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Abstract

This paper introduces a new way to measure competition based on firms’ profits.
Within a general model, we derive conditions under which this measure is monotone in
competition, where competition can be intensified both through a fall in entry barriers
and through more aggressive interaction between players. The measure is shown to be
more robust theoretically than the price cost margin. This allows for an empirical test of
the problems associated with the price cost margin as a measure of competition.
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1. Introduction

A question often asked in both economic policy and research is how the intensity of competition

evolves over time in a certain sector. To illustrate, a competition authority may want to monitor

an industry so that it can intervene when competition slackens. Alternatively, there may have

been a policy change in an industry (e.g. abolishing a minimum price or breaking up a large

incumbent firm) with the goal of intensifying competition in the industry. Afterwards policy

makers want to check whether the policy change had the desired effect. In economic research,

there are empirical papers trying to identify the effect of competition on firms’ efficiency (Nickell
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(1996)), on firms’ innovative activity (Aghion et. al. (2002) and references therein) and the

effects of competition on wage levels (Nickell (1999) for an overview) and wage inequality

(Guadalupe (2003)). The question is how should competition be measured for these purposes.

The price cost margin (PCM) is widely used as a measure of competition for these pur-

poses. However, the theoretical foundations of PCM as a competition measure are not very

robust. Theoretical papers like Amir (2002), Bulow and Klemperer (1999), Rosentahl (1980)

and Stiglitz (1989) present models where more intense competition leads to higher PCM in-

stead of lower margins. We believe that there are two reasons why PCM is still such a popular

empirical measure of competition. First, we do not know how important these theoretical coun-

terexamples are in practice. Is it the case that in 20% of an economy’s industries the structure

is such that more competition would lead to higher PCM or is this only the case in 1% of the

industries? In the former case there would be big problems for the empirical papers mentioned

above which use PCM as a measure of competition. In the latter case, the theoretical coun-

terexamples do not seem to pose acute problems for empirical research. As long as there is no

evidence that the theoretical counterexamples are important empirically, one would expect that

PCM remains a popular competition measure. The second reason for the popularity of PCM

is that the data needed to get a reasonable estimate of PCM is available in most datasets.1

The idea of the current paper is to develop a competition measure that is both theoretically

robust and does not pose more stringent data requirements than PCM. This new measure can

then be estimated in the same datasets as where PCM is estimated. This allows a comparison

between the new measure and PCM for a number of industries over time together. If in 99% of

the industries the two measures indicate the same development in intensity of competition over

time, this would indicate that the theoretical counterexamples cited above are not particularly

1Sometimes PCM is defended as measure of competition with reference to its interpretation as a welfare
measure (prices closer to marginal costs lead to higher welfare). However, as shown by Amir (2002) there is, in
general, no simple relation between PCM and welfare. The same is true for the measure introduced here: there
is no simple relation with welfare.
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relevant in practice. However, if in 20% of the cases the two measures diverged then one should

be more careful in using PCM as a measure of competition in empirical research and policy

analysis.

The measure we introduce in this paper is called relative profit differences (RPD). It is

defined as follows. Let π (n) denote the variable profit level of a firm with efficiency level

n ∈ R+ (more details follow below on how variable profits and efficiency are defined). Consider

three firms with different efficiency levels, n′′ > n′ > n, and calculate the following variable

π(n′′)−π(n)
π(n′)−π(n)

. Then more intense competition (brought about by either lower entry costs or more

aggressive interaction among existing firms) raises this variable for a broad set of models. More

precisely, in any model where a rise in competition reallocates output from less efficient to more

efficient firms it is the case that more intense competition raises π(n′′)−π(n)
π(n′)−π(n)

. Since this output

reallocation effect is a general feature of more intense competition, RPD is a rather robust

measure of competition from a theoretical point of view. Moreover, we show that the output

reallocation effect is a natural necessary condition for PCM to be decreasing in intensity of

competition, but it is not sufficient.

The intuition for RPD is related to the relative profits measure (π (n′) /π (n) is increasing in

intensity of competition for n′ > n) introduced by Boone (2000). The intuition for the relative

profits measure is that in a more competitive industry, firms are punished more harshly for

being inefficient. However, Boone (2000) analyzes the relative profits measure in a number

of specific examples, not in a general framework as we use here. Next, as explained below,

it is harder to derive sufficient conditions for the relative profits measure to be monotone in

intensity of competition because of a level effect. This level effect is removed by working with

profit differences instead of profit levels.

The intuition why RPD is increasing in intensity of competition can be stated as follows. As

the industry becomes more competitive, the most efficient firm n′′ gains more relative to a less
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efficient firm n than firm n′ does (with n′′ > n′ > n). Think, for instance, of a homogenous good

market where firms produce with constant marginal costs. If these firms compete in quantities

(Cournot), one would find (if n is close enough to n′′) that π (n′′) > π (n′) > π (n) > 0.

If competition is intensified by a switch to Bertrand competition, the profit levels satisfy:

π (n′′) > π (n′) = π (n) = 0. Hence the rise in competition raises π (n′′) − π (n) relative to

π (n′)− π (n).

Recent papers measuring PCM include the following. First, Graddy (1995), Genesove and

Mullin (1998) and Wolfram (1999) estimate the elasticity adjusted PCM. This yields the con-

duct (or conjectural variation) parameter, which can be interpreted as a measure of competition.

This approach has been criticised by Corts (1999) who shows that, in general, efficient collusion

cannot be distinguished from Cournot competition using the elasticity adjusted PCM. Second,

Berry, Levinsohn and Pakes (1995) and Goldberg (1995) estimate both the demand and cost

side of the automobile market. Their models can be used to simulate the effects of trade or

merger policies on the industry. Using their estimates, one can also derive firms’ PCMs. Nevo

(2001) uses the same methods to estimate PCMs for firms in the ready-to-eat cereal industry.

He does this under three different models of firm conduct and then compares the outcomes with

(crude) direct observations of PCM. In this way he is able to identify the conduct model that

explains best the observed values of PCM. As we argue below, in these papers one would also

have been able to derive RPD, which has a more robust relation with intensity of competition.

This paper is organized as follows. The next section introduces the model and the way

that more intense competition is identified in this general set up using the (generalized) output

reallocation effect. Section 3 shows that RPD is increasing in competition and discusses which

type of data are needed to estimate RPD in practice. Section 4 compares RPD and PCM

and argues that both require similar data to be estimated. Further, we show that whereas

the output reallocation effect is sufficient for RPD to be monotone in competition, it is only
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a necessary condition for PCM to be decreasing in competition, which explains the theoretical

counterexamples. Finally, section 5 concludes. The proofs of results can be found in the

appendix.

2. The model

The aim of this section is to introduce a fairly general model of firms competing in a market.

To keep things general we do not impose either Bertrand or Cournot competition. We simply

assume that each firm n chooses a vector of strategic variables an ∈ RK . This choice leads

to output vector q (an, Q, θ) ∈ RL
+ for firm n where Q aggregates actions chosen by the firms

in the industry that affect firm n’s output (see below) and θ is a parameter that affects the

aggressiveness with which firms interact in the market. For instance, θ could be related to the

substitution elasticity between goods from different producers or it could denote whether firms

play Cournot or Bertrand competition. Further, the choices of the strategic variables also lead

to a vector of prices p (an, P, θ) ∈ RL
+ for firm n’s products, where P aggregates actions chosen

by the firms in the industry that affect n’s prices. We assume that Q and P take the following

form

Q =

∫
ζ (an) dn

P =

∫
ξ (an) dn

for some functions ζ (.) and ξ (.) where we integrate over all firms in the industry.2 To illustrate,

consider the case where demand is derived from a CES utility function
(∫

xθ
ndn

) 1
θ where each

firm n produces one product and consumers spend an amount Y in this industry. Then firm n

faces demand of the form xn = p
−1
1−θ
n

Y
∫

p
θ

1−θ
j dj

. In the notation used here, we get p (an, P, θ) = pn

and q (an, Q, θ) = p
−1
1−θ
n

Y
Q

where Q =
∫

p
θ

1−θ

j dj.

