by Munk and

Sorensen (2005). We extend their results to the case where the investor�s asset menu contains stocks

and long-term nominal bonds. In case of in�ation-linked bonds and equities, the investor is hardly

able to build up any exposure to the expected in�ation factor and we �nd the fraction invested in

stocks to be even larger than when the investor can select among equities and nominal bonds. When

we consider the decomposition of the optimal portfolio into the myopic demand and hedging demands

for time-variation in the real interest rate and expected in�ation, we �nd that the incorporation of

labor income implies that the myopic portfolio constitutes the largest part of the optimal portfolio.

This contrasts the investment problem without labor income, in which the total portfolio contains a

substantial hedging portfolio to o¤set unfavorable changes in expected in�ation. The introduction of

labor income tilts the myopic demand towards equities, thereby reducing the investor�s desire to hedge

time-variation in nominal bond risk premia. Interestingly, where the optimal portfolio contains a large

investment in cash when the investor has only access to equities and nominal bonds in absence of labor

income, once we account for labor income in the investment problem, this is no longer the case. Labor
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income provides a proper hedge against in�ation and real interest rate risk and hence the desire to

hedge in�ation risk is reduced, which translates into an increased demand for equities.

When initial wealth is relatively high, see Table 14, we �nd again that the optimal portfolios in

presence of labor income closely match the optimal portfolios in the absence of labor income.

Next, it is important to note that the earlier established result in absence of labor income, i.e. that the

ratio of long-term bonds to stocks is increasing in the investor�s risk aversion, remains valid, regardless

whether the long-term bonds are nominal or real. This implies that the popular recommendations by

investment advisors as summarized by Canner et al. (1997) are qualitatively robust to the introduction

of labor income. Quantitatively, the results can depend strongly on the amount of initial wealth and

labor income, as well as on the state of the economy, as illustrated in the next section. Hence, it is

hard, not to say impossible, to provide proper investment advice without additional knowledge of the

�nancial situation of the individual, like the amount of initial wealth, outside investments, and the

investment horizon.

The results can be summarized as follows. The inclusion of labor income in the asset allocation

problem tilts the optimal portfolio towards equities, reducing the amount invested in long-term bonds

and cash. Hence, the role of long-term bonds is substantially mitigated in the presence of labor income.

When initial wealth is high and labor income is a less prominent source of funding, the results are in

line with the results in absence of labor income.

6 Financial robustness

6.1 Time-variation in bond risk premia

Our model of the �nancial markets as presented in Section 2.1 di¤ers from the models of Campbell

and Viceira (2001) and Brennan and Xia (2002) by allowing for time-variation in bond risk premia.

Our model is dissimilar to the model of the �nancial market of Sangvinatsos and Wachter (2005) to

the extent that we identify the factors to be the real rate and expected in�ation, whereas Sangvinatsos

and Wachter (2005) use three latent factors as driving forces of the term structure of interest rates.

In modeling the prices of risk, we carry the separation between the nominal and the real side of the

economy through by allowing the price real interest rate risk to depend only on the real interest rate,

whereas the price of (pure) expected in�ation risk depends only on expected in�ation. Hence, it is

natural to ask what the impact is of time-variation in the prices of risk on the optimal demand for

long-term bonds and the impact on the value added of in�ation-linked bonds.

We consider two di¤erent cases. First of all, we impose that the current real interest rate is two (un-

conditional) standard deviations above its unconditional expectation. Next, we consider the case where

the current level of expected in�ation is two (unconditional) standard deviations above its unconditional

expectation. When the real interest rate and expected in�ation equal their unconditional expectations,

the risk premia on 3Y nominal, 10Y nominal, and 10Y real bonds equal 1.25%, 1.98%, and 0.97%, see

Table 2. When the real interest rate is two standard deviations above its unconditional expectation,

these risk premia change to 2.53%, 1.99%, and 3.01%. Since �1(1;1) is estimated to be negative, the

price of real interest rate risk is decreasing in the real interest rate, which translates into high bond

26



risk premia in periods of high real rates. At the same time, since �12 < 0, the in�ation risk premium

is decreasing in the real interest rate, which explains why the in�ation risk premium on 10Y nominal

bonds is low in this case. When expected in�ation is two standard deviations above its unconditional

expectation, the risk premia on these long-term bonds equal 3.10%, 7.86%, and 0.89%, respectively.

Increases in expected in�ation hardly change real bond risk premia, but do increase nominal bond risk

premia and hence the in�ation risk premium, since �1(2;2) is estimated to be negative.

Table 15 considers the portfolio implications of currently high real interest rates or expected in�ation

rates, both for an investor who is not endowed with labor income and for an investor who does receive

labor income and has low initial wealth. We con�ne ourselves to the case where initial wealth is low,

since the previous section has pointed out that the results for high levels of initial wealth closely resemble

the results without labor income. The asset menu considered contains 3Y nominal and 10Y nominal

bonds.

Insert Table 15

The optimal portfolio is tilted towards 3Y nominal bonds during periods of relatively high real

interest rates. This holds true for both the case with and without labor income and is most pronounced

for aggressive investors. This results from the fact that the real interest rate factor carries a lower

price of risk, whereas in this case the expected in�ation factor receives a higher price of risk. As 10Y

nominal bonds have a larger exposure to expected in�ation and a smaller exposure to the real interest

rate than 3Y nominal bonds, the investor shortens the duration of the optimal nominal bonds portfolio.

As in�ation-linked bonds are perfectly suited to build up real interest rate exposure without incurring

expected in�ation exposure, the utility gains of having access to in�ation-linked bonds increase as

compared to the benchmark case, which is depicted in Table 7. The e¤ects are most pronounced for

aggressive investors with relatively short investment horizons.

Next, we consider the situation of a �nancial market that is characterized by high expected in�ation

rates. This results in a rise of the in�ation risk premium, which makes 3Y nominal and 10Y in�ation-

linked bonds less attractive for myopic investors relative to long-term nominal bonds. The reason is that

both 10Y in�ation-linked bonds and 3Y nominal bonds have a larger real interest rate and a smaller

expected in�ation exposure than 10Y nominal bonds. This makes 10Y nominal bonds relatively more

attractive in this state of the �nancial market.

The implications for the value added of in�ation-linked bonds are depicted in Table 7. In line with

the results on the optimal portfolios, we �nd the value added on in�ation-linked bonds is lower in this

case. Interestingly, the e¤ects of the high real interest rate are most prominently visible for investors

with relatively short investment horizons. When the current expected in�ation is high, this has a

dramatic impact on the utility gains for all investment horizons, and especially for aggressive investors.

