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Abstract

The riskless nature in real terms of inflation-linked bonds has led to the conclusion that inflation-linked
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real bonds. As such, the optimal investment in inflation-linked bonds is substantially reduced. By extending
recently developed simulation-based techniques, we are able to determine the optimal portfolio choice among
inflation-linked bonds, nominal bonds, and stocks for investors endowed with an indexed stream of income. We
find that the fraction invested in inflation-linked bonds is much smaller than reported in the literature, the
duration of the optimal nominal bond portfolio is lengthened, and the utility gains of having access to inflation-
linked bonds are substantially reduced. We investigate as well the robustness of our results to time-variation
in bond risk premia, the riskiness of labor income, and correlation between labor income risk and financial
risks. We find that especially accounting for time-variation in bond risk premia and correlation between labor
income risk and financial risks is important for both optimal portfolios and the utility gains of having access to

inflation-linked bonds.

Keywords: Inflation linked bonds, optimal lifetime investment, simulation-based portfolio choice

JEL codes: C15, C63, E43, G11, G12

¢ Finance Group, CentER, Tilburg University, P.O. Box 90153, 5000 LE, Tilburg, The Netherlands.
E-mail: R.S.J.Koijen@TilburgUniversity.nl ® Econometrics and Finance Group, CentER, Tilburg
University, and Netspar, P.O. Box 90153, 5000 LE, Tilburg, The Netherlands. ¢ Econometrics
and Finance Group, CentER, Tilburg University, and Netspar, P.O. Box 90153, 5000 LE, Tilburg,
The Netherlands. We are grateful to Michael Brandt for helpful comments and suggestions.



1 Introduction

The market for inflation-linked securities grows rapidly as many governments have decided to issue
inflation-linked bonds on either local or global inflation indices, see, for instance, Deacon, Derry, and
Mirfendereski (2004) for a recent overview. Given that inflation-linked bonds can be viewed upon
as a riskless real investment, it has been argued by both academics and practitioners that inflation-
linked bonds should constitute a substantial part of the investment portfolio of long-term investors. This
argument has been formalized in Campbell and Viceira (2001) and Campbell, Chan, and Viceira (2003).
These papers present models in which inflation-linked bonds are prominently present in a long-term
investor’s optimal portfolio. Moreover, Campbell and Viceira (2001) find utility gains of having access
to inflation-linked bonds in the order of magnitude of 1-19% of the optimal consumption to wealth ratio

for various investors.

On the other hand, the life-cycle literature, consider, for instance, the contributions by Cocco,
Gomes, and Maenhout (2005), Gomes and Michaelides (2005), Bodie, Merton, and Samuelson (1992),
Heaton and Lucas (1997), Viceira (2001), Campbell and Cocco (2003), and Munk and Sorensen (2005),
has shown the importance of accounting for both income received by the investor over the investment
period and portfolio constraints. Especially when labor income cannot be capitalized via financial
markets due to omnipresent borrowing constraints, labor income forms a non-traded asset that influences
portfolio choice. The effects can be separated into two parts. First, Gollier and Pratt (1996) and
Elmendorf and Kimball (2000) have shown that increasing idiosyncratic risk triggers a reduction in the
financial risk an investor is willing to bear. As a consequence, the presence of idiosyncratic labor income
risk induces an effective increase in the risk aversion of the individual. Secondly, the correlation between
labor income risk and financial risks is important for two reasons. On the one hand, traded assets can
be used to hedge part of labor income risk. As a consequence, the optimal portfolio contains a hedging
demand to offset unfavorable changes in labor income. On the other hand, as shown by, for instance,
Munk and Sorensen (2005), the value of human capital becomes investor specific, if labor income is non-
tradable. This implicit value is, among other factors, determined as well by the correlations between
labor income risk and financial risks that are priced. Hence, different correlations between labor income
risk and financial risks induce different hedging demands and implicit values of human capital. This

can have serious implications for the composition of the optimal portfolio.

This paper integrates both literatures. We are initially concerned with optimal long-term bond
demand of an investor who is entitled to indexed labor income that is non-tradable. In the absence of
labor income, Campbell and Viceira (2001) have shown that the optimal investment portfolio contains
large fractions invested in inflation-linked bonds and document sizeable utility gains from having access
to inflation-linked bonds. Our baseline specification for labor income postulates that real labor income
risk is uncorrelated with financial risks, like in the benchmark models of Cocco et al. (2005). The
non-tradable position in labor income is then a mixture of a fixed position in inflation-linked bonds
and an idiosyncratic risk component. The former component reduces the demand for inflation-linked
bonds as the investor is interested in the optimal allocation of total wealth, which is the sum of financial
wealth and human capital. The second component induces an effective increase in the risk aversion of

the individual, which increases the demand for inflation-linked bonds, as these instruments constitute



a riskless real investment. We consider the impact of both effects and in case the demand for inflation-
linked bonds is indeed reduced in the optimal portfolio, we infer the reduction in utility gains from
having access to inflation-linked bonds. Moreover, we infer the sensitivity of these results to correlation
between labor income risk and financial risks.

Secondly, in several countries inflation-linked bonds are not available and the investor’s asset menu
is restricted to nominal bonds, leaving the possibility of bonds linked to a different country’s inflation
for future research. In this particular case, we investigate the impact of labor income on the demand
for nominal bonds. Long-term nominal bonds are characterized by having a modest exposure to the
real interest rate and a large exposure to expected inflation. Medium-term bonds, on the other hand,
have a larger real interest rate sensitivity and a smaller expected inflation exposure. A similar trade-
off as before is present. As labor income imposes a large real interest rate exposure on the investor,
this induces a shift in the optimal portfolio towards long-term bonds, which lengthens the duration of
the optimal nominal bond portfolio. However, the idiosyncratic risk component results in an effective
increase in the investor’s risk aversion, which leads in the investment problem without labor income
to a shorter duration of the optimal nominal bond portfolio, see Campbell and Viceira (2001). The
ultimate effect of incorporating labor income in an investment problem with only nominal bonds is thus
ambiguous.

Finally, recent contributions by Brennan and Xia (2000, 2002), Campbell and Viceira (2001), and
Sangvinatsos and Wachter (2005) have shown that realistic models of financial markets generate optimal
portfolios for which the ratio of long-term nominal bonds to equities is increasing in the investor’s
risk aversion. This rationalizes common investment advises as summarized in Canner, Mankiw, and
Weil (1997). We show that this conclusion is robust to the introduction of labor income into the
investment problem. This extends the analysis of Munk and Sorensen (2005) in which it is illustrated

that the ratio of inflation-linked bonds to stocks is indeed increasing the investor’s risk aversion.

Our model of the financial market accommodates time-variation in bond risk premia. After all, there
is abundant empirical evidence that indicates that bond risk premia are not constant over time, see,
among others, Campbell and Shiller (1991), Dai and Singleton (2002), and Cochrane and Piazzesi (2005).
Sangvinatsos and Wachter (2005) show that abstracting from time-variation in bond risk premia in
investment problems leads to substantial utility losses. Similarly, Ait-Sahalia and Brandt (2001) and
Campbell et al. (2003) have shown the importance to account for information on term structure variables
to predict bond risk premia and to construct optimal portfolios. We extend the models of Brennan and
Xia (2002) and Campbell and Viceira (2001) by modeling the price of real interest rate risk and expected
inflation affine in the real interest rate and expected inflation, respectively. We impose this structure
to enhance the interpretation of the implications of time-variation in bond risk premia. The model is
estimated on the basis of US data as of 1959 up to 2002.

We find that the inflation risk premium, i.e., the difference in expected returns between nominal
and inflation-linked bonds with a particular maturity, is increasing in the level of expected inflation
and decreasing in the level of real interest rates. The real term premium is increasing in the level of
real interest rate, whereas the nominal term premium is increasing in both the real interest rate and

expected inflation.

The contribution of this paper is threefold. First of all, we determine the role of nominal and



inflation-linked long-term bonds for long-term investors who receive labor income during the period of
investing. We infer the implications for the optimal composition of the optimal portfolio, as well as
for the value added of inflation-linked bonds. As we consider a finite horizon problem, we are able to
identify horizon effects that are triggered by time-variation in both interest rates and bond risk premia.
In absence of labor income, this complements the analysis of Campbell and Viceira (2001).

We find that the role of inflation-linked bonds is substantially reduced once we properly account for
labor income. The optimal portfolio is tilted towards long-term nominal bonds or equities, depending
on the assets available for investing. When the investor’s asset menu is confined to nominal bonds, it
turns out to be optimal to lengthen the duration of the optimal nominal bond portfolio as we account
for labor income. The utility gains of having access to inflation-linked bonds are reduced considerably,
especially when the investor’s initial wealth is modest. In terms of horizon effects, we find that the
ratio of long-term nominal bonds to inflation-linked bonds is increasing in the investment horizon. This
results from the fact that horizon effects in expected inflation tend to dominate the horizon effects
in real interest rates. Concerning the ratio of nominal bonds to stocks, we do find that this ratio is
increasing in the risk aversion of the investor. As a consequence, it is possible, at least qualitatively, to
rationalize the recommendations provided by popular investment advisors.

The second main contribution is to assess the relevance of time-variation in bond risk premia, the
amount of idiosyncratic labor income risk, and correlations between labor income risk and financial risks
for the investment problem with labor income. Time-variation in bond risk premia turns out to have
a dramatic impact on both the optimal bond portfolios and the value added of inflation-linked bonds.
However, the decline in utility gains from having access to inflation-linked bonds due to incorporation
of labor income into the investment problem is preserved. Next, the impact of changing the amount
of idiosyncratic labor income risk is relatively small. Finally, we find that correlation between labor
income risk and real interest rate risk has limited effects on the optimal portfolio composition. On the
other hand, the correlation between labor income risk and either expected inflation risk or equity risk
has strong implications for the optimal portfolio composition. Changing the correlation between labor
income risk and expected inflation risk erodes or strengthens the role of labor income as a hedge against
inflation. We find, quite expectedly, that different correlations induce large changes in the optimal
portfolio. It turns out that the value added of enriching the investor’s asset menu with inflation-linked
bonds is decreasing in the correlation between labor income risk and expected inflation risk.

The third contribution is methodologically. We extend the simulation-based approach to portfolio
choice of Brandt, Goyal, Santa-Clara, and Stroud (2005) to include labor income and accommodate
portfolio constraints. Apart from these extensions, we modify an important approximation that has
recently been criticized by DeTemple, Garcia, and Rindisbacher (2003, 2005). The modified approx-
imation overcomes the shortcomings mentioned in DeTemple et al. (2003, 2005), results in a simple
optimization problem that can be solved fast, and improves the accuracy of the approximation pro-
posed in Brandt et al. (2005). Apart from determining the optimal portfolio, we show how the method
can be used to decompose the total optimal portfolio into a myopic demand and several hedging de-
mands, even in the presence of labor income. This facilitates a better understanding of the composition

of the total optimal portfolio.

The plan of this paper is as follows. Section 2 explains the financial market in which the investor



operates. We outline the preference structure of the investor, as well as the labor income process
to which the investor is entitled. In addition, we provide the optimal continuous time solution and
summarize the numerical procedure that we use to solve the constrained problem in the presence of
labor income. Section 3 presents the estimation results of our financial market in Section 2. Section 4
considers the investment problem in absence of labor income. In Section 5, we incorporate labor income
into the investment problem. Next, Section 6 investigates the robustness of the results to time-variation
in bond risk premia, idiosyncratic labor income uncertainty, and different correlations between labor
income risk and financial risks. Section 7 concludes and four appendices contain proofs and technical

issues.

2 The economy and investor’s preferences

2.1 The financial market

Our financial market accommodates time-variation in bond risk premia. The model we propose is closely
related to Brennan and Xia (2002), Campbell and Viceira (2001), and Sangvinatsos and Wachter (2005).
Brennan and Xia (2002) and Campbell and Viceira (2001) propose two factor models of the term
structure, where the factors are identified with the real interest rate and expected inflation. Both
models assume that bond risk premia are constant. Sangvinatsos and Wachter (2005) use a three factor
term structure model with latent factors and accommodate time-variation in bond risk premia, in line
with Duffee (2002). We consider a model like Brennan and Xia (2002) and Campbell and Viceira (2001),

but do accommodate time-variation in bond risk premia.

The securities that are possibly present in the asset menu of the investor are a stock (index), nominal
bonds, inflation-linked bonds, and a nominal money market account. We start with a model for the

instantaneous real interest rate, r, which is assumed to be driven by a single factor, Xy,
Tt=6r+X1t, 6T>O. (1)

In order to accommodate the first-order autocorrelation in the real interest rate, we model X; to be

mean-reverting around zero, i.e.,
dX1 = —k1 X1 dt + 0]dZ;, o1 € RY, k1 >0, (2)

where Z € R**! is a vector of independent Brownian motions driving the uncertainty in the financial
market,.
In order to link the real and nominal side of the economy, we postulate a process for the (commodity)

price index IT

dIT; T 4

T:ﬂ'tdt—FO'HdZt, omn € R s (3)

t

where m; denotes the instantaneous expected inflation. Instantaneous expected inflation is assumed to
be affine in a second factor, Xo,

T = 571' + X2t7 671’ > 07 (4)
where the second term structure factor exhibits the mean-reverting dynamics

dXor = —koXodt + 03dZ;, 09 € R, Ky > 0. (5)



Concerning the stock (index), S, we postulate

s
?t = (R; +ng)dt + okdZ;, o5 € RY, (6)
t

where R; is the nominal instantaneous interest rate to be derived later (see (11)) and 7ng a constant
equity risk premium. We are mainly interested in the optimal bond demand when the investor is
entitled to a particular income stream. This provides the main motivation to abstract from stock return
predictability, despite increasing empirical evidence that there is a certain degree of predictability, see,
for instance, Ang and Bekaert (2003), Campbell and Yogo (2005), and Brennan and Xia (2005).

To complete our model, we specify an affine term structure for the term structure of interest rates by
assuming that the prices of risk are affine in the term structure factors. More precisely, in the nominal

state price density, ¢$,

dg?
— = —Ridt — Al dZ,, (7)
t

we assume that the time-varying prices of risk, i.e. A;, are affine in the term structure factors X; and
X2)
Ay = Ao + M1 Xy, (8)

with X; = (X5, Xot). Le., we adopt the essentially affine model as proposed by Duffee (2002). In the
nomenclature of Dai and Singleton (2000), the model proposed can be classified as Ag(2).

This specification accommodates time-variation in bond risk premia as advocated by, for instance,
Dai and Singleton (2002) and Cochrane and Piazzesi (2005). As we assume the equity risk premium to

be constant, we have
O-E’At = 775’7 (9)

which restricts A;. We further restrict the risk premia such that the price of real interest rate risk is
determined only by the level of the real interest rate, whereas the price of (pure) expected inflation
risk depends solely on expected inflation. We impose this separation of the nominal and real world to
enhance the interpretation of time-variation in bond risk premia and its implications for portfolio choice.
In terms of the model parameters, this implies that the first two rows of A; form a diagonal matrix.
Next, the price of unexpected inflation risk cannot be identified on the basis of data on the nominal side
of the economy alone. We impose that the part of the price of unexpected inflation risk that cannot
be identified using nominal bond data equals zero. Since inflation-linked bonds have been launched in
the US only as of 1997, the data available is insufficient to estimate this price of risk accurately. This
restriction is in line with the recent literature, see for instance Ang and Bekaert (2004) and Campbell
and Viceira (2001).