2We allow ζ (.) and ξ (.) to be vectors. In that case the integration is done for each vector element separately
to obtain the vectors Q and P .
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Finally, we specify the costs of production for firm n as C (q (an, Q, θ) , n). We say that

n ∈ R+ measures a firm’s efficiency level because of the following assumption.

Assumption 1: For a given output vector q ∈ RL
+ we assume that

∂C (q, n)

∂ql

> 0

∂C (q, n)

∂n
≤ 0

∂
(

∂C(q,n)
∂ql

)

∂n
≤ 0

for each l ∈ {1, 2, ..., L}, where the last inequality is strict for at least one combination of q and

l.

That is, higher production levels lead to higher costs. Further, higher n firms produce the

same output vector q with (weakly) lower costs C and (weakly) lower marginal costs for each

product l. We assume that the efficiency distribution in the industry is given. In particular,

we assume that n has an atomless distribution on the interval [n0, n1] with density function

f (.) and distribution function F (.). Although this distribution is exogenously given, the firms

that are active in equilibrium is endogenously determined, as discussed below. The essential

assumption here is that efficiency can be captured by a one dimensional variable n. This

assumption is not innocuous and will be discussed further below.

Using this set up, consider the following two stage game. In the first stage, firms decide

simultaneously and independently whether or not to enter. Let’s normalize actions an in such

a way that a firm n that does not enter has an = 0 (while firms that do enter have an 6= 0). If a

firm of type n enters it pays an entry cost γ (n) , where γ is a continuous function of efficiency n.

In the second stage firms know which firms entered in the first stage and all firms that entered

choose simultaneously and independently their action vectors an.3 We define an equilibrium of

this game as follows.

3To simplify notation, we assume that all firms with efficiency n choose the same action an in equilibrium.
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Definition 1 The set of actions {ân}n∈[n0,n1] denotes a pure strategy equilibrium if the following

conditions are satisfied

max
an

{
p
(
an, P̂ , θ

)T

q
(
an, Q̂, θ

)
− C

(
q
(
an, Q̂, θ

)
, n

)}
− γ (n) < 0 implies ân = 0

where p (.)T denotes the transpose of the column vector p (.) and

{
p
(
ân, P̂ , θ

)T

q
(
ân, Q̂, θ

)
− C

(
q
(
ân, Q̂, θ

)
, n

)}
− γ (n) ≥ 0 for ân 6= 0

further

ân = arg max
an

{
p
(
an, P̂ , θ

)T

q
(
an, Q̂, θ

)
− C

(
q
(
an, Q̂, θ

)
, n

)}

with

Q̂ =

∫ n1

n0

ζ (ân) f (n) dn

P̂ =

∫ n1

n0

ξ (ân) f (n) dn

Thus firm n stays out of the market if it cannot recoup its entry cost γ(n). Firms that enter

choose action an to maximize their (after entry) profits. In other words, we consider a subgame

perfect equilibrium here. Finally, we require the equilibrium to be consistent in the sense that

the aggregate variables Q̂ and P̂ follow from the equilibrium actions ân.

The following lemma derives an intuitive property of this equilibrium. If two firms n∗ and

n with n∗ > n both enter and produce positive output levels, then n∗ produces (weakly) more

than n and n∗ is (weakly) more profitable.

Lemma 1 Consider two firms n∗ and n < n∗ that both produce positive output levels in equi-

librium (i.e. ân∗ , ân 6= 0). Then

q
(
ân∗ , Q̂, θ

)
≥ q

(
ân, Q̂, θ

)
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and

p
(
ân∗ , P̂ , θ

)T

q
(
ân∗ , Q̂, θ

)
− C

(
q
(
ân∗ , Q̂, θ

)
, n∗

)

≥ p
(
ân, P̂ , θ

)T

q
(
ân, Q̂, θ

)
− C

(
q
(
ân, Q̂, θ

)
, n

)

We allow the entry cost γ to vary with a firm’s efficiency level, γ (n). It may be the

case that more efficient firms face lower entry costs, γ′ (n) < 0, because these firms are more

efficient in both entry and production. But we also allow for the case where more efficient

firms pay a higher entry cost to realize their cost advantage, γ′ (n) > 0. For instance, this

could reflect investments in R&D to develop a better production technology, investing more in

capital or building a bigger factory to reap advantages of economies of scale. Thus an important

distinction between C (q, n) and γ (n) is that C (q, n) is weakly decreasing in n (for given q)

while the sign of γ′ (n) is unrestricted.

The case with γ′ (n) > 0 is also interesting as it allows for the selection effect of competition.

In particular, more aggressive interaction between firms may lead to entry by more efficient

firms at the expense of less efficient rivals.

Example 1 Consider an industry with two firms producing perfect substitutes where the de-

mand curve is given by p = 1 − q1 − q2.
4 Firm i produces with cost function qi

ni
and faces

entry cost γi. Assume that n1 > n2 and n2 > 2n1

1+n1
. If both firms enter in Cournot equilibrium,

price, output and profits equal pC =
1+ 1

n1
+ 1

n2

3
, qC

i =
1− 2

ni
+ 1

n−i

3
, πC

i =

(
1− 2

ni
+ 1

n−i

3

)2

. Similarly,

in Bertrand equilibrium pB = 1
n2

, qB
1 = 1 − 1

n2
, qB

2 = 0, πB
1 =

(
1
n2
− 1

n1

)(
1− 1

n2

)
, πB

2 = 0.

Consider the case where n1 = 100, γ1 = 0.2, n2 = 3, γ2 = 0. Then we find that πC
1 = 0.19 < 0.2

and hence firm 1 does not enter. However, with Bertrand competition πB
1 = 0.22 > 0.2. Hence

more intense competition makes it possible in this case for the more efficient firm to recoup its

4Although the theory is developed for a continuum of firms, we use examples with discrete firms for two
reasons. First, such examples are often easier to verify. Second, it illustrates that the results derived here do not
crucially depend on the choice to model firms as a continuum, although this assumption simplifies the analytical
exposition.
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entry cost. In this sense, the switch from Cournot to Bertrand competition selects the more

efficient firms into the industry at the expense of less efficient ones.

Assuming that the second stage equilibrium in definition 1 is unique, we can write the

following reduced form expressions for firm n’s equilibrium variable profits and output levels

π
(
n,

{
ni

w0, n
i
w1

}I

i=1
, θ

)
≡


 p

(
ân, P̂ , θ

)T

q
(
ân, Q̂, θ

)

−C
(
q
(
ân, Q̂, θ

)
, n

)

 (1)

q
(
n,

{
ni

w0, n
i
w1

}I

i=1
, θ

)
≡ q

(
ân, Q̂, θ

)
(2)

where {ni
w0, n

i
w1}I

i=1 denotes the intervals of firms that enter the market. Since we allow for the

possibility that the entry cost γ rises with n we cannot exclude the case where firm n enters

while a more efficient firm n′ > n stays out of the market as it cannot recoup its entry costs.

Hence in equilibrium there are I ≥ 1 intervals of firms that enter the market. Put differently,

we let ∪I
i=1 [ni

w0, n
i
w1] denote the set of firms that enter the market in equilibrium. Clearly,

the bounds ni
w0 and ni

w1 depend on the aggressiveness of interaction θ but this is supressed

to ease notation. Figure 1 gives an illustration of these equilibrium intervals of active firms

{ni
w0, n

i
w1}2

i=1.