The di¤erence in horizon e¤ects follows from the fact that expected in�ation is far more persistent than

the real interest rate. Hence, a shock to expected in�ation has more important consequences for all

investment horizons than a shock to the real interest rate. Consider for instance a conservative investor

with an investment horizon of 20 years. The utility gains in the benchmark case when the investor is

entitled to labor income equal 3.03%. An increase in the real interest rate increases the utility gain to

3.12%. On the other hand, an increase in expected in�ation causes a drop in the utility gains to 1.89%.
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However, when we compare an investor who is endowed with a stream of labor income to an investor

who does not receive labor income during the investment period for the di¤erent values of the state

variables, the reduction in utility gains for a long-term investor remain substantial. For instance, a

conservative investor with an investment horizon of 20 years experiences a reduction in the utility gains

of having access to in�ation linked bonds from 5.12% to 3.12% in case of high real interest rates and

from 2.64% to 1.89% in periods with high expected in�ation rates. As such, our results are robust to

time-variation in bond risk premia.

6.2 The impact of labor income uncertainty

The benchmark speci�cation of the labor income that has been used postulates that labor income risk

is idiosyncratic, in line with Cocco et al. (2005). In this section, we assess the impact of a reduction

in the idiosyncratic real labor income uncertainty. It has been shown by, for instance, Letendre and

Smith (2001) that the impact of di¤erent degrees of idiosyncratic labor income risk tends to be minor.

Table 15 report the optimal portfolio allocations when we set labor income risk to zero, i.e. �� = 0.

As Viceira (2001) illustrates, an increase in idiosyncratic labor income risk induces an e¤ective

increase in the risk aversion of the investor. Hence, when we consider the case where real labor income

risk is absent, the investor tends to select a riskier portfolio. After all, labor income constitutes in this

case a portfolio of in�ation-linked bonds and the investor has thus a �xed position in an asset that is

riskless in real terms. Table 15 shows that the optimal portfolio indeed gradually shifts from 3Y nominal

to 10Y nominal bonds. However, the e¤ects are in almost all cases negligible, except for conservative

long-term investors. However, in line with previous research, we �nd that these e¤ects are rather weak.

This is con�rmed as well by the reduction in utility gains when the investor�s income is safer in real

terms, see Table 7. Only long-term conservative investors experience a further reduction in utility gains

in the order of magnitude of ten percent in comparison with an investor who is not endowed with labor

income. We conclude that our results are robust to perturbations of labor income uncertainty.

6.3 The impact of correlation between labor income risk and �nancial risks

Up to this point, we have assumed that labor income is always fully indexed with in�ation and that

innovations in labor income are uncorrelated with real interest rates, expected in�ation or equity risk.

As such, labor income constitutes a excellent hedge against in�ation. In this section, we are interested in

the e¤ects of correlations of labor income innovations with either the real interest rate, expected in�ation

or equity risk. As shown by Viceira (2001) for the case with correlation between equity returns and

labor income innovations and by Munk and Sorensen (2005) for correlations between equity returns, real

interest rates, and labor income innovations, such correlations trigger an additional hedging demand.

For instance, if labor income innovations are positively correlated with real interest rates, a long position

in in�ation-linked bonds can serve as a hedge against labor income uncertainty. After all, a negative

shock to the real interest rate is then accompanied by a decrease in labor income, but the hedging

portfolio provides a positive return on in�ation-linked bonds.

A second e¤ect that arises when there are correlations between labor income innovations and �nancial

risks is that the value of human capital changes. Albeit that the value of non-tradable labor income
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is investor speci�c, as shown by, for instance, Munk and Sorensen (2005), the implicit value is still

dependent on the correlation of labor income innovations with �nancial risks that are priced. Munk

and Sorensen (2005) show numerically that the implicit value of human capital is decreasing in the

correlation between labor income risk and equity risk. In our case, an increasing correlation between

labor income innovations and either real interest rate or expected in�ation is likely to increase the

implicit value of human capital if the factors equal their unconditional expectations. After all, the

corresponding prices of risk, �0(1) and �0(2), are estimated to be negative, see Table 1.

Hence, the results in this section will be driven by the interplay between the hedging potential of

the di¤erent assets and the implications of a di¤erent implicit value of human capital.

Correlations between labor income and �nancial risks are likely to depend on the industry, profes-

sion, and individual characteristics, like education level, age, and gender. Most empirical research has

been concentrated on the correlation between labor income risk and equity risk. Cocco et al. (2005)

estimate the correlation between permanent labor income shocks and stock correlations between -1%

and 2%. Heaton and Lucas (2000) report estimates between -7% and 14%. Munk and Sorensen (2005)

provide an estimate for this correlation 17%. Finally, Davis and Willen (2000) report estimates be-

tween -25% and 30% for the correlations between a broad equity index and labor income innovations.

Regarding the correlation between labor income risk and industry-speci�c equity risk, the correlation

ranges between -10% and 40%, depending on the individual�s education level, age, and gender. Munk

and Sorensen (2005) provide an estimate of the correlation between labor income innovations and real

interest rates of 26%.

As correlation estimates are likely to vary across di¤erent industries and among individuals with

di¤erent characteristics, we determine the optimal portfolios for a range of correlations. We consider a

conservative investor with an investment horizon of 10 years and low initial wealth. Table 11 indicates

that this investor optimally invests 22% in 3Y nominal bonds and 78% in 10Y nominal bonds when the

asset menu is restricted to nominal bonds in absence of any correlation. When in�ation-linked bonds

are added to the menu of assets, the investor allocates 30% to 10Y in�ation-linked bonds and 70% to

10Y nominal bonds. Concerning the stock-bond mix, the investor allocates 66% to stocks and 34% to

10Y nominal bonds, or 71% to stocks and 29% to 10Y in�ation-linked bonds, see Table 13.

We consider correlations that range between -60% and 60% for either the correlation with real

interest rates, expected in�ation, or equity risk. The results are presented in Figures 2 and 3.

The upper left graph in Figure 2 depicts the optimal portfolio choice between either 3Y and 10Y

nominal bonds or 10Y nominal and 10Y in�ation-linked bonds for di¤erent correlations between real

interest rates and labor income innovations. As noted before, an increase in the correlation between

labor income innovations and the real interest rate increases the implicit value of human capital. As

Section 5.1 shows, this causes a shift towards 10Y nominal bonds in both asset menus. On the other

hand, long positions in 3Y nominal and, in particular, 10Y in�ation-linked bonds provide a better hedge

against real interest rate risk the larger the correlation. This is clearly perceptible in case in�ation-

linked bonds are present in the asset menu. After all, in�ation-linked bonds have only exposure to

the real interest rate, which causes in�ation-linked bonds to be the prime instrument to hedge labor

income uncertainty. This is re�ected in the upper left graph of Figure 2. When the asset menu contains
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only nominal bonds, the optimal portfolio is tilted towards 10Y nominal bonds when the correlation

increases, albeit that the e¤ects are weak. Hence, the value e¤ect dominates in this case. When the

asset menu contains 10Y nominal and 10Y in�ation-linked bonds, the optimal portfolio gradually shifts

towards in�ation-linked bonds as the correlation increases. Thus, in this case the hedging e¤ect is

dominating.

The latter result suggests that the desire to increase the real interest rate exposure is larger, the

larger the correlation between labor income risk and real interest rates. This implies that the value

added of in�ation-linked bonds is increasing in the correlation between labor income and real interest

rate innovations, see the bottom left graph of Figure 2.