Interestingly, Kothari and Shanken (2004), Roll (2004), and Hunter and Simon (2005) use data
on TIPS to infer the properties of real bonds. Hunter and Simon (2005) find that real bonds do not
significantly extend the investment opportunity set using both conditional and unconditional Mean-
Variance spanning tests. As Hunter and Simon (2005) mention, this conclusion is based on an analysis

of a period in which inflation has been low.



Given the nominal state price density in (10), we find for the real state price density, ¢,

dg,
b

S —(Rt — T + JEAt)dt - (/\;r — O'TH)dZt (10)
= —rdt — (A —o])dZ;.
As a consequence, we obtain for the instantaneous nominal interest rate

Ry

Ty + 7 — o Ay (11)
op + (Lg — UTHAl) Xt,

where 6p = 6, + 6 — o[jAg. The conditions specified in Duffie and Kan (1996) to ensure that both
nominal and real bond prices are exponentially affine in the state variables have been satisfied. Hence,

we find for the prices of a nominal bond at time ¢ with a maturity ¢ + 7,
P(t,t+ 1) = exp(A(7) + B(1) " X,), (12)
and for a inflation-linked bond
PR(t,t + 1) = exp(Af (1) + BE(1) T X,), (13)

where A(7), B(7), A®(7), BE(7), and the corresponding derivations are provided in Appendix A. Note
that the nominal price process of a real bond is scaled by changes in the price index, i.e. the nominal

price process of a real bond evolves as

d (I, PE(t,t+ 7))
HtPR(t7 t + 7-)

= (Ry + B¥(1) "Sx Ay + o Ay) dt + (B (1) T Sx + of}) dZ,. (14)

Campbell and Viceira (2001) and Campbell et al. (2003) infer the role of inflation-linked bonds in
the optimal asset allocation. The former paper has constant risk premia for both stocks and bonds,
which is more restrictive than the model considered here. Campbell et al. (2003) capture the dynamics
of the financial market with a VAR-model. In modeling inflation-linked bonds, Campbell et al. (2003)
make the assumption that the (log) expectations hypothesis holds for the real term structure. Finally,
Campbell et al. (2003) also abstract from portfolio constraints. More importantly, both papers do not
account for labor income during the investment period. Munk and Sorensen (2005) do account for labor
income, but restrict their analysis to the real side of the economy and the bond considered is therefore
a real bond. Due to the fact that Munk and Sorensen (2005) abstract from inflation, the different role

of nominal and inflation-linked bonds cannot be identified.

We summarize the financial market for future reference. Denote the state vector containing both

term structure factors by X; and define

X
X, = 1t
Xot

,leU”,lem 0]. (15)

0 Ko

We have the following dynamics of the state variables

dX = —KXdt + XxdZ. (16)



Assume that asset menu consists of the stock (index), n nominal bonds, and m real bonds. Denote
the vector containing the prices at time ¢ of n nominal bonds by P, and the vector containing the m

real bonds Pf*. The dynamics are then given by

d PtR = dz’ag PR Rth-‘rn-‘rl + BREX Ay | dt + BRZX dz; |,
Sy S ok ol

where B € R"*2 and B ¢ R™*? containing the factor exposures of nominal and real bonds. We

denote the volatility matrix of the traded assets in the sequel by X.

2.2 The investor’s labor income and preferences

The investor operating in the financial market of Section 2.1 is endowed with an income stream, which
will be denoted by Y; in real terms. We postulate for the dynamics of labor income, in line with
Viceira (2001),

Y, 2
dT: = (g - 02Y> dt + oydz) . (17)

Moreover, in line with the baseline case of Cocco et al. (2005), we assume initially that ZY is inde-
pendent of Z. In Section 6.3, we infer the impact of correlations between labor income innovations and
either the real interest rate, expected inflation, or equity risk. More general models have been proposed
to model labor income by, for instance, Campbell and Cocco (2003), Cocco et al. (2005), Gomes and
Michaelides (2005), Woolley (2004), and Munk and Sorensen (2005). The main extensions encompass an
age-dependent or interest-rate dependent income growth, transient shocks to labor income, substantial
income drops in case of being laid off. Since we do not aim to model life-cycle behavior of individuals

in this paper, we abstract from these refinements.

We assess the impact of the income process on the optimal portfolio of an investor that is active
in the before-mentioned financial market. The effect of being entitled to a certain income stream is
well-understood in simple financial markets, see for instance Viceira (2001), Cocco et al. (2005), and
Gomes and Michaelides (2005). In general, there are two important determinants of the effect of labor
income on the optimal asset allocation. First of all, the correlations between labor income risk and
financial risks are important and have two effects. Once the investor is able to hedge labor income
uncertainty with financial assets, the optimal portfolio will contain an additional hedging demand, see
for instance Viceira (2001) and Munk and Sorensen (2005), to hedge labor income uncertainty. For
instance, if stock returns are positively correlated with labor income uncertainty, a negative investment
in stocks can be used to hedge labor income uncertainty. After all, a negative shock to labor income is
then accompanied with a positive return on the investment portfolio. The second effect of introducing
correlations is that the (implicit) value of human capital is affected, whenever labor income is correlated
with financial risks that are priced.

The second relevant component is the amount of idiosyncratic labor income uncertainty. The liter-
ature on background risk, see for instance Gollier and Pratt (1996) and Elmendorf and Kimball (2000),
has illustrated that background risk substitutes for financial risk. Hence, an increase in the idiosyncratic

labor income risk induces an effective increase in the risk aversion of the individual.



Our main contribution to this literature is our more flexible model of the financial market in which
we allow for both stochastic interest rates and inflation rates, as well as time-variation in bond risk
premia. Therefore, we can assess the possibly different impact of labor income on the optimal portfolio
when the investor can choose between either nominal bonds or both nominal and inflation-linked bonds.
In addition, we can assess the effect of labor income on the value added, as measured in utility terms,

of having access to inflation-linked bonds.

The individual obtains utility from real terminal wealth that has been accumulated during the

investment period [t,T]. Consequently, the problem faced by the individual can be formalized as

W, 1 W\
it, T, —, X = B | — | =— 18
1 ( s Ly Hta t> xSGE?ét,T] t <1 — (HT) ( )
AN
= — | = F(t,T, X
1_7 (Ht) (7 ) t)7

subject to the dynamic budget constraint

AWy
Wi

where x; € R*™*! denotes the fraction of nominal wealth invested in the different assets.

The CRRA utility index summarizes the preferences of the individual and K is the set to which the
portfolio fractions of financial wealth invested, x;, are constrained, which is in this case I = R+ +1,
W; denotes the nominal (financial) wealth of the investor at time ¢. In this paper we focus on the problem
where utility is obtained only from terminal wealth and abstract from intermediate consumption. The
application we have in mind is an individual saving for retirement. In an individual context, one may
argue that people saving for retirement often contribute a fixed fraction of labor income, say 20%,
on the basis of some form of mental accounting or precommitment. In this case, the income process
is proportional to the labor income process to which the individual is entitled. Gomes, Michaelides,
and Polkovnichenko (2004) show in a life-cycle context that the utility costs of fixing the savings rate

exogenously are surprisingly small, given that the savings rate is set properly.

2.3 Optimal portfolio choice without labor income

We consider first the investment problem for an investor without labor income and without trading
constraints, i.e. £ = R*"*™*1 In this case, the maximization in (18) can be solved analytically in

continuous time.

The situation without labor income and unconstrained continuous time investing is a special case
of the model of Sangvinatsos and Wachter (2005). Their results regarding the optimal portfolio in

the continuous time setting are discussed in Appendix B, where we show in addition that the optimal



investment in the risky assets can be decomposed in a convenient way, namely

1 - 1 -
xy = ;(ZZT) 12At+<1—7) (2xT) ' Son

Myopic demand
1 1 F, 1 1 F, (20)
i T~ -r i T~ -
+7(EE) EUI(F) +’Y(22) ZU?(F)’

Hedging demand real rate Hedging demand expected inflation

and Appendix B shows that the function F' is exponentially quadratic in both term structure factors.
Fx denotes the partial derivative of F' with respect to X. Equation (20) shows that the optimal portfolio

has three components. The first part of the first component,
1 -1
— (ZXT)7" XA, (21)
Y

is the standard myopic demand that maximizes the continuous time Sharpe ratio y/A] As. The second

part of the first component,

(1 - i) (2T Soy, (22)

replicates unexpected inflation as far as possible. Both components (21) and (22) constitute the myopic
demand. The other two components are hedging demands. As shown by Sangvinatsos and Wachter
(2005), these hedging demands are induced by time-variation in the investment opportunity set to the
extent that real interest rates and prices of risks are affected. In order to assess the relevance of both
hedging portfolios, Sangvinatsos and Wachter (2005) propose to set certain parameters to zero in Fx /F.
A disadvantage of this approach is that the different components no longer sum to the total hedging
portfolio. In our model of the financial market, the factors have a clear financial interpretation which
facilitates an alternative decomposition of the total hedging portfolio. As such,

% (=) 'Sy (?) , (23)

provides the hedging demand that arises due to time-variation in the real interest rate and

% (27) 7! Soy (l;f) (24)
constitutes the hedging portfolio that comes from time-variation in expected inflation rates. Obviously,
additivity of the two hedging components to the total hedging demand is preserved, which is a desirable
property. An additional advantage is that this construction of hedging demands allows a natural
extension to the discrete time setting, possibly with labor income. It should be noted that time-
variation in the real rate triggers two hedging demands. First of all, if prices of risk are constant,
time-variation in the real interest rate introduces a hedging demand, as shown by Brennan and Xia
(2002) and Campbell and Viceira (2001). Secondly, prices of risk co-vary with the real interest rate,
which leads to an additional hedging demand. Time-variation in expected inflation induces a hedging

demand only due to the fact that prices of risk co-vary with expected inflation.

Secondly, we consider an investor who can trade annually and is prohibited to take short positions,



ie! K={z|x>02"t<1}. The reduced trading frequency and portfolio constraints can be moti-

vated, for instance, by the presence of transaction costs. For this constrained discrete time investment

problem, we maximize (18) subject to the budget constraint in real terms,
Wi41 = Wy (m:rf+1 + T{+1> 5 (25)

where rf,; = Rf,1I;/II;;; denotes the real excess return, T{H = P(t,t + 1)7I;/Il;;; represents
the real return on the nominal money market account, and w; = W,/II, denotes real wealth. The

corresponding value function in (18) is denoted by V5. Using Bellman’s principle of optimality, we find
Va(t, T, X¢,wy) = E?;%Et (Vo(t+1,T, Xyy1,wer1)) (26)

Exploiting the homogeneity of the power utility index, provides
Val(t, T, Xeywy) = wi " Val(t, T, Xy, 1). (27)

Substituting these results in (26), we find

xT€ t

1—~
Va(t, T, Xy, 1) = max [, (w(t+1,T,Xt+1,1)(w;“) ) (28)

1—y
= maxB (V'Q(t+ 1,7, Xii1,1) (xjrfﬂ +r{+1) > .

TE

These first two investment problems consider investors who are not entitled to any form of income
during the period of investing. Sangvinatsos and Wachter (2005) solve the unconstrained continuous
time problem in absence of labor income and portfolio constraints?. Campbell and Viceira (2001)
consider the optimal portfolio choice between long-term bonds in a discrete time setting, but do not
account for labor income or time-variation in bond risk premia. Campbell et al. (2003) do allow for
time-variation in risk premia, but they cannot easily accommodate portfolio constraints. Moreover, the
results presented in Campbell and Viceira (2001) and Campbell et al. (2003) are derived in infinite
horizon models. Therefore, an analysis of horizon effects is possible only implicitly and we extend their

results therefore as well by addressing the investor’s investment horizon.

2.4 Optimal portfolio choice with labor income

We now consider an investor who receives a certain stream of labor income during the period of investing.
We consider the investment problem in which the investor can trade annually and investing is subject
to borrowing and short-sale constraints, i.e. K = {z | 2 > 0,2 "¢ < 1}. In the presence of labor income,
it has been shown by, for instance, Bodie et al. (1992) that it is optimal to borrow excessively against
future labor income, especially in early stages of the life-cycle. For reasons of moral hazard, this is

generally infeasible in practice.

Tt has been argued by, among others, Davis, Kubler, and Willen (2003) and Cocco et al. (2005) that borrowing to
invest is often possible to a limited extent in practice, albeit that the borrowing rate exceeds the lending rate, i.e. so-called

endogenous borrowing constraints. We confine ourselves to exogenous borrowing constraints throughout this paper.
2Sangvinatsos and Wachter (2005) consider the essentially affine 3-factor model that has been advocated by Duf-

fee (2002) and enrich this model with an inflation and stock (index) process. We consider a more parsimonious model in

which the factors have a clear financial interpretation in order to enhance the interpretation of the results.
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For convenience, we assume that the investor receives labor income annually. The discrete time
counterpart of (17) is given by
j.i.d.
Yigr = Yeexp(g +&p41), &1~ N (0,07) (29)

where the innovations in the labor income process are initially uncorrelated with innovations in the
financial market, as in the baseline case of Cocco et al. (2005). In Section 6.3 we discuss the effects of

labor income shocks that are correlated with market shocks.

For the investment problem where the investor receives labor income during the period of investing,

we maximize (18) subject to the budget constraint
Wil = Wy (xtTTteH +7"tf+1> + Yiq1 (30)

The corresponding value function in (18) is denoted by V3. The homogeneity of the utility index
can be used in this case to show that the optimal portfolio is independent of the permanent component
of labor income,

Va(t, T, Xy, we, Yy) = Y,V Va (8, T, Xy, 04, 1), (31)

where @w; = w; /Y%, i.e. normalized real wealth. If we substitute these results in (26), we find

Vi)'
‘/S(tha Xttha]-) - mg%Et (‘/E’)(t+ 17T7 Xt+1amt+171) ( ;;Fl) ) (32)
Tt t

= max By (V3(t + 1,7, Xyt1, Weg1, 1) exp(g 4+ €,4)' 77)

2.5 Summary of the numerical approach

As analytical solutions are absent for the problems in a discrete time setting, numerical techniques have
been used to solve such asset allocation problems. In life-cycle models, numerical dynamic programming
is the leading solution technique. The numerical issues given our number of state variables and sources
of uncertainty should not be underestimated. The present section discusses the main ideas of our
solution technique and details can be found in Appendix E.

Brandt et al. (2005) have shown how to extend the simulation-based valuation methods of Longstaff
and Schwartz (2001) and Tsitsiklis and vanRoy (2002) to the area of portfolio selection. Both in valu-
ation of American options and in dynamic asset allocation problems, the solution can be derived easily
once certain conditional expectations are known. In pricing American options, this is the continuation
value of the option, whereas in case of portfolio selection, the conditional expectation of future utility
is of particular interest. However, in both problems, the conditional expectations cannot be calculated
analytically in most cases.