In this framework we consider two ways in which competition can be intensified. First, an

across the board reduction in entry costs −dγ > 0 (more formally, dγ (n) = dγ < 0 for all types

n ∈ [n0, n1]) and second more aggressive interaction between players, parametrized as dθ > 0.

The key to the analysis is the following way in which more intense competition is identified in

this general framework.

Definition 2 The effects of dθ and d (−γ) in the equilibrium above are as follows. The expres-

sion

d ln

(
−∂C

(
q
(
n,{ni

w0,ni
w1}I

i=1
,θ

)
,n

)

∂n

)

dθ
(3)
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Figure 1: Entry costs γ(n) and profits π(n, {ni
w0, n

i
w1}2

i=1, θ) as a function
of efficiency n, with n1

w0 = na, n
1
w1 = nb, n

2
w0 = nc, and n2

w1 = nd.

is increasing in n, where the effect of θ is partial in the sense that {ni
w0, n

i
w1}I

i=1 is here taken

as given. And the expression

d ln

(
−∂C

(
q
(
n,{ni

w0,ni
w1}I

i=1
,θ

)
,n

)

∂n

)

d (−γ)
(4)

is increasing in n.

Although these conditions do not look intuitive at first sight, we view them as a generaliza-

tion of the output reallocation effect to the case where q (., n) is a vector.5 In the case where

firms produce homogenous goods, Boone (2000) and Vickers (1995) identify a rise in compe-

tition as a parameter change that raises output of a firm relative to a less efficient firm. Put

differently, a rise in θ (or fall in γ) raises q(n∗)
q(n)

for n∗ > n. In words, if more intense competition

reduces (raises) firms’ output levels, the fall (rise) in output is bigger (smaller) for less efficient

5As we will show below these conditions are also natural candidates for necessary conditions to get the result
that more intense competition leads to lower PCM. However, in that case the conditions are not sufficient.
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firms. Alternatively, the output reallocation effect can be stated as:

d ln q (n)

dθ
and

d ln q (n)

d (−γ)
are increasing in n (5)

Note that the output reallocation effect does not assume anything about the output levels of

firms (only about relative output). This is important since we know that a change from Cournot

to Bertrand competition tends to raise output of efficient firms, while it reduces output for

inefficient firms. Thus there is no direct relation between intensity of competition and a firm’s

output level. Also, entry by new firms (as a result of a reduction in entry barriers) can both

reduce every incumbent firm’s output level and increase firms’ output levels. See Amir and

Lambson (2000) for details.

The reason why we look at the partial effect of θ, for given firms {ni
w0, n

i
w1}I

i=1 that partic-

ipate in the market, is the well known ’tupsy turvy’ result. In the case where firms produce

differentiated goods, it may be the case that there are twenty firms under Cournot competition

while there are sixteen firms under Bertrand competition. The reason is that Bertrand com-

petition leads to lower rents and hence fewer firms enter in equilibrium. To avoid having to

resolve this ambiguity (more aggressive interaction but smaller number of players), we consider

the change in θ for a given set of firms in the market. It is clear that a switch from Cournot to

Bertrand competition with given number of firms in the market is a rise in competition. Only

in this clear cut case do we require the reallocation effect to hold.

If goods are not perfect substitutes, q(n∗)
q(n)

is not well defined (’dividing apples by oranges’).

Taking this into account and allowing each firm to produce a number of products, it becomes

clear that the reallocation effect has to be expressed in money terms. In principle, there are

two ways to do that: costs C (q, n) and revenues pT q. The disadvantage of using revenues is

that prices p will be affected by θ as well as output q. To illustrate, intensifying competition by

making goods closer substitutes directly affects firms’ demand functions and prices irrespective

of a change in firms’ output levels. Hence costs C (q, n) seem a more natural choice here as it
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allows for the isolation of the effect of competition θ and γ on output q.

To gain further intuition for definition 2, note that the conditions above can also be stated

as follows. Consider two firms n∗∗ and n∗ < n∗∗. Then the reduction in costs due to a small

rise in efficiency dn > 0 for firm n∗∗ relative to n∗ is

−∂C
(
q
(
n,{ni

w0,ni
w1}I

i=1
,θ

)
,n

)

∂n

∣∣∣∣
n=n∗∗

−∂C
(
q
(
n,{ni

w0,ni
w1}I

i=1
,θ

)
,n

)

∂n

∣∣∣∣
n=n∗

The conditions above say that a rise in competition raises this ratio. That is, more intense

competition leads to a bigger fall in costs (due to the efficiency gain dn > 0) for the high

efficiency firm n∗∗ as compared to the less efficient firm n∗.6 This makes sense. More intense

competition tends to marginalize inefficient firms by reducing their output levels. Therefore

their costs become less dependent on their efficiency level. Consider the switch from Cournot

to Bertrand competition in example 1. In that example, we find that −∂C(q,n)
∂n

= q(ni)

n2
i

for

i = 1, 2. With Bertrand competition, a small change in the efficiency level of the inefficient

firm has no effect on its costs. It does not produce anyway and hence ∂C(q,n)
∂n

= 0. While under

Cournot competition, the same change in efficiency of the inefficient firm does affect its cost

level. For the efficient firm, the effect of its efficiency level on its costs is bigger under Bertrand

competition than under Cournot because its output level is bigger under Bertrand. Hence,

the ratio
− ∂C(q,ni)

∂ni

−
∂C(q,nj)

∂nj

= q(ni)
q(nj)

n2
j

n2
i

(with ni > nj) goes up with a switch from Cournot to Bertrand

competition.

The next two examples illustrate this reallocation effect further.

Example 2 Consider an industry where each firm i produces only one product, faces a demand

6In other words, if the model would allow for firms investing in R&D to improve their efficiency n, we would
see the following effect. More intense competition raises R&D investments of firms relative to less efficient firms.
This is in line with results found by Aghion et. al. (2002).
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curve of the form

p(qi, q−i) = a− bqi − d
∑

j 6=i

qj

and has constant marginal costs 1
ni

. Then firm i chooses output qi which solves

max
q≥0

{(a− bq − d
∑

j 6=i

qj)q − 1

ni

q}

where we assume that a > 1
ni

> 0 and 0 < d ≤ b. Then the first order condition for a Cournot

Nash equilibrium can be written as

a− 2bqi − d
∑

j 6=i

qj − 1

ni

= 0 (6)

Assuming N firms produce positive output levels, one can solve the N first order conditions (6).

This yields

q (ni) =

(
2b
d
− 1

)
a− (

2b
d

+ N − 1
)

1
ni

+
∑N

j=1
1
nj

(2b + d(N − 1))
(

2b
d
− 1

) (7)

Now assume that because of a fall in entry cost γ an additional firm N + 1 with constant

marginal costs 1
nN+1

can enter the industry. Then it is routine to verify that

−∂C(q,ni)
∂ni

−∂C(q,nj)

∂nj

=
q (ni)

q (nj)

n2
j

n2
i

increases after entry for ni > nj (i, j 6= N + 1).

Example 3 Consider an Hotelling beach of length 1 with consumers distributed uniformly over

the beach with density 1. Firm 1 is located on the far left of the beach and firm 2 on the far

right. Firm i has constant marginal costs 1
ni

(i = 1, 2). A consumer at position x ∈ 〈0, 1〉 who

buys a product from firm 1 incurs a linear travel cost tx, and if she buys from firm 2 she incurs

travel cost t(1−x). Assume that each consumer buys one and only one product and that he buys

from the firm with the lowest overall cost. Then demand for firm i equals qi(pi, pj; t) = 1
2
+

pj−pi

2t
.