Next, in the upper right graph of Figure 2, we consider the e¤ect of correlation between labor income

and expected in�ation innovations. Up to now, labor income served as a excellent hedging instrument

against in�ation risk for long-term investors. However, it may very well be that for certain industries

labor income is not always fully indexed with in�ation, or with a di¤erent index. Therefore, we are

interested in the sensitivity of our results for di¤erent correlations between labor income innovations

and expected in�ation. The two right graphs of Figure 2 present the results for the optimal portfolios

and the value added of in�ation-linked bonds for correlations in a range from -60% to 60%.

As the price of expected in�ation risk is negative, the value of human capital is increasing with

the correlation between labor income and expected in�ation innovations. As mentioned before, this

triggers a shift towards long-term nominal bonds for both asset menus. Moreover, as 10Y nominal

bonds have a larger exposure to expected in�ation, this asset also forms the best hedge against labor

income risk. Hence, the value e¤ect and the hedging e¤ect work in the same direction in this case.

This results in the optimal asset allocation as depicted in the upper right graph of Figure 2. For

negative correlations, the optimal portfolio shifts towards 3Y nominal bonds in case of the nominal

asset menu. When in�ation-linked bonds are present in the asset menu, the optimal portfolio is tilted

towards real bonds. As correlations increase, we �nd that the investor wants to increase the exposure

to expected in�ation. Hence the optimal portfolio allocates a larger fraction of wealth to 10Y nominal

bonds. Comparing the two top graphs in Figure 2, we �nd that the e¤ects of correlation between labor

income and expected in�ation innovations has a larger impact than the e¤ect of correlation between

labor income and real interest rate innovations on the composition of the optimal portfolio. Finally,

the bottom right graph of Figure 2 depicts the value added of in�ation-linked bonds for di¤erent values

of the correlation between labor income and expected in�ation innovations. In this case, the value and

hedging e¤ect point into the same direction and we �nd that the value added on in�ation-linked bonds

is decreasing in the correlation between labor income and expected in�ation innovations.

Figure 3 considers e¤ect of correlations between labor income risk and equity risk on either the

stock-bond mix or the demand for long-term bonds. Since the equity risk premium is estimated to be

positive, the value e¤ect implies that the implicit value of labor income is decreasing in the correlation

between labor income risk and equity risk. Consider �rst of all the e¤ect on the stock-bond mix. A

lower value of human capital implies a shift towards long-term bonds, see Table 13. On the other hand,

in case of a positive correlation between labor income risk and equity risk, a short position in equities

can be used to hedge labor income risk. As such, the value and hedging e¤ect are aligned. We indeed

30



�nd that the optimal ratio of stocks to bonds is decreasing in the correlation between labor income risk

and equity risk, both for nominal and in�ation-linked bonds. It turns out that the optimal portfolio

is rather sensitive to this parameter. Secondly, we consider the e¤ect of correlations on the demand

for long-term bonds. The value e¤ect implies that the optimal portfolio is tilted towards 3Y nominal

bonds or 10Y in�ation-linked bonds, depending on the asset menu available to the investor. Table 3

indicates that all bond returns considered in the investor�s asset menu are weakly positively correlated

with equity risk. However, Figure 3 indicates that the correlations between labor income risk and equity

risk hardly have an e¤ect on the optimal demand for long-term bonds.

7 Conclusions

In this paper, we consider the impact of labor income on the optimal demand for long-term bonds.

The e¤ects of labor income on the investment problem are well-understood in simple �nancial markets

as is the demand for long-term bonds in more realistic �nancial markets when the investor does not

receive any form of income. However, their interplay is largely unexplored. Since labor income is

often indexed with in�ation, riskless labor income can be considered as a particular �xed investment

in in�ation-linked bonds. As such, it is likely that incorporation of labor income into the investment

problem has important consequences for the optimal portfolio composition, even when labor income is

not riskless in real terms. Apart from the optimal portfolio composition, accounting for labor income

during the investment period is also likely to alter the conclusions regarding the enormous utility gains

provided by having access to in�ation-linked bonds. After all, these conclusions have been reached in

models where the investor is not endowed with any form of income.

In the baseline case we consider, real labor income risk is fully idiosyncratic. We �nd indeed that

accounting for labor income in the investment problem reduces the prominent role of in�ation-linked

bonds considerably. The optimal portfolio is tilted towards long-term nominal bonds and the utility

gains of having access to in�ation-linked bonds decline by 30-40% when the investor�s initial wealth

is relatively low. However, the utility gains remain sizeable and in�ation-linked remain an important

asset class, especially for conservative long-term investors. When the investor�s asset menu contains

only nominal bonds, we �nd that the duration of the optimal nominal bond portfolio is lengthened due

to the incorporation of labor income into the investment problem.

Apart from the optimal allocation among nominal and in�ation-linked bonds, we consider as well

the optimal allocation to stocks and either nominal or in�ation-linked bonds. Accounting for labor

income during the investment period implies that the optimal portfolio is in many cases fully invested

in stocks, especially for investors who are not too risk averse. Importantly, we do �nd that the ratio

of long-term bonds to stocks is increasing in the investor�s risk aversion, which holds true for both

nominal and in�ation-linked bonds. This implies that we are, at least qualitatively, able to rationalize

the investment advises as summarized in Canner et al. (1997).

We perform several robustness checks to verify our results. First of all, our results have been reached

in a model which accommodates time-variation in bond risk premia. We �nd that the optimal portfolio

allocations as well as the utility gains of having access to in�ation-linked bonds are strongly a¤ected
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by di¤erent values of the current bond risk premia. However, the main conclusions that follow from

the comparison of the investment problem with and without labor income remain valid. Therefore,

we conclude that the results are robust to time-variation in bond risk premia. Secondly, we vary the

amount of idiosyncratic real labor income risk. This has hardly an e¤ect on the results and we thus report

that our results are robust to perturbations of idiosyncratic labor income risk. Thirdly, we introduce

correlations between labor income risk and either the real interest rate, expected in�ation or equity risk.

We �nd that the fraction invested in in�ation-linked bonds is positively related to correlation between

labor income risk and real interest rate risk. As a consequence, the value added of in�ation-linked bonds

is increasing in the correlation between labor income risk and real interest rate risk. However, the e¤ects

are quantitatively modest. This contrasts sharply the implications of introducing correlation between

labor income risk and expected in�ation risk. Modifying this correlation may erode or strengthen the

in�ation hedging potential of labor income. We �nd dramatic portfolio implications for small changes

in this correlation. As the correlation between labor income risk and expected in�ation is negative,

i.e. a deterioration of labor income risk as a hedge against in�ation, we �nd that the value added of

in�ation-linked bonds increases. On the other hand, a positive correlation between labor income risk

and expected in�ation, i.e. an improvement of labor income as a hedge against in�ation risk, leads to a

decrease in the value added of in�ation-linked bonds. However, for the correlations we have considered

(from -60% up to 60%), the value added of in�ation-linked bonds remains smaller than the utility gains

in the investment problem where labor income is absent. Hence, we conclude that the composition of

the optimal portfolio is sensitive to the correlation between labor income risk and expected in�ation

risk, but the value added of in�ation-linked bonds are in all cases reduced.