The idea is to approximate conditional expectations by a projection on a set of basis functions in
the state variables. In order to estimate the projection coefficients, we simulate first of all M paths
of both state variables and asset returns. The projection coefficients are subsequently estimated via
a cross-sectional regression across all simulated paths. Once the conditional expectations have been

approximated, the principle of dynamic programming is used to solve for the optimal portfolio.
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We adjust the approach of Brandt et al. (2005) considerably in order to be able to handle portfolio
constraints and labor income. Apart from these extensions, we modify an approximation proposed in
Brandt et al. (2005). In general, it is very time-consuming to optimize over the optimal portfolio in
every branch, as every function evaluation requires a cross-sectional regression over the M paths, where
M is typically large. Brandt et al. (2005) suggest to determine a fourth order Taylor expansion of
the utility index. In solving for the optimal portfolio on the basis the resulting polynomial, Brandt et
al. (2005) suggest an iterative procedure to optimize efficiently over all paths at a certain time point
simultaneously. Yet, as noted as well by DeTemple et al. (2003, 2005), this iterative procedure is not
guaranteed to converge.

We circumvent this approximation by exploiting the fact that the projection coefficients that fol-
low from the cross-sectional regression across all paths are smooth functions of the portfolio weights.
Therefore, we determine a polynomial expansion of the projection coefficients in the portfolio weights.
This results in a quadratic optimization problem that can be solved fast. This alternative approxima-
tion turns out to be highly accurate and avoids the iterative procedure. Appendix E compares both
approximations for an example proposed in Brandt et al. (2005). The results indicate that our approach
enhances the approximation of Brandt et al. (2005), especially when the trading frequency is relatively
low, which is the prime case where the approximation of Brandt et al. (2005) tends to be inaccurate.

Secondly, due to the presence of the income stream, the portfolio becomes dependent on the level of
normalized real wealth. We solve this problem by combining the conventional approach of discretizing
the state space with the simulation-based approach. We specify a grid for wealth at each point in time
and combine these grid points with the simulated values of the state variables. We refer to Appendix E
for a rigorous discussion of the simulation-based approach to portfolio choice in the presence of portfolio

constraints and an income stream.

The before-mentioned numerical procedure can be extended to decompose the optimal portfolio
into myopic and hedging demands that are induced by either time-variation in the real interest rate or
expected inflation. In absence of labor income, the myopic demand has been defined as the optimal
portfolio allocation that solves a single period investment problem. Therefore, the total hedging demand
that arises in a multi-period problem is obtained by subtracting the myopic demand from the total
demand. As shown by Samuelson (1969), the optimal portfolio in a multi-period problem coincides
with the optimal solution in a single period problem, if interest rates are constant and asset returns are
i.i.d. Therefore, the myopic demand can be calculated as well by solving the multi-period problem in
which we reset the state variables to their initial values at every time step in the simulation procedure.
In Appendix C, we show that this approach can be specialized to the case where the investor only
hedges time-variation in the real rate or expected inflation. However, as discussed in detail in Appendix
C, such decompositions do not necessarily sum to the total demand. In our empirical application,
the differences are negligible and the decomposition significantly enhances the understanding of the
composition of the total demand.

In this investment problem with labor income, the conventional definition of hedging demands,
namely the optimal strategy that solves the single period problem, cannot be used. After all, an
investor with multiple periods ahead has a different entitlement to labor income than an individual

that faces a single period investment problem. However, in absence of labor income, resetting the state
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variables results in the same optimal portfolio, independent of the investment horizon, as the single
period (myopic) portfolio. Therefore, we extend the concept to the case with labor income and reset
the state variables after a single period simulation in order to determine the myopic demand in the
presence of labor income. This enables a decomposition of the optimal portfolio choice into the myopic
and total hedging demand. As before, the total hedging demand can be decomposed into a hedging
demand induced by time-variation in the real rate and time-variation in expected inflation rates. We

refer to Appendix C for further details.

3 Data and estimation

In this section, we estimate our specification of the financial market in Section 2.1. Section 3.1 describes
the data that we use in estimation, while in Section 3.2, we provide the estimation results and illustrate
the fit of the model.

3.1 Data

In order to estimate our specification of the financial market, we use monthly data as of January
1959 up to May 2002. The monthly US government yield data are the same as in Duffee (2002) and
Sangvinatsos and Wachter (2005) up to December 1998. These data are taken from McCulloch and
Kwon up to February 1991 and extended using the data in Bliss (1997) up to December 1998. We
extend these time series up to May 2002 using the data that have been obtained via Rob Bliss®. We
use six yields with maturities 3 months, 6 months, 1, 2, 5, and 10 years.

Data on the price index has been obtained from the website of the Bureau of Labor Statistics. We use
the CPI-U index to represent the relevant price index for the investor. The CPI-U index represents the
buying habits of the residents of urban and metropolitan areas in the US*. We assume, in line with the
literature, that the price index used to index inflation-linked bonds coincides with the price index that
is relevant for the investor. Finally, we use returns on the CRSP value-weighted NYSE/Amex/Nasdaq

index for stock returns.

3.2 Estimation

The Kalman filter with unobserved state variables X1; and Xo; is used to estimate the model by maxi-
mum likelihood. Following De Jong (2000), Brennan and Xia (2002), and Campbell and Viceira (2001),
we assume that all yields have been measured with error. Details on the estimation procedure are in

Appendix D.

The relevant processes in estimation are Y; = (X¢,logII;,log S;) for which the joint diffusion can be

written as
Xt 02><1 _KX 02><2 Xt
d| logll; | = O — %a}lon + eq 01x2 log IT; dt + Xy dZ;, (33)
log S; Oop+ng — %agag (L2T - U}IAl) 01x2 log Sy

3We are grateful to Rob Bliss for providing the yield data.
4See www.bls.gov for further details.
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with
Yx
Sy=| of |- (34)
7§
An unrestricted volatility matrix, ¥y, would be statistically unidentified and, therefore, we impose

that the volatility matrix is lower triangular, in line with Sangvinatsos and Wachter (2005), i.e.

o1 0 0 0
0 0

ny = | 2 72 . (35)
oma) ome one 0

0s(1) 0s(2) 08@3) 05(4)
Given this normalization, we can easily accommodate the parametric restrictions on the prices of

risk. First of all, we assume that the price of real interest rate risk and the price of expected inflation

risk are driven only by respectively the real interest rate and expected inflation. Hence, we find

At e AO + AlXt (36)
Aor) STERY) 0
Ao(2) 0 A1(2,2) x
0 0 0 "
% * *

where the * in the last row indicate that these parameters are chosen to satisfy the restriction that the

equity risk premium is constant (65Ag = 75 and ogA; = 0).

The estimation results are presented in Table 1, together with the standard errors on the basis of the
outer product gradient estimator. The parameters o, ,..., 0y, are the volatilities of the measurement

errors of the bond yields at the six maturities that have been used in estimation.
Insert Table 1

We find first of all that the level parameters, i.e. g and ., are close to the estimates reported by
Sangvinatsos and Wachter (2005) (respectively 5.6% and 4.0%)°. It is well-known that the means of
the short rate and expected inflation resulting from these models are usually low relative to the sample
counterparts. However, we confirm the finding of Sangvinatsos and Wachter (2005) that when we adopt
the essentially affine model for the term structure and we incorporate inflation data into the estimation,
the means are estimated properly.

In line with Brennan and Xia (2002) and Campbell and Viceira (2001), we find that expected
inflation is a much more persistent process than the real interest rate (i.e. k1 > ko). The instantaneous
correlation between expected inflation and the real interest rate is slightly negative (—15%), in line with
Brennan and Xia (2002) and Ang and Bekaert (2004). Hence, the Mundell-Tobin effect is supported
by our estimates. We find that innovations in stock and bond returns are negatively correlated with

inflation innovations, in line with Sangvinatsos and Wachter (2005).

5Sangvinatsos and Wachter (2005) use data from 1952 up to 1998 to estimate their model for the financial market.
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Concerning the prices of risk, we find that the unconditional price of real interest rate risk is higher
than the unconditional price of expected inflation risk, i.e. [Ag 1)| > |Ag,2)|, which is in line with
Campbell and Viceira (2001) and Brennan and Xia (2002). This implies that the Sharpe ratio of
nominal bonds will be lower than the Sharpe ratio of real bonds, simply due to the fact that real bonds
have no exposure to the expected inflation factor, which is awarded a lower compensation for risk. The
equity risk premium is estimated to be 5.4%, reflecting the historical equity risk premium.

Apart from the unconditional term premia, we are interested in the impact of the enriched structure
by allowing time-variation in bond risk premia. As pointed out by Dai and Singleton (2002), time-
varying risk premia can be caused by time-varying volatilities and time-varying prices of risk. We
confine ourselves to time-variation in the prices of risk. We find that the price of real interest rate
risk significantly decreases with the level of the real interest rate and the price of expected inflation is
significantly decreasing in the level of expected inflation. These estimates imply that nominal bonds
become more attractive relative to real bonds when expected inflation is high. After all, in these cases,
the price of expected inflation risk is low. As nominal bond returns are negatively correlated with
expected inflation, the inflation risk premium is high when expected inflation is high, where we define
the inflation risk premium as the difference between the risk premium on a nominal bond and a real
bond with the same maturity, in line with Campbell and Viceira (2001). Next, we find that the price of
real interest rate risk is negatively correlated with the real interest rate. This implies that the real term
premium arising from real interest rate risk is high if the real interest rate is high. Interestingly, due to
the Mundell-Tobin effect, real bonds of a particular maturity have a larger real interest rate exposure
than nominal bonds with the same maturity. As a consequence, a high real interest rate implies a low
price of real interest rate risk and, therefore, the risk premium on real bonds increases more than on
nominal bonds. Thus, a high real interest rate tends to dampen the inflation risk premium, whereas
high expected inflation rates tend to amplify the inflation risk premium. The same effects regarding the
interplay between the real rate, expected inflation, and the inflation risk premium result as well from

the general equilibrium model of Buraschi and Jiltsov (2005).

We summarize several implications of the estimates that are reported in Table 1. First of all, we
consider the risk premia on both nominal and real bonds, as well as their volatilities and the inflation

risk premium. Table 2 provides the results when the factors equal their unconditional expectation.
Insert Table 2

First of all, the nominal bond risk premia are in line with the estimates reported in Campbell and
Viceira (2001). Secondly, real bonds tend to be much safer than nominal bonds, which is caused by
the fact that real bonds do not have exposure to the expected inflation factor. Thirdly, the uncon-
ditional inflation risk premium for a 3M bond equals 22bp and 101bp for a 10Y bond. Buraschi and
Jiltsov (2005) estimate the short-term inflation risk premium to be 25bp and the long-term at 70bp in
a general equilibrium setting. Ang and Bekaert (2004) report an estimate of 97bp and Campbell and
Viceira (2001) 110bp for long-term bonds. Hence, our estimates of the inflation risk premium are in

line with the literature.

Table 3 provides the correlations between returns on nominal and real bonds, as well as between

bond and stock returns. In addition, Table 3 reports the correlation between the risk premia on both
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nominal and inflation-linked bonds that we consider and the returns on the (possibly) traded assets.
Insert Table 3

We find that stock returns and nominal bond returns are positively correlated, in line with Sangvinatsos
and Wachter (2005). Sangvinatsos and Wachter (2005) report a correlation between stock and nominal
bond returns with different maturities that varies between 19.1 — 21.2%, which is close to our estimates.
The correlation between nominal bond returns resembles their estimates as well. We find that the
correlation among inflation-linked bonds is high, which is caused by the fact that we postulate a single
factor term structure model for the real term structure. In addition, the correlation between long-term
real bonds and nominal bonds is modest. This results from the fact that long-term nominal bonds have
mainly exposure to expected inflation, whereas long-term inflation-linked bonds have only exposure to
the real interest rate, see Figure 1. Since expected inflation and the real interest rate are negatively
correlated, we find a small negative correlation between long-term nominal and inflation-linked bond
returns.

Panel B of Table 3 provides the implied correlations between the risk premia of both nominal and
inflation-linked bonds that we consider and the returns on the traded assets. First of all, inflation-
linked bond returns are negatively correlated with the real interest rate. Hence, a negative price of real
interest rate risk translates into a positive risk premium for inflation-linked bonds. Since the price of
real interest rate risk is negatively correlated with the real interest rate, the real bond risk premium is
positively correlated with the real interest rate. Therefore, real bond returns are negatively correlated
with the risk premium on real bonds.

Nominal bonds, on the other hand, are exposed to both the real rate and expected inflation factor.
Moreover, both exposures are negative and the exposure to expected inflation exceeds the real interest
rate exposure substantially, see Figure 1. The price of expected inflation risk is positively correlated
with the real rate, but negatively correlated with expected inflation. As a negative price of real interest
rate and expected inflation risk translates into positive bond risk premia, nominal bond returns are
negatively correlated with nominal bond risk premia. Medium-term nominal bonds have a substantial
real interest rate exposure, which induces a negative correlation between inflation-linked bond returns
and medium-term nominal bond risk premia. Long-term nominal bonds, on the other hand, have hardly
any exposure to the real rate, but mainly to the expected inflation factor. Due to the fact that the
price of expected inflation risk is positively correlated with the real rate, we find that long-term nominal

bond risk premia are positively correlated with inflation-linked bond returns.

In Table 4, we compare several summary statistics that follow from the discretized model to their
raw sample counterparts. This provides additional insights in the fit of the model. Table 4 provides
an overview of several important statistics for stock returns, inflation, 3M, 1Y, 5Y, and 10Y nominal
bonds, on a monthly basis.

Insert Table

We find that the processes for stock returns and inflation are fitted properly. It is well-known that
the means of the yields are often underestimated in models with constant risk premia and which do not
exploit the information in inflation data to estimate the parameters. We therefore adopt the essentially

affine term structure model as proposed by Duffee (2002) which largely solves the problem, once we
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incorporate inflation data into the estimation. Alternatively, Campbell and Viceira (2001) model bond

risk premia to be constant and set the means equal to their sample counterparts.

Concerning the parameters of the income process, we rely on Viceira (2001). Hence, we choose the
expected log growth in real income equal to three percent and the volatility of the log income growth
is equal to ten percent per year. Initially, we assume that the correlation between the innovations of
the labor income process and the financial assets is equal to zero, in line with the baseline specification
Cocco et al. (2005). We infer in Section 6.2 the effects of the amount of idiosyncratic labor income
risk. In Section 6.3, we assess the impact of correlations between labor income innovations and financial
risks.

We consider an investor saving for retirement and allocating a fraction 6 of its labor income to the
retirement account. Hence, we exogenously fix the savings rate. Gomes et al. (2004) illustrate in a
life-cycle context that exogenously fixing the savings rate results in small utility costs, provided that
the savings rate is set properly. Moreover, it is noteworthy that choosing a different level 6 only matters
for the initial wealth considered. After all, the homogeneity property of the power utility index enables
a factorization of the value function of the form V (o, 0) = '~V (@ /0, 1). Hence, the results remain
valid if one wants to consider a different savings rate, albeit that the interpretation of initial wealth has
to be adjusted accordingly.

