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Abstract
Household surveys often suffer from nonresponse on variables such as income, savings or

wealth. Recent work by Manski shows how bounds on conditional quantiles of the variable of

interest can be derived, allowing for any type of nonrandom item nonresponse. The width

between these bounds can be reduced using follow up questions in the form of unfolding brackets

for initial item nonrespondents. Recent evidence, however, suggests that such a design is

vulnerable to anchoring effects. In this paper Manski’s bounds are extended to incorporate  the

information provided by the bracket respondents allowing for different forms of anchoring. The

new bounds are applied to earnings in the 1996 wave of the Health and Retirement Survey. The

results show that the categorical questions can be useful to increase precision of the bounds, even

if anchoring is allowed for.

Key words: unfolding bracket design, anchoring effects, item nonresponse, bounding intervals.

JEL codes: C14, C42, C81, D31

* Tilburg University,  P. O. Box 90153, 5000 LE Tilburg, The Netherlands.
E-mail: rosalia.vazquez-alvarez@ucd.ie; b.melenberg@kub.nl; a.h.o.vansoest@kub.nl



2

1 Introduction
Household surveys are often plagued by item nonresponse on variables of interest like income,

savings or the amount of wealth. For example, in the 1996 wave of the Health and Retirement

Survey (HRS), a US panel often used to study socio-economic behavior of the elderly, 12.4% of

those who say they have some earnings, do not give the amount of these earnings. Questions on

amounts of certain types of wealth often lead to even larger nonresponse rates. Manski (1989,

1994, 1995) shows how bounds on conditional quantiles of the variable of interest can be

derived, allowing for any type of nonrandom response behavior. Manski’s framework is

intuitively appealing, easy to apply, and very flexible, but has the drawback that the resulting

bounds are often too wide to draw meaningful economic conclusions. In Manski’s framework

the precision with which features of the distribution of the variable of interest (such as its

quantiles) can be determined, i.e., the width between the bounds, depends on the probability of

nonresponse. If item nonresponse is substantial, the approach cannot lead to accurate estimates

of the parameters of interest without additional information or additional assumptions.

Including follow-up questions in the form of unfolding brackets for initial item

nonrespondents is an effective way to reduce complete item nonresponse. In the HRS example

given above, 73% of the initial nonrespondents answer the question whether or not their earnings

exceed $25,000, and most of these also answer a second question on either $50,000 (if the first

answer was ‘yes’) or $5,000 (if the first answer was ‘no’). Recent evidence, however, suggests

that the follow-up design that is used here leads to an “anchoring effect,” a phenomenon well

documented in the psychological literature: the distribution of the categorical answers is affected

by the amounts in the questions (“bids” become “anchors”). Experimental studies have shown

that even an anchor that is arbitrary and uninformative can have large effects on the  responses

(see, for example, Jacowitz and Kahneman (1995)). Using a special survey with randomized

initial bids, Hurd et al. (1998) show that the distribution is biased towards the categories close

to the initial bid. They estimate a parametric model to capture the anchoring phenomenon. Their

results confirm that the anchoring effect can bias the conclusions on the parameters of interest

if not properly accounted for. Alternative parametric models for anchoring are introduced by

Cameron and Quiggin (1994) and Herriges and Shogren (1996).

This paper extends the approach by Manski, incorporating the information provided by

the bracket respondents. From the existing anchoring models, three different nonparametric

assumptions on the anchoring effects are derived, which are used to construct bounds allowing

for anchoring. These bounds are compared to the bounds that do not allow for anchoring, i.e.,

bounds based on the assumption that the bracket information is always correct. Thus, the main

goal of the paper is to use the information provided in follow-up unfolding bracket questions,

allowing for nonrandom response behavior as well as anchoring.



1See Horowitz and Manski (1998) and Manski and Tamer (2000) for bounding intervals

in the more general case of incomplete information on outcomes and regressors.
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The bounds are applied to earnings in the 1996 wave of the Health and Retirement

Survey. The results show that the categorical questions can be useful to increase precision of the

bounds, even if anchoring is allowed for. They also help to improve the power of statistical tests

for equality of earnings quantiles in subpopulations. This is shown by comparing bounds for

respondents with low and high education levels. The bounds that take account of bracket

information are able to detect differences that are not revealed by the bounds based upon full

respondents’ information only.

The remainder of this paper is organized as follows. Section 2 discusses the problems

associated with item nonresponse in economic surveys and compares different ways to deal with

such problems. Section 3 derives bounding intervals using the unfolding bracket questions

information, accounting and not accounting for anchoring effects. Section 4 describes the HRS

data used in the empirical work. Section 5 presents the empirical results. Section 6 concludes.

2 Item Nonresponse in Household Surveys
We analyze item nonresponse on one specific variable of interest and do not consider problems

such as unit nonresponse or nonresponse on conditioning variables.1 The problem of item

nonresponse is often associated with questions on exact amounts of variables such as income,

expenditure, or wealth. Unless item nonresponse is completely random, the sample of (item)

respondents is not representative for the population of interest. This can affect the estimates of

parameters describing the distribution of the variable of interest, such as the conditional mean

or conditional quantiles given some covariates. 

There are several ways to handle this problem. The first is to use as many covariates (X)

as possible and to assume that, conditional on X, the response process is independent of the

variable of interest. This makes it possible to use parametric or nonparametric regression

techniques to impute values for nonrespondents, leading to, for example, the hot-deck imputation

approach. The key assumption of this approach is that item nonrespondents are not systematically

different from respondents with the same values of X. See Rao and Shao (1992) for an overview

of hot-deck imputation and Juster and Smith (1997) for an application and the use of bracket

response information in this context.

Since the seminal work by Heckman (for example, Heckman, 1979), the common view

in many economic examples is that the assumption of random item nonresponse conditional on

observed X is often unrealistic and may lead to serious selection bias. Heckman proposed to use

a selection model instead. This is a joint limited dependent variable model of response behavior
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and the variable of interest, conditional on covariates. See, for example, the survey of Vella

(1998). Parametric and semiparametric selection models avoid the assumption that item

nonresponse is random conditional on X, but require alternative assumptions such as a single

index assumption or independence between covariates and error terms.

A new approach to deal with nonrandom  item nonresponse was introduced by Manski

(1989, 1990). It makes no assumptions on the response process and uses the concept of

identification up to a bounding interval. Manski (1989) shows that in the presence of item

nonresponse, the sampling process alone does not fully identify most features of the conditional

distribution of a variable Y given a vector of covariates X. In many cases, however, lower and

upper bounds for the feature of interest (such as a value of the distribution function of Y given

X) can be derived. Manski calls these bounds “worst case bounds.” Manski (1994, 1995) shows

how these bounds can be tightened by adding nonparametric assumptions on  monotonicity of

the relation between Y and response behavior, or exclusion restrictions on the conditional

distribution of Y. See Lee and Melenberg (1998) for an empirical application. Manski (1990),

Manski et al. (1992), and Lechner (1999) apply the bounds to analyze treatment effects.

The problem of item nonresponse can be reduced at the data collection level by, for

example, carefully designed surveys, careful coding of responses by the interviewer, reducing

question ambiguity, guaranteeing privacy protection, giving respondents the opportunity to

consult tax files, etc. A more direct method to reduce item nonresponse is to include categorical

questions to obtain partial information from initial nonrespondents. This is often motivated by

the argument that cognitive factors such as confidentiality or the belief that the interviewer

requires a perfectly precise answer, can make people reluctant to answer open-ended questions

(see, for example, Juster and Smith (1997)).

Two types of categorical questions are common. In some surveys, initial nonrespondents

are routed to a range card categorical question, where they are asked to choose the category that

contains the amount (Y) from a given set of categories. The alternative is  unfolding brackets.

This is used in well-known US longitudinal studies such as the Panel Study of Income Dynamics

(PSID), the Health and Retirement Survey (HRS), and the Asset and Health Dynamics Among

the Oldest Old (AHEAD). In an unfolding brackets design, those who initially answer the open

question with ‘don’t know’ or ‘refuse’, are asked a question such as ‘is the amount $B or more?’,

with possible answers ‘yes’, ‘no’, ‘don’t know’, and ‘refuse’. They typically get two or three such

consecutive questions, with changing bids $B: a ‘yes’ is followed by a larger bid and a ‘no’ by

a smaller bid. Those who answer ‘don’t know’ or ‘refuse’ on the first bid are full nonrespondents.