Concerning the correlation between labor income risk and equity risk, we �nd that the optimal ratio

of stocks to either nominal or in�ation-linked bonds is increasing in this correlation. Quantitatively,

the e¤ects are strong. Finally, we �nd that this correlation has hardly an e¤ect on the demand for

long-term bonds, when equities are not part of the investor�s asset menu.

The results in this paper have been derived by extending a recently developed simulation-based

approach by Brandt et al. (2005). We illustrate how to account for short-sale and borrowing constraints

in the investment problem. Apart from these extensions, we modify a particular approximation that has

been criticized in the recent literature. We show that our approximation overcomes the shortcomings

mentioned in DeTemple et al. (2003, 2005), delivers a simple optimization problem that can be solved

fast under constraints, and we provide evidence that the accurateness is improved in the same example

used in the original paper of Brandt et al. (2005). Apart from these extensions, we illustrate how the

method can be used to decompose the optimal portfolio into the myopic demand and hedging demands

induced by time-variation in the real rate and expected in�ation.

This paper can be extended along di¤erent lines. First of all, we abstract from predictability in stocks

returns as in Campbell and Viceira (1999) and Wachter (2002), despite the increasing evidence that

stock returns are to some extent predictable, see for instance Ang and Bekaert (2003), Campbell and

Yogo (2005), and Brennan and Xia (2005). This may provide a more conclusive answer on whether or not

�nance theory can rationalize popular investment advises and which variables are important to account

for in the optimal portfolio composition. Secondly, we abstract from parameter uncertainty within this
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model. It is well-known from, for instance, Barberis (2000) and Wachter and Warusawitharana (2005)

that accounting for parameter uncertainty may have a substantial in�uence on the optimal portfolio

allocation. Finally, we abstract in this paper from intermediate consumption. If these results are to be

used within a life-cycle perspective, endogenous savings and consumption decisions become relevant.

This may be an important step towards a life-cycle model that incorporates both �exible portfolio

constraints, labor income, and a realistic model for the �nancial market.
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A Pricing nominal and in�ation-linked bonds

We derive the nominal prices of both nominal and in�ation-linked bonds in the �nancial market de-

scribed in Section 2.1, following the results on a¢ ne term structure models in, for instance, Du¢ e and

Kan (1996) and Sangvinatsos and Wachter (2005).

To that extent, we assume that both nominal and in�ation-linked bond prices are smooth functions

of time and the term structure factors X. Denote the price of a nominal bond at time t that matures

at time T by P (Xt; t; T ). Since nominal bonds are traded assets, we must have that �
$
tP (Xt; t; T ) is a

martingale, where �$ is given in (10). This implies

�PXKXX + Pt +
1

2
tr
�
�>XPXX�X

�
�RP � P |X�X� = 0, (A.1)

where the subscripts of P denote partial derivatives with respect to the di¤erent arguments. Subse-

quently, Du¢ e and Kan (1996) have shown that in this case, when the di¤usion of the state variables

under the risk neutral measure is a¢ ne in the state variables and the instantaneous nominal short rate

is a¢ ne in the state variables, we obtain nominal bond prices that are exponentially a¢ ne in the state

variables, i.e.,

P (X; t; t+ �) = exp
�
A(�) +B(�)>X

�
: (A.2)

Substituting this expression in (A.1) and matching the coe¢ cients on the constant and the state

variables X, we obtain the following set of ordinary di¤erential equations

A0(�) = �B(�)>�X�0 +
1

2
B(�)>�X�

>
XB(�)� �R; (A.3)

B0(�) = �
�
K>
X + �

|
1�

|
X

�
B(�)� (�2 � �|��1) ; (A.4)

where �2 denotes a two dimensional vector of ones. We also have the boundary conditions

A(0) = 0; B(0) = 0. (A.5)

The ODEs can be solved in closed form, see for instance Dai and Singleton (2002). This leads to

B(�) =
�
K>
X + �

|
1�

|
X

��1 �
exp

�
�
�
K>
X + �

|
1�

|
X

�
�
�
� I2�2

�
(�2 � �|��1) ; (A.6)

A(�) =

Z �

0

A0(s)ds; (A.7)

where I2�2 denotes the two by two identity matrix.

For in�ation-linked bonds, the derivation is slightly more involved. In this case, the nominal price

of a real bond is denoted by the product �tPR(X; t; T ). The martingale property of �
$
t�tP

R(Xt; t; T )

leads to

�PRXKXX + PRt +
1

2
tr
�
�>XP

R
XX�X

�
� (R� � + �|��)P

R + PR|X �X (�� � �) = 0; (A.8)

Since we postulate that the instantaneous expected in�ation is a¢ ne in the state variables, the

price process corresponding to holding a real bond is also a¢ ne under the risk-neutral measure and we

conjecture

PR(X; t; t+ �) = exp
�
AR(�) +BR(�)>X

�
; (A.9)
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implying that (A.8) boils down to

�BR(�)>KXX�A0R(�)�B0R(�)>X+
1

2
BR(�)>�X�

>
XB

R(�)�r+BR(�)|�X (�� � �) = 0: (A.10)

We again match the coe¢ cients on the constant and the state variables X, which leads to the following

set of ordinary di¤erential equations

A0R(�) =
1

2
BR(�)>�X�

>
XB

R(�)� (�R � �� + �|��0) +
�
BR(�)>�X

�
(�� � �0) ; (A.11)

B0R(�) = �
�
K>
X + �

|
1�

|
X

�
BR(�)� e1;

where ei denotes the i-th unit vector. Again we can �nd easily an expression for BR(�), i.e.,

BR(�) =
�
K>
X + �

>
1 �

|
X

��1 �
exp

�
�
�
K>
X + �

|
1�

|
X

�
�
�
� I2�2

�
e1: (A.12)

B Continuous time optimal portfolio choice

We �rst of all summarize the result of Sangvinatsos andWachter (2005) concerning the optimal portfolio.

Next, we address the decomposition proposed in (20). Sangvinatsos and Wachter (2005) show for any

a¢ ne strategy11

xt(�0; �1; Xt) = �0(�) + �1(�)Xt;

where � indicates the investor�s investment horizon. The expected utility of following this strategy is

exponentially quadratic in the state variables, i.e.

