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Abstract

We determine a lower bound for the spectral radius of a graph in terms of the number
of vertices and the diameter of the graph. For the specific case of graphs with diameter
three we give a slightly better bound. We also construct families of graphs with small
spectral radius, thus obtaining asymptotic results showing that the bound is of the right
order. We also relate these results to the extremal degree/diameter problem.

1 Introduction

In [6], the problem was raised to determine the minimal spectral radius among graphs with
given number of vertices and diameter. In [4], we obtained asymptotic results for some cases
where the diameter D grows with the number of vertices n. Here we consider the case when D



is fixed, and n grows. We first obtain a general lower bound for the spectral radius of a graph
in terms of its number of vertices and its diameter. For the diameter three case, we give a
slightly better bound. In the literature we could not find any comparable bounds. Besides the
folklore result that the spectral radius is at least the average vertex degree in the graph, the
first non-trivial lower bound on the spectral radius of a graph was obtained by Hofmeister [11],
who showed that the spectral radius is at least the square root of the average squared vertex
degrees, i.e., for a graph with vertex degrees d, and spectral radius p, the bound p? > % >,z
holds. Nikiforov [13] generalized this, and obtained a lower bound in terms of the number of
certain walks in the graph. An upper bound for the spectral radius in terms of the diameter
was recently obtained in [3]: if the graph is not regular, with maximum vertex degree A, then
p<A— %.

In Section 3, we construct graphs with small spectral radius, showing that the obtained
lower bound is asymptotically of the right order. In the final section we relate our problem to
the so-called extremal degree/diameter problem (see [12] for a recent survey on this problem).

Before obtaining the lower bound (in Section 2), we first introduce some terminology as
follows. We let p(M) denote the spectral radius of a matrix M. The spectral radius of a graph
is defined as the spectral radius p(A) of its adjacency matrix A. Unless otherwise indicated,
for a given graph we let n, D, p, and e denote the number of vertices, diameter, spectral
radius, and number of edges. Furthermore, we let (d,) denote the sequence of vertex degrees
and A the maximum vertex degree.

An (-walk in a graph is a sequence of £+ 1 consecutively adjacent vertices (this represents
a “walk” of length ¢ along the edges of the graph). By Ny(u) we denote the number of (-walks
starting in vertex u. Finally, we let T';(u) := {v | d(u,v) = i} be the set of vertices at distance
1 from u.

2 Lower bounds for the spectral radius

In this section, we shall derive a lower bound for the spectral radius of a graph with given
diameter and number of vertices. Then, for the case of diameter three, we shall give a slightly
better bound.

2.1 A general lower bound for the spectral radius

We shall show that the spectral radius of a graph with n vertices and diameter D is at least
(n—1)P. This generalizes the following result of Van Dam and Kooij [6] which concerns the
case D = 2.

Theorem 2.1. For the spectral radius p of a graph with n vertices and diameter two we have
that p > v/n — 1 with equality only for the stars K ,_1, the pentagon, the Petersen graph, the
Hoffman-Singleton graph, and putative 57-reqular graphs on 3250 vertices.

In order to prove the general result, we use the following lemma on the number Ny(u) of
D-walks starting in an arbitrary vertex u.

Lemma 2.2. Let T be a graph with n vertices and diameter D, and let u be an arbitrary
verter. Then Np(u) > n — 1. Moreover, Np(u) >n—1—d, +d>? if D > 3.
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Proof. Let u be a vertex of I' and v be a different vertex. Let u = ug ~uy ~ug ~ -+ ~up=v
be a shortest path between v and v. If £ < D, then there exists a D-walk starting with
U, Uty -+ Up_1,Up, Up_1. If £ = D, then the walk u = ug ~ --- ~ uy = v is a D-walk. Clearly,
each v # u gives a different D-walk, which shows that Np(u) > n — 1. If D > 3, then the
above d, walks for £ = 1 can be replaced by the (at least) d? walks starting with u, v, u,v’,
which shows the second part of the statement. Il

Now we can derive the general lower bound for the spectral radius.

Theorem 2.3. Let I" be a graph with n vertices, diameter D, and spectral radius p. Then
p>(n—1)"P

with equality if and only if D = 1 and T" is the complete graph K,, or D = 2 and I is the
star Ki,_1, the pentagon, the Petersen graph, the Hoffman-Singleton graph, or a putative
5T-reqular graph on 3250 vertices.

Proof. Let A be the adjacency matrix of I'. By Lemma 2.2, the number of D-walks starting
in a vertex u is at least n — 1. Since (AP Juv equals the number of D-walks from u to v,
the total number of D-walks starting in u is (AP1),, where 1 is the all-one vector. Thus,
n(n —1) < 1T AP1. From the Rayleigh quotient, cf. [10, p. 202], we then obtain that

1TAP1  1TA”1

1< _
nThisTy 171

< p(A”) = p(A)".