Denote the labor income at time ¢ by L; and assume

Liyr = Lyexp(g+&41),

and Yy41 = 6Ly, implying
Yii1 = Yiexp(g + €t+1)'

We set the savings rate equal to § = 20%. In many countries, mandatory pension schemes enforce
a substantial fraction of income to be invested for retirement purposes. In addition, employers often
contribute a significant amount to pension funds. In an optimized life-cycle context, this fraction will
obviously vary over time, implying that youngsters will save less than older people, see for instance
Cocco et al. (2005) and Gomes and Michaelides (2005). We consider investment horizons up to 30
years, which means that we abstract from the early part of the life-cycle in which accumulation of funds
is generally modest. For instance, Cocco et al. (2005) report savings in the order of magnitude of 6

months of labor income during the first decade of the life-cycle.

As mentioned earlier, the optimal portfolio is no longer independent of normalized wealth when we
account for the income stream of the investor. Therefore, we have to determine the optimal portfolio for
different initial values of normalized wealth. We consider two cases, namely one where the individual
has accumulated only twenty percent of an annual salary, i.e. wy = 1, and secondly, the case where the
individual has saved 5 annual incomes, i.e. wg = 25. By doing this, we consider rather extreme cases
and the main effects are identifiable. It is important to note though that when the investment horizon
increases, the investor has relatively more periods in which labor income is received. Hence, the value
of human capital is larger in these cases. This implies, together with the fact that the role of labor
income will be smaller if initial wealth is larger, we expect the results for wy = 25 and short investment

horizons to resemble closely the results without labor income.
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4 Optimal portfolio choice without labor income

In this section, we examine the optimal portfolio choice when the investor does not receive labor income
during the investment period. First of all, we determine the optimal portfolio choice for an investor
who can trade continuously and is not subject to borrowing or short-sale constraints. Subsequently, we
consider the discrete time problem, in which the optimal portfolio has to satisfy borrowing and short-
sale constraints. To infer the optimal bond demand, we restrict the menu of assets to contain solely
bonds in Section 4.1. In Section 4.2, we consider the optimal allocation between stocks and bonds,
where we confine the bond part of the asset menu to be either nominal or real. These menus of assets
have also been considered by Campbell and Viceira (2001) and enable us to assess the impact of labor
income on the long-term bond demand as well as the stock-bond mix in Section 5. Throughout, we
consider the investment horizons 7" = 1,5, 10, 20, and 30. We characterize three types of investors on

the basis of their preference to bear risk, namely aggressive (7 = 3), moderate (7 = 5), and conservative
(y="17).

4.1 Optimal bond demand

Table 5 provides the optimal portfolio for an investor who can trade continuously and is not subject
to portfolio constraints. The asset menu contains 3Y nominal bonds, 10Y nominal bonds, and cash.
Table 6 considers the optimal portfolio when the menu of assets is enriched with a long-term inflation-
linked bond. Since the financial market in Section 2.1 postulates a two factor term structure model,
two nominal bonds with different maturities suffice to create any exposure to the real interest rate and
expected inflation factor. When a single inflation-linked bond is added to this asset menu, the financial
market is completed and unexpected inflation risk can be hedged as well. Hence, any additional bond
is redundant in this problem. Using the decomposition of the optimal portfolio in (20), we can identify
the hedging demands induced by time-variation in either the real interest rate or expected inflation. In
addition, we report the exposures to the real interest rate and expected inflation implied by the optimal
portfolio.

Table 5 shows that the myopic demand contains a long position in 3Y nominal bonds that is financed
by a short position in 10Y nominal bonds and borrowing cash. These positions are induced by the
investor’s desire to have a substantial exposure to the real interest rate. This is mainly caused by the
large price of real interest rate risk in comparison to the price of expected inflation risk for aggressive
investors, whereas conservative investors aim at synthesizing an inflation-linked bond. As follows from
our estimation results in Table 1, we find expected inflation to be more persistent than the real interest
rate. As a consequence, Bo(7) will be larger than By (7) in absolute values for every 7 in absolute terms®
and Bj(7)/Ba(7) is decreasing in 7, see Figure 1. Therefore, to establish a large exposure to the real
interest rate and thereby keeping a modest exposure to expected inflation, the investor needs to hold
long the 3Y nominal bond and short the 10Y nominal bond.

Concerning the hedging demands, Table 5 provides the decomposition of the hedging portfolio
as proposed in (20). We find substantial horizon effects, but the allocations implied by the myopic

6We will denote the exposure of a nominal bond to the real interest rate by By and the exposure to expected inflation
by Ba.
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demand are extremely large and tend to dominate the optimal portfolio. The last two columns of
Table 5 provide the exposures to the real interest rate and expected inflation as implied by the optimal
portfolio. Comparing these numbers to Figure 1, we find that especially the exposure to the real interest
rate is exceptionally large. There does not exist a single nominal bond with a particular maturity that
can be used to create such a real interest rate exposure. The expected inflation exposure, on the other
hand, tends to be more reasonable in the sense that these exposures are attainable with a single nominal
bond. Such extreme positions in the different nominal bonds have been reported as well by Brennan
and Xia (2002), Campbell and Viceira (2001), and Sangvinatsos and Wachter (2005) 7.

Insert Table 5

Insert Table 6

Table 6 assesses the role of inflation-linked bonds in the optimal portfolio. We enrich the asset
menu with an inflation-linked bond with a maturity of 10 years. As two nominal bonds with different
maturities suffice to create any exposure to the real interest rate and expected inflation factor, the role
of real bonds is confined to the hedging demand for unexpected inflation. This improved ability to
hedge unexpected inflation implies that the exposures to the real interest rate and expected inflation
change marginally.

Insert Table 7

Apart from optimal portfolios, we can determine the utility gains® from enriching the investor’s asset
menu with inflation-linked bonds. The results are presented in the first column of Table 7. These utility
gains have been determined as the fraction of initial wealth the individual must have in addition in case
of the nominal asset menu to be indifferent to the asset menu that does contain inflation-linked bonds.
In the presence of labor income, we determine the fraction of total wealth an individual is willing to
sacrifice in order to gain access to inflation-linked bonds.

The value added of inflation indexed bonds is limited in this case to the ability to hedge unexpected
inflation. In line with Brennan and Xia (2002), we find the value added of inflation-linked bonds to be

rather limited to at most 1% for conservative long-term investors.

"Hence, the extreme positions tend to arise due to the investor’s desire to have an relatively extreme exposure to the real
interest rate. Similar results have been found in Brennan and Xia (2002) and Van Hemert, De Jong, and Driessen (2005).
We remark that these results suggest an interesting role for (real) interest rate derivatives, like interest rate and inflation
swaps. After all, it is often remarked that the extreme positions arising from these kind of models are impossible in
practice due to all kind of market imperfections. However, swaps are frequently used by institutional investors. These
contracts can be seen as a very particular long-short position in bonds and hence can play a key role in constructing

optimal portfolios to attain the desired exposures.
8 Formally, we solve for ¢ in

Ey¢
1—7 11—

(Et [(WzT)lM{] ) 7
o= —F——"77 -1,
Bt [(W1T)1_7]

where Wi denotes optimal terminal wealth when the investor has no access to inflation-linked bonds and Wap indicates

((1+ ¢)W1T)17] B l:(WzT)17:|
— = 1Dt )

optimal terminal wealth when the asset menu does contain inflation-linked bonds.
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Next, we consider an investor who can trade on an annual basis and is subject to borrowing and
short-sale constraints. Especially the inability of the investor to short particular assets or to borrow
cash to invest in risky assets may increase the value added of real bonds substantially, see Campbell
and Viceira (2001). Hence, we compare the same asset menus as before, in which the investor can select
either between 3Y and 10Y nominal bonds, or this menu is enriched with a 10Y inflation-linked bond.
In both cases, a nominal money market account is available to the investor as well. However, as can
be deduced from Figure 1, the exposures attainable with the latter asset menu are exactly the same
as with an asset menu that contains only 10Y nominal and inflation-linked bonds, when short-selling
and borrowing cash is prohibited. We remark that this is an empirical finding and may not be the case
for different values of the model parameters. Therefore, we confine henceforth the asset menu in the
presence of inflation-linked bonds to contain only 10Y nominal and 10Y inflation-linked bonds, without

loss of generality.

Table 8 reports the optimal portfolio allocations when investors are subject to borrowing and short-
sale constraints and can trade only annually for both asset menus. We use 100 batches of M = 10000

simulations and report the average portfolio weights across all simulations.

Insert Table 8

At least three aspects of Table 8 are noteworthy. First of all, as the risk aversion of the individual
increases, the investor tilts the optimal portfolio towards 3Y nominal bonds. As 10Y nominal bonds
have a large expected inflation-exposure, these securities are considered to be risky for conservative
investors. As 3Y nominal bonds have a larger real interest rate exposure than 10Y nominal bonds,
the investor shortens the duration of the optimal nominal bond portfolio as the risk aversion increases.
This is in line with Campbell and Viceira (2001). If inflation-linked bonds are available, this effect is
more prominent. Inflation-linked bonds allow the investor to build a larger real interest rate exposure
without incurring a larger expected inflation exposure. We find indeed that as the risk aversion of the
investor increases, the optimal portfolio shifts gradually towards inflation-linked bonds.

Secondly, when we consider the impact of the investment horizon, we find substantial horizon effects.
For instance, when the investor can select between 3Y and 10Y nominal bonds, we find that an aggressive
investor with a horizon of five years allocates 25% to long-term nominal bonds, whereas an investor with
an investment horizon of thirty years allocates 58% of its wealth to 10Y nominal bonds. Hence, we find
that the duration of the optimal nominal bond portfolio is increasing in the investment horizon, in line
with Brennan and Xia (2002). This is apparent as well from the allocation between 10Y inflation-linked
and 10Y nominal bonds. After all, lengthening the duration of a nominal bond portfolio is tantamount
to a reduction in the real interest rate exposure and an increase in the expected inflation exposure. We
indeed find that increasing the investor’s investment horizon triggers a shift from long-term inflation-
linked to long-term nominal bonds.

Thirdly, the decomposition of the optimal portfolio into a myopic demand and two hedging demands
for either variation in the real interest rate and expected inflation provides a further understanding of the
total bond demand. Interestingly, we find that the investment in 3Y nominal and 10Y inflation-linked
bonds largely channels through the myopic demand. The demand for 10Y nominal bonds emerges due

to the investor’s desire to hedge time-variation in expected inflation. This hedging demand is generally
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long in 10Y nominal bonds and short in either 3Y nominal or 10Y inflation-linked bonds. This results
from the fact that time-variation in expected inflation affects the investment opportunity set via the
price of expected inflation risk, which is the most significant determinant of the risk premium on long-
term nominal bonds. Table 3 shows that 10Y nominal bonds are negatively correlated with its risk
premium and hence a positive position in 10Y nominal bonds can be used to hedge time-variation
in expected inflation. Interestingly, as mentioned in Appendix C, it is not necessarily the case that
the myopic and hedging demands sum to the total portfolio. However, we find empirically that the
difference is marginal.

Finally, we remark that the standard errors resulting from the simulation-based approach are rel-
atively small. The standard errors are at most 45bp. We find that the standard errors are increasing
with the investment horizon, the riskiness of the asset mix, and there is a mixed effect of increasing the
risk-aversion of the investor. Brandt et al. (2005) remark that when the relative risk aversion of the
individual increases, standard errors decrease due to a more prudent investment strategy. On the other
hand, the increased curvature of the value function tends to amplify the dispersion. We experience the
same trade-off as an increase in the relative risk averseness has ambiguous effects for the accurateness

of the optimal portfolio”.

The second column of Table 7 determines the utility gains when the investor’s asset menu contains
real bonds as compared to the case where the investor can only select between nominal bonds. We find
that the utility gains are sizeable, in line with Campbell and Viceira (2001). In all cases, the investor
benefits from having access to real bonds. The larger the investment horizon and the more conservative
the investor, the larger the utility gains. For instance, a conservative long-term investor gains almost

8%, whereas a moderately risk averse long-term investor gains somewhat more than 6%.

Hence, our findings are largely in line with Campbell and Viceira (2001). However, as we consider
a finite horizon investment problem, we are able to identify the horizon effects. Interestingly, we find
that constrained investors allocate increasingly less wealth to inflation-linked bonds as the investment
horizon increases. Hence, the horizon effects triggered by time-variation in expected inflation tend to
dominate the horizon effects caused by real interest rates. This becomes especially apparent using the

decomposition as outlined in Appendix C.

4.2 Optimal portfolio choice between stocks and bonds

In Tables 9 and 10 we consider the optimal portfolio choice between equities and long-term bonds,
where the long-term bond is either nominal or real. In both cases, the investor has available a nominal
cash account as well. In Table 9, we consider initially an investor who can trade continuously and who
is not subject to borrowing and short-sale constraints. We decompose the optimal portfolio according

to the decomposition proposed in (20).

Insert Table 9

When the investor can choose between stocks and long-term nominal bonds, we find that stocks

constitute a prominent part of the optimal portfolio which is mainly driven by the high equity risk

9Detailed results on the accuracy of the simulation-based approach are available upon request.
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premium. As the investor becomes more conservative, both stocks and long-term nominal bonds are
relatively risky. Therefore, the investor chooses to invest a substantial part in cash, in line with Campbell
and Viceira (2001) and Sangvinatsos and Wachter (2005). Interestingly, our decomposition shows that
long-term nominal bonds are of little help to hedge real interest rate risk. As Figure 1 indicates, long-
term nominal bonds have mainly exposure to expected inflation and only a modest exposure to the real
interest rate.

We identify strong horizon effects for the demand for nominal bonds. As follows from Table 3,
nominal bond returns are negatively correlated with nominal bond risk premia. As a consequence, a
long position in nominal bonds can be used to hedge adverse changes in nominal bond risk premia.
The horizon effects induced by time-variation in the real interest rate are very weak. Remark that the
hedging demands are not necessarily monotone in the relative risk aversion parameter. After all, when
the investor becomes more conservative, hedging becomes more important, which induces an increase
in the hedging portfolio. On the other hand, the speculative demand reduces and therefore hedging
time-variation in risk premia becomes less relevant, which leads to a reduction in the hedging portfolio.

Next, we consider the optimal portfolio when the investor allocates wealth between stocks, 10Y
inflation-linked bonds, and cash. In this case, the myopic demand is characterized by enormous in-
vestments in inflation-linked bonds. Moreover, since inflation-linked bonds are negatively correlated
with both the real interest rate and the risk premium on long-term inflation indexed bond, the hedging
demand for long-term real bonds is positive. As a consequence, the optimal portfolio contains large

investments in inflation-linked bonds, regardless of the investor’s investment horizon or risk preferences.

Table 10 considers the case where the investor can trade annually and is short-sale and borrowing

constrained.

Insert Table 10

When the investor’s asset menu contains stocks, long-term nominal bonds, and cash, we find the
constraints only to be binding for aggressive investors. For the moderately risk averse as well as for the
conservative investor, the fraction invested in equities is close to the exact continuous time solution.
This can be regarded as well as a robustness check of the simulation-based approach.

Next, we do find that long-term conservative investors should have a higher ratio of long-term
nominal bonds to stocks in the optimal portfolio, which is qualitatively in line with common investment
advises as summarized in Canner et al. (1997). Nevertheless, quantitatively, the ratio can be very
different for different investment horizons or risk preferences. We find that the fraction invested in
long-term nominal is reduced as the investor becomes more conservative. This is caused by the fact
that long-term nominal bonds are risky due to their large expected inflation exposure. This effect is
amplified when the investor can only trade in discrete time, which explains why the fraction invested in
the discrete time setting is somewhat lower than in continuous time. Regarding the composition of the
optimal portfolio, we find that conservative investors invest mainly in 10Y nominal bonds for hedging
motives. The investment in stocks turns out to be largely for speculative purposes. As before, we find
that time-variation in the real rate hardly generates hedging demands.