The others are called bracket respondents. They are referred to as complete or incomplete bracket

respondents, depending on whether they answer all the bracket questions presented to them by

‘yes’ or ‘no’, or end with a ‘don’t know’ or ‘refuse’ answer. An unfolding bracket design is much
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F(y|x)�F(y|x,FR)P(FR|x)�F(y|x,NR)P(NR|x) (1)

easier to use in a telephone interview than a range card question. Moreover, unfolding brackets

can elicit partial information even if the sequence is not completed, while a range card question

might lead to one simple ‘don’t know’ or ‘refuse’.

A problem with unfolding brackets questions is the phenomenon of anchoring (see

Jacowitz and Kahneman (1995), Rabin (1998), and Hurd et al. (1998)). A psychological

explanation for anchoring effects is that the bid creates a fictitious belief in the respondent’s

mind: faced with a question related to an unknown quantity, the respondent treats the question

as a problem solving situation, and the given bid is used as a cue to solve the problem. This can

result in responses that are influenced by the design of the unfolding sequence. Hurd et al. (1998)

formulate a parametric model which can explain observed anchoring patterns in their data. This

model will be discussed in detail in Section 3.3. Hurd et al. (1998) estimate their model using

experimental data  in which respondents are randomly assigned to different starting bids of an

unfolding bracket sequence.  They find strong evidence of anchoring effects. Other parametric

models for anchoring effects are introduced by Cameron and Quiggin (1994) and Herriges and

Shogren (1996).

The results of Hurd et al. (1998) and others imply that answers to unfolding bracket

questions may often be incorrect. They also imply that unfolding bracket questions may not give

the same answers as range card questions. In the next section, Manski’s worst case bounds are

extended to account for unfolding bracket questions. Nonparametric versions of the assumptions

underlying models for anchoring are then introduced, and the worst case bounds are extended

to allow for anchoring under these assumptions.

3 Theoretical framework
3.1 Worst case bounds; no bracket respondents
First, Manski’s (1989) worst case bounds are reviewed for the conditional distribution function

of a variable Y at a given y�� and given X=x��P. It is assumed that there is neither unit

nonresponse, nor item nonresponse on X. Reported (exact) values of Y and X are assumed to be

correct; there is no under- or overreporting. Let FR (full response) indicate that Y is observed and

let NR indicate (full) nonresponse on Y. , the conditional distribution function of Y givenF(y|x)

X=x in the complete population, can be written as follows:

The assumptions imply that  is identified for all x in the support of X, and canF(y|x,FR)

be estimated using some nonparametric regression technique. The same holds for the conditional



2 In this study, no distinction is made between the answers ‘don’t know’ and ‘refuse’. Both are referred

to as ‘don’t know’.
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F(y|x,FR)P(FR|x) � F(y|x) � F(y|x,FR)P(FR|x) � P(NR|x) (2)

Is the amount $B1 or more ? (3)

probabilities  and . If the assumption were added that, conditional on X, responseP(FR|x) P(NR|x)

behavior is independent of Y, then all expressions in the right hand side of (1) would be

identified, since . This is the assumption of exogenous selection. In general,F(y|x,FR)�F(y|x,NR)

however, response behavior can be related to Y, and  is not identified, so that isF(y|x,NR) F(y|x)

not identified either. Without additional assumptions, all that is known about  is thatF(y|x,NR)

it is between 0 and 1. Applying this to (1) gives,

These are Manski’s worst case bounds for the distribution function. The difference between the

upper and the lower bound is equal to . Thus, a low nonresponse rate leads to narrow andP(NR|x)

informative bounds. Additional assumptions can tighten the bounds. Examples are monotonicity

and exclusion restrictions, see Manski (1994, 1995).

3.2 Partial information from an unfolding bracket sequence
In this paper, the bounds in (2) are extended to incorporate information from a follow-up

unfolding bracket sequence. Let B1 be the initial bid. This is assumed to be the same for all initial

nonrespondents, as is the case in the HRS data. The first bracket question is thus given by

Individuals can answer ‘yes’, ‘no’, or ‘don’t know’.2 Those who answer ‘don’t know’ become

full nonrespondents. Those who answer ‘yes’ get the same question with a new bid B21, with

B21>B1. If the answer is ‘no’, the next bid is B20, with B20<B1. For many questions in the HRS,

this second question is the final bracket question. In some cases a third question is asked, again

with a new bid. Our study is limited to the case of two bracket questions, leaving more than two

questions as an extension that can be treated along the same lines. For the sake of the exposition,

the case where only one bracket question is asked is considered first.

3.3 Bounds and unfolding bracket response: One bracket question
In this case, three types of respondents can be distinguished: full respondents (FR), bracket
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F(y|x) � F(y|x,FR)P(FR|x) � F(y|x,BR)P(BR|x) � F(y|x,NR)P(NR|x) (4)

P(Q1�1|x,BR) � P(Q1�1|Y<B1,x,BR)P(Y<B1|x,BR) �

P(Q1�1|Y�B1,x,BR)P(Y�B1|x,BR)
(5)

for y < B1 0 � F(y|BR,x) � P(Q1�0|BR,x)

for y � B1 P(Q1�0|BR,x) � F(y|BR,x) � 1
(6)

F(y|FR,x)P(FR|x)
� F(y|x) �

F(y|FR,x)P(FR|x) � P(Q1�0|x,BR)P(BR|x) � P(NR|x)
(7)

F(y|FR,x)P(FR|x) � P(Q1�0|x,BR)P(BR|x)
� F(y|x) �

F(y|FR,x)P(FR|x) � P(BR|x) � P(NR|x)
(8)

respondents (BR) and (full) nonrespondents (NR), so that F(y|x) can be written as

Full respondents identify F(y|x,FR), as before. Nonrespondents answer ‘don’t know’ to

the initial question and the bracket question and, as before, all that is known about F(y|x,NR) is

that it is between 0 and 1. The new issue is what the answers of the bracket respondents say about

F(y|x,BR).

Bracket respondents report whether Y�B1 or not. Define a variable Q1 by Q1=1 if the

answer to (3) is ‘yes,’ and 0 if it is ‘no’. Then the bracket respondents identify P(Q1=1|x,BR).

For deriving the bounds, it will be useful to write this as 

Not allowing for an Anchoring effect

If there is no anchoring, all bracket respondents answer (3) correctly. This implies that

 and , and thus P(Y<B1|x,BR) is identifiedP(Q1�1|Y<B1,x,BR)�0 P(Q1�1|x,BR)�P(Y�B1|x,BR)

by the data on bracket respondents. It leads to the following bounds on F(y|x,BR): 

Combining this with the bounds on F(y|FR,x) and F(y|NR,x) yields, for y < B1,

and for y � B1, 
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P(Q1�1|Y<B1,x,BR) � P(��Y�B1|B1�Y>0,x,BR) � 0.5

P(Q1�1|Y�B1,x,BR) � P(��Y�B1|B1�Y�0,x,BR) � 0.5
(9)

P(Q1�1|x,BR) � 0.5P(Y<B1|x,BR) � P(Y�B1|x,BR)

P(Q1�1|x,BR) � 0.5P(Y�B1|x,BR).
(10)

P(Y<B1|x,BR) � 2P(Q1�0|x,BR)

P(Y�B1|x,BR) � 2P(Q1�1|x,BR).
(11)

The bounds in (7) and (8) are sharper than the worst case bounds in (2) if there are bracket

respondents answering ‘yes’ as well as bracket respondents answering ‘no’.

Allowing for an Anchoring Effect
If responses to (3) suffer from anchoring, (6) is no longer valid, since answers to (3) can be wrong

and P(Q1=1|Y<B1,x,BR) and P(Q1=0|Y>B1,x,BR) can be nonzero. In Hurd et al. (1998), Q1 is

based upon comparing Y to B1+�, where � is the perception error. Hurd et al. (1998) assume that

� is normally distributed with zero mean and is independent of Y and X. In our nonparametric

framework the following weaker distributional assumption with respect to  is used:ε

Assumption 1: Q1=1 if Y�B1+� and Q1=0 if Y<B1+�, where the perception error � satisfies

For all (x,y) in the support of (X,Y), Median(�|X=x,Y=y,BR)=0.

This assumption implies that the conditional probability that an individual answers question Q1

correctly is at least 0.5:

Applying (9) to (5) gives:

This implies

In other words: the fraction with Y smaller than B1 is at most twice the fraction reporting Y<B1;

the fraction with Y at least B1 is at most twice the fraction reporting Y�B1. Compared to the no-

anchoring case, the factor 2 reflects the loss of information due to allowing for anchoring.