As travel costs decrease, consumers are more inclined to buy from the cheapest firm rather than
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the closest one. So as travel costs decrease, firms’ monopoly power is reduced and competition

is more intense. Parametrizing competition as θ = 1
t
, the Nash equilibrium output levels equal

respectively

qi =
1

6
(3 + θ(

1

nj

− 1

ni

)) (8)

Clearly, we find that in increase in θ raises
− ∂C(q,ni)

∂ni

−
∂C(q,nj)

∂nj

=
3+θ( 1

nj
− 1

ni
)

3−θ( 1
nj
− 1

ni
)

n2
j

n2
i

for ni > nj.

In these simple examples with constant marginal costs, we see that the condition on
d ln(− ∂C(q,n)

∂n )
dθ

and
d ln(− ∂C(q,n)

∂n )
d(−γ)

actually boils down to the output reallocation effect. That is,
d ln(− ∂C(q,n)

∂n )
dθ

and

d ln(− ∂C(q,n)
∂n )

d(−γ)
increasing in n is equivalent to d ln q(n)

dθ
and d ln q(n)

d(−γ)
increasing in n. This is true for

more general cost functions as well, as the next lemma illustrates.

Lemma 2 Consider the case where a firm produces only one product, L = 1. Assume that the

cost function C (q, n) can be written as

C (q, n) =

∫ +∞

n

ω (t) e
∫ q

q0

φ(t,x)
x

dx
dt (9)

with q0, ω (.) , φ (., .) , ∂φ(n,q)
∂n

, ∂φ(n,q)
∂q

≥ 0. Then the output reallocation effect, that is

d ln
[
q
(
n, {ni

w0, n
i
w1}I

i=1 , θ
)]

dθ

is increasing in n, is sufficient for (3) to hold. The same is true for d (−γ).

Although the cost function in equation (9) looks nonstandard, it is quite general. It is, for

instance, routine to verify that ω (n) = 1
n2 and φ (n, q) =

∑M
m=1 γmmqm

∑M
m=0 γmqm

lead to a cost function of

the form C (n, q) = Γ
n

(∑M
m=0 γmqm

)
for some constant Γ > 0 and M +1 scalars γm. Indeed, the

case considered in the example above with C (n, q) = q
n

is a special case of this cost function.

Finally, to get some intuition for the multi-product case, consider the case where the cost

function C (q, n) can be written as C (q, n) = ω (n) φ (q) with ω : R+ → R+, ω′ (.) < 0 and
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φ : RL
+ → R+ an increasing function of the output vector q. Then it is routine to verify that

the following two conditions are sufficient for definition 2 to hold. The elasticity ∂φ(q)
∂ql

ql

φ(q)
is

nondecreasing in ql and the output reallocation effect (d ln(ql)
dθ

and d ln(ql)
d(−γ)

are increasing in n)

holds at the product level for each product l.

3. New measure of competition

This section introduces relative profits differences, RPD, as a measure of competition and

discusses under which conditions this measure can be estimated using firm level panel data.

Broadly speaking, the better one is able to separate fixed and variable costs in the data, the

more robust the competition measure will be that one can estimate.

The innovation of this paper is to measure intensity of competition in an industry by esti-

mating the following variable

π
(
n∗∗, {ni

w0, n
i
w1}I

i=1 , θ
)
− π

(
n, {ni

w0, n
i
w1}I

i=1 , θ
)

π
(
n∗, {ni

w0, n
i
w1}I

i=1 , θ
)
− π

(
n, {ni

w0, n
i
w1}I

i=1 , θ
) > 0 (10)

for any three firms with n∗∗ > n∗ > n, where π (.) is defined in equation (1). The following

theorem shows why this is a robust measure of competition.

Theorem 1 An increase in competition raises the expression in equation (10) for any three

firms with n∗∗ > n∗ > n. That is,

d

(
π
(
n∗∗,{ni

w0,ni
w1}I

i=1
,θ

)
−π

(
n,{ni

w0,ni
w1}I

i=1
,θ

)

π
(
n∗,{ni

w0,ni
w1}I

i=1
,θ

)
−π

(
n,{ni

w0,ni
w1}I

i=1
,θ

)
)

dθ
> 0

where the effect of θ is partial, i.e. taking {ni
w0, n

i
w1}I

i=1 as given, and

d

(
π
(
n∗∗,{ni

w0,ni
w1}I

i=1
,θ

)
−π

(
n,{ni

w0,ni
w1}I

i=1
,θ

)

π
(
n∗,{ni

w0,ni
w1}I

i=1
,θ

)
−π

(
n,{ni

w0,ni
w1}I

i=1
,θ

)
)

d (−γ)
> 0
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To illustrate this result, consider the example in figure 2. This is based on example 2 with

a = 20, b = 2, N = 20 and firm i ∈ {1, 2, ..., 20} has constant marginal costs equal to i
10

(hence efficiency of i equals ni = 10
i
). Figure 2 has firm n’s normalized efficiency level n−n

n̄−n
on

the horizontal axis and n’s normalized profits π(n,θ)−π(n,θ)
π(n̄,θ)−π(n,θ)

(note that this is the inverse of the

expression in (10) to avoid dividing by zero for n = n) on the vertical axis with n ≤ n ≤ n̄

(n = 1, n̄ = 10) and where π (n, θ) is used as a shorthand for π
(
n, {ni

w0, n
i
w1}I

i=1 , θ
)
. This

relation is increasing (more efficient firms make higher profits π). The more competitive the

industry, the more this curve is pulled into the corner at bottom-right. This is illustrated in

the graph for the case where competition is intensified by making goods closer substitutes (d

increases from 0.1 to 2). Further, with Bertrand competition, homogenous goods and constant

marginal costs one finds that the curve is flat and equal to zero for all n ∈ [n, n̄〉 and equal to

1 at n = n̄. This corresponds to perfect competition. Competition can now be measured as

the area under this curve. The smaller this area, the more intense competition is (note that

because of the normalizations used on the axes, this area under the curve lies between 0 and

1). In particular, in the Bertrand equilibrium just mentioned, the area under the curve equals

0.

Note that one does not need to observe all firms in an industry to make a graph like the

one in figure 2. Indeed figure 2 also just uses a subset of the firms (i ∈ {1, ..., 10}). The reason

is that the result in theorem 1 holds for any three firms. This is in contrast to concentration

measures which make no sense if not all firms in the industry are observed.

What type of data is needed to estimate the measure in equation (10)? The data we have in

mind is firm or plant level data that specify per firm total revenues, total wage bill (or preferably

wage costs split according to production workers (blue collar) and management (white collar),

see below), costs of inputs used, energy etc. Data sets like this are available in more and more

countries (usually at country’s statistical offices where this data forms the basis of the national
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Figure 2: Firm n’s normalized profits π(n,θ)−π(n,θ)
π(n,θ)−π(n,θ)

as a function of n’s

normalized efficiency n−n
n−n

.

accounts). Examples of papers using such data are Aghion et. al. (2002), Klette (1999), Klette

and Griliches (1999) and Lindquist (2001). Further, the data should be available at the four or

five digit level such that the one dimensional efficiency assumption is a decent approximation.

In particular, the more aggregated the data become, say at the two digit level, the more likely

it is that one firm is more efficient in producing one good and another firm more efficient in

producing another good within this two digit category. In that case, efficiency is no longer a

one dimensional variable. As we will argue below, this one dimensional efficiency assumption

is also necessary for the price cost margin as a measure of competition.

Equation (1) defining variable profits π (.), states that the costs C (q, n) should be included

in calculating profits while γ (n) should not be included. Hence π (.) equals total revenue for a

firm minus costs C (q, n).

The following describes how to decide which cost categories in the data should be included

17



in C (q, n) and which in γ (n). First, any costs, like materials and energy, that are viewed as

variable costs (i.e. varying with small changes in production) should be included in C (q, n).

Second, fixed costs that are seen as being positively correlated with a firm’s efficiency level

should be included in γ (n) because only the costs γ are allowed to be increasing in n (see

assumption 1). Examples mentioned above are investments in R&D and capital stocks, where

higher investments may lead to lower marginal costs and hence higher efficiency in production.