Consider next the optimal asset allocation when the investor can invest in stocks, 10Y inflation-linked

bonds, and cash. Since real bonds do not have the risky expected inflation exposure of nominal bonds,
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more conservative investors invest large fractions in real bonds, reducing the investment in equities and
cash as compared to the asset menu with nominal bonds. For the reported precision, we are not able
to detect any horizon effects. The reason is that investor do not have a strong incentive to hedge real
interest rate risk in the constrained, discrete time setting and none of the assets can be used to hedge
time-variation in expected inflation. This is reflected by the absence of hedging demands. The investor
behaves myopically, provided this asset menu. In line with Munk and Sorensen (2005), we find that the
ratio of inflation-linked bonds to stocks is increasing in the risk aversion of the investor.

Concerning the accuracy of the simulation-based portfolio choice, we find that the standard errors
remain modest, even though the risky stock investment results in a somewhat larger dispersion of the
estimated optimal portfolios. Nevertheless, the largest standard error we experience is 1.03% for the
case where the investor is conservative and the investment horizon equals 30 years.

We conclude this section by remarking that the findings reported resemble the results of Campbell
and Viceira (2001) for a fixed investment horizon. We show that their results largely carry over to
the case where the investor obtains utility of terminal wealth and bond risk premia are time-varying.
We complement their analysis by identifying the horizon effects, allowing for time-variation in bond
risk premia, and providing a convenient decomposition of the total optimal portfolio that turns out to

provide interesting insights in the constrained, discrete time problem.

5 Optimal portfolio choice in the presence of labor income

We consider the investment problem of an investor who receives a certain income stream during the
investment period. We distinguish in this section two cases, namely one where initial wealth is low
relative to the initial income, i.e. Wy = 1, which corresponds to having accumulated twenty percent of
an annual salary in our set-up. Secondly, we consider the case where initial wealth is relatively high,
i.e. wg = 25, which corresponds to an accumulated wealth of five annual incomes. As the role of labor
income is likely to be smaller as initial wealth is relatively larger and since the value of human capital
is lower for shorter investment horizons, we expect the latter case to resemble more closely the results
without labor income, especially for short investment horizons'®.

We consider the same asset menus as in the previous section. Recall that in the benchmark case
we consider, it has been assumed that real labor income risk is idiosyncratic and the factors equal
their unconditional expectation. In Section 6, we infer the robustness of these results to time-variation
in bond risk premia, the amount of labor income uncertainty, and finally correlations between labor

income uncertainty and financial risks.

5.1 Optimal bond demand

In the presence of labor income, Tables 11 and 12 provides the optimal asset allocation between either
3Y and 10Y nominal bonds or between 10Y inflation-linked and 10Y nominal bonds. In both cases, a

nominal money market account is available to the investor as well.

Insert Tables 11 and 12

10This can also be viewed upon as a robustness check of the numerical procedure that we propose.
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In order to understand the results, it is useful to recall the two main additional effects when the
investor is endowed with labor income. First of all, the non-tradable position in labor income is a
mixture of a fixed position in inflation-linked bonds and an idiosyncratic risk component. The former
component increases the real interest rate exposure of the investor, which tends to decrease the desire
for assets with a large real interest rate exposure, like inflation-linked bonds and 3Y nominal bonds.
The second component induces an effective increase in the risk aversion of the investor, which tilts the
optimal portfolio to either 3Y nominal or inflation-linked bonds, as we have seen in Section 4.1. Hence,
the resulting effect remains an empirical question. The second important effect is that when labor
income uncertainty is correlated with traded assets. First of all, these financial assets may be used to
hedge unfavorable income changes, see, for instance, Viceira (2001) and Munk and Sorensen (2005).
Secondly, when labor income risk is correlated with financial risks that are priced, the (implicit) value
of human capital will be affected.

In our baseline specification, we assume that labor income uncertainty is idiosyncratic. In Section
6.2, we assess the effect of the amount of idiosyncratic labor income risk, whereas Section 6.3 infers
the effects of correlations between labor income innovations and either the real interest rate, expected

inflation or equity risk.

Tables 11 and 12 show that the impact of labor income on the optimal nominal bond portfolio is
substantial. When initial wealth is low, see Table 11, which is especially the case for young individuals,
we find that the optimal portfolio is heavily tilted towards long-term nominal bonds. For instance,
a conservative investor with an investment horizon of twenty years invests 70% in 3Y nominal bonds
and 30% in 10Y nominal bonds. In the presence of labor income and low initial wealth, these figures
change to 2% in 3Y nominal bonds and 98% in 10Y nominal bonds. Hence, the implied real interest
rate exposure is the dominant factor here. This triggers a demand for financial risks, other than the
real interest rate. As 10Y nominal bonds are characterized by a larger expected inflation exposure and
a smaller real interest rate exposure, we find that the duration of the optimal nominal bond portfolio
is lengthened due to the presence of labor income. Interestingly, the decomposition of the optimal
portfolio in Table 11 illustrates that for aggressive investors, the shift in the optimal portfolio channels
largely via the myopic demand. For moderately risk averse and conservative investors, for who hedging
time-variation in expected inflation is important, it turns out that the shift in the optimal portfolio
is driven to a large extent by hedging motives as well. In addition, remark that the additivity of the
portfolio components to the total portfolio is (almost) preserved in the presence of labor income.

When initial wealth is relatively high, see Table 12, which is mainly the case for older investors, we

find that the results are close to the case without labor income, especially for short investment horizons.

Next, we enrich the asset menu with 10Y inflation-linked bonds. We then find a dramatic reduction
in the optimal fraction invested in inflation-linked bonds when initial wealth is relatively low, see Table
11. The optimal portfolio allocates large fractions to long-term nominal bonds, contrasting the case
without labor income. For instance, a moderately risk averse investor with an investment horizon of 20
years invests half of its wealth in inflation-linked bonds. Once we account for labor income, all wealth is
invested in long-term nominal bonds. In line with the portfolio problem without labor income, we find

that when the investment horizon increases, the optimal portfolio shifts from long-term inflation-linked
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bonds to long-term nominal bonds. When initial wealth is high, see Table 12, the effects are mainly
visible for an investor with a long investment horizon. This is a result of the fact that the human capital
of the investor is larger in this case. Again, we find that for aggressive investors, the optimal portfolio
changes channel via the myopic demand. For moderately risk averse and conservative investors, hedging

motives turn out to be important as well.

To assess the impact of labor income on the value added as measured in utility terms, Table 7
reports the utility gains of having access to inflation-linked bonds. We find that the value added of
having access to real bonds is reduced by approximately 30-40% in comparison to the case where the
investor is not entitled to a labor income stream. For instance, the utility gains of a risk averse investor
with an investment horizon of 30 years are reduced from 7.68% to 4.34%. When we consider the case
where initial wealth is relatively high, we find that the reduction in utility gains is generally below
10% in order of magnitude. Hence, albeit that the introduction of labor income implies a substantial

reduction in the utility gains of having access to inflation-linked bonds, the utility gains remain sizeable.

In sum, we find that properly accounting for labor income reduces the fraction invested in inflation-
linked bonds and reduces the utility gains that the investor experiences from having access. This effect
is most prominent for long-term conservative investors with relatively low initial wealth. When the
investor’s asset menu is confined to nominal bonds, we find that the duration of the optimal nominal

bond portfolio is lengthened as labor income is incorporated into the investment problem.

5.2 Optimal portfolio choice between stocks and bonds

We consider the asset menu that contains either equities and 10Y nominal bonds or equities and 10Y
inflation-linked bonds. In both cases, a nominal money market account is available to the investor as

well. Tables 13 and 14 provides the optimal portfolios corresponding to these asset menus.
Insert Table 13 and 14

We find that the optimal portfolio is shifted almost fully towards equities when initial wealth is
low, see Table 13. This result has been established for equities and inflation-linked bond by Munk and
Sorensen (2005). We extend their results to the case where the investor’s asset menu contains stocks
and long-term nominal bonds. In case of inflation-linked bonds and equities, the investor is hardly
able to build up any exposure to the expected inflation factor and we find the fraction invested in
stocks to be even larger than when the investor can select among equities and nominal bonds. When
we consider the decomposition of the optimal portfolio into the myopic demand and hedging demands
for time-variation in the real interest rate and expected inflation, we find that the incorporation of
labor income implies that the myopic portfolio constitutes the largest part of the optimal portfolio.
This contrasts the investment problem without labor income, in which the total portfolio contains a
substantial hedging portfolio to offset unfavorable changes in expected inflation. The introduction of
labor income tilts the myopic demand towards equities, thereby reducing the investor’s desire to hedge
time-variation in nominal bond risk premia. Interestingly, where the optimal portfolio contains a large
investment in cash when the investor has only access to equities and nominal bonds in absence of labor

income, once we account for labor income in the investment problem, this is no longer the case. Labor
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income provides a proper hedge against inflation and real interest rate risk and hence the desire to
hedge inflation risk is reduced, which translates into an increased demand for equities.
When initial wealth is relatively high, see Table 14, we find again that the optimal portfolios in

presence of labor income closely match the optimal portfolios in the absence of labor income.

Next, it is important to note that the earlier established result in absence of labor income, i.e. that the
ratio of long-term bonds to stocks is increasing in the investor’s risk aversion, remains valid, regardless
whether the long-term bonds are nominal or real. This implies that the popular recommendations by
investment advisors as summarized by Canner et al. (1997) are qualitatively robust to the introduction
of labor income. Quantitatively, the results can depend strongly on the amount of initial wealth and
labor income, as well as on the state of the economy, as illustrated in the next section. Hence, it is
hard, not to say impossible, to provide proper investment advice without additional knowledge of the
financial situation of the individual, like the amount of initial wealth, outside investments, and the

investment horizon.

The results can be summarized as follows. The inclusion of labor income in the asset allocation
problem tilts the optimal portfolio towards equities, reducing the amount invested in long-term bonds
and cash. Hence, the role of long-term bonds is substantially mitigated in the presence of labor income.
When initial wealth is high and labor income is a less prominent source of funding, the results are in

line with the results in absence of labor income.

6 Financial robustness

6.1 Time-variation in bond risk premia

Our model of the financial markets as presented in Section 2.1 differs from the models of Campbell
and Viceira (2001) and Brennan and Xia (2002) by allowing for time-variation in bond risk premia.
Our model is dissimilar to the model of the financial market of Sangvinatsos and Wachter (2005) to
the extent that we identify the factors to be the real rate and expected inflation, whereas Sangvinatsos
and Wachter (2005) use three latent factors as driving forces of the term structure of interest rates.
In modeling the prices of risk, we carry the separation between the nominal and the real side of the
economy through by allowing the price real interest rate risk to depend only on the real interest rate,
whereas the price of (pure) expected inflation risk depends only on expected inflation. Hence, it is
natural to ask what the impact is of time-variation in the prices of risk on the optimal demand for
long-term bonds and the impact on the value added of inflation-linked bonds.

We consider two different cases. First of all, we impose that the current real interest rate is two (un-
conditional) standard deviations above its unconditional expectation. Next, we consider the case where
the current level of expected inflation is two (unconditional) standard deviations above its unconditional
expectation. When the real interest rate and expected inflation equal their unconditional expectations,
the risk premia on 3Y nominal, 10Y nominal, and 10Y real bonds equal 1.25%, 1.98%, and 0.97%, see
Table 2. When the real interest rate is two standard deviations above its unconditional expectation,
these risk premia change to 2.53%, 1.99%, and 3.01%. Since A ;) is estimated to be negative, the

price of real interest rate risk is decreasing in the real interest rate, which translates into high bond
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risk premia in periods of high real rates. At the same time, since 012 < 0, the inflation risk premium
is decreasing in the real interest rate, which explains why the inflation risk premium on 10Y nominal
bonds is low in this case. When expected inflation is two standard deviations above its unconditional
expectation, the risk premia on these long-term bonds equal 3.10%, 7.86%, and 0.89%, respectively.
Increases in expected inflation hardly change real bond risk premia, but do increase nominal bond risk
premia and hence the inflation risk premium, since A;(; 9 is estimated to be negative.

Table 15 considers the portfolio implications of currently high real interest rates or expected inflation
rates, both for an investor who is not endowed with labor income and for an investor who does receive
labor income and has low initial wealth. We confine ourselves to the case where initial wealth is low,
since the previous section has pointed out that the results for high levels of initial wealth closely resemble
the results without labor income. The asset menu considered contains 3Y nominal and 10Y nominal
bonds.

Insert Table 15

The optimal portfolio is tilted towards 3Y nominal bonds during periods of relatively high real
interest rates. This holds true for both the case with and without labor income and is most pronounced
for aggressive investors. This results from the fact that the real interest rate factor carries a lower
price of risk, whereas in this case the expected inflation factor receives a higher price of risk. As 10Y
nominal bonds have a larger exposure to expected inflation and a smaller exposure to the real interest
rate than 3Y nominal bonds, the investor shortens the duration of the optimal nominal bonds portfolio.
As inflation-linked bonds are perfectly suited to build up real interest rate exposure without incurring
expected inflation exposure, the utility gains of having access to inflation-linked bonds increase as
compared to the benchmark case, which is depicted in Table 7. The effects are most pronounced for
aggressive investors with relatively short investment horizons.

Next, we consider the situation of a financial market that is characterized by high expected inflation
rates. This results in a rise of the inflation risk premium, which makes 3Y nominal and 10Y inflation-
linked bonds less attractive for myopic investors relative to long-term nominal bonds. The reason is that
both 10Y inflation-linked bonds and 3Y nominal bonds have a larger real interest rate and a smaller
expected inflation exposure than 10Y nominal bonds. This makes 10Y nominal bonds relatively more
attractive in this state of the financial market.

The implications for the value added of inflation-linked bonds are depicted in Table 7. In line with
the results on the optimal portfolios, we find the value added on inflation-linked bonds is lower in this
case. Interestingly, the effects of the high real interest rate are most prominently visible for investors
with relatively short investment horizons. When the current expected inflation is high, this has a
dramatic impact on the utility gains for all investment horizons, and especially for aggressive investors.
The difference in horizon effects follows from the fact that expected inflation is far more persistent than
the real interest rate. Hence, a shock to expected inflation has more important consequences for all
investment horizons than a shock to the real interest rate. Consider for instance a conservative investor
with an investment horizon of 20 years. The utility gains in the benchmark case when the investor is
entitled to labor income equal 3.03%. An increase in the real interest rate increases the utility gain to

3.12%. On the other hand, an increase in expected inflation causes a drop in the utility gains to 1.89%.
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However, when we compare an investor who is endowed with a stream of labor income to an investor
who does not receive labor income during the investment period for the different values of the state
variables, the reduction in utility gains for a long-term investor remain substantial. For instance, a
conservative investor with an investment horizon of 20 years experiences a reduction in the utility gains
of having access to inflation linked bonds from 5.12% to 3.12% in case of high real interest rates and
from 2.64% to 1.89% in periods with high expected inflation rates. As such, our results are robust to

time-variation in bond risk premia.