V1 (wt; Xt; t; T ) = Et

 
(wT )

1�

1� 

!
(B.1)

=
(wt)
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1�  exp

��
1

2
X>
t �3(�)Xt + �

>
2 (�)Xt + �1(�)

��
=

(wt)
1�

1�  F (X; t; T );

with wt = Wt=�t denotes real wealth and � = T � t. The parameters �2 and �3 satisfy12 the system
of di¤erential equations, where we omit the argument � for notational convenience

�03 =
�
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�
(B.2)
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1

2
�X�

>
X

�
�3 + �

>
3

�
�KX
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1

2
(1� ) (�|0�� �

|
�) �
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�
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|
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>
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>�1
�
� (1� )�|0��|�1 � (1� )2�

|
��

>�1:

In addition, we have the boundary equations

�3(0) = 0; �2(0) = 0: (B.3)

11We con�ne ourselves to a¢ ne strategies since Sangvinatsos and Wachter (2005) have shown that the optimal strategy

belongs to this class of portfolio strategies.
12The expression for �1 is not required for the optimal portfolio and hence we omit it. We refer those interested in the

value function to Sangvinatsos and Wachter (2005).
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In order to derive the optimal portfolio, we solve the Hamilton-Jacobi-Bellman (HJB) equation for

this problem. Therefore, we need the dynamics of real wealth, which follows using Ito�s lemma applied

to (19), i.e.

dwt
wt

=
�
(rt + xt(�0; �1; Xt)

|� (�t � ��) + �>���
�
dt+ (xt(�0; �1; Xt)

|�� �|�) dZt: (B.4)

The HJB equation reads subsequently as

0 = max
x

2664
Vt + wVw

�
(r + x|� (�� ��) + �>���

�
+

1
2w

2Vww
�
x|�� �>�

� �
x|�� �>�

�| � V |XKX +
1
2 tr (VXX�X�

|
X)

+w
�
x|�� �>�

�
�|XVwX

3775 ; (B.5)

where the subscripts of V denote partial derivatives with respect to the di¤erent arguments. Conse-

quently, the optimal portfolio should satisfy the �rst order condition

wVw� (�� ��) + w2Vww��|x� � w2Vww��� + w��|XVwX = 0: (B.6)

This results in the following expression for the optimal portfolio

x�t = � Vw
wVww

(��|)�1 � (�t � ��) + (��|)�1 ��� � (��|)�1 ��|X
VwX
wVww

(B.7)
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3

�
; (B.9)

where �2 and �3 solve (B.2). This summarizes the results derived in Sangvinatsos and Wachter (2005).

However, due to the fact that we interpret the factors to be the real interest rate and expected in�ation,

we can conveniently decompose the optimal portfolio, i.e.

x�t = 1
 (��

|)�1 ��t +
�
1� 1
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(��|)�1 ��� +

1
 (��
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(��|)�1 ���

+ 1
 (��

|)�1 ��1
�
Fr
F

�
+ 1

 (��
|)�1 ��2

�
F�
F

�
:

(B.10)

C Hedging demands in discrete time

In the unconstrained and continuous time investment problem, it is possible to disentangle the myopic

demand and hedging demands induced by time-variation in either the real interest rate and expected

in�ation, see the results of Sangvinatsos and Wachter (2005) and in particular (20). This appendix

proposes an extension of this concept to a discrete time setting, possibly in the presence of labor

income.

First, consider the investment problem in absence of labor income, i.e. (28). In this case, the

myopic demand is generally de�ned as the solution to a single period investment problem. As shown by
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Samuelson (1969), the myopic demand is also the optimal portfolio strategy in a multi-period investment

problem as long as interest rates are constant and asset returns are i.i.d. This implies that the myopic

demand equals the multi-period demand in a world where state variables are, each period, reset to their

initial values. More precisely, using the fact that our state variables follow a Markov process, this world

uses the one-period transition density p(Xt+1 j Xt = x0) instead of p(Xt+1 j Xt = xt). The myopic

demand can be derived, therefore, also by simulating the state variables for a single period, determining

the asset returns and subsequently resetting the state variables to their initial values. Remark that

it is not possible to assume that the factors remain constant, as this implies that bond returns are

deterministic. This market induces i.i.d. asset returns, which implies that the optimal strategy in the

multi-period problem and the single period problem coincide.

Given the myopic demand, the total hedging demand is de�ned as the di¤erence between the optimal

multi-period demand and the myopic demand. In order to decompose the total hedging demand into a

hedging demand caused by time-variation in either the real rate or expected in�ation, we recall given

the structure of the �nancial market model in Section 2.1"
X1;t+1

X2;t+1

#
=

"
exp(�1) 0

0 exp(�2)

#"
X1t

X2t

#
+

"
"1;t+1

"2;t+1

#
:

As a consequence, we have, with i = 1; 2,

L(Xi;t+1 j Ft) = L(Xi;t+1 j Xit),

where Ft denotes the natural �ltration generated by ("t)t�0. Next, in order to assess the impact on
portfolio choice of time-variation in the real rate, X1, alone, we follow the ideas above. More precisely,

reset only X2 to its initial value in each period. This implies that asset returns, conditional on X1,

become i.i.d. Moreover, the term structure of expected in�ation rates, de�ned as Et(�t+�=�t) for � � 0,
is time-invariant. The di¤erence between the solution to this multi-period problem and the single period

problem will be called the hedging demand induced by time-variation in the real interest rate. Along

similar lines, we can reset X2 to its initial value. This implies that asset returns, conditional on X2,

become i.i.d. In that case, the real term structure becomes time-invariant. We refer to the hedging

demand arising in this investment problem as the hedging demand induced by time-variation in expected

in�ation.

Decompositions of the total portfolio into myopic and hedging demands have generally two short-

comings. First of all, they account only for single period correlation between the real interest rate and

expected in�ation. If multi-period correlations between real interest rates and expected in�ation rates

have strong implications for the hedging demands, the two components of the hedging demand will not

sum to the total hedging demand. Secondly, as we consider constrained portfolio problems, short-sale

and borrowing constraints may hamper additivity of the di¤erent components of the hedging portfolio

to sum to the total hedging portfolio. However, in our applications it turns out that these shortcomings

hardly constitute a problem from an empirical perspective.

Next, we consider the investment problem in the presence of labor income, i.e. (32). In this invest-

ment problem, the conventional de�nition of hedging demands, namely the optimal strategy that solves

the single period problem, cannot be used. After all, an investor with multiple periods ahead has a

di¤erent entitlement to labor income than an individual that faces a single period investment problem.
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However, in absence of labor income, resetting the state variables results in the same optimal portfolio,

independent of the investment horizon, as the single period (myopic) portfolio. Therefore, we extend

the concept to the case with labor income and reset the state variables after a single period simulation

in order to determine the myopic demand in the presence of labor income. This enables a decompo-

sition of the optimal portfolio choice into the myopic and total hedging demand. As before, the total

hedging demand can be decomposed into a hedging demand induced by time-variation in the real rate

and time-variation in expected in�ation rates. It is noteworthy that our empirical results indicate that

the di¤erence between the total demand and the sum of the myopic demand and the di¤erent hedge

demands as constructed, as discussed before, is negligible.