The bounds on F(y|x,BR) follow immediately:



9

for y < B1 0 � F(y|x,BR) � 2P(Q1�0|x,BR)

for y � B1 1�2P(Q1�1|x,BR) � F(y|x,BR) � 1
(12)

F(y|FR,x)P(FR|x)
� F(y|x) �

F(y|FR,x)P(FR|x) � min[1,2P(Q1�0|x,BR)]P(BR|x) � P(NR|x)
(13)

F(y|FR,x)P(FR|x) � max[0,1�2P(Q1�1|x,BR)]P(BR|x)
� F(y|x) �

F(y|x,FR)P(FR|x) � P(BR|x) � P(NR|x)
(14)

This implies either a nontrivial lower bound or a nontrivial upper bound, unless

P(Q1=1|x,BR)=0.5. If P(Q1=1|x,BR)<0.5, the fraction of bracket respondents with a high value

of Y is bounded. This leads to a lower bound on . If P(Q1=1|x,BR)>0.5, not all bracketF(y|BR,x)

respondents have a low value of Y. This leads to an upper bound on . Replacing (6) byF(y|BR,x)

(12) and applying this to (4) straightforwardly leads to bounds on F(y|x):

for y < B1

for  y � B1,

These bounds are sharper than Manski’s worst case bounds in (2) unless P(BR|x)=0 or

P(Q1=1|x,BR)=0.5. On the other hand, they are wider than the bounds in (7)-(8), which were

constructed under the stronger assumption of no anchoring.

Alternative Models for Anchoring

Although the model Hurd et al. (1998) use can explain the anchoring phenomena in their data,

it may not be the intuitively most appealing way to model anchoring, and it seems worthwhile

to consider some alternative anchoring models. Herriges and Shogren (1996) allow for anchoring

in follow-up questions only, implying the no-anchoring assumption in (6) and (7) for the one

bracket question case. The model of Cameron and Quiggin (1994) is specifically designed for two

bracket questions. It is straightforward, however, to show that this model is equivalent to the

parametric Hurd et al. (1998) model for the case of two bracket questions, although the

interpretation of Cameron and Quiggin is different.

The motivation of the Hurd et al. (1998) model stems from Green et al. (1998) and

Jacowitz and Kahneman (1995). These studies find that, if a high anchor is used, respondents too

often report that the amount exceeds the anchor. In terms of our notation this would mean



1A common test on yea-saying is to compare the estimated distribution for the open-ended respondents with

the (upper and lower bound of the) distribution function for the bracket respondents. In absence of selectivity

effects, yea-saying would imply that the latter distribution is to the right of the former. In the present framework,

however, selectivity effects can play a role, and this test is not a test on yea-saying only.
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P(Q1�1|x,BR) � P(Y�B1|x,BR) if P(Q1�1|x,BR)�0.5

P(Q1�1|x,BR) � P(Y�B1|x,BR) if P(Q1�1|x,BR)�0.5
(15)

P(Q1�1|x,BR) � P(Y�B1|x,BR) (16)

P(Q1=1)�P(Y�B1) if B1 is large. Jacowitz and Kahneman (1995) report that this finding is not

symmetric for their case study, and could well be reversed if the amounts have a natural upper

instead of lower bound. An operational version of the phenomenon discussed by Jacowitz and

Kahneman for one bracket question would be

Here ‘B1 is large’ is specified as ‘at most half of the respondents report an amount of at least B1.’

It is easily shown that (15) is stronger than (11), and that (15) is satisfied in the parametric model

of Hurd et al. (1998). The underlying intuition is that adding noise to B1 before comparing it to

Y, increases the tail probabilities in the distribution of the difference.

Constructing bounds on P(Y�B1|x,BR) from (15) is straightforward. If P(Q1=1|x,BR) �

0.5, the first inequality in (15) leads to an upper bound; if P(Q1=1|x,BR) � 0.5, the other

inequality leads to a lower bound. A practical problem with estimating these bounds arises if the

estimate of P(Q1=1|x,BR) in a given sample is not significantly different from 0.5.

Finally, a robust finding in the literature is that dichotomous questions usually shift the

distribution to the right, compared to open-ended questions. This is particularly so if there is a

clear lower bound but no obvious upper bound to the amounts in question. In the willingness-to-

pay (WTP) literature where the amounts are subjective (reflecting, for example, how much

respondents would be willing to pay for some public good), this phenomenon is known as yea-

saying. Green et al. (1998) find evidence of yea-saying for objective quantities rather than WTP

data. Yea-saying implies an asymmetric inequality between reported and true fractions:

This immediately gives an upper bound on P(Y�B1|x,BR). 1

3.4 Two unfolding bracket questions
With two unfolding bracket questions, those who answer ‘yes’ to question (3) are given a second



2See Vazquez et al. (1999) for an application of Manski bounds incorporating information from follow-up

range card questions. 
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F(L(y)|BR,x) � F(y|BR,x) � F(U(y)|BR,x) (17)

question with bid B21>B1, and those who answer ‘no’ get a second question with bid  B20<B1.

Again, they can answer ‘yes’, ‘no’ or ‘don’t know’. In this subsection it is assumed that every

bracket respondent answers the second question with ‘yes’ or ‘no’. The ‘don’t know’ answers

will be considered in the next subsection.

Not allowing for an anchoring effect
If the assumption is made that those who answer the bracket questions do this correctly, then, for

each bracket respondent, it is known whether Y is in [0, B20], [B20, B1],[B1, B21], or [B21, �].

The information is the same as the information provided by a range card question with the same

four categories.2 Bounds on  for this case are a straightforward generalization of the boundsF(y|x)

in (7) and (8). Denoting the category containing y by [L(y), U(y)) (for example, for B20�y<B1,

L(y)=B20 and U(y)=B1), the bounds on F(y|BR,x) are given by

Combined with (4), this gives bounds on F(y|x) similar to the one bracket question case.

Allowing for anchoring
Similar to Q1, define dummy variables Q20 and Q21 for those who answer the second bracket

question on B20 and B21, i.e., those with Q1=0 and Q1=1, respectively. Thus, Q20=1 if the

respondent reports that the amount is at least B20, etc. On top of P(Q1=1|x,BR)  two other

probabilities are now also directly identified by the data:  andP(Q20�1|Q1�0,x,BR)

. To derive the bounds, Assumption 1 needs to be generalized. Again, theP(Q21�1|Q1�1,x,BR)

starting point is Hurd et al. (1998). Their model assumes that the answers Q1, Q20 and Q21 to

the three bracket questions are based upon comparing Y with B1+ , with B20+ , and with�1 �2,0

B21+ . The perception errors ,  and  are assumed to be independent of each other�2,1 �1 �2,0 �2,1

and of X and Y, and normally distributed with zero means. The anchoring effects in the data are

captured if  and  have smaller variances than . The following extension of Assumption�2,0 �2,1 �1

1 is a nonparametric, less restrictive, version of the Hurd et al. assumptions:

Assumption 2: Q1=1 if Y�B1+�1 and Q1=0 if Y<B1+�1; Q20=1 if Y�B20+�2,0 and Q20=0 if

Y<B20+�2,0; Q21=1 if Y�B21+�2,1 and Q21=0 if Y<B21+�2,1 where the perception errors �1, �2,0
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P(Q1�1|Y<B1,x,BR) � 0.5; P(Q1�1|Y�B1,x,BR) � 0.5

P(Q20�1|Y<B20,Q1�0,x,BR) � 0.5; P(Q20�1|Y�B20,Q1�0,x,BR) � 0.5

P(Q21�1|Y<B21,Q1�1,x,BR) � 0.5; P(Q21�1|Y�B21,Q1�1,x,BR) � 0.5

(18)

P(Y<B20|Q1�0,x,BR) � 2P(Q20�0|Q1�0,x,BR)

P(Y�B20|Q1�0,x,BR) � 2P(Q20�1|Q1�0,x,BR)
(19)

P(Y<B21|Q1�1,x,BR) � 2P(Q21�0|Q1�1,x,BR)

P(Y�B21|Q1�1,x,BR) � 2P(Q21�1|Q1�1,x,BR)
(20)

P(Y�B20|x,BR) � [1, 2P(Q20�0|Q1�0,x,BR)]min[1, 2P(Q1�0|x,BR] (21)

and �2,1 satisfy: 

For all (x,y) in the support of (X,Y):   Median ;[�1|Y�y,X�x,BR]�0

Median ; Median .[�2,0|Y�y,X�x,BR,Q1�0]�0 [�2,1|Y�y,X�x,BR,Q1�1]�0

A stronger version of this assumption that may be more natural is the assumption that each of the

three perception errors has median zero, is independent of being a bracket respondent or not, and

is independent of Y,X, and the other two error terms.