6.2 The impact of labor income uncertainty

The benchmark specification of the labor income that has been used postulates that labor income risk
is idiosyncratic, in line with Cocco et al. (2005). In this section, we assess the impact of a reduction
in the idiosyncratic real labor income uncertainty. It has been shown by, for instance, Letendre and
Smith (2001) that the impact of different degrees of idiosyncratic labor income risk tends to be minor.

Table 15 report the optimal portfolio allocations when we set labor income risk to zero, i.e. o¢ = 0.

As Viceira (2001) illustrates, an increase in idiosyncratic labor income risk induces an effective
increase in the risk aversion of the investor. Hence, when we consider the case where real labor income
risk is absent, the investor tends to select a riskier portfolio. After all, labor income constitutes in this
case a portfolio of inflation-linked bonds and the investor has thus a fixed position in an asset that is
riskless in real terms. Table 15 shows that the optimal portfolio indeed gradually shifts from 3Y nominal
to 10Y nominal bonds. However, the effects are in almost all cases negligible, except for conservative
long-term investors. However, in line with previous research, we find that these effects are rather weak.

This is confirmed as well by the reduction in utility gains when the investor’s income is safer in real
terms, see Table 7. Only long-term conservative investors experience a further reduction in utility gains
in the order of magnitude of ten percent in comparison with an investor who is not endowed with labor

income. We conclude that our results are robust to perturbations of labor income uncertainty.

6.3 The impact of correlation between labor income risk and financial risks

Up to this point, we have assumed that labor income is always fully indexed with inflation and that
innovations in labor income are uncorrelated with real interest rates, expected inflation or equity risk.
As such, labor income constitutes a excellent hedge against inflation. In this section, we are interested in
the effects of correlations of labor income innovations with either the real interest rate, expected inflation
or equity risk. As shown by Viceira (2001) for the case with correlation between equity returns and
labor income innovations and by Munk and Sorensen (2005) for correlations between equity returns, real
interest rates, and labor income innovations, such correlations trigger an additional hedging demand.
For instance, if labor income innovations are positively correlated with real interest rates, a long position
in inflation-linked bonds can serve as a hedge against labor income uncertainty. After all, a negative
shock to the real interest rate is then accompanied by a decrease in labor income, but the hedging
portfolio provides a positive return on inflation-linked bonds.

A second effect that arises when there are correlations between labor income innovations and financial

risks is that the value of human capital changes. Albeit that the value of non-tradable labor income
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is investor specific, as shown by, for instance, Munk and Sorensen (2005), the implicit value is still
dependent on the correlation of labor income innovations with financial risks that are priced. Munk
and Sorensen (2005) show numerically that the implicit value of human capital is decreasing in the
correlation between labor income risk and equity risk. In our case, an increasing correlation between
labor income innovations and either real interest rate or expected inflation is likely to increase the
implicit value of human capital if the factors equal their unconditional expectations. After all, the
corresponding prices of risk, Ag(1) and Ag(s), are estimated to be negative, see Table 1.

Hence, the results in this section will be driven by the interplay between the hedging potential of

the different assets and the implications of a different implicit value of human capital.

Correlations between labor income and financial risks are likely to depend on the industry, profes-
sion, and individual characteristics, like education level, age, and gender. Most empirical research has
been concentrated on the correlation between labor income risk and equity risk. Cocco et al. (2005)
estimate the correlation between permanent labor income shocks and stock correlations between -1%
and 2%. Heaton and Lucas (2000) report estimates between -7% and 14%. Munk and Sorensen (2005)
provide an estimate for this correlation 17%. Finally, Davis and Willen (2000) report estimates be-
tween -25% and 30% for the correlations between a broad equity index and labor income innovations.
Regarding the correlation between labor income risk and industry-specific equity risk, the correlation
ranges between -10% and 40%, depending on the individual’s education level, age, and gender. Munk
and Sorensen (2005) provide an estimate of the correlation between labor income innovations and real
interest rates of 26%.

As correlation estimates are likely to vary across different industries and among individuals with
different characteristics, we determine the optimal portfolios for a range of correlations. We consider a
conservative investor with an investment horizon of 10 years and low initial wealth. Table 11 indicates
that this investor optimally invests 22% in 3Y nominal bonds and 78% in 10Y nominal bonds when the
asset menu is restricted to nominal bonds in absence of any correlation. When inflation-linked bonds
are added to the menu of assets, the investor allocates 30% to 10Y inflation-linked bonds and 70% to
10Y nominal bonds. Concerning the stock-bond mix, the investor allocates 66% to stocks and 34% to
10Y nominal bonds, or 71% to stocks and 29% to 10Y inflation-linked bonds, see Table 13.

We consider correlations that range between -60% and 60% for either the correlation with real

interest rates, expected inflation, or equity risk. The results are presented in Figures 2 and 3.

The upper left graph in Figure 2 depicts the optimal portfolio choice between either 3Y and 10Y
nominal bonds or 10Y nominal and 10Y inflation-linked bonds for different correlations between real
interest rates and labor income innovations. As noted before, an increase in the correlation between
labor income innovations and the real interest rate increases the implicit value of human capital. As
Section 5.1 shows, this causes a shift towards 10Y nominal bonds in both asset menus. On the other
hand, long positions in 3Y nominal and, in particular, 10Y inflation-linked bonds provide a better hedge
against real interest rate risk the larger the correlation. This is clearly perceptible in case inflation-
linked bonds are present in the asset menu. After all, inflation-linked bonds have only exposure to
the real interest rate, which causes inflation-linked bonds to be the prime instrument to hedge labor

income uncertainty. This is reflected in the upper left graph of Figure 2. When the asset menu contains
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only nominal bonds, the optimal portfolio is tilted towards 10Y nominal bonds when the correlation
increases, albeit that the effects are weak. Hence, the value effect dominates in this case. When the
asset menu contains 10Y nominal and 10Y inflation-linked bonds, the optimal portfolio gradually shifts
towards inflation-linked bonds as the correlation increases. Thus, in this case the hedging effect is
dominating.

The latter result suggests that the desire to increase the real interest rate exposure is larger, the
larger the correlation between labor income risk and real interest rates. This implies that the value
added of inflation-linked bonds is increasing in the correlation between labor income and real interest

rate innovations, see the bottom left graph of Figure 2.

Next, in the upper right graph of Figure 2, we consider the effect of correlation between labor income
and expected inflation innovations. Up to now, labor income served as a excellent hedging instrument
against inflation risk for long-term investors. However, it may very well be that for certain industries
labor income is not always fully indexed with inflation, or with a different index. Therefore, we are
interested in the sensitivity of our results for different correlations between labor income innovations
and expected inflation. The two right graphs of Figure 2 present the results for the optimal portfolios
and the value added of inflation-linked bonds for correlations in a range from -60% to 60%.

As the price of expected inflation risk is negative, the value of human capital is increasing with
the correlation between labor income and expected inflation innovations. As mentioned before, this
triggers a shift towards long-term nominal bonds for both asset menus. Moreover, as 10Y nominal
bonds have a larger exposure to expected inflation, this asset also forms the best hedge against labor
income risk. Hence, the value effect and the hedging effect work in the same direction in this case.
This results in the optimal asset allocation as depicted in the upper right graph of Figure 2. For
negative correlations, the optimal portfolio shifts towards 3Y nominal bonds in case of the nominal
asset menu. When inflation-linked bonds are present in the asset menu, the optimal portfolio is tilted
towards real bonds. As correlations increase, we find that the investor wants to increase the exposure
to expected inflation. Hence the optimal portfolio allocates a larger fraction of wealth to 10Y nominal
bonds. Comparing the two top graphs in Figure 2, we find that the effects of correlation between labor
income and expected inflation innovations has a larger impact than the effect of correlation between
labor income and real interest rate innovations on the composition of the optimal portfolio. Finally,
the bottom right graph of Figure 2 depicts the value added of inflation-linked bonds for different values
of the correlation between labor income and expected inflation innovations. In this case, the value and
hedging effect point into the same direction and we find that the value added on inflation-linked bonds

is decreasing in the correlation between labor income and expected inflation innovations.

Figure 3 considers effect of correlations between labor income risk and equity risk on either the
stock-bond mix or the demand for long-term bonds. Since the equity risk premium is estimated to be
positive, the value effect implies that the implicit value of labor income is decreasing in the correlation
between labor income risk and equity risk. Consider first of all the effect on the stock-bond mix. A
lower value of human capital implies a shift towards long-term bonds, see Table 13. On the other hand,
in case of a positive correlation between labor income risk and equity risk, a short position in equities

can be used to hedge labor income risk. As such, the value and hedging effect are aligned. We indeed
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find that the optimal ratio of stocks to bonds is decreasing in the correlation between labor income risk
and equity risk, both for nominal and inflation-linked bonds. It turns out that the optimal portfolio
is rather sensitive to this parameter. Secondly, we consider the effect of correlations on the demand
for long-term bonds. The value effect implies that the optimal portfolio is tilted towards 3Y nominal
bonds or 10Y inflation-linked bonds, depending on the asset menu available to the investor. Table 3
indicates that all bond returns considered in the investor’s asset menu are weakly positively correlated
with equity risk. However, Figure 3 indicates that the correlations between labor income risk and equity

risk hardly have an effect on the optimal demand for long-term bonds.

7 Conclusions

In this paper, we consider the impact of labor income on the optimal demand for long-term bonds.
The effects of labor income on the investment problem are well-understood in simple financial markets
as is the demand for long-term bonds in more realistic financial markets when the investor does not
receive any form of income. However, their interplay is largely unexplored. Since labor income is
often indexed with inflation, riskless labor income can be considered as a particular fixed investment
in inflation-linked bonds. As such, it is likely that incorporation of labor income into the investment
problem has important consequences for the optimal portfolio composition, even when labor income is
not riskless in real terms. Apart from the optimal portfolio composition, accounting for labor income
during the investment period is also likely to alter the conclusions regarding the enormous utility gains
provided by having access to inflation-linked bonds. After all, these conclusions have been reached in

models where the investor is not endowed with any form of income.

In the baseline case we consider, real labor income risk is fully idiosyncratic. We find indeed that
accounting for labor income in the investment problem reduces the prominent role of inflation-linked
bonds considerably. The optimal portfolio is tilted towards long-term nominal bonds and the utility
gains of having access to inflation-linked bonds decline by 30-40% when the investor’s initial wealth
is relatively low. However, the utility gains remain sizeable and inflation-linked remain an important
asset class, especially for conservative long-term investors. When the investor’s asset menu contains
only nominal bonds, we find that the duration of the optimal nominal bond portfolio is lengthened due

to the incorporation of labor income into the investment problem.

Apart from the optimal allocation among nominal and inflation-linked bonds, we consider as well
the optimal allocation to stocks and either nominal or inflation-linked bonds. Accounting for labor
income during the investment period implies that the optimal portfolio is in many cases fully invested
in stocks, especially for investors who are not too risk averse. Importantly, we do find that the ratio
of long-term bonds to stocks is increasing in the investor’s risk aversion, which holds true for both
nominal and inflation-linked bonds. This implies that we are, at least qualitatively, able to rationalize

the investment advises as summarized in Canner et al. (1997).

We perform several robustness checks to verify our results. First of all, our results have been reached
in a model which accommodates time-variation in bond risk premia. We find that the optimal portfolio

allocations as well as the utility gains of having access to inflation-linked bonds are strongly affected

31



by different values of the current bond risk premia. However, the main conclusions that follow from
the comparison of the investment problem with and without labor income remain valid. Therefore,
we conclude that the results are robust to time-variation in bond risk premia. Secondly, we vary the
amount of idiosyncratic real labor income risk. This has hardly an effect on the results and we thus report
that our results are robust to perturbations of idiosyncratic labor income risk. Thirdly, we introduce
correlations between labor income risk and either the real interest rate, expected inflation or equity risk.
We find that the fraction invested in inflation-linked bonds is positively related to correlation between
labor income risk and real interest rate risk. As a consequence, the value added of inflation-linked bonds
is increasing in the correlation between labor income risk and real interest rate risk. However, the effects
are quantitatively modest. This contrasts sharply the implications of introducing correlation between
labor income risk and expected inflation risk. Modifying this correlation may erode or strengthen the
inflation hedging potential of labor income. We find dramatic portfolio implications for small changes
in this correlation. As the correlation between labor income risk and expected inflation is negative,
i.e. a deterioration of labor income risk as a hedge against inflation, we find that the value added of
inflation-linked bonds increases. On the other hand, a positive correlation between labor income risk
and expected inflation, i.e. an improvement of labor income as a hedge against inflation risk, leads to a
decrease in the value added of inflation-linked bonds. However, for the correlations we have considered
(from -60% up to 60%), the value added of inflation-linked bonds remains smaller than the utility gains
in the investment problem where labor income is absent. Hence, we conclude that the composition of
the optimal portfolio is sensitive to the correlation between labor income risk and expected inflation
risk, but the value added of inflation-linked bonds are in all cases reduced.

Concerning the correlation between labor income risk and equity risk, we find that the optimal ratio
of stocks to either nominal or inflation-linked bonds is increasing in this correlation. Quantitatively,
the effects are strong. Finally, we find that this correlation has hardly an effect on the demand for

long-term bonds, when equities are not part of the investor’s asset menu.

The results in this paper have been derived by extending a recently developed simulation-based
approach by Brandt et al. (2005). We illustrate how to account for short-sale and borrowing constraints
in the investment problem. Apart from these extensions, we modify a particular approximation that has
been criticized in the recent literature. We show that our approximation overcomes the shortcomings
mentioned in DeTemple et al. (2003, 2005), delivers a simple optimization problem that can be solved
fast under constraints, and we provide evidence that the accurateness is improved in the same example
used in the original paper of Brandt et al. (2005). Apart from these extensions, we illustrate how the
method can be used to decompose the optimal portfolio into the myopic demand and hedging demands

induced by time-variation in the real rate and expected inflation.

This paper can be extended along different lines. First of all, we abstract from predictability in stocks
returns as in Campbell and Viceira (1999) and Wachter (2002), despite the increasing evidence that
stock returns are to some extent predictable, see for instance Ang and Bekaert (2003), Campbell and
Yogo (2005), and Brennan and Xia (2005). This may provide a more conclusive answer on whether or not
finance theory can rationalize popular investment advises and which variables are important to account

for in the optimal portfolio composition. Secondly, we abstract from parameter uncertainty within this

32



model. It is well-known from, for instance, Barberis (2000) and Wachter and Warusawitharana (2005)
that accounting for parameter uncertainty may have a substantial influence on the optimal portfolio
allocation. Finally, we abstract in this paper from intermediate consumption. If these results are to be
used within a life-cycle perspective, endogenous savings and consumption decisions become relevant.
This may be an important step towards a life-cycle model that incorporates both flexible portfolio

constraints, labor income, and a realistic model for the financial market.
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A Pricing nominal and inflation-linked bonds

We derive the nominal prices of both nominal and inflation-linked bonds in the financial market de-
scribed in Section 2.1, following the results on affine term structure models in, for instance, Duffie and
Kan (1996) and Sangvinatsos and Wachter (2005).