For cost categories in the data that are seen as fixed costs that do not vary with efficiency, it

is immaterial whether they are included under C (q, n) or γ (n).7 Finally, with fixed costs that

fall with efficiency, one has a choice whether to incorporate them under C (q, n) or γ (n). Here

the decision should be based on definition 2 and the equilibrium properties of the model one

has in mind to describe the sector.

To illustrate this last point, first consider example 3 but suppose that firm i’s costs are of

the form q
ni

+ c0
ni

for i = 1, 2. In that case, both
−

∂

(
q(ni)

ni

)

∂ni

−
∂




q(nj)
nj




∂nj

=
3+θ( 1

nj
− 1

ni
)

3−θ( 1
nj
− 1

ni
)

n2
j

n2
i

and
−

∂

(
q(ni)

ni
+

c0
ni

)

∂ni

−
∂




q(nj)
nj

+
c0
nj




∂nj

=

3+θ( 1
nj
− 1

ni
)

6
+c0

3−θ( 1
nj
− 1

ni
)

6
+c0

n2
j

n2
i

are increasing in θ for ni > nj. Thus in this model one is free to choose whether

c0
ni

is part of C (q, n) or γ (n). In other models, however, it may be the case that the conditions

in definition 2 only hold when the fixed cost is categorized under γ (n). In that case it is

essential that these costs are not included in costs C (q, n) nor in profits π (.). It appears to be

the case that the conditions in definition 2 are more easily satisfied the more categories of fixed

costs are included under γ (.) and hence the closer C (0, n) gets to 0. In this sense, C (q, n)

should ideally include only variable costs and no fixed costs.

If the data allows the researcher to identify different cost categories, variable costs should

be calculated as the sum of labour costs (if possible only the costs of (blue collar) produc-

7To see this, note that fixed costs that do not vary with n have no effect on the expression −∂C(q,n)
∂n (in

definition 2) and such fixed costs drop out when considering profit differences π (n∗)− π (n) (in equation (10)).

18



tion workers, since (white collar) managers tend to be viewed as fixed costs), material costs,

intermediate inputs and energy expenditure. Hence expenditures on or depreciation of R&D,

advertisement and capital should not be included in the variable costs nor in profits π (.). Since

costs of depreciation that are economically relevant (instead of advantagous from a tax point

of view) are usually hard to come by, it is actually an advantage that such costs should not be

included in the calculation of π (.).

However, if the dataset only specifies total costs per firm, the observable profit level is

π (n) − γ (n). In that case, we need additional assumptions for the RPD measure to work.

The following proposition formulates conditions for the measure π(n∗∗)−γ(n∗∗)−[π(n)−γ(n)]
π(n∗)−γ(n∗)−[π(n)−γ(n)]

to be

monotone in θ and γ.

Proposition 1 Take three firms with n∗∗ > n∗ > n. Then the assumption that

γ′ (t)(
−∂C

(
q
(
t,{ni

w0,ni
w1}I

i=1
,θ

)
,t

)

∂t

)

is nondecreasing8 in t ∈ 〈n, n∗∗〉 is sufficient for the measure π(n∗∗)−γ(n∗∗)−[π(n)−γ(n)]
π(n∗)−γ(n∗)−[π(n)−γ(n)]

to be mono-

tone in competition (dθ > 0 and d (−γ) > 0) if either of the following conditions holds for all

t ∈ 〈n, n∗∗〉:

(i)

d

(
−∂C

(
q
(
t,{ni

w0,ni
w1}I

i=1
,θ

)
,t

)

∂t

)

dθ
≥ 0 and γ′ (t) < −

∂C
(
q
(
t, {ni

w0, n
i
w1}I

i=1 , θ
)

, t
)

∂t

(ii)

d

(
−∂C

(
q
(
t,{ni

w0,ni
w1}I

i=1
,θ

)
,t

)

∂t

)

dθ
≤ 0 and γ′ (t) > −

∂C
(
q
(
t, {ni

w0, n
i
w1}I

i=1 , θ
)

, t
)

∂t

with similar expressions for d (−γ).

8The case where γ′(t)(
−

∂C(q(t,{ni
w0,ni

w1}I
i=1,θ),t)

∂t

) is decreasing in t ∈ 〈n, n∗∗〉 is considered in Lemma 4 in the

appendix.
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In words, the condition prevents the case where γ′ (n) falls faster than−∂C
(
q
(
n,{ni

w0,ni
w1}I

i=1
,θ

)
,n

)

∂n

as a function of n. The intuition for this is the following. We know from above that a rise in

θ raises π(n∗∗)−π(n)
π(n∗)−π(n)

. That is, it raises the difference π (n∗∗) − π (n) more in percentage terms

than it raises π (n∗) − π (n). If γ′ (n) falls ’too fast’, the difference γ (n) − γ (n∗∗) is going to

be big and hence π (n∗∗)− γ (n∗∗)− [π (n)− γ (n)] is going to be big in absolute value. In case

(i), the increase (due to dθ > 0) in π (n∗∗) − π (n) =
∫ n∗∗

n
−∂C(.,t)

∂t
dt (see appendix) becomes

too small to raise π (n∗∗) − γ (n∗∗) − [π (n)− γ (n)] more in percentage terms than the rise

in θ raises π (n∗) − γ (n∗) − [π (n)− γ (n)]. So we need to exclude this case to be sure that

π(n∗∗)−γ(n∗∗)−[π(n)−γ(n)]
π(n∗)−γ(n∗)−[π(n)−γ(n)]

is increasing in competition. A similar intuition applies in case (ii).

Above we have focused on the partial effects of θ, taking the firms active in the market as

given. As one would expect, if condition (3) in definition 2 holds for the overall effect of θ (i.e.

taking the effect on the active firms into account as well), then the overall effect of a rise in θ

is indeed to increase the RPD measure in equation (10).

Corollary 1 If the expression

d ln

(
−

∂C

(
q

(
n,{ni

w0(θ),ni
w1(θ)}I(θ)

i=1
,θ

)
,n

)

∂n

)

dθ
(11)

is increasing in n, where the effect of θ on {ni
w0 (θ) , ni

w1 (θ)}I(θ)
i=1 is taken into account, then the

overall effect of an increase in θ on

π
(
n∗∗, {ni

w0 (θ) , ni
w1 (θ)}I(θ)

i=1 , θ
)
− π

(
n, {ni

w0 (θ) , ni
w1 (θ)}I(θ)

i=1 , θ
)

π
(
n∗, {ni

w0 (θ) , ni
w1 (θ)}I(θ)

i=1 , θ
)
− π

(
n, {ni

w0 (θ) , ni
w1 (θ)}I(θ)

i=1 , θ
)

for any three active firms with n∗∗ > n∗ > n is positive:

d

(
π

(
n∗∗,{ni

w0(θ),ni
w1(θ)}I(θ)

i=1
,θ

)
−π

(
n,{ni

w0(θ),ni
w1(θ)}I(θ)

i=1
,θ

)

π

(
n∗,{ni

w0(θ),ni
w1(θ)}I(θ)

i=1
,θ

)
−π

(
n,{ni

w0(θ),ni
w1(θ)}I(θ)

i=1
,θ

)

)

dθ
> 0
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4. Discussion

This section compares the RPD and PCM measures of competition. We argue that the data

requirements to estimate these two measures are the same. Further, although some of the

assumptions made above (like one dimensional efficiency) are not usually mentioned when PCM

is used as a measure of competition, we show that these assumptions are needed to interpret

a fall in PCM as an increase in competition. Finally, we show that the generalized output

reallocation effect in definition 2 is a natural necessary condition for PCM to be monotone in

competition, but it is not sufficient. This explains why RPD is a theoretically robust measure of

competition while there are counterexamples where a rise in competition leads to higher PCM.