D Estimation procedure

Our estimation procedure in closely related to Sangvinatsos and Wachter (2005). The main di¤er-

ence is that we allow all yields to be measured with error, following De Jong (2000), Brennan and

Xia (2002), and Campbell and Viceira (2001). However, we assume that the measurement errors are

independent, both sequentionally and cross-sectionally. The continuous time equations underlying the

�nancial market in Section 2.1 can be written as

d

2664
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logSt
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2664
�X
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3775 dZt
= (�0 +�1Yt) dt+�Y dZt: (D.1)

with

Yt =

2664
Xt

log �t

logSt

3775 : (D.2)

As Yt follow a standard multivariate multivariate Ornstein-Uhlenbeck process, we may write the exact

discretization (see, e.g., Bergstrom (1984) and Sangvinatsos and Wachter (2005))

Yt+h = �
(h) + �(h)Yt + "t+h; (D.3)

where "t+h
i:i:d:� N

�
04�1;�

(h)
�
for appropriate �(h), �(h), and �(h) which we derive below. To derive the

discrete time parameters, we consider the eigenvalue decomposition13 �1 = UDU�1. The parameters

in the VAR(1) - model relate to the structural parameters via

�(h) = exp (�1h) = U exp (Dh)U
�1; (D.4)

�(h) =

"Z t+h

t

exp (�1 [t+ h� s]) ds
#
�0

= UFU�1�0;

13Note that, since KX is a diagonal matrix, the eigenvalues of �1 are given by �1, �2, and 0 (with multiplicity two).

Recall that a square matrix is diagonalizable if and only if the dimension of the eigenspace of every eigenvalue equals the

multiplicity of the eigenvalue. This condition is satis�ed for �1.
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where F is a diagonal matrix with elements Fii = h� (Diih), with

�(x) =
exp(x)� 1

x
;

and �(0) = 1. The derivation of �(h) is a bit more involved. We have

�(h) =

Z t+h

t

exp (�1 [t+ h� s]) �Y �>Y exp (�1 [t+ h� s]) ds (D.5)

= UV U>;

where V is a matrix with elements

Vij =

"Z t+h

t

exp (D [t+ h� s])U�1�Y �>Y
�
U�1

�>
exp (D [t+ h� s]) ds

#
ij

(D.6)

=
h
U�1�Y �

>
Y

�
U�1
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ij

Z t+h

t

exp ([Dii +Djj ] [t+ h� s]) ds

=
h
U�1�Y �

>
Y

�
U�1

�>i
ij
h� ([Dii +Djj ]h) :

Using data on six yields, stock returns, and in�ation, we estimate the model using the Kalman �lter.

The transition equation is given by (D.3). We assume that all yields are measured with measurement

error, in line with De Jong (2000), Brennan and Xia (2002), and Campbell and Viceira (2001). On

the other hand, Du¤ee (2002) and Sangvinatsos and Wachter (2005) select certain maturities and �t

these exactly, which is tantamount to identifying the factors. In line with all these papers14 , we assume

the measurement to be Gaussian and independent of the innovations in the transition equation. The

likelihood can subsequently be constructed using the error-prediction decomposition, see for instance

Harvey (1989).

E Simulation-based portfolio choice

We extend the simulation-based approach to portfolio choice as it has been introduced by Brandt et

al. (2005) along two lines. First of all, we incorporate short-sale and borrowing constraints. Secondly,

we show how to account for the income stream. Apart from both extensions, we address the criticism

raised by DeTemple et al. (2003, 2005).

Consider �rst of all an investor whose portfolio choice is subject to short-sale and borrowing con-

straints. We abstract initially from labor income. The problem is then given by

V2(t; T;Xt; wt) = max
(xs)

T�1
s=t 2K

Et
�

1

1�  (wT )
1�
�
; (E.1)

with wt indicating real wealth, subject to

wt+1 = wt

�
x>t r

e
t+1 + r

f
t+1

�
; (E.2)

14De Jong (2000) is a notable exception to the extent that he allows for cross-sectional correlation between the mea-

surement errors.

42



with

K = fx j x � 0; x>� � 1g. (E.3)

The principle of dynamic programming is used to determine the optimal portfolio strategy. Starting

at time T � 1, we �rst solve

max
x2K

ET�1
�

1

1� 

�
x>reT + r

f
T

�1��
; (E.4)

where the homogeneity of the power utility index is exploited. The main complication is that this

conditional expectation cannot be calculated analytically. In line with Brandt et al. (2005) and Longsta¤

and Schwartz (2001), we approximate the conditional expectation via a projection on a set of basis

functions in the state variables, i.e.

ET�1
�

1

1� 

�
x>reT + r

f
T

�1��
' �(x)>f (XT�1) ; (E.5)

where �(x) denote the projection coe¢ cients, which are functions of the portfolio choice, x. In order to

estimate the projection coe¢ cients, �(x), we simulateM paths of both state variables and asset returns

on the basis of the discretized model. We indicate the paths by (!1; :::; !M ). Next, the projection

coe¢ cients are estimated via a cross-sectional regression across all paths, which results in the following

estimator

�̂(x) =

 
MX
i=1

f (XT�1(!i)) f (XT�1(!i))
>
!�1 

1

1� 

MX
i=1

f (XT�1(!i))
�
x>reT (!i) + r

f
T (!i)

�1�!
;

(E.6)

where f (XT�1(!i)) is a column vector containing the values of the basis functions, evaluated at the

state variables in branch !i. Regarding the choice of the basis functions, details are provided at the

end of this section.

Next, we determine the optimal portfolio in every branch !i

x�T�1(!i) = argmax
x2K

�̂(x)>f (XT�1(!i)) ; (E.7)

i = 1; :::;M . It is important to note that when we determine the optimal portfolio choice in a certain

branch, say !i, then for every function evaluation for a di¤erent choice of x, the projection coe¢ cients

need to be recalculated, which requires a cross-sectional regression. As M is typically large, this

procedure turns out to be extremely time-consuming.

To accelerate the latter step, Brandt et al. (2005) suggest to determine a fourth order expansion of

the utility index and solve the optimal portfolio from this expansion. Solving this fourth order expansion

is done using an iterative procedure that is initiated in the solution to the second order expansion15 .

The solution based on a second order expansion can be determined in closed-form. The main advantage

of this approximation is that the optimization can be done simultaneously over all paths, which makes

15More precisely, Brandt et al. (2005) propose to approximate
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:
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the problem computationally feasible. As remarked and illustrated in DeTemple et al. (2003, 2005),

this recursion is not guaranteed to converge. We propose an alternative approximation that has three

advantages. First of all, we avoid the iterative procedure. Secondly, the resulting optimization problem

has a quadratic form, which can therefore be solved fast, even under constraints. Thirdly, we assess the

accuracy of our approximation in an example proposed by Brandt et al. (2005) . It turns out that our

approximation is in all cases at least as accurate as the approximation of Brandt et al. (2005), while

more accurate for low rebalancing frequencies.

We propose to approximate the projection coe¢ cients in (E.5) in terms of the portfolio choice, x.

We project the projection coe¢ cients on a second set of basis function in the portfolio weights, i.e.