Assumption 2 is weaker than the assumptions of Hurd et al (1998). It implies that each

bracket question is answered correctly with probability at least 0.5:

In addition to (11), the implication of (18) for those who answer ‘no’ to the first question,  is that

and for those who answer ‘yes’ to the first question, the implication is that

Assumption 2 and the bounds in (11), (19) and (20) can be used to derive bounds on the

distribution function for bracket respondents. See Appendix A1 for derivations and the results.

To illustrate, one example is presented here: the upper bound on P(Y<B20|x,BR) is given by:

If many people say their income exceeds B1 (i.e., P(Q1=0|x,BR) is low), this limits the maximum

number of people whose income is lower than B20. If the majority of those who report that their
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P(Q2k�1|x,BR,Q1�k) � P(Y�B1|x,BR,Q1�k) if P(Q2k�1|x,BR,Q1�k) � 0.5

P(Q2k�1|x,BR,Q1�k) � P(Y�B1|x,BR,Q1�k) if P(Q2k�1|x,BR,Q1�k) � 0.5
(22)

income is lower than B1 report that their income is higher than B20, this also limits the maximum

number of people with income below B20.

Alternative Models for Anchoring

In the previous subsection some alternative assumptions on anchoring for the one bracket

question case were discussed. The assumptions following the findings of Jacowitz and Kahneman

(1995) basically treat every bracket question separately. In addition to (15), they are, for k=0,1:

From these assumptions, bounds can be derived on the distribution function for bracket

respondents in a similar way as for the Hurd et al. model. The results depend on whether the bids

are ‘small’ or ‘large’. Appendix A2 presents the formulas for the relevant case for our data.

An intuitively appealing way of allowing for anchoring in the second question is provided

by Herriges and Shogren (1996). They formulate a simple model which explicitly allows for an

effect of the first bid on the respondent’s subjective opinion on the amount Y. The essential

feature of their model is that there is no anchoring effect in the first bracket question, but the first

bid B1 serves as an anchor for the second bid B2 (which is either B20 or B21). Thus, in the

second bracket question the respondent does not compare B2 to Y, but to . ThisY �

�(1�g)�gB1

reflects the intuition behind anchoring: the respondent is uncertain about the true value of Y. The

bid B1 is taken to be informative about Y, and the respondent’s new estimate Y* of Y  is drawn

towards B1. Herriges and Shogren (1996) assume that g is a fixed parameter, but also discuss an

extension in which g can vary with B1. They apply their model to data on willingness to pay for

water quality improvement, and find an estimate for g of 0.36, with standard error 0.14. In

another application, O’Connor et al. (1999) find a similar significantly positive value of g.

The Herriges and Shogren (1996) model offers an alternative explanation for the shift in

the estimated distribution based upon unfolding bracket questions due to the order of the bids,

the main finding in Hurd et al. (1998). On the other hand, the Herriges and Shogren model cannot

explain the main finding of Jacowitz and Kahneman  (1995), since that finding is related to the

first bid, for which the Herriges and Shogren (1996) model imposes the no anchoring assumption.

A natural way to relax the Herriges and Shogren (1996) assumptions is to replace them

by the following nonparametric assumptions:
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P(Q1�1|x,BR) � P(Y�B1|x,BR)

P(Q20�1|x,BR,Q1�0) � P(Y�B20|x,BR,Q1�0)

P(Q21�1|x,BR,Q1�1) � P(Y�B21|x,BR,Q1�1)

(23)

F(y|BR,x) � F(y|CBR,x)P(CBR|BR,x) � F(y|IBR,x)P(IBR|BR,x) (24)

The first assumption says that there is no anchoring in the first question, the other two

assumptions say that anchoring in the second question is towards B1. These assumptions can be

used to derive bounds on the distribution function for bracket respondents in the same way as in

the other models. The results are presented in Appendix A3.

3.5 Complete and incomplete bracket respondents
Until now it was assumed that all bracket respondents answered both bracket questions with ‘yes’

or ‘no’. In practice, however, some of them answer ‘don’t know’ to the second bracket question.

Thus, there are two types of bracket respondents: those who answer both questions with ‘yes’ or

‘no’ (CBR, complete bracket respondents), and those who answer the first question with ‘yes’ or

‘no,’ but the second question with ‘don’t know’ (IBR, incomplete bracket respondents). We make

no assumptions on the relation between response behavior and Y, so that incomplete bracket

respondents can be a selective subsample of all bracket respondents.

The conditional distribution function for bracket respondents can be written as follows:

The probabilities P(CBR|BR,x) and P(IBR|BR,x) are both identified, since it is observed whether

bracket respondents are complete or incomplete bracket respondents. Bounds (allowing or not

allowing for anchoring) on F(y|CBR,x) can be derived as in Section 3.4, using complete bracket

respondents only. Bounds on F(y|IBR,x) can be derived as in Section 3.3, using incomplete

bracket respondents only. Combining these bounds and inserting them into (24) leads to bounds

on F(y|BR,x). The bounds on F(y|BR) can be combined with F(y|FR,x) and bounds on F(y|NR,x)

in the same way as in (13)-(14) , yielding bounds on F(y|x).

3.6 Bounds on Quantiles
Distributions of income, savings, etc., are often described in terms of (conditional) quantiles. For

, the �-quantile of the conditional distribution of Y given X=x, is defined as� � [0,1]
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q(�,x) � inf {y:F(y|x)��} (25)

lb(y,x) � F(y|x) � ub(y,x) (26)

inf {y: lb(y,x)��} � inf {y: F(y|x)��} � inf {y: ub(y,x)��} (27)

For �>1, , and for  �<0, . Following Manski (1994), bounds on theseq(�,x)�� q(�,x)���

quantiles can be derived by ‘inverting’ the bounds on the distribution function. All the bounds

in Sections 3.1-3.5 can be written as

for functions lb(y,x) and ub(y,x) that are nondecreasing in y. Inverting (26) gives the following

bounds on the quantiles:

This is easily illustrated using a graph of the distribution function, with y along the horizontal

axis and F(y|x) along the vertical axis. The bounds on the distribution function squeeze F(y|x) in

between two curves; the vertical distance between these curves is the width between the bounds

(at each given value y of Y). Reading the same graph horizontally gives, for a given probability

value , a lower and an  upper bound on the �-quantile.� � [0,1]

4 Data
The data comes from the 1996 wave of the Health and Retirement Survey (HRS). This is a

longitudinal study conducted by the University of Michigan for the US National Institute of

Aging. It focuses mainly on aspects of health, retirement and economic status of US citizens born

between 1931 and 1941, collecting individual and household information from a representative

sample of this cohort. The data is collected every two years, starting in the Summer of 1992.

Initially the panel consisted of approximately 7,600 households. The respondents are the

household representatives that satisfy the age criteria, and their partners, regardless of their age

(second household respondents). This leads to approximately 12,600 individual respondents in

the first wave. Each individual answers questions on health and retirement issues. Household

representatives also answer questions on past and current income and pension plans (including

those of their partner) and questions at the household level, on, for example, housing conditions,

household assets, and family structure. If  health problems prevent the household representative

from responding, someone else (for example, the spouse) will answer on their behalf. All follow
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up interviews are conducted over the phone, unless the household has no phone, or health reasons

prevent the household representative and the spouse from answering over the phone, in which

a face to face interview is held. If respondents die, they are replaced by another household

member (if possible). This reduces attrition in the panel at the household level.

The 1996 wave has data from 6,739 households with 10,887 individuals. In 4,148 of these

households, two respondents gave interviews. The remaining 2,591 are single respondent

households. To get some insight in the nature of the data, Table 1 shows sample statistics for

some background variables. The first column refers to the full sample, while the second and third

refer to the sub-samples of household representatives and second household respondents,

respectively. The statistics show that 51% of the household representatives are women, and 62%

of the second household respondents (usually the spouse) are women. There is little difference

between educational achievement of household representatives and second household

respondents. The shares of Whites, Blacks and Hispanics reflect the ethnic composition of the

cohort. About 62% of the respondents participate in the labor market, most of them are

employees. Approximately 80% of all households are home owners.

All household representatives are asked to provide information on employment status and

earned incomes for themselves and their partners. Initially, each household representative is asked

if he or she worked for pay during the last calendar year. Each of the 4,145 who answered ‘yes’

was asked if  the earnings during the last calendar year came from self-employment, wages and

salaries, or a combination of these sources.  The 3,608 individuals who reported that all or some

of their earnings came from wages and salaries were asked the following question:

‘About how much wages and salary income did you receive during the last 

calendar year?’