Broadly speaking, there are two ways in the literature to estimate price cost margins. One

is to approximate firm i’s price cost margin by an expression like (see, for instance, Scherer and

Ross (1990:418))

revenuesi − variable costsi

revenuesi

(12)

Using this to calculate PCM requires similar data as one needs to calculate profits π (.) in (1)

as revenues minus variable costs. An important assumption in the PCM case is that average

variable costs can be used as an estimate for marginal costs. This is correct if marginal costs

are constant.9 Note that this assumption is not directly required for estimating π, since C (q, n)

is allowed to take any form. However, for the RPD measure we need to rank firms according to

their efficiency level. And assuming that marginal costs are constant clearly makes the ranking

of firms in terms of efficiency n very simple. In other words, although assuming that marginal

costs are constant is, strictly speaking, not needed to estimate RPD, the assumption does make

the implementation of RPD a lot simpler.

9To see this, consider the one dimensional case where q is a scalar. Then PCM =
p− c(q)

q

p only measures the

price cost margin if c(q)
q is equal to marginal costs. That is, if variable costs are of the form c (q) = cq and

marginal costs are constant.
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The other way to estimate price cost margins is to use a structural approach (see Reiss and

Wolak (2002) for a survey). In this case, the researcher specifies precisely what the demand

function and the cost function C (q, n) look like and what equilibrium is played by the firms.

The data are then used to identify the specified demand and cost parameters. From this PCM

can be derived.

Note that the RPD measure is a variable that can be estimated in both ways. One can

estimate RPD in an analogous way as PCM is estimated in equation (12). But it is also possible

to use a structural approach and be more specific about the functional forms of demand and

costs C (q, n). To illustrate, table VIII in Berry, Levinsohn and Pakes (1995) contains all the

needed information (efficiency n and variable profits π) to calculate RPD. Our paper just offers

RPD as a complementary competition measure to PCM and does not take a position on how

the measures should be estimated in practice.

When PCM is used as a measure of competition, it is not always explicitly assumed that

efficiency is one dimensional nor that the efficiency level can be observed. We argue, using

two simple examples, that these assumptions are, in fact, implicitly made once the estimated

PCM is interpreted as a measure of competition. The first example shows that information

about efficiency is needed if one wants to interpret a higher price cost margin as less intense

competition.

Example 4 Consider the same, homogenous good, industry in two countries A and B. In

both countries, demand in the industry takes the form X (p) = 1
p

where X (p) is the quantity

demanded at price p. Assume the most efficient firm in country A produces with constant

marginal cost equal to cA
1 = 1 and in country B with cB

1 = 3. Further, assume that the next

efficient firm produces with constant marginal costs cA
2 = 5 in country A and with cB

2 = 6 in

country B. If in both countries, the industry is characterized by Bertrand competition, one

finds that the equilibrium price cost margins equal PCMA = 4
5

and PCMB = 3
6
. Clearly, the
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industry is more competitive in country A but PCM (without information on the marginal cost

levels of firms) points in the opposite direction as PCMA > PCMB.

Indeed, Nevo (2001) compares the PCM generated by his estimated model with a (crude)

direct observation of PCM based on accounting cost data to see how the magnitude of PCM

should be interpreted in terms of intensity of competition.

The second example shows that in the multiproduct case where efficiency is not one-

dimensional, more intense competition can be associated with higher PCM.

Example 5 Suppose that a researcher observes two firms, 1 and 2, which both can produce two

goods, a and b. The data contain only information about aggregate sales and costs of both goods

at the firm level. Instead of assuming that efficiency is one dimensional, we assume that it is

two dimensional. More precisely we assume that firm 1 is more efficient than 2 in producing

good a while 2 is more efficient than 1 in producing b: n1a = 10, n1b = 2.5, n2a = 2.5 and

n2b = 10. The cost function is of the form C (q, n) = q
n

for each firm and product combination.

Finally, demand for good i (= a, b) is of the form pi = 1 − q1i − q2i. PCM for firm f (= 1, 2)

at the aggregate level is defined as total revenue minus total (variable) costs divided by total

revenue

PCMf =

(
pa − 1

nfa

)
q1a +

(
pb − 1

nfb

)
qfb

paqfa + pbqfb

With Cournot competition on both markets one finds qC
fi =

1− 2
nfi

+ 1
n−fi

3
, pC

i =
1+ 1

n1i
+ 1

n2i

3
and

hence PCMC
1 = PCMC

2 = 0.68. Under Bertrand competition each firm only produces the

product at which it is most efficient (and hence has the highest PCM) and we find PCMB
1 =

PCMB
2 =

1
2.5
− 1

10
1

2.5

= 0.75. In other words, if at the unit of observation the firms produce more

than one product and the researcher wants to use PCM as a measure of competition, he has to

assume that efficiency is a one dimensional variable. Put differently, he has to assume, as we

did above, that ∂C(q,n)
∂n

≤ 0 and
∂
(

∂C(q,n)
∂ql

)

∂n
≤ 0: the more efficient firm is (weakly) more efficient
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in the production of all goods. Absent this assumption, an increase in competition can lead to

higher PCM.

As argued so far, the data requirements and assumptions for PCM and RPD to measure

competition are similar. The main advantage of the RPD measure is the robust theoretical

foundation for the relation between RPD and the intensity of competition. We will now ar-

gue that the generalized output reallocation effect in definition 2 is a natural candidate for a

necessary condition to get that more intense competition leads to lower PCM. However, this

condition is not sufficient which explains theoretical counterexamples where more intense com-

petition leads to higher PCM. This is the sense in which RPD is a theoretically more robust

measure of competition than PCM.

Writing PCM as

PCM (n) =
p (n)T q (n)− C (q (n) , n)

p (n)T q (n)
=

π (n)

π (n) + C (q (n) , n)

one can show the following result on the effect of competition on PCM .

Lemma 3 The effect of θ on PCM can be written as

sign

(
dPCM (n)

dθ

)
= sign




−γ

[C(q(n,θ),n)]2
dC(q(n,θ),n)

dq
dq(n,θ)

dθ
+

∫ n

nw

d

[
(− ∂C(q(t,θ),t)

∂t )
C(q(n,θ),n)

]

dθ
dt




where the effect of θ is partial (as above). Next, assume for notational simplicity that ∪I
i=1 [ni

w0, n
i
w1] =

[nw, n1]. Then the effect of γ on PCM can be written as

sign

(
dPCM (n)

dγ

)
= sign




1
C(q(n),n)

−
(
− ∂C(q(t,θ),t)

∂t |
t=nw

)

C(q(n),n)
dnw

dγ

− γ

[C(q(n,θ),n)]2
dC(q(n,θ),n)

dq
dq(n,θ)

dγ
+

∫ n

nw

d

[
(− ∂C(q(t,θ),t)

∂t )
C(q(n,θ),n)

]

dγ
dt




One case for which one wants the result dPCM(n)
dθ

< 0 to hold, is the case where γ = 0. Hence

a natural requirement is
d

[
(− ∂C(q(t,θ),t)

∂t )
C(q(n,θ),n)

]

dθ
< 0 for n > t. For the class of cost functions where
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C (q, n) = ω (n) c (q) this condition boils down to the output reallocation effect in definition 2.

However, the conditition in definition 2 is not sufficient to get dPCM(n)
dθ

< 0 because we cannot

exclude the case where more intense competition leads to lower output levels for inefficient

firms. Hence dq(n,θ)
dθ

< 0 and γ > 0 works in the direction of dPCM(n)
dθ

> 0 and the output

reallocation effect is no longer sufficient.