�(x) = 	>h(x); (E.8)

where h(�) represents a set of basis functions in the portfolio choices. In applying this approximation,
the �rst step is to take a set of N1 test portfolios, x(1); ::; x(N1), and determine the projection coef-

�cients, �̂
�
x(1)

�
; ::; �̂

�
x(N1)

�
. Next, we estimate the projection coe¢ cients 	 using OLS. The basis

functions have been chosen to be complete polynomials up to the second order, see Judd (1998) for

further details. The main advantage is that this results in a quadratic optimization problem, which

can be solved easily under constraints. However, when the risk aversion becomes extremely high, like

 > 10, this approximation may require a larger number of basis functions. We solve this problem

by considering in these cases a local rather than a global approximation. This means that we use the

test portfolios x(1); :::; x(N1) and determine the value function for these portfolios. Subsequently, we

select the k portfolios that maximize the expected utility, with k < N1, and estimate the parameter-

ization for these projection coe¢ cients. The intuition is that the curvature is globally too high to be

properly approximated by a small number of basis functions. Locally, on the other hand, a quadratic

approximation turns out to be su¢ cient.

In order to assess the accuracy of our approximation, we use exactly the same example as provided

in Brandt et al. (2005), Table 1. We consider a single period problem in which asset returns are log-

normally distributed and the investor allocates wealth between stocks and a money market account,

which earns a �xed rate of interest. Table D.1 summarizes the results for di¤erent investment horizons

and thus trading frequencies. The problem is solved exactly using grid search and approximately using

the second and fourth order approximation of Brandt et al. (2005), as well as our global and local

Then the �rst order condition reads as

x = �
h
u00 (c)Et
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f
t
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375 ;

which is used in an iterative procedure. The starting point originates from the second order approximation

x(1) = �
h
u00 (c)Et

��
Rt+1 +R

f
t

�
R>t+1

�i�1 h
u0 (c)Et

�
Rt+1 +R

f
t

�i
:

As pointed out by DeTemple et al. (2003, 2005), this scheme is not guaranteed to converge.
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approximation.

Exact 2nd order 4th order Global approximation Local approximation

Monthly

 = 5 0.7567 0.7310 0.7591 0.7506 0.7512

 = 10 0.3777 0.3655 0.3797 0.3756 0.3756

 = 20 0.1888 0.1828 0.1898 0.2055 0.1880

Quarterly

 = 5 0.7439 0.6623 0.7299 0.7292 0.7307

 = 10 0.3725 0.3312 0.3662 0.3656 0.3655

 = 20 0.1849 0.1656 0.1833 0.2336 0.1833

Semi-annually

 = 5 0.8051 0.6456 0.7571 0.7879 0.7937

 = 10 0.4037 0.3228 0.3842 0.3964 0.3969

 = 20 0.2018 0.1614 0.1933 0.2679 0.1999

Annually

 = 5 1.1273 0.7113 0.8731 1.0514 1.1199

 = 10 0.5737 0.3557 0.4561 0.5639 0.5627

 = 20 0.2848 0.1778 0.2332 0.3107 0.2820

Table D.1: Comparison of four di¤erent solution approximations to the exact solution. The problem considered is a

single period investment problem in which wealth is allocated to stocks and a money market account which earns a

�xed rate of interest of six percent. Stock returns are i.i.d. distributed according to the means and volatilities that

are mentioned in Brandt et al. (2005). The �rst column provides the exact solution, which is determined using grid

search methods. The second and third columns present the results based on the second and fourth order approximations

proposed in Brandt et al. (2005). The fourth column present our global approximation method, using parameterized

regression coe¢ cients. The �fth column presents the results for the local approximation, using parameterized regression

coe¢ cients. The approximations are determined for di¤erent investment horizons (monthly, quarterly, semi-annually, and

annually) and risk preferences ().

The numbers reported for the �rst three columns are close to the results reported in Brandt et

al. (2005). Their fourth order approximation works well for monthly and quarterly rebalancing frequen-

cies. However, on a semi-annual and in particular on an annual investment horizon, their approximation

tends to be inaccurate, especially for modest levels of risk aversion. Our approximation tends to per-

form properly in all cases, and especially the local approximation is in all cases within one percent of

the exact solution. In terms of calculation time, the time required to solve the problem for 100 batches

of 10,000 simulations, is approximately one hour for an investment horizon of 20 years for our approx-

imation16 . In absence of labor income, the calculation time is approximately ten minutes. However,

the approach is ideally suited for parallel computing and the computation time is therefore less of a

problem. In terms of accuracy, there are several ways to enhance the results. We have experimented

with both antithetic variables and control variates in a regression model. Especially the latter variance

reduction technique turns out to be useful as we can easily calculate moments of asset returns and state

variables analytically.
16The computer used is equipped with a 3.06MHz processor and 512MB of RAM.
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Hence, we use this modi�ed approximation to approximate the conditional expectations. In that

case, the optimization in every branch reduces to

x�T�1(!i) = argmax
x2K

h(x)>	̂f (XT�1(!i)) ; (E.9)

i = 1; :::;M , which is quadratic when we con�ne ourselves to complete polynomials of the second order.

Once the optimal portfolio at time T �1 has been determined, we proceed backwards. Since we have
determined the optimal portfolio in every branch at time T � 1, the portfolio problem at time T � 2
reduces to a single period problem, and the same comments apply. Repeating these steps up to time t

provides the optimal portfolio strategy. As a by-product, we can estimate the expected utility via

1

M

MX
i=1

�
1

1�  (w
�
T (!i))

1�
�
; (E.10)

where w�T (!i) has been determined using the optimal portfolio strategy. In sum, the four approxima-

tions applied here are respectively replacing conditional expectations by a projection on a �nite set of

basis functions, estimating the projection coe¢ cients via cross-sectional regressions, parameterizing the

projection coe¢ cients in the portfolio weights, and �nally estimating this parameterization using test

portfolios. The test portfolios can be chosen on a course grid of the set of feasible portfolio choices. We

selected portfolios on a grid with step sizes of 10%. Any further re�nement of this grid does not alter

the results for the reported precision.

So far we restricted attention to the case without an income stream. A similar approach can be

used when the investor is entitled to labor income. The problem then reads as

V3(t; T;Xt; wt; Yt) = max
(xs)

T�1
s=t 2K

Et
�

1

1�  (wT )
1�
�
; (E.11)

subject to

wt+1 = wt

�
x>t r

e
t+1 + r

f
t+1

�
+ Yt+1; (E.12)

with K as in (E.3).
Starting again at time T �1 and exploiting the homogeneity of the power utility index, the problem

simpli�es to

max
x
ET�1

�
1

1�  ( �wT )
1�

exp(g + �T )
1�
�

(E.13)

= max
x
ET�1

�
1

1� 

�
�wT�1

�
x>reT + r

f
T

�
exp(�g � �T ) + 1

�1�
exp(g + �T )

1�
�
;

with �wt = wt=Yt.