‘any amount’ (in US dollars)

‘Don’t know’

‘Refuse’

3,160 individuals answered this question with an exact amount in US dollars, ranging

from $ 0,00 to $350,000, with a mean of $29,430 and standard deviation $26,430. The median

was $25,000. The remaining 448 individuals answered ‘don’t know’ (or ‘refuse’), implying a

12.4% initial nonresponse rate. The latter were routed to a sequence of unfolding bracket

questions as formulated in (3), with starting bid B1=$25,000. At this initial stage of the unfolding

sequence, 119 individuals answered ‘don’t know’ (or ‘refuse’). Thus, the full nonresponse rate

is 3.3%. The remaining 329 individuals form the sample of bracket respondents.

The unfolding sequence for the wages and salaries question consists of two steps. Those

who answered ‘yes’ to the initial bid of $25,000 were routed to a second question with bid
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B21=$50,000. Those who answered ‘no’ were routed to a question with bid B20=$5,000. In each

case, the question was the same as that in (3) - only the bid changed. The second question of the

unfolding sequence could again be answered with ‘don’t know’ (or ‘refuse’), leading to

incomplete bracket respondents (IBR). For the earnings variable considered, 320 individuals

completed the sequence of unfolding brackets (CBR). The other 9 bracket respondents are

incomplete bracket respondents.

Table 1: Sample statistics of some background variables

 Means (with standard deviation) and Percentages (with standard error); complete sample

All Units Household

Representatives

Second Household

Respondents

Number of Observations 10,887 6,739 4,148

Age 59.6 (5.62) 60.7 (5.07) 58.6 (6.41)

Percentage males 45 (0.5) 49 (0.6) 38 (0.8)

Education 2.32 (1.02) 2.36 (1.03) 2.25 (0.98)

Percentage home owners - 79 (0.5) -

Percentage whites 71 (0.4) 69 (0.6) 76 (0.7)

Percentage Hispanics 9 (0.3) 8 (0.3) 11 (0.5)

Percentage Afro-Americans 16 (0.4) 19 (0.5) 9 (0.4)

Percentage other Races 4 (0.2) 4 (0.3) 4 (0.3)

Percentage working 62 (0.5) 62 (0.6) 64 (0.7)

Working for wage/salary 47 (0.5) 46 (0.6) 50 (0.8)

Self-employed 9 (0.3) 8 (0.3) 10 (0.5)

Both working for wage/salary &

self-employed

6 (0.2) 8 (0.3) 4 (0.3)

Explanation: Education: educational achievement on a scale of 1 to 4;  1: has  completed primary education (up to

the 10th grade in the USA education system), 2: has completed high school (up to the 12th grade); 3: some form of

college or post-high school education;  4: has completed at least a first degree at university level.

Table 2 shows some statistics for the sample with nonzero household respondent wages

and salaries. Comparing it with Table 1 shows that those who received wages and salaries less

often own their home and are, on average, somewhat younger. The subsample of complete

bracket respondents contains a larger percentage of females than the other samples. Likewise,

complete bracket respondents have lower educational achievement, are less likely to own their
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home, and are less often white. The statistics of the incomplete bracket respondents are very

different from those of the other groups, but this is based upon only 9 observations.

Table 2: Sample statistics of some background variables for household respondents who received

wages and salaries in the past calendar year 

Means (with standard deviation) and Percentages (with standard error);

All employed with wages Full Respondents (FR) Full Nonrespondents

(NR)

Number of Observations 3602 3160 113

Average age 58.6  (4.7) 58.6  (4.7) 59  (4.9)

Percentage Males 50  (0.8) 52  (0.9) 45  (4.7)

Education 2.52  (1.01) 2.6  (1.03) 2.6  (0.99)

% Home owners 73  (0.7) 74  (0.8) 83  (3.5)

% White 72  (0.7) 75  (0.8) 72  (4.2)

% Hispanics 8  (0.5) 7  (0.5) 5  (2.1)

% Afro-American 18  (0.6) 16  (0.7) 21  (3.8)

% Other races 2  (0.2) 2  (0.3) 3  (1.6)

Complete Bracket Respondents 

(CBR)

Incomplete Bracket Respondents

(IBR)

Number of Observations 320 9

Average age 58.8  (4.7) 55.7  (3.2)

Percentage Males 38  (2.7) 78  (14)

Education 2.2  (1.02) 3.1  (1.01)

% Home owners 65  (2.7) 89  (10.0)

% White 58  (2.8) 78  (14)

% Hispanics 9  (1.6) 0  (0)

% Afro-American 32  (2.6) 12  (11)

% Other races 2  (0.8) 10  (10)

Note: See Table 1 for explanations of the variables.
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5 Estimates of the Bounds
This section applies the bounds derived in Section 3 to wages and salaries of the household

representative, as described in Section 4. In Section 5.1, there is no conditioning on covariates.

In Section 5.2, the bounds are estimated separately for high and low educated wage earners, and

the results are used to test for differences in the quantiles for the two education levels. Since this

involves conditioning on discrete variables only, these estimates are based upon (sub-)sample

fractions and do not require nonparametric smoothing.

The width between point estimates of upper and lower bound reflects the uncertainty due

to item nonresponse. Both point estimates and confidence bands are presented, to measure

uncertainty due to sampling error. These confidence bands are estimated using a bootstrap

method, based on 500 (re-)samples drawn with replacement from the original data. The lower

and upper bounds are estimated 500 times, and the confidence bands are formed by the 2.5% and

97.5% percentiles in these 500 estimates, resulting in two-sided 95% confidence bands for both

the upper and the lower bound. The figures present the lower confidence band for the lower

bound and the upper confidence band for the upper bound. The gap between these reflects both

the uncertainty due to sampling error and the uncertainty due to item nonresponse.

5.1 Bounds for all wage earners
If item nonresponse is completely random, the full respondents are a representative sample and

the quantiles in the sample of full respondents are consistent estimates of the population

quantiles. These estimates are shown in Figure 1a. The solid curve connects the point estimates

of the log earnings quantiles, the dashed curves give (point-wise) 95% confidence bands. Bracket

respondents and nonrespondents are discarded. Table 3 provides similar information as Figure

1a, giving the point estimates of some selected quantiles for the full respondents and their

standard errors, but now in earnings levels instead of logs. 

Figure 1b shows the estimates of Manski’s (1995) worst case bounds, not using the

bracket response information. Bracket respondents are treated as nonrespondents, and the

relevant nonresponse rate in this case is 12.4%. The solid curves are the estimated upper and

lower bounds, and the dashed curves are the confidence bands. The horizontal distance between

the upper and lower bound equals 0.124, the initial nonresponse rate. To make a comparison

possible, the confidence bands for the full respondents quantiles depicted in Figure 1 are also

included.  These are contained in the worst case bounds, since the latter allow for the possibility

that nonresponse is completely random. The uncertainty due to nonresponse appears to be much

larger than the uncertainty due to finite sampling errors.

Table 4 shows selected point estimates and confidence bands for the worst case bounds.

For example, with at least 95% confidence, the median of wages and salaries is between $19,500
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Fig.1a: Quantile distribution, Full Response sample

_____ Estimated quantiles
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Fig.1b: Worst case bounds & no bracket respondents

_____ Estimated Quantile bounds

−−−−−−− 95% confidence intervals on bounds

−.−.−. 95% confidence intervals from Fig.1a

and $29,900. Due to the high percentage of initial item nonresponse, the difference between

upper and lower bound is quite large. This makes it hard to draw meaningful economic

conclusions. The width between the curves in Figure 1a was much smaller, but this came at the

cost of the strong assumption of random nonresponse.

Table 3: Selected quantiles for the full response sample (n=3,160) (cf. Figure 1a).

Quantile Point estimate Standard error

25th Percentile $11,900 $352

40th Percentile $19,500 $373

50th Percentile $25,000 $361

60th Percentile $29,900 $346

75th Percentile $39,400 $389

Table 4: Worst case bounds not using bracket information (cf. Figure 1b)

Quantile Confidence band

lower bound

Point estimate

lower bound

Point estimate 

Upper bound

Confidence band

Upper bound

25th Percentile $5,800 $7,700 $13,700 $14,700

40th Percentile $13,700 $14,700 $22,500 $24,500

50th Percentile $19,500 $20,800 $27,900 $29,900

60th Percentile $25,000 $26,000 $34,600 $37,000

75th Percentile $35,600 $36,900 $50,000 $55,000

Note: Lower bound and upper bound are the lower end of the 95% confidence interval for the lower bound and the upper end

of the 95% confidence interval for the upper bound, respectively.
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The next step is to incorporate the information provided by the 329 bracket respondents,

summarized in Table 5. To illustrate how the assumptions on anchoring affect the bounds,

estimates of the bounds for the bracket respondents only are presented first. Figure 2 is based on

the assumption of no anchoring (A0 in the figures). Figures 3A1 to 3A3 allow for the three types

of anchoring discussed in Section 3, following Hurd et al. (A1 in the figures, (11), (19) and (20)

in Section 3), Jacowitz and Kahneman (A2 in the figures, (15) and (22) in Section 3) or Herriges

and Shogren (A3 in the figure, (23) in Section 3). In each figure, the confidence bands for the

full respondents are also included. The no anchoring assumption A0 is stronger than all three

anchoring assumptions, and thus leads to the narrowest bounds. Under the no anchoring

assumption, the distribution function for complete bracket respondents is exactly identified at

the three bids $5,000, $25,000 and $50,000. Due to the incomplete bracket respondents,

however, the upper and lower point estimates for all bracket respondents at $50,000 are different.

Table 5: Information provided by bracket respondents

Group Bid 1: B1 answer Bid 2: B21/B20 answer Resulting bracket

bounds

Number

Yes $50,000  —  max 30

Yes  > $50,000 ? No $25,000  —  $50,000 86

CBR >$25,000 ?

No > $ 5,000 ? Yes $5,000  — $25,000 170

No $0  — $5,000 34

Yes  > $50,000 ? DK > $25,000 9

IBR >$25,000 ?

No > $ 5,000 ? DK < $25,000 0

Explanation: CBR=Complete Bracket Response; IBR=Incomplete Bracket Response; DK= Don’t know (or refused to answer).

Comparing the bounds for bracket respondents in Figure 2 with the full respondents

curves suggests that equality of P(Y<B|FR) and P(Y<B|BR) is rejected for B=$25,000 but maybe

not for B=$5,000 or B=$50,000. The results of the corresponding formal (point-wise) tests are

reported in Table 6. The null hypothesis would be valid if there was no anchoring and no

selective response behavior. Rejecting this hypothesis at $25,000 and $50,000 suggests that at

least one of these conditions is violated. The fact that the bracket respondents more often report

an income below $25,000 (or $50,000) than full respondents, suggests that rejecting the null is

not due to yea-saying (see Section 3). It could be, for example, that workers with low earnings

tend not to know their exact income level and, therefore, answer the bracket questions only.
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Fig.2: Bracket respondents only & no anchoring (A0)

_____ Estimated Quantiles

−−−−−−− 95% confidence intervals on the quantiles

−.−.−. 95% confidence intervals from Fig.1a
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Fig.3A1: Bracket respondents only & anchoring (A1)

_____ Estimated Quantiles

−−−−−−− 95% confidence intervals on the quantiles
−.−.−. 95% confidence intervals from Fig.1a
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Fig.3A2: Bracket respondents only & anchoring (A2)

_____ Estimated Quantiles

−−−−−−− 95% confidence intervals on the quantiles

−.−.−. 95% confidence intervals from Fig.1a
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Fig.3A3: Bracket respondents and Anchoring A3

_______ Estimated Quantiles

−−−−− 95% Confidence intervals on the quantiles

−.−.−.− 95% Confidence intervals from Fig.1a

Table 6: Tests for differences between full and bracket respondents

B P(Y<B|FR) standard

error

P(Y<B|BR) standard

error

Test

Statistic

$5,000

$25,000

$50,000

0.101  

0.529  

0.853  

0.005

0.0083

0.006

0.104 

0.62   

0.901 

0.017

0.027

0.016

-0.11

-3.22

-2.81

Test statistic: difference between point estimates (Full Response � Bracket Response) normalized by its estimated standard

error (equal to the square root of the sum of the variances corresponding to the two point estimates); under the hypothesis

P(Y<B|FR)=P(Y<B|BR), the test statistic is asymptotically standard normal.
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Fig.4: Worst case bounds & bracket respondents (A0)
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Fig.5A1: Worst case bounds & bracket respondents (A1)
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Fig.5A2: Worst case bounds & bracket respondents (A2)
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−−−−−−− 95% Confidence Intervals
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Fig.5A3: Worst case bounds & bracket respondent (A3)

______ Estimated bounds

−−−−−−−− 95% Confidence Intervals

Allowing for anchoring widens the bounds. Under the Hurd et al. (1998) assumptions the

bracket response data provides some information on P(Y<y|BR) for all y, in the form of either

a lower bound or an upper bound . Under the Jacowitz and Kahneman assumptions, the bracket

response data does not say anything about P(Y<y|BR) for y between $5,000 and $25,000. The

figures make clear that the three different assumptions on anchoring are nonnested: none of the

three is uniformly more informative than any of the others. Figure 4 and Figures 5A1 - 5A3

combine the bounds for bracket respondents with the information for full respondents, and show

the bounds on the quantiles for all respondents in the population. As expected, the bounds under

no anchoring are narrower than the bounds allowing for anchoring, and all bounds allowing for

anchoring are narrower than the worst case bounds in Figure 1b.
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Table 7: Upper and lower bounds incorporating bracket responses; 95% confidence level

(c.f. Figure 4 and Figures A1 to A3)

Quantiles No anchoring (A0) Anchoring A1 Anchoring A2 Anchoring A3

25th Percentile

Lower Bound

Upper Bound

Difference    

$9,800

$13,700

$3,900

$6,800

$14,700

$7,900

$6,800

$14,700

$7,900

$8,000

$13,700

$5,700

40th Percentile

Lower Bound

Upper Bound

Difference    

$17,900

$22,800

$4,900

$14,700

$23,900

$9,200

$14,500

$23,900

$9,400

$16,900

$22,800

$6,000

50th Percentile

Lower Bound

Upper Bound

Difference    

$23,900

$25,000

$1,100

$19,500

$27,900

$8,400

$19,500

$25,000

$5,500

$21,900

$25,000

$3,100

60th Percentile

Lower Bound

Upper Bound

Difference   

$27,900

$31,500

$3,600

$25,000

$34,600

$9,600

$25,000

$31,500

$6,500

$26,900

$31,500 

$4,600

75th Percentile

Lower Bound

Upper Bound

Difference   

$39,400

$45,000

$5,600

$35,600

$49,700

$14,100

$35,600

$46,800

$11,200

$37,900

$48,000

$8,100

80th Percentile

Lower Bound

Upper Bound

Difference    

$44,500

$50,000

$5,500

$39,400

$52,500

$13,100

$39,400

$50,000

$10,600

$43,500

$51,000

$7,500

Note: Lower bound and upper bound are the lower end of the 95% confidence interval for the lower bound and the upper end
of the 95% confidence interval for the upper bound, respectively.

More precise information is given in Table 7. For example, under the assumption of random

nonresponse, the 95% confidence interval for the 40th percentile is rather precisely determined

with width about $ 1,450 (Table 3). Allowing for nonrandom nonresponse and ignoring bracket

information reduces the precision enormously, giving an interval width of $ 10,800 (Table 4).

Allowing for nonrandom nonresponse and using the bracket information gives a precision in

between these two: $ 4,900 if no anchoring effects are allowed for; $ 9,200, $ 9,400 and $ 6,000

under the three types of anchoring (Table 7). The precision under no anchoring is particularly

large for the median since the sample median for full-respondents is close to one of the bids ($
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25,000), where, under the no anchoring assumption, the distribution function for bracket

respondents is exactly identified.

5.2 Comparing Earnings of the High and Low Educated
Table 8 presents some details on the response behavior of the lower educated (at most high

school; levels 1 and 2 in Table 1) and higher educated (more than high school; levels 3 and 4 in

Table 2) separately. The latter have a slightly lower initial nonresponse rate than the former. On

the other hand, the low educated are more often willing to answer the bracket questions, so that

their full nonresponse rate is lower than that of the high educated. Mean and median incomes of

full respondents are clearly higher for the higher educated than for the lower educated.

Figures 6a and 7a show the confidence intervals of the quantiles for full respondents with

low  and high education level. These are consistent estimates for the quantiles of all low and high

educated wage and salary earners if, conditional on education level, nonresponse is not related

to the level of earnings. This assumption is again quite strong, although conditioning on

education level makes it different from the unconditional random nonresponse assumption

underlying Figure 1a. Table 9 presents details for some selected quantiles.

Figure 8a compares the 95% confidence bands for the high and low educated full

respondents. It suggests that most quantiles are significantly different. This is confirmed by the

formal test results presented in the final column of Table 9. Thus if response behavior is random

conditional on education level, the quantiles of the high and low educated are significantly

different. The issue in the remainder is whether this conclusion can still be drawn if nonrandom

response behavior is allowed for.

Figures 6b (low educated) and 7b (high educated) present confidence bands for the worst

case bounds allowing for nonrandom nonresponse and not using the bracket information. Figure

8b compares these for the two education levels. The latter figure suggests that the null of equal

quantiles is rejected only for quantiles in the range from about 0.3 to about 0.8.

Table 10 presents the formal (point-wise) test results of the one-sided null hypothesis that

the upper bound of the lower educated is at least as high as the lower bound of the higher

educated. The null is rejected for the 40%, 50%, 60% and 75% quantiles, but not for the 20%,

25%, 30% and 80% quantiles. This again illustrates that item nonresponse particularly reduces

the information on the quantiles in the tails, where the distribution function is rather flat.
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Fig.6(a): Quantiles using full respondents only (Low edu)
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Fig.6(b): Wost case bounds & no brackets (Low edu)

______ Bounds on the quantiles

−−−−−−− 95% confidence intervals on the bounds

−.−.−.−.95% confidence intervals from Fig.6(a)

Table 8: Sample statistics and response behavior by education level of household respondent 

All Low education High education

Observations in complete

sample

6,739 4,110 2,629

Observations with wages

and salaries

3,602 1,978 1,624

Number of full respondents 3,160

(88%)

1,713

(86.6%)

1,447

(89.1%)

Mean $29,430 $22,813 $38,298

Standard Deviation $26,430 $18,080 $31,765

Median $25,000 $19,000 $33,000

Initial nonrespondents

(number and percentage)

442

(12.3%)

265

(13.4%)

177

(10.9%)

Bracket respondents

(number and percentage)

329

(9.1%)

212

(10.7%)

117

(7.2%)

Nonrespondents

(number and percentage)

113

(3.1%)

53

(2.3%)

60

(3.7%)

Explanation: Low education: education levels 1 and 2, i.e., at most high school; High education: education levels

3 and 4, i.e., more than high school.
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Fig.7(a): Quantiles using full respondents only (High edu)

______ Estimated quantiles

−−−−−−− 95% confidence intervals
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Fig.7(b): Wost case bounds & no brackets (High edu)

______ Bounds on the quantiles

−−−−−−− 95% confidence intervals on the bounds

−.−.−.−.95% confidence intervals from Fig.7(a)

Table 9: Quantiles of full respondents by education level (cf. Figures 6(a) and 7(a)).

Low education level (n=1979) High education level (n=1623) Test Statistic

Quantile Point estimate Standard error Point estimate Standard error

25th Percentile $9,800 $439 $17,900 $790 8.96

40th Percentile $14,700 $542 $27,900 $784 13.85

50th Percentile $18,700 $503 $32,500 $923 13.13

60th Percentile $23,400 $620 $39,400 $601 18.53

75th Percentile $29,900 $537 $49,700 $623 24.07

90th Percentile $44,500 $1,279 $69,000 $1,660 12.17

Test statistic: difference between point estimates (High educated � Low educated) normalized by its estimated standard error;

under the null that quantiles of high and low educated are equal, the test statistic is asymptotically  standard normal.
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Fig.8(a): Comparing Low & high education: full respondents

______ 95% Confidence intervals (Low edu)

−−−−−−−− 95% Confidence intervals (High edu)
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Fig.8(b): Comparing Low & high education: worst case bounds

______ Bounds with 95% Confidence (Low edu)

−−−−−−−− Bounds with 95% Confidence (High edu)

Table 10: Worst case bounds by education level not using bracket responses

Low Education High Education Test Statistic

Quantile Point estimate Standard error Point estimate Standard error

20th Percentile $9,800 $337 $6,800 $761 -3.6

25th Percentile $11,900 $408 $9,800 $1,050 -1.87

30th Percentile $13,000 $505 $14,700 $960 1.57

40th Percentile $17,900 $390 $23,900 $1,138 4.99

50th Percentile $22,500 $572 $29,900 $707 8.14

60th Percentile $27,400 $863 $35,600 $885 6.64

75th Percentile $39,400 $1,189 $48,600 $863 6.26

80th Percentile $49,700 $1,732 $52,500 $1,692 1.17

Note: The test statistic is (QH - QL)/û), where QH is the lower bound point estimate for the high educated and QL

is the upper bound point estimate for the low educated, and û is the estimated standard deviation of QH - QL. If the

assumption that the lower bound of the high educated equals the upper bound of the low educated, the test is

asymptotically normal. The null is rejected if the test statistic is larger than 1.645.

Information on bracket response of high and low educated respondents is included in

Tables 11 and 12. High educated bracket respondents much more often report that their income

exceeds the first bid than low educated bracket respondents. This suggests that using the bracket

respondents may lead to more rejections in the tests for equality of quantiles.
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Table 11: Bracket responses of the low educated (212 observations)

Group Bid 1: B1 answer Bid 2: B21/B20 answer Resulting bracket

bounds

Number

Yes $50,000  —  max 6

Yes  > $50,000 ? No $25,000  —  $50,000 47

CBR >$25,000 ?

No > $ 5,000 ? Yes $5,000  — $25,000 133

No $0  — $5,000 22

Yes  > $50,000 ? DK > $25,000 4

IBR >$25,000 ?

No > $ 5,000 ? DK < $25,000 0

Note: See Table 5 for explanation.

Table 12: Bracket responses of the high educated (117 observations)

Group Bid 1: B1 answer Bid 2: B21/B20 answer Resulting bracket

bounds

Number

Yes $50,000  —  max 24

Yes  > $50,000 ? No $25,000  —  $50,000 39

CBR >$25,000 ?

No > $ 5,000 ? Yes $5,000  — $25,000 37

No $0  — $5,000 12

Yes  > $50,000 ? DK > $25,000 5

IBR >$25,000 ?

No > $ 5,000 ? DK < $25,000 0

Note: See Table 5 for explanation.

Figures 13 and 14 compare the results for the low and high educated including the

bracket information, allowing for selective nonresponse and making two different assumptions

about anchoring: no anchoring (A0) and anchoring following Hurd et al. (1998) (A1). The results

for the other two forms of anchoring lead to similar conclusions. The formal tests (of the null 

hypothesis that the upper bound of the lower educated is at least as high as the lower bound of

the higher educated, against the alternative that this is not the case) are presented in Table 13.

Under the no anchoring assumption, the differences between the quantiles in this table are all

significant. Allowing for anchoring reduces some of the significance levels, and the lowest

quantiles are no longer significantly different. But, in general, the point-wise tests reject much

more often and with higher significance levels than if the bracket information is not used at all.
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Fig.13: Comparing low & high education, worst case bounds

_____ Bounds with 95% confidence, Low edu.

−−−−−−−− Bounds with 95% confidence, High edu.
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Fig.14: Comparing low and high education with Anchoring A1

_____ Bounds with 95% confidence(Low edu)

−−−−−− Bounds with 95% confidence(High edu)

Table 13: differences between earnings quantiles of high and low educated respondents;

worst case bounds with bracket responses

No Anchoring (A0) Anchoring following Hurd et al. (A1)

Low

education 

High

education 

Test

Statistic

Low
education 

High

education

Test

Statistic

20th Percentile $8,900 $12,750 3.53 $9,800 $7,700 -2.21

25th Percentile $10,800 $17,500 6.17 $11,900 $11,900 0

30th Percentile $12,750 $20,800 6.54 $13,000 $15,800 2.19

40th Percentile $17,500 $25,900 7.98 $17,900 $25,000 7.42

50th Percentile $21,900 $32,500 9.29 $22,500 $29,900 7.42

60th Percentile $25,000 $39,400 21.58 $25,000 $35,600 11.31

75th Percentile $31,500 $50,000 13.21 $34,600 $48,600 10.31

80th Percentile $36,900 $56,400 10.79 $39,400 $52,500 6.42

90th Percentile $50,000 $76,000 9.70 $50,000 $66,000 9.24

Note: See Table 10 for the test statistic.

6 Conclusions
Manski’s approach to deal with item nonresponse avoids the assumptions usually associated with

parametric and semi-parametric methods. On the other hand, it identifies the unknown

parameters up to an upper and a lower bound only. In this paper, these bounds are extended to

take account of the information contained in follow up categorical questions for initial

nonrespondents. Such questions are included in many current household surveys. Several studies

have shown that responses to such questions can be subject to response errors due to anchoring
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effects. Some existing studies model this response error with a parametric set up. We have

extended the bounds to allow for anchoring in a nonparametric way, starting from various

nonparametric anchoring assumptions inspired by the existing parametric models. These bounds

simultaneously allow for any type of selective nonresponse and various forms of anchoring. 

Using the variable wages and salary of the household representative taken from the 1996

wave of the Household and Retirement Survey, the empirical section shows estimates of

Manski’s basic worst case bounds that do not use the bracket respondents information and

compares these with estimates of the new bounds. For the wages and salaries variable

considered, the initial nonresponse rate is 12.4%. Most of the initial nonrespondents answer

unfolding bracket questions, and the percentage of full nonresponse is 3.3%. Incorporating

information provided by bracket respondents tightens the bounds. Allowing for anchoring effects

reduces the gain in information but still leads to bounds that are substantially more informative

than the bounds not using the bracket information. This is illustrated by using the bounds to test

for equality of quantiles of high and low educated respondents. Adding the information provided

by bracket respondents improves the power of the tests, and leads to rejecting the null more

often. How much the power of the tests increases depends on whether and how anchoring is

allowed for.

Manski’s bounds are an elegant, intuitively plausible and extremely flexible way to allow

for selective nonresponse. Their flexibility is at the same time their main weakness: the bounds

are often so wide that they do not provide enough information for the economic issue under

consideration. This paper shows that additional information on bracket responses by initial

nonrespondents can be useful to make the bounds more informative. This is still true if anchoring

is allowed for, though to a lesser extent.

The bounds are estimated allowing for different types of anchoring each generalizing a

different parametric model in the existing literature. The paper does not analyze which model

of anchoring is most appropriate: this is not a relevant question for this framework. With the

current data, however, selective nonresponse and anchoring interact, and it is hard to say

something about anchoring without making strong assumptions about the nature of nonresponse.

For an analysis of anchoring itself, therefore, experimental data where all respondents get bids

that vary randomly across the sample, such as in the experimental HRS module used by Hurd

et al. (1998), is more appropriate. With more knowledge about the nature of the anchoring

process, the analysis here could be refined.
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P(Q1�1|Y<t,x,BR) � P(Q1�1|x,BR) for each  t (MON)

Pc(Y<B20) � Pc(Y<B20|Q1�0)Pc(Q1�0) � Pc(Y<B20|Q1�1)Pc(Q1�1)

� min[1,2Pc(Q20�0|Q1�0)]Pc(Q1�0) � Pc(Y<B20)min[0.5,Pc(Q1�1)]
(A.1)

Appendix: Bounds in Case of Two Bracket Questions with Anchoring 
This appendix derives the bounds for the case of two bracket questions allowing for anchoring

along the lines of Hurd et al. (1998), Jacowitz and Kahneman (1995), and Herriges and Shogren

(1996). The bounds are “worst case” in the sense that any type of selective nonresponse or

bracket response is allowed for. This implies that the data on full respondents carry no

information on the bracket respondents, complete bracket respondents provide no information

on incomplete bracket respondents, etc. Bounds on incomplete bracket respondents are

straightforward, using the assumptions for the one bracket question case. This appendix focuses

on complete bracket respondents. Using (24) and (4), these can be used to obtain bounds for the

distribution in the complete population.

A1: The Hurd et al. (1998) model
It is easy to show that, apart from (18), Assumption 2 also implies the following monotonicity

condition:

Together with (11), (19), and (20), this property will be used to determine what the three

probabilities P(Q1=1|x,BR), P(Q20=1|Q1=0,x,BR), and P(Q21=1|Q1=1,x,BR) that can be

identified from the data, imply for the conditional distribution of Y given X=x among bracket

respondents. First, bounds are derived on the values of the distribution function at the bids B20,

B1, and B21. The bounds on the value of the conditional distribution function at an arbitrary

value  y of Y then follow straightforwardly, as in the no anchoring case. For notational

convenience, we abbreviate conditioning on X=x and BR, using Pc where Pc(...)=P(...|x,BR) and

Pc(...|...)=P(...|...,x,BR).

Upper bound on Pc(Y<B20):

Here (19) is used to obtain an upper bound on the first term; the second term uses

Pc(Y<B20|Q1=1)Pc(Q1=1)=Pc(Y<B20)Pc(Q1=1|Y<B20) together with (18) and (MON).

Thus,



35

Pc(Y<B20) � min[1, 2Pc(Q20�0|Q1�0)]Pc(Q1�0)/(1�min[0.5,Pc(Q1�1)]) (A.2)

Pc(Y<B20) � min[1, 2Pc(Q20�0|Q1�0)]min[1,2Pc(Q1�0)] (A.3)

Pc(Y<B1) � Pc(Y<B1|Q1�0)Pc(Q1�0) � Pc(Y<B1|Q1�1)Pc(Q1�1)

� Pc(Q1�0) � Pc(Y<B21|Q1�1)Pc(Q1�1)

� Pc(Q1�0) � min[1, 2Pc(Q21�0|Q1�1)]Pc(Q1�1)

(A.4)

Pc(Y<B1) � min[1, 2Pc(Q1�0), Pc(Q1�0) � 2Pc(Q21�0|Q1�1)Pc(Q1�1)] (A.5)

Pc(Y<B21) � Pc(Y<B21|Q1�0)Pc(Q1�0) � Pc(Y<B21|Q1�1)Pc(Q1�1)

� Pc(Q1�0) � min[1, 2Pc(Q21�0|Q1�1)]Pc(Q1�1)
(A.6)

Considering the two cases Pc(Q1=1)>0.5 and Pc(Q1=1)�0.5 separately, it is easy to see that

(A.2) can also be written as

Upper bound on Pc(Y<B1):

Inequality (11) directly gives Pc(Y<B1) � 2Pc(Q1=0). The second question gives the following

additional information.

Taken together, the first and second question lead to the bound

If Pc(Q1=0) � 0.5 and Pc(Q21=0|Q1=0) � 0.5, the upper bound in (A.5) is 1. If at least one of

the two probabilities is less than 0.5, the upper bound is smaller than one.

Upper bound on Pc(Y<B21):

The lower bounds follow by symmetry from (A.3), (A.5), and (A.6):

Lower bound on Pc(Y<B20):

Pc(Y<B20) = 1 � Pc(Y�B20); an upper bound on Pc(Y�B20) is obtained in the same way as the

upper bound on Pc(Y<B21) given in (A.6). This gives:
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Pc(Y�B20) � Pc(Q1�1) � min[1, 2Pc(Q20�1|Q1�0)]Pc(Q1�0) (A.7)

Pc(Y<B20) � 1 – Pc(Q1�1) – min[1,2Pc(Q20�1|Q1�0)]Pc(Q1�0)

� max[0, {1 – 2Pc(Q20�1|Q1�0)}Pc(Q1�0)]
(A.8)

Pc(Y�B1) � min[2Pc(Q1�1), Pc(Q1�1) � 2Pc(Q20�1|Q1�0)Pc(Q1�0)] (A.9)

Pc(Y<B1) � 1 – min[2Pc(Q1�1), Pc(Q1�1) � 2Pc(Q20�1|Q1�0)Pc(Q1�0)]

� max[1 – 2Pc(Q1�1), Pc(Q1�0)(1 – 2Pc(Q20�1|Q1�0)]
(A.10)

Pc(Y�B21) � min[1, 2Pc(Q21�1|Q1�1)] min[1, 2Pc(Q1�1)] (A.11)

Pc(Y<B21) � 1 – min[1, 2Pc(Q21�1|Q1�1)] min[1, 2Pc(Q1�1)] (A.12)

And, thus,

Lower bound on Pc(Y<B1):

Pc(Y<B1) = 1 – Pc(Y�B1); an upper bound on Pc(Y�B1) is obtained in the same way as the

upper bound on Pc(Y<B1) given in (A.5)

and (A.9) implies

Lower bound on Pc(Y<B21): 

Pc(Y<B21) = 1 – Pc(Y�B21); an upper bound on Pc(Y�B21) is obtained in the same way as the

upper bound on Pc(Y<B20) given in (A.3),

and thus a lower bound is obtained as

A2: The Jacowitz and Kahneman (1995) Assumption
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Pc(Y�B1) � Pc(Q1�1)

Pc(Y�B21|Q1�1) � Pc(Q21�1|Q1�1)

Pc(Y�B20|Q1�0) � Pc(Q20�1|Q1�0)

(JK)

Pc(Y<B20) � Pc(Y<B20|Q1�0)Pc(Q1�0) � Pc(Y<B20|Q1�1)Pc(Q1�1)

� Pc(Q20�0|Q1�0)Pc(Q1�0) � Pc(Y<B20)P(Q1�1|Y<B20)

� Pc(Q20�0|Q1�0)Pc(Q1�0) � Pc(Y<B20)P(Q1�1)

(A.13)

Pc(Y<B20) � Pc(Q20�0|Q1�0) (A.14)

Pc(