We thus have p = p(A) > (n — 1)YP. From Lemma 2.2 it follow that equality can only
hold for D < 2. Equality indeed holds trivially for D = 1, and then the result follows from
Theorem 2.1. 0

Note that in the proof of Lemma 2.2 we only counted very specific D-walks. For D > 3, it
seems to be difficult to count the exact number of D-walks, but for D = 3 we are able to do so
under some extra conditions. This leads to a better bound for the spectral radius for D = 3.

2.2 An improved bound for diameter three

For graphs with diameter D > 3, the bound p > (n — 1)'/? is not sharp. In this section we
derive a slightly better bound for diameter three.

Theorem 2.4. Let I' be a graph with n vertices, e edges, diameter three, and spectral radius

p. Then

2
P zn—1-=, (1)

with equality if and only if T is the heptagon.

Proof. Let A be the adjacency matrix of ', then p = p(A). Lemma 2.2 states that (A31), =
N3(u) > n—1—d, + d?>. Moreover, equality holds if and only if u is not contained in any



m-cycle for m = 3,4,5,6. This follows for example by careful counting and observing that
the right hand side of the inequality is equal to |Tz(u)| + [T2(u)| + |T1(w)[?. So it follows that

1TA31>Zn—1—d +d,2) =n(n-1) Zd +Zd2

Because Y, d, = 2e and _ d,”> = (A1) (A1) = 17 A%1, dividing each side by n gives

17(A3 - A1 17A4%1-174%1 2e
171 171 n’

p(A® — A?) >

Note that each eigenvector of A with eigenvalue 6 is an eigenvector of A3 — A% with eigenvalue
62 — 6%, and hence also that all eigenvalues A% — A? are obtained in this way. This implies
that p(A% — A?) = p3 — p? because 03 — 6% < p? — p? for 6 < p (since p > 1). Thus we obtain
the required 1nequahty p —-pP>n—-1- 2;

Next, we are going to classify the graphs I" with n — 1 — 2¢ = p3 — p?. Then all above
inequalities must be equalities, from which it follows that I" has no m-cycles for m < 6, and
that the all-one vector 1 is an eigenvector of A> — A2, The above observations then imply
that 1 is also an eigenvector of A, i.e., that I' is a regular graph.

Because I' is regular with diameter 3 without m-cycles for m < 6, it is a Moore graph.
However, Bannai and Ito [1] and Damerell [7] showed that a Moore graph with diameter D > 1
and valency k > 2 must have diameter D = 2 (and valency k € {3,7,57}), hence the valency
k of T should be 2. Therefore I' is a heptagon, which finishes the proof. m

The bound of Theorem 2.4 is slightly better than the bound p > v/n — 1 of Theorem 2.3 as
PP >p> 26 Using the latter inequality p > %, for which equality holds if and only if T" is
26 -regular, We also obtain the following.

Corollary 2.5. Let T be a graph with n vertices, diameter three, and spectral radius p. Then
pPr=ptpzn—1,
with equality if and only if T is the heptagon.

We note that improved bounds can be obtained by considering more detailed information
about the graph. For example, if the graph has t triangles, then one easily obtains that

2e 61
p—p >n—1——+4 —.
n n

We finally remark that in a graph with edge set E, the number of 3-walks can also be expressed
as 2y (uv}eE d,d,. We do however not know how to use this expression in our approach.

3 Constructions of graphs with small spectral radius
Next, we shall consider graphs with small spectral radius. First, we define

pp(n) :=min{ p(T") | T is a graph with n vertices and diameter D}.
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In particular we would like to consider the quotient pp(n)/ ¥/n — 1, for which Theorem 2.3
states that

o) oy,

Yn—1"
By constructing graphs with small spectral radius, we would like to find good upper bound
for the quotient as well.

We first define some terminology. We say that a partition 7 of the vertex set V(I') with
cells 1, - - -, m, is equitable if the number of neighbours in 7; of a vertex u in m; is a constant
b;j, independent of . The directed graph with the r cells of 7 as vertices and b;; arcs from the
ith to the jth cells of 7 is called the quotient of I over 7, and denoted by I' /7. The adjacency
matrix A(I'/m) =: Q(I") of this quotient is called the quotient matrix, and it has the same
spectral radius as I' (cf. [9, p. 79]).

Now, let @ > 0, b > 2, and t > 1 be integers. We define X;(a,b) as the graph with

an equitable partition 7 = {my, 7y, , 7}, where |m9| = a + 1, with corresponding quotient
matrix _ _
a b
1 0 b
A(Xifa,b)/7) = o
1 0 b
1 0

Note that the graph is completely determined by this information, and has diameter D = 2t
if a =0, and D = 2t + 1 otherwise.

Now we shall consider some sequences of graphs for which pp(n)/ ¥/n — 1 < 2, for n large
enough. For even diameter we take the trees X;(0,b0),b > 2 with diameter D = 2¢, and for
odd diameter we take the graphs X;(a,a?),a > 2 with diameter D = 2t + 1. We shall first
determine the spectral radius of these graphs.