To that extent, we assume that both nominal and inflation-linked bond prices are smooth functions
of time and the term structure factors X. Denote the price of a nominal bond at time ¢ that matures
at time T by P(X¢,t,T). Since nominal bonds are traded assets, we must have that gbfP(Xt, t,T)is a

martingale, where ¢° is given in (10). This implies
1
—PxExX + P+ gtr (ZxPxxZx) — RP — P}SxA =0, (A1)

where the subscripts of P denote partial derivatives with respect to the different arguments. Subse-
quently, Duffie and Kan (1996) have shown that in this case, when the diffusion of the state variables
under the risk neutral measure is affine in the state variables and the instantaneous nominal short rate
is affine in the state variables, we obtain nominal bond prices that are exponentially affine in the state
variables, i.e.,

P(X,t,t+7)=exp (A(T) + B(1)" X). (A.2)

Substituting this expression in (A.1) and matching the coefficients on the constant and the state

variables X, we obtain the following set of ordinary differential equations

A(r) = —B(1)"ExAo+ %B(T)TZXZ}B(T) —OR, (A.3)

%
—
2

|

— (Kx +AIZX) B(7) = (12 = ofgA) (A4)
where 15 denotes a two dimensional vector of ones. We also have the boundary conditions

A(0) =0, B(0) =0. (A.5)
The ODEs can be solved in closed form, see for instance Dai and Singleton (2002). This leads to
(K% +ATSL) " [exp (= (K% + ATSL) 7) = Toxa] (12 — ofyA1) (A.6)

/ Al(s (A7)

where I5.5 denotes the two by two identity matrix.

» W
= =
B 3
S~— N—
[ I

For inflation-linked bonds, the derivation is slightly more involved. In this case, the nominal price
of a real bond is denoted by the product II; P(X,¢,T). The martingale property of quHtPR(Xt, t,T)

leads to
1
~PRKxX + PF + St (SXPE(Sx) — (R— 7+ oL A)PR+ PITSx (on — A) =0, (A.8)

Since we postulate that the instantaneous expected inflation is affine in the state variables, the
price process corresponding to holding a real bond is also affine under the risk-neutral measure and we
conjecture

PR(X,t,t+ 1) =exp (A%(7) + BR(1) T X), (A.9)
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implying that (A.8) boils down to
1
—BE()TKxX - AR(r)—BR(r)T X + 5BR(T)TEXE}BR(T) —r+BE(1)TEx (onp — A) = 0. (A.10)

We again match the coefficients on the constant and the state variables X, which leads to the following

set of ordinary differential equations

A/R(T) = %BR(T)TZXZ;{BR(T) — ((SR — (Sﬂ- =+ O'THAo) + (BR(T)TZX) (O'H — Ao), (All)
B'(r) — (KX +A{S%) BE(r) — e,

where e; denotes the i-th unit vector. Again we can find easily an expression for B%(7), i.e.,

BR(r) = (Ky + A]S%) ™ (exp (= (Kx + AISY) 7) — Toxa) 1. (A.12)

B Continuous time optimal portfolio choice

We first of all summarize the result of Sangvinatsos and Wachter (2005) concerning the optimal portfolio.
Next, we address the decomposition proposed in (20). Sangvinatsos and Wachter (2005) show for any
affine strategy!!

7¢(Cos €1, Xt) = Co(7) + (1 (1) Xy,

where 7 indicates the investor’s investment horizon. The expected utility of following this strategy is

exponentially quadratic in the state variables, i.e.

Vl(’wt,Xt,t,T) = E; <<UiT)1;7> (B.l)

_ (lftf; exp ([;XJ Ty(7) X, + T (1) X: + FI(T)]>
- (?)1: F(X,¢t,T),

with wy; = W, /II; denotes real wealth and 7 = T — t. The parameters I'; and I's satisfy'? the system

of differential equations, where we omit the argument 7 for notational convenience

1
Iy = (T3+47T35)(ExET¢G(1—7) - Kx)+ 1 Ts+T5)ExEx (T5+19) (B.2)
2(1 = 7)(1EA — (1 = 7)¢IEET(y;
1 1
ry' = Ty ((1 ~)BxET¢ + 5 xSk (T +T5) ~ KX) + 51 =N (2 =~ ofy) x (T +T5)

+H(1=7) (a1 + QA+ AT ET¢) (1= EESTC — (1=7)%0f B¢
In addition, we have the boundary equations

I'5(0) = 0, T5(0) = 0. (B.3)

11We confine ourselves to affine strategies since Sangvinatsos and Wachter (2005) have shown that the optimal strategy
belongs to this class of portfolio strategies.
12The expression for I'y is not required for the optimal portfolio and hence we omit it. We refer those interested in the

value function to Sangvinatsos and Wachter (2005).
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In order to derive the optimal portfolio, we solve the Hamilton-Jacobi-Bellman (HJB) equation for
this problem. Therefore, we need the dynamics of real wealth, which follows using Ito’s lemma applied
to (19), i.e.

% = [(re + 24(Co, €1, Xo)TE (A¢ — omr) + agan] dt + (2¢(Co, €1, Xt)TE — of}) dZy. (B.4)

t

The HJB equation reads subsequently as

Vi +wVy, [(r +2TE8(A—om) + 0’1—1[—0'1-[] +
0=max | tw?V,, (278 — o)) (278 —oy])" — VEKx + 3tr (VxxExZ%) |, (B.5)
4w (zTE — O'E) S Vx

where the subscripts of V' denote partial derivatives with respect to the different arguments. Conse-

quently, the optimal portfolio should satisfy the first order condition
WV S (A — om) + Vi 2XT2* — w? Vi Yo + wEE L Vi x = 0. (B.6)

This results in the following expression for the optimal portfolio

= _w“;w (EE) T S (A — o) 4 (BET) T Sop — (ZXT) T ERL J{;X (B.7)
- ! (ZET) T SA, + (1 - 1> (22T Sop + = (ZxT) el (; (Ts+T9) X, + F2>
gl gl gl
= CS + CTXta
with
. 1 1 1 1 1 et
o= > (X)) SAg+ (1 - > (=27 o + > (XT) 7 BN Ty; (B.8)
1
o= % (£X1) T EA, + 5% (£5T) LSS (Ts +T7), (B.9)

where T’y and T'3 solve (B.2). This summarizes the results derived in Sangvinatsos and Wachter (2005).
However, due to the fact that we interpret the factors to be the real interest rate and expected inflation,

we can conveniently decompose the optimal portfolio, i.e.

* —
Ty =

(E27) "' Son + L (2ET) 7' 22 (£)
(ZT) ! Soy (B.10)

(ZET) ' 2o (52).

C Hedging demands in discrete time

In the unconstrained and continuous time investment problem, it is possible to disentangle the myopic
demand and hedging demands induced by time-variation in either the real interest rate and expected
inflation, see the results of Sangvinatsos and Wachter (2005) and in particular (20). This appendix
proposes an extension of this concept to a discrete time setting, possibly in the presence of labor
income.

First, consider the investment problem in absence of labor income, i.e. (28). In this case, the

myopic demand is generally defined as the solution to a single period investment problem. As shown by
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Samuelson (1969), the myopic demand is also the optimal portfolio strategy in a multi-period investment
problem as long as interest rates are constant and asset returns are i.i.d. This implies that the myopic
demand equals the multi-period demand in a world where state variables are, each period, reset to their
initial values. More precisely, using the fact that our state variables follow a Markov process, this world
uses the one-period transition density p(X:1+1 | X¢ = x) instead of p(Xiy1 | Xt = z¢). The myopic
demand can be derived, therefore, also by simulating the state variables for a single period, determining
the asset returns and subsequently resetting the state variables to their initial values. Remark that
it is not possible to assume that the factors remain constant, as this implies that bond returns are
deterministic. This market induces i.i.d. asset returns, which implies that the optimal strategy in the
multi-period problem and the single period problem coincide.

Given the myopic demand, the total hedging demand is defined as the difference between the optimal
multi-period demand and the myopic demand. In order to decompose the total hedging demand into a
hedging demand caused by time-variation in either the real rate or expected inflation, we recall given

the structure of the financial market model in Section 2.1

Xiev1 | | exp(k1) 0 Xt 4| frem
X2 441 0 exp(kz) Xoy €2,1+1
As a consequence, we have, with i = 1,2,

L( X1 | Fr) = L(Xi i1 | Xir),

Ly

where F; denotes the natural filtration generated by (g¢),~,- Next, in order to assess the impact on
portfolio choice of time-variation in the real rate, X1, alone_, we follow the ideas above. More precisely,
reset only X5 to its initial value in each period. This implies that asset returns, conditional on X7,
become i.i.d. Moreover, the term structure of expected inflation rates, defined as By (T, /IT;) for 7 > 0,
is time-invariant. The difference between the solution to this multi-period problem and the single period
problem will be called the hedging demand induced by time-variation in the real interest rate. Along
similar lines, we can reset X5 to its initial value. This implies that asset returns, conditional on X,
become i.i.d. In that case, the real term structure becomes time-invariant. We refer to the hedging
demand arising in this investment problem as the hedging demand induced by time-variation in expected
inflation.

Decompositions of the total portfolio into myopic and hedging demands have generally two short-
comings. First of all, they account only for single period correlation between the real interest rate and
expected inflation. If multi-period correlations between real interest rates and expected inflation rates
have strong implications for the hedging demands, the two components of the hedging demand will not
sum to the total hedging demand. Secondly, as we consider constrained portfolio problems, short-sale
and borrowing constraints may hamper additivity of the different components of the hedging portfolio
to sum to the total hedging portfolio. However, in our applications it turns out that these shortcomings
hardly constitute a problem from an empirical perspective.

Next, we consider the investment problem in the presence of labor income, i.e. (32). In this invest-
ment problem, the conventional definition of hedging demands, namely the optimal strategy that solves
the single period problem, cannot be used. After all, an investor with multiple periods ahead has a

different entitlement to labor income than an individual that faces a single period investment problem.
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However, in absence of labor income, resetting the state variables results in the same optimal portfolio,
independent of the investment horizon, as the single period (myopic) portfolio. Therefore, we extend
the concept to the case with labor income and reset the state variables after a single period simulation
in order to determine the myopic demand in the presence of labor income. This enables a decompo-
sition of the optimal portfolio choice into the myopic and total hedging demand. As before, the total
hedging demand can be decomposed into a hedging demand induced by time-variation in the real rate
and time-variation in expected inflation rates. It is noteworthy that our empirical results indicate that
the difference between the total demand and the sum of the myopic demand and the different hedge

demands as constructed, as discussed before, is negligible.

D Estimation procedure

Our estimation procedure in closely related to Sangvinatsos and Wachter (2005). The main differ-
ence is that we allow all yields to be measured with error, following De Jong (2000), Brennan and
Xia (2002), and Campbell and Viceira (2001). However, we assume that the measurement errors are
independent, both sequentionally and cross-sectionally. The continuous time equations underlying the

financial market in Section 2.1 can be written as

Xy 0251 —-Kx O2x2 Xy Yx
d | logIl; = O — %O'THO'H + e 01x2 log IT; dt+ | o | dZ:

log S; or+ng — %agag (LQT - UEAl) 01x2 log Sy 0%
= (O + 61Yy)dt + XydZ;. (D.1)

with
X
Y= | logll; |. (D.2)
log S

As Y, follow a standard multivariate multivariate Ornstein-Uhlenbeck process, we may write the exact

discretization (see, e.g., Bergstrom (1984) and Sangvinatsos and Wachter (2005))
Vipn = p™M +TMWY, + g4 4p, (D.3)

where €441 i N (04X1, E(h)) for appropriate u(h)7 F(h), and 2™ which we derive below. To derive the
discrete time parameters, we consider the eigenvalue decomposition'® ©; = UDU~!. The parameters

in the VAR(1) - model relate to the structural parameters via

r™ = exp (©1h) = Uexp (Dh) Ut (D.4)

(h) _

t+h
I = / exp (O1[t+ h —s])ds| Og
¢

= UFU 'O,

I3Note that, since Kx is a diagonal matrix, the eigenvalues of ©1 are given by w1, k2, and 0 (with multiplicity two).
Recall that a square matrix is diagonalizable if and only if the dimension of the eigenspace of every eigenvalue equals the

multiplicity of the eigenvalue. This condition is satisfied for ©1.
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where F' is a diagonal matrix with elements F;; = ha (Dy;h), with

alz) = exp(x) — 17

X

and «(0) = 1. The derivation of £ is a bit more involved. We have

t+h
s = / exp (01 [t 4+ — s]) Sy T exp (01 [t + h — s]) ds (D.5)
t
= UVUT,

where V is a matrix with elements

Vij = /H_hexp(D [t—‘y—h—S])U_leZ; (U_l)TeXp(D [t+h—s])ds (D.6)

L™ i

- t+h
_ 1N T
= |[U'Syxy (U L/ exp ([Dy; + Dj;| [t +h — s]) ds
L , t

= [vtnysy (U‘l)T] ha ([Dii + Djj h) -

ij

Using data on six yields, stock returns, and inflation, we estimate the model using the Kalman filter.
The transition equation is given by (D.3). We assume that all yields are measured with measurement
error, in line with De Jong (2000), Brennan and Xia (2002), and Campbell and Viceira (2001). On
the other hand, Duffee (2002) and Sangvinatsos and Wachter (2005) select certain maturities and fit
these exactly, which is tantamount to identifying the factors. In line with all these papers'*, we assume
the measurement to be Gaussian and independent of the innovations in the transition equation. The
likelihood can subsequently be constructed using the error-prediction decomposition, see for instance

Harvey (1989).

E Simulation-based portfolio choice

We extend the simulation-based approach to portfolio choice as it has been introduced by Brandt et
al. (2005) along two lines. First of all, we incorporate short-sale and borrowing constraints. Secondly,
we show how to account for the income stream. Apart from both extensions, we address the criticism
raised by DeTemple et al. (2003, 2005).

Consider first of all an investor whose portfolio choice is subject to short-sale and borrowing con-

straints. We abstract initially from labor income. The problem is then given by

_ 1 1—y
bl T i) = s B (7 (o)), )
with w; indicating real wealth, subject to
Wiyl = Wy (:E:rfﬂ + Tif+1) , (E.2)

MDe Jong (2000) is a notable exception to the extent that he allows for cross-sectional correlation between the mea-

surement errors.
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with
K={z|z>0z"t <1} (E.3)

The principle of dynamic programming is used to determine the optimal portfolio strategy. Starting

at time T — 1, we first solve
1 T f 1=y
r;lea’%(ET,l (1’Y (:B e+ T'T) > ) (E.4)

where the homogeneity of the power utility index is exploited. The main complication is that this
conditional expectation cannot be calculated analytically. In line with Brandt et al. (2005) and Longstaff
and Schwartz (2001), we approximate the conditional expectation via a projection on a set of basis

functions in the state variables, i.e.

Er_4 <1i7 (mTr% + 7‘{«) 1_’Y> ~ C(x) T f(Xp_1), (E.5)

where ((z) denote the projection coefficients, which are functions of the portfolio choice, x. In order to
estimate the projection coefficients, {(x), we simulate M paths of both state variables and asset returns
on the basis of the discretized model. We indicate the paths by (wi,...,wpr). Next, the projection
coefficients are estimated via a cross-sectional regression across all paths, which results in the following

estimator

M -1 M
) = (Zf<XT_1<wi>>f<XT_1<wi>>T> (1_17_Zf<XT_1<wi>> (a7 ) + ) )
- - (E.6)
where f(X7_1(w;)) is a column vector containing the values of the basis functions, evaluated at the
state variables in branch w;. Regarding the choice of the basis functions, details are provided at the

end of this section.