Similarly, when the entry cost γ is increased one would expect the PCM to go up. A natural

conditition here is
d

[
(− ∂C(q(t,θ),t)

∂t )
C(q(n,θ),n)

]

dγ
> 0. For cost functions of the form C (q, n) = ω (n) c (q) this

again boils down to the reallocation effect in definition 2. Again the condition is not sufficient

here, because the other terms in the expression for sign
(

dPCM(n)
dγ

)
can go either way.

As with PCM, a necessary condition for the relative profits measure π(n∗∗)
π(n∗) (introduced by

Boone (2000)) to be monotone in competition is the reallocation effect in definition 2. As is

routine to verify, this reallocation effect is also sufficient for π(n∗∗)
π(n∗) to be monotone in θ but not

for π(n∗∗)
π(n∗) to be monotone in γ because of a level effect of dγ.10 This level effect drops out when

considering differences, which explains why RPD needs less stringent sufficient conditions to be

monotone in both γ and θ than relative profits.

d = 1.5 d = 2.0
PCM1 0.99 0.99
PCM2 0.30 0.23
PCM3 0.26 0.17
Industry PCM 0.68 0.76

RPD = π(c2)−π(c3)
π(c1)−π(c3)

0.04 0.02

Table 1: increasing competition in example 2 by making goods closer
substitutes with c1 = 0.1; c2 = 6.5; c3 = 7; γ1 = γ2 = γ3 = 0; a = 20; b = 2.

Lemma 3 considers the PCM of an individual firm. However, the question of the paper

concerns the measurement of industry competition. This is usually done by calculating the

10More precisely, profits can be written as π (n) = γ +
∫ n

nw
π′ (t) dt where nw is the least efficient firm to enter.

When γ changes this has three effects on π (n) (which can potentially go in opposite directions): (a) direct effect
of γ, (b) effect of γ on nw and (c) the effect of γ on firms’ conduct which appears in π′ (t). Only effect (c) is
relevant here and this is the only effect of γ that remains when considering π (n∗)− π (n) =

∫ n∗

n
π′ (t) dt.
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weighted industry average PCM, where the weight of a firm equals its market share in the

industry (see, for instance, Wolfram (1999)). Tables 1 and 2 show simulations to illustrate

that industry PCM is not monotone in competition while RPD does pick up what happens to

competition in these two cases. Both tables work with the framework introduced in example

2 with a = 20, b = 2, d = 1.5 and Cournot competition. In table 1 there are three firms with

constant marginal costs equal to c1 = 0.1, c2 = 6.5, c3 = 7. Competition is intensified by making

goods closer substitutes (raising d to d = 2). The PCM for firms 2 and 3 falls, but industry

PCM goes up as competition is intensified. The reason is the output reallocation effect: as

competition is intensified, output is reallocated from firms 2 and 3 to the most efficient firm

1 which is the firm with the highest PCM. This increases the weight of firm 1 in the industry

average PCM and thus raises the industry PCM. RPD (defined here as π(c2)−π(c3)
π(c1)−π(c3)

which is the

only point that changes with d in a graph like figure 2)11 falls with the rise in d indicating

correctly that competition becomes more intense. Table 2 considers the case of a fall in entry

costs dγ = −0.1 for all firms. In particular, it considers the following costs distributions

c1 = c2 = 0.1, c3 = 3, c4 = c5 = 6 and γ1 = γ2 = 16.5, γ3 = 5, γ4 = γ5 = 0.7. Before the fall in

γ, there is a Cournot equilibrium where firms 1, 3, 4 and 5 are active. Firm 2 cannot profitably

enter in this equilibrium. After the across the board reduction in γ however, this equilibrium is

broken and firm 2 can enter at the expense of firm 5. Although PCM falls for each individual

firm, the industry average PCM goes up as firm 2 has a higher PCM than firm 5. Again RPD

(defined here as π(c3)−π(c4)
π(c1)−π(c4)

, as above the only relevant point in a graph like figure 2) falls with

the fall in entry costs, correctly indicating more intense competition.

11That is, with c3−c
c3−c1

on the horizontal axis the other two points are (0, 0) and (1, 1).
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dγ = 0 dγ = −0.1
PCM1 0.99 0.98
PCM2 n.a.∗ 0.98
PCM3 0.60 0.55
PCM4 0.25 0.17
PCM5 0.25 n.a.∗

Industry PCM 0.66 0.81

RPD = π(c3)−π(c4)
π(c1)−π(c4)

0.37 0.34

Table 2: increasing competition in example 2 by reducing entry costs
(dγ = −0.1) with c1 = c2 = 0.1; c3 = 3; c4 = c5 = 6; γ1 = γ2 = 16.5;
γ3 = 5; γ4 = γ5 = 0.7; a = 20; b = 2; d = 1.5.
∗ n.a. = firm is not active in equilibrium

5. Conclusion

This paper started off with the observation that PCM is often used as a measure of competition

in empirical research. From a theoretical point of view, however, it is not clear what the relation

between PCM and competition actually is. There are a number of theoretical papers where

more intense competition leads to higher PCM. At the moment we do not know how relevant

these theoretical counterexamples are from an empirical point of view.

To answer this question we have developed a new measure of competition, RPD, which has

two properties. First, RPD has a robust theoretical foundation as a measure of competition.

It is monotone in competition both when competition becomes more intense through more

aggressive interaction between firms and when entry barriers are reduced. Second, the data

requirements to estimate RPD are the same as the requirements to estimate PCM. That implies

that any firm (or plant) level data set which allows a researcher to estimate PCM should also

allow for the estimation of RPD. In this way we can see in which percentage of industries both

measures point in the same direction. If it turns out that the measures are congruent for more

than 95% of the industries, PCM can be used as a measure of competition in empirical research

without much concern for the theoretical counterexamples.
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Appendix A. Proof of results

This appendix contains the proofs of the results in the main text.

Proof of Lemma 1

We use a proof by contradiction. Suppose that q (n) > q (n∗) > 0. Let p∗, q∗ (p, q) denote

the optimal price output pair for firm n∗ (n). Then profit maximization by these firms implies

that

p∗q∗ − C (q∗, n∗)− [pq − C (q, n∗)] ≥ 0

p∗q∗ − C (q∗, n)− [pq − C (q, n)] ≤ 0

Combining both inequalities we can write
∫ q

q∗

∂C (x, n∗)
∂x

dx−
∫ q

q∗

∂C (x, n)

∂x
dx ≥ 0

or equivalently ∫ n∗

n

∫ q

q∗

∂2C (x, t)

∂x∂t
dxdt ≥ 0

However, this contradicts ∂2C(q,n)
∂q∂n

< 0 in assumption 1.

The proof that π (n∗) ≥ π (n) follows from the observation that n∗ can copy what n does

and do so at (weakly) lower costs since n∗ > n. Q.E.D.

Proof of Lemma 2

Condition (3) can be written as

d ln
(
−∂C(q,n)

∂n

)

dθ
=

∂2C (q, n)

∂n∂q

q
∂C(q,n)

∂n

d ln q

dθ

is increasing in n. If the expression ∂2C(q,n)
∂n∂q

q
∂C(q,n)

∂n

is non-decreasing in n, then a sufficient

condition for
d ln(− ∂C(q,n)

∂n )
dθ

to be increasing in n is the output reallocation effect. For the cost

function in the lemma, it is the case that

∂2C (q, n)

∂n∂q

q
∂C(q,n)

∂n

= φ (n, q)
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Hence it remains to be shown that φ (n, q) is non-decreasing in n. This can be written as

dφ (n, q)

dn
=

∂φ (n, q)

∂n
+

∂φ (n, q)

∂q

dq (n)

dn

The assumptions made imply that ∂φ(n,q)
∂n

, ∂φ(n,q)
∂q

≥ 0, and we know from lemma 1 that dq(n)
dn

≥ 0.

Q.E.D.