Lemma 3.1. Lett > 1,a > 2, andb > 2. Then p(X,(0,b)) = 2v/bcos (t%) and p(Xy(a,a?)) =

2a cos (2t+3)

Proof. 1t is easy to see that the quotient matrix Q(X;(a,b)) is similar to \/_Q(Xt(% 1)),
hence p(X(a,b)) = \/Ep(Xt(\/%, 1)), at least when 7 Is integer.

Now consider the graph X;(0,b). From the fact that X;(0,1) is the path Py, which
has spectral radius 2 cos (t+2) cf. [5, p. 73], we obtain that p(X;(0,b)) = vbp(X,(0,1)) =
Vbp(Pry1) = 2v/bcos (t+2).

Because the graph X;(1,1) is the path Py, it follows that p(X;(a,a?)) = ap(X,(1,1)) =
ap(Poyio) = 2a cos(2t+3) O
Using this, we determine the limits of the quotients under consideration. Let n, and n, be
the numbers of vertices of the graphs X;(0,b) and X;(a, a?), respectively.

Proposition 3.2. Lett > 1. Then

2
lim M = 2cos (L> and lim M = 2008(
t+2

b—oo 3 ny — 1




Proof. Because ny =1+ b+ b*+ -+ b, it follows that

p(X:(0,0)) _ 2v/b cos (t%) _ 2cos(t+i2) —>2(:os< - ) P
2t/nb—1 2\7b+b2+...+bt 2\71+b71+---+b1*t t+2

The other result follows similarly from the fact that n, = (a +1)(1+a*+a* +---+a*). O

Proposition 3.2 immediately implies that liminf, .. ’Z\,ﬁ’g < 2. We shall now show that

< 2 as well. First consider the even diameter case. Let 7y(n) be a tree

pp(n)
D\D/nfl
with n vertices and diameter 2¢ which is an induced subgraph of X;(0, b) containing a subgraph

X:(0,6—1). It follows that

p(T2(n))
Vn—1

Letting b — oo, we obtain

lim sup,,_, -

A1) 2VBeos () _ 2vbeos ()
¥m—1 ¥n—1 = ¥mp—1

<

lim sup p(Tu(n))

s
AT0)) (7).
n—o00 kY n—1 t+2
The odd diameter case can be handled similarly. Therefore we obtain the following.

Theorem 3.3. Let D > 1. Then

lim sup pp(n) < 2 cos (ﬁ) if D is even;
n—co W/ —17 [ 2co0s (%LD) if D is odd.

In particular,

lim sup [')OD (n)

n—o0 n—1

< 2.

We conjecture however that the lower bound of the previous section is closer to the truth than
this upper bound.

Conjecture 3.4. Let D > 1. Then

lim _PDA) (n) =

n—00 Dn_l

4 The degree/diameter problem

Our problem is related to the well-known degree/diameter problem, i.e., the problem to deter-
mine graphs with maximum degree A and diameter D and with as many vertices as possible,
for given A and D, cf. [12]. The maximum number of vertices of such graphs is denoted by
na,p. An obvious and well-known bound is the so-called Moore bound:

(A-1)P -1

D
nap=Y D) SI+A+AA-1)+ .. +AA-1)P T =1+A o
=0
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where we have assumed that A > 3 to avoid trivialities. Related to the number na p is the

parameter
NA D

AD
which was introduced by Delorme [8]. From the Moore bound it follows that up < 1. It is
known that up =1 for D =1,2,3, and 5, and that uy > }1, cf. [12]. Moreover, Bollobas [2, p.
213] conjectured that up = 1 for D > 3.

To relate the degree/diameter problem to ours, we introduce ma p as the maximum number
of vertices of a graph with diameter D and spectral radius p < A, for given A and D. Similar
as for the degree/diameter problem, we introduce the parameter

;= lim inf
o = i

MA,D
AD -

fip = liminf

A—00

Because p(I') < A(T') for any graph I, it follows that na p < ma p, and hence that pp < fip.
The relation of the parameter fip to the earlier results in this paper is the following.

Lemma 4.1. Let D > 1. Then

po(n) \ 77
fip = (limsup - )

n— 00 n—1

Tap < b o From this it follows that

Proof. Because pp(ma,p) < A, we obtain that —&5> < oA D)

N o n . pp(n) \
< liminf ———= = [ limsu
HD = ln_’%’o pD(n>D ( n—>oop LY n— 1)

On the other hand, from the definition of ma p it follows that pp(ma p +1) > A, so

lim sup A < limsup po(map+1) < lim sup po(n) ,
A—oco X/ MA,D A—o0 D\/mA7D +1-1 n—00 Un —1
m\ 7"
and hence fip > <lim SUP,, o0 %) . O

From the results in Section 3 it now follows that 2= < i, < 1. The more specific bound for

D = 4 implies that iy > %, which also follows from the fact that py > }L.

Moreover, if up = 1, then also fip = 1, and hence lim,, g’g

3.4 is true for D = 1,2,3,5, and it is true in general if Bollobas’ conjecture is true.

= 1. Thus Conjecture
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