Next, we determine the optimal portfolio in every branch w;

rp_q(wi) = argglea]gé(fﬁ)Tf (Xr-1(wi)) (E.7)

i=1,...,M. It is important to note that when we determine the optimal portfolio choice in a certain
branch, say w;, then for every function evaluation for a different choice of z, the projection coefficients
need to be recalculated, which requires a cross-sectional regression. As M is typically large, this
procedure turns out to be extremely time-consuming.

To accelerate the latter step, Brandt et al. (2005) suggest to determine a fourth order expansion of
the utility index and solve the optimal portfolio from this expansion. Solving this fourth order expansion
is done using an iterative procedure that is initiated in the solution to the second order expansion'®.
The solution based on a second order expansion can be determined in closed-form. The main advantage

of this approximation is that the optimization can be done simultaneously over all paths, which makes

15More precisely, Brandt et al. (2005) propose to approximate

E¢ (u (ITRt+1 + R{)) ~ u(e)+u (c)Ee (xTRH_l —+ R{) —+ %u" (c) Bt (xTRH_l + R{)Z
1

1 T 3 T 4
+gu/// (C) E: <x Riy1 + R{) + ﬂu//// (C) o (I Reg1 + R{) )
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the problem computationally feasible. As remarked and illustrated in DeTemple et al. (2003, 2005),
this recursion is not guaranteed to converge. We propose an alternative approximation that has three
advantages. First of all, we avoid the iterative procedure. Secondly, the resulting optimization problem
has a quadratic form, which can therefore be solved fast, even under constraints. Thirdly, we assess the
accuracy of our approximation in an example proposed by Brandt et al. (2005) . It turns out that our
approximation is in all cases at least as accurate as the approximation of Brandt et al. (2005), while

more accurate for low rebalancing frequencies.

We propose to approximate the projection coefficients in (E.5) in terms of the portfolio choice, x.

We project the projection coefficients on a second set of basis function in the portfolio weights, i.e.
((z) =T h(z), (E.8)

where h(-) represents a set of basis functions in the portfolio choices. In applying this approximation,
the first step is to take a set of Ny test portfolios, (), .., ™) and determine the projection coef-
ficients, é(x(l)) ,..,&(x(Nl)). Next, we estimate the projection coefficients W using OLS. The basis
functions have been chosen to be complete polynomials up to the second order, see Judd (1998) for
further details. The main advantage is that this results in a quadratic optimization problem, which
can be solved easily under constraints. However, when the risk aversion becomes extremely high, like
v > 10, this approximation may require a larger number of basis functions. We solve this problem
by considering in these cases a local rather than a global approximation. This means that we use the
test portfolios (M, ...,z(™M) and determine the value function for these portfolios. Subsequently, we
select the k portfolios that maximize the expected utility, with £ < N7, and estimate the parameter-
ization for these projection coefficients. The intuition is that the curvature is globally too high to be
properly approximated by a small number of basis functions. Locally, on the other hand, a quadratic
approximation turns out to be sufficient.

In order to assess the accuracy of our approximation, we use exactly the same example as provided
in Brandt et al. (2005), Table 1. We consider a single period problem in which asset returns are log-
normally distributed and the investor allocates wealth between stocks and a money market account,
which earns a fixed rate of interest. Table D.1 summarizes the results for different investment horizons
and thus trading frequencies. The problem is solved exactly using grid search and approximately using

the second and fourth order approximation of Brandt et al. (2005), as well as our global and local

Then the first order condition reads as
2
_1| W (c)E <Rt+1 + Rf) + %u’” (c) B¢ ((ZCTRt+1 + R{) Rt+1)

b em (e )R] e (o7 + 50)

)

which is used in an iterative procedure. The starting point originates from the second order approximation

e = - [u” (¢) By <<Rt+1 + R{) RIH)] - [u' (¢) Ey (Rtﬂ + R[)] .

As pointed out by DeTemple et al. (2003, 2005), this scheme is not guaranteed to converge.
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approximation.

Exact  2nd order 4th order Global approximation Local approximation

Monthly

vy=5 0.7567 0.7310 0.7591 0.7506 0.7512
v =10 0.3777 0.3655 0.3797 0.3756 0.3756
v =20 0.1888 0.1828 0.1898 0.2055 0.1880
Quarterly

Yy=25 0.7439 0.6623 0.7299 0.7292 0.7307
v =10 0.3725 0.3312 0.3662 0.3656 0.3655
v =20 0.1849 0.1656 0.1833 0.2336 0.1833
Semi-annually

¥=25 0.8051 0.6456 0.7571 0.7879 0.7937
v =10 0.4037 0.3228 0.3842 0.3964 0.3969
v =20 0.2018 0.1614 0.1933 0.2679 0.1999
Annually

vy=5 1.1273 0.7113 0.8731 1.0514 1.1199
v =10 0.5737 0.3557 0.4561 0.5639 0.5627
v =20 0.2848 0.1778 0.2332 0.3107 0.2820

Table D.1: Comparison of four different solution approximations to the exact solution. The problem considered is a
single period investment problem in which wealth is allocated to stocks and a money market account which earns a
fixed rate of interest of six percent. Stock returns are i.i.d. distributed according to the means and volatilities that
are mentioned in Brandt et al. (2005). The first column provides the exact solution, which is determined using grid
search methods. The second and third columns present the results based on the second and fourth order approximations
proposed in Brandt et al. (2005). The fourth column present our global approximation method, using parameterized
regression coefficients. The fifth column presents the results for the local approximation, using parameterized regression
coefficients. The approximations are determined for different investment horizons (monthly, quarterly, semi-annually, and

annually) and risk preferences (7).

The numbers reported for the first three columns are close to the results reported in Brandt et
al. (2005). Their fourth order approximation works well for monthly and quarterly rebalancing frequen-
cies. However, on a semi-annual and in particular on an annual investment horizon, their approximation
tends to be inaccurate, especially for modest levels of risk aversion. Our approximation tends to per-
form properly in all cases, and especially the local approximation is in all cases within one percent of
the exact solution. In terms of calculation time, the time required to solve the problem for 100 batches
of 10,000 simulations, is approximately one hour for an investment horizon of 20 years for our approx-
imation'¢. In absence of labor income, the calculation time is approximately ten minutes. However,
the approach is ideally suited for parallel computing and the computation time is therefore less of a
problem. In terms of accuracy, there are several ways to enhance the results. We have experimented
with both antithetic variables and control variates in a regression model. Especially the latter variance
reduction technique turns out to be useful as we can easily calculate moments of asset returns and state

variables analytically.

16The computer used is equipped with a 3.06MHz processor and 512MB of RAM.
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Hence, we use this modified approximation to approximate the conditional expectations. In that

case, the optimization in every branch reduces to
oy (wi) = arg max (@) " f (X1 (@), (E.9)
i =1,..., M, which is quadratic when we confine ourselves to complete polynomials of the second order.

Once the optimal portfolio at time T'— 1 has been determined, we proceed backwards. Since we have
determined the optimal portfolio in every branch at time T — 1, the portfolio problem at time T — 2
reduces to a single period problem, and the same comments apply. Repeating these steps up to time ¢

provides the optimal portfolio strategy. As a by-product, we can estimate the expected utility via

A}i (12 i), (E.10)

where w-(w;) has been determined using the optimal portfolio strategy. In sum, the four approxima-
tions applied here are respectively replacing conditional expectations by a projection on a finite set of
basis functions, estimating the projection coefficients via cross-sectional regressions, parameterizing the
projection coefficients in the portfolio weights, and finally estimating this parameterization using test
portfolios. The test portfolios can be chosen on a course grid of the set of feasible portfolio choices. We
selected portfolios on a grid with step sizes of 10%. Any further refinement of this grid does not alter

the results for the reported precision.

So far we restricted attention to the case without an income stream. A similar approach can be

used when the investor is entitled to labor income. The problem then reads as

1 _
Va(t, T, Xt,wt,Y;) = max By ( (wT)l 7) , (E.11)
(z)1- ek L—vy
subject to
Wie = ws (zjr§+1 + T{H) Yo, (E.12)

with K as in (E.3).
Starting again at time T'— 1 and exploiting the homogeneity of the power utility index, the problem

simplifies to

1 _ _
g (M (@r)"" exp(g +&7)" ) (E.13)
= max[E L 0 Tre ! —-g—¢&p)+1 o ( )1_‘Y
= maxBy 11—~ wr—1 (x v 41 ) exp(—g — &) + exp(g +&r )

The second equation illustrates the main problem once we account for the labor income stream. At
time 7" — 1, wy_1 depends on the portfolio decisions that have been made before. As a consequence,
this state variable cannot be simulated. As suggested in Brandt et al. (2005), we construct a grid

for real normalized wealth, where the grid points are indicated by wé}ll, ,w(TAEl) 17, Subsequently,

1"The grid points have been selected time-dependently to ensure that the grid is more dispersed as the investment
horizon increases. The grid points have been selected as the quantiles of simulated wealth under risky portfolios, so for
instance 100% stocks.
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the same procedure applies as in the case without labor income. The sole complication that arises
is that when we solve for the optimal portfolio at a certain grid point of normalized real wealth, say
wtj ), then the value of normalized real wealth in consecutive time periods will probably not lie on the
grid. In life-cycle models, it is common practice to interpolate the value functions at these points,
see for instance Campbell and Cocco (2003), Cocco et al. (2005), and Woolley (2004). As remarked
by Cochrane (1989), the utility cost of suboptimal strategies have only a second order effect on the
indirect utility function. Therefore, we choose to interpolate the optimal portfolio strategy rather than
the indirect utility function, in line with the suggestion in Brandt et al. (2005). We interpolate the
optimal policy using polynomials in inverse wealth, thereby ensuring that the optimal portfolio becomes

independent of wealth as wealth tends to infinity.

Regarding the basis functions in the state variables, we use second-order polynomials, including
cross-terms. For parameterizing the projection coefficients in the portfolio weights, second-order com-

plete polynomials have been used, see for instance Judd (1998).

47



F Tables and figures

Parameter Estimate (Standard error)

Expected inflation: ¢ = 6 + Xot

On 3.65% (1.30%)
Nominal interest rate: Ry = dr + (¢5 — o A1) Xt
OR 5.43% (1.36%)
Process real interest rate and expected inflation: dX; = —K Xdt + X xdZ,
K1 1.2271 (0.2023)
K2 0.1564 (0.0679)
o1 2.00% (0.08%)
012 -0.19% (0.04%)
o2 1.26% (0.04%)
Realized inflation process: dIl;/Il; = m¢dt + o dZ;
o) 0.16% (0.05%)
on(2) 0.16% (0.05%)
on() 1.08% (0.03%)
Stock return process: dS:/St = (R: + ng)dt + o5dZ:
Ng 5.36% (2.63%)
os(1) -1.57% (0.58%)
05(2) -2.73% (0.70%)
05(3) -1.711% (0.67%)
Ts(4) 14.89% (0.32%)
Prices of risk: Ay = Ag + A1 X4
Aoqr) -0.3445 (0.1118)
Aoz -0.1687 (0.0345)
A1 -28.3879  (11.1977)
Ai2,2) -11.2458  (5.3363)
Standard errors of yield measurement error: oy, ..., Oug
Oup 0.46% (0.02%)
O 0.22% (0.01%)
Ous 0.05% (0.01%)
Ouy 0.11% (0.00%)
Ous 0.03% (0.02%)
Oug 0.19% (0.01%)

Table 1: Estimation results for the financial market in Section 2.1 The two factor model described in
Section 2.1 is estimated using monthly data on 6 bond yields, inflation, and stock returns over the period from

January 1959 up to May 2002. The standard errors are determined using the outer product gradient estimator.
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Maturity Estimate

Maturity Estimate

Risk premium nominal bonds: B(7)"Xx Ao

Risk premium real bonds: (B®(7)"Sx + a11) Ao

1Y 0.64% 1Y 0.42%
3Y 1.25% 3Y 0.82%
10Y 1.98% 10Y 0.97%
Volatility nominal bonds: /B(7)TXxX% B(7) Volatility real bonds: \/(BR(T)T Sx + o) (BR(T)TEx + UE)T
1Y 1.76% 1Y 1.70%
3Y 4.11% 3Y 2.70%
10Y 11.711% 10Y 3.08%
Inflation risk premium: [B(T)TZX - BR(T)TEX - UE] Ao

1Y 22bp

3Y 43bp

10Y 101bp

Table 2: Risk premia and volatilities Implied risk premia on both nominal and real bonds using the

estimation results in Table 1 when the factors equal their unconditional expectation. In addition, we provide

the corresponding volatilities of bond returns and the inflation risk premium for these maturities. The inflation

risk premium has been defined as the difference between the risk premia on nominal and real bonds with a

particular maturity.
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Panel A
Stocks N1Y N3Y N10Y R1Y R3Y R10Y
Stocks 1.0000

N1Y 0.1988  1.0000

N3Y 0.2052  0.9470  1.0000

N10Y 0.1785  0.7107  0.8991  1.0000

R1Y -0.0087  0.4743  0.2527  -0.0929  1.0000

R3Y 0.0384  0.6017  0.3478 -0.0584 0.9616  1.0000

R10Y 0.0475  0.6217  0.3637 -0.0509 0.9450 0.9985 1.0000

Panel B
Stocks N3Y N10Y R10Y

p3-R | -0.1475 -0.6872 -0.2909 -0.8892
tip-R | -0.1643 -0.8458 -0.9950  0.1310
uﬁ)—R -0.1023  -0.4534 -0.0080 -0.9404

Table 3: Correlations between asset returns and risk premia Panel A reports the implied instanta-
neous correlations between stock returns and returns on both nominal and real bond returns with maturities
1Y, 3Y, and 10Y on the basis of the parameter estimates that have been reported in Table 1. The abbre-
viation N7Y refers to a nominal bond with 7 years to maturity. Similarly, R7Y refers to a real bond with
T years to maturity. Panel B provides the implied instantaneous correlation between the risk premia on 3Y
nominal bonds, (u3 — R), 10Y nominal bonds, (u;, — R), and 10Y real bonds, (uf — R) and the traded as-
sets. For instance, the correlation between stocks and the risk premium on 7Y nominal bonds is given by

—1
B(r) SxAiZxos [\/B(T)TZXA@XE;A{Z}(B(T)\/UTSUS] .

‘Stock returns Inflation N3M N1Y N5Y N10Y

Average

Data 0.83% 0.35% 5.93% 6.38% 6.97% 7.17%
Model 0.80% 0.30% 5.53% 5.77% 6.38%  6.58%
Volatility

Data 4.41% 0.33% 2.69% 2.70% 249% 2.44%
Model 4.42% 0.38% 2.46% 2.36% 2.19% 2.11%

Table 4: Comparison of sample moments with model implied moments Comparison of the means
and volatilities of stock returns, inflation, and nominal yields with maturities 3M, 1Y, 5Y, and 10Y that follow
from the data and the model, where the parameter estimates used are reported in Table 1. The abbreviation
N7Y refers to a nominal bond with 7 years to maturity. N3M refers to a nominal bond with three months to

maturity.
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