Proof of Theorem 1

First note that for any differentiable function π of n it is the case that

π (n∗)− π (n) =

∫ n∗

n

dπ (t)

dt
dt

Next note that the envelop theorem applied to

π
(
n,

{
ni

w0, n
i
w1

}I

i=1
, θ

)
= max

an

{
p
(
an, P̂ , θ

)T

q
(
an, Q̂, θ

)
− C

(
q
(
an, Q̂, θ

)
, n

)}

implies that

dπ
(
n, {ni

w0, n
i
w1}I

i=1 , θ
)

dn
= −

∂C
(
q
(
ân, Q̂, θ

)
, n

)

∂n

Hence for any two firms n∗ and n that produce positive output levels in equilibrium it is the

case that

π
(
n∗,

{
ni

w0, n
i
w1

}I

i=1
, θ

)
− π

(
n,

{
ni

w0, n
i
w1

}I

i=1
, θ

)
=

∫ n∗

n

−
∂C

(
q
(
ân, Q̂, θ

)
, t

)

∂t
dt

Therefore we can write the effect of θ on the measure π∗∗−π
π∗−π

as

d

(∫ n∗∗
n − ∂C(q(ân,Q̂,θ),t)

∂t
dt

∫ n∗
n − ∂C(q(ân,Q̂,θ),t)

∂t
dt

)

dθ
=

d


1 +

∫ n∗∗
n∗

− ∂C(q(ân,Q̂,θ),t)
∂t

− ∂C(q(ân,Q̂,θ),t)
∂t

∣∣∣∣∣
t=n∗

dt

∫ n∗
n

− ∂C(q(ân,Q̂,θ),t)
∂t

− ∂C(q(ân,Q̂,θ),t)
∂t

∣∣∣∣∣
t=n∗

dt




dθ
> 0

because definition 2 implies that

d


 − ∂C(q(ân,Q̂,θ),t)

∂t

− ∂C(q(ân,Q̂,θ),t)
∂t

∣∣∣∣
t=n∗




dθ
> 0
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for t ∈ 〈n∗, n∗∗] and

d


 − ∂C(q(ân,Q̂,θ),t)

∂t

− ∂C(q(ân,Q̂,θ),t)
∂t

∣∣∣∣
t=n∗




dθ
< 0

for t ∈ [n, n∗〉. To see this, note that

sign




d


 − ∂C(q(ân,Q̂,θ),t)

∂t

− ∂C(q(ân,Q̂,θ),t)
∂t

∣∣∣∣
t=n∗




dθ




= sign




d ln

(
−∂C(q(ân,Q̂,θ),t)

∂t

)

dθ
−

d ln

(
−∂C(q(ân,Q̂,θ),t)

∂t

∣∣∣∣
t=n∗

)

dθ




The same proof applies to the case with d (−γ) instead of dθ. Q.E.D.

Proof of proposition 1

As in the proof of theorem 1, we can write the difference in profits as

π (n∗∗)− γ (n∗∗)− [π (n)− γ (n)] =

∫ n∗∗

n

(
−∂C (q (t, θ) , t)

∂t
− γ′ (t)

)
dt

Hence

d
(

π(n∗∗)−γ(n∗∗)−[π(n)−γ(n)]
π(n∗)−γ(n∗)−[π(n)−γ(n)]

)

dθ
=

d

(
1 +

∫ n∗∗
n∗ (− ∂C(q(t,θ),t)

∂t
−γ′(t))dt

∫ n∗
n (− ∂C(q(t,θ),t)

∂t
−γ′(t))dt

)

dθ

=

d


1 +

∫ n∗∗
n∗

(− ∂C(q(t,θ),t)
∂t

−γ′(t))
(− ∂C(q(n∗,θ),n∗)

∂n∗ −γ′(n∗))
dt

∫ n∗
n

(− ∂C(q(t,θ),t)
∂t

−γ′(t))
(− ∂C(q(n∗,θ),n∗)

∂n∗ −γ′(n∗))
dt




dθ

So we find that
d

(
π(n∗∗)−γ(n∗∗)−[π(n)−γ(n)]

π(n∗)−γ(n∗)−[π(n)−γ(n)]

)

dθ
> 0 if

d

[
(− ∂C(q(t,θ),t)

∂t
−γ′(t))

(− ∂C(q(n∗,θ),n∗)
∂n∗ −γ′(n∗))

]

dθ
> 0 for t > n∗.

Under assumption (i) in the proposition it is the case that −∂C(q(t,θ),t)
∂t

−γ′ (t) > 0 and hence

we have to prove that

d ln
[
−∂C(q(t,θ),t)

∂t
− γ′ (t)

]

dθ
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is increasing in t. This can be written as d[g(t)h(t)]
dt

> 0 with

g (t) =
d ln

(
−∂C(q(t,θ),t)

∂t

)

dθ

h (t) =
1

1− γ′(t)

(− ∂C(q(t,θ),t)
∂t )

We know from definition 2 that g′ (t) > 0 and the assumption in the proposition that γ′(t)

(− ∂C(q(t,θ),t)
∂t )

is nondecreasing in t ensures that h′ (t) ≥ 0. The conditions under (i) then make sure that both

g (.) and h (.) are nonnegative and hence we find that d[g(t)h(t)]
dt

= g′ (t) h (t) + g (t) h′ (t) > 0.

Under assumption (ii) a similar argument can be proved about monotonicity, but in that

case we find
d

(
π(n∗∗)−γ(n∗∗)−[π(n)−γ(n)]

π(n∗)−γ(n∗)−[π(n)−γ(n)]

)

dθ
< 0. Q.E.D.

With a similar argument the following result can be proved.

Lemma 4 Take three firms with n∗∗ > n∗ > n. Then the assumption that γ′(t)
−

∂C

(
q

(
t,{ni

w0,ni
w1}I

i=1
,θ

)
,t

)

∂t




is decreasing in t ∈ 〈n, n∗∗〉 is sufficient for the measure π(n∗∗)−γ(n∗∗)−[π(n)−γ(n)]
π(n∗)−γ(n∗)−[π(n)−γ(n)]

to be monotone

in competition (dθ > 0 and d (−γ) > 0) if either of the following conditions holds for all

t ∈ 〈n, n∗∗〉:

(i)

d

(
−∂C

(
q
(
t,{ni

w0,ni
w1}I

i=1
,θ

)
,t

)

∂t

)

dθ
≤ 0 and γ′ (t) < −

∂C
(
q
(
t, {ni

w0, n
i
w1}I

i=1 , θ
)

, t
)

∂t

(ii)

d

(
−∂C

(
q
(
t,{ni

w0,ni
w1}I

i=1
,θ

)
,t

)

∂t

)

dθ
≥ 0 and γ′ (t) > −

∂C
(
q
(
t, {ni

w0, n
i
w1}I

i=1 , θ
)

, t
)

∂t

with similar expressions for d (−γ).

Proof of Lemma 3

Writing PCM as follows

PCM (n) =
1

1 + C(q(n),n)
π(n)
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we find that dPCM(n)
dθ

< 0 if an only if

d

[
γ+

∫ n
nw(− ∂C(q(t,θ),t)

∂t )dt

C(q(n),n)

]

dθ
< 0

where we have used from the proof of theorem 1 that π (n) = γ +
∫ n

nw

(
−∂C(q(t,θ),t)

∂t

)
dt. Differ-

entiating
γ+

∫ n
nw(− ∂C(q(t,θ),t)

∂t )dt

C(q(n),n)
with respect to θ (taking nw as given) we get the expression in the

lemma.

Similarly we find that dPCM(n)
dγ

> 0 if and only if

d

[
γ+

∫ n
nw(− ∂C(q(t,θ),t)

∂t )dt

C(q(n),n)

]

dγ
> 0

Evaluating this expression gives the equation in the lemma. Q.E.D.
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