The second equation illustrates the main problem once we account for the labor income stream. At

time T � 1, �wT�1 depends on the portfolio decisions that have been made before. As a consequence,
this state variable cannot be simulated. As suggested in Brandt et al. (2005), we construct a grid

for real normalized wealth, where the grid points are indicated by �w
(1)
T�1; :::; �w

(N2)
T�1

17 . Subsequently,

17The grid points have been selected time-dependently to ensure that the grid is more dispersed as the investment

horizon increases. The grid points have been selected as the quantiles of simulated wealth under risky portfolios, so for

instance 100% stocks.
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the same procedure applies as in the case without labor income. The sole complication that arises

is that when we solve for the optimal portfolio at a certain grid point of normalized real wealth, say

�w
(j)
t , then the value of normalized real wealth in consecutive time periods will probably not lie on the

grid. In life-cycle models, it is common practice to interpolate the value functions at these points,

see for instance Campbell and Cocco (2003), Cocco et al. (2005), and Woolley (2004). As remarked

by Cochrane (1989), the utility cost of suboptimal strategies have only a second order e¤ect on the

indirect utility function. Therefore, we choose to interpolate the optimal portfolio strategy rather than

the indirect utility function, in line with the suggestion in Brandt et al. (2005). We interpolate the

optimal policy using polynomials in inverse wealth, thereby ensuring that the optimal portfolio becomes

independent of wealth as wealth tends to in�nity.

Regarding the basis functions in the state variables, we use second-order polynomials, including

cross-terms. For parameterizing the projection coe¢ cients in the portfolio weights, second-order com-

plete polynomials have been used, see for instance Judd (1998).
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F Tables and �gures

Parameter Estimate (Standard error)

Expected in�ation: �t = �� +X2t

�� 3.65% (1.30%)

Nominal interest rate: Rt = �R + (�
|
2 � �

|
��1)Xt

�R 5.43% (1.36%)

Process real interest rate and expected in�ation: dXt = �KXtdt+�XdZt

�1 1.2271 (0.2023)

�2 0.1564 (0.0679)

�1 2.00% (0.08%)

�12 -0.19% (0.04%)

�2 1.26% (0.04%)

Realized in�ation process: d�t=�t = �tdt+ �
|
�dZt

��(1) 0.16% (0.05%)

��(2) 0.16% (0.05%)

��(3) 1.08% (0.03%)

Stock return process: dSt=St = (Rt + �S)dt+ �
|
SdZt

�S 5.36% (2.63%)

�S(1) -1.57% (0.58%)

�S(2) -2.73% (0.70%)

�S(3) -1.71% (0.67%)

�S(4) 14.89% (0.32%)

Prices of risk: �t = �0 + �1Xt

�0(1) -0.3445 (0.1118)

�0(2) -0.1687 (0.0345)

�1(1;1) -28.3879 (11.1977)

�1(2;2) -11.2458 (5.3363)

Standard errors of yield measurement error: �u1 ; :::; �u6
�u1 0.46% (0.02%)

�u2 0.22% (0.01%)

�u3 0.05% (0.01%)

�u4 0.11% (0.00%)

�u5 0.03% (0.02%)

�u6 0.19% (0.01%)

Table 1: Estimation results for the �nancial market in Section 2.1 The two factor model described in

Section 2.1 is estimated using monthly data on 6 bond yields, in�ation, and stock returns over the period from

January 1959 up to May 2002. The standard errors are determined using the outer product gradient estimator.
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Maturity Estimate Maturity Estimate

Risk premium nominal bonds: B(�)|�X�0 Risk premium real bonds:
�
BR(�)|�X + �

>
�

�
�0

1Y 0.64% 1Y 0.42%

3Y 1.25% 3Y 0.82%

10Y 1.98% 10Y 0.97%

Volatility nominal bonds:
p
B(�)|�X�

|
XB(�) Volatility real bonds:

q�
BR(�)|�X + �>�

� �
BR(�)|�X + �>�

�>
1Y 1.76% 1Y 1.70%

3Y 4.11% 3Y 2.70%

10Y 11.71% 10Y 3.08%

In�ation risk premium:
�
B(�)|�X �BR(�)|�X � �>�

�
�0

1Y 22bp

3Y 43bp

10Y 101bp

Table 2: Risk premia and volatilities Implied risk premia on both nominal and real bonds using the

estimation results in Table 1 when the factors equal their unconditional expectation. In addition, we provide

the corresponding volatilities of bond returns and the in�ation risk premium for these maturities. The in�ation

risk premium has been de�ned as the di¤erence between the risk premia on nominal and real bonds with a

particular maturity.
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Panel A

Stocks N1Y N3Y N10Y R1Y R3Y R10Y

Stocks 1.0000

N1Y 0.1988 1.0000

N3Y 0.2052 0.9470 1.0000

N10Y 0.1785 0.7107 0.8991 1.0000

R1Y -0.0087 0.4743 0.2527 -0.0929 1.0000

R3Y 0.0384 0.6017 0.3478 -0.0584 0.9616 1.0000

R10Y 0.0475 0.6217 0.3637 -0.0509 0.9450 0.9985 1.0000

Panel B

Stocks N3Y N10Y R10Y

�3-R -0.1475 -0.6872 -0.2909 -0.8892

�10-R -0.1643 -0.8458 -0.9950 0.1310

�R10-R -0.1023 -0.4534 -0.0080 -0.9404

Table 3: Correlations between asset returns and risk premia Panel A reports the implied instanta-

neous correlations between stock returns and returns on both nominal and real bond returns with maturities

1Y, 3Y, and 10Y on the basis of the parameter estimates that have been reported in Table 1. The abbre-

viation N�Y refers to a nominal bond with � years to maturity. Similarly, R�Y refers to a real bond with

� years to maturity. Panel B provides the implied instantaneous correlation between the risk premia on 3Y

nominal bonds, (�3 � R), 10Y nominal bonds, (�10 � R), and 10Y real bonds, (�R10 � R) and the traded as-
sets. For instance, the correlation between stocks and the risk premium on �Y nominal bonds is given by

B(�)|�X�1�X�S
hp

B(�)|�X�1�X�
|
X�

|
1�

|
XB(�)

p
�|S�S

i�1
.

Stock returns In�ation N3M N1Y N5Y N10Y

Average

Data 0.83% 0.35% 5.93% 6.38% 6.97% 7.17%

Model 0.80% 0.30% 5.53% 5.77% 6.38% 6.58%

Volatility

Data 4.41% 0.33% 2.69% 2.70% 2.49% 2.44%

Model 4.42% 0.38% 2.46% 2.36% 2.19% 2.11%

Table 4: Comparison of sample moments with model implied moments Comparison of the means

and volatilities of stock returns, in�ation, and nominal yields with maturities 3M, 1Y, 5Y, and 10Y that follow

from the data and the model, where the parameter estimates used are reported in Table 1. The abbreviation

N�Y refers to a nominal bond with � years to maturity. N3M refers to a nominal bond with three months to

maturity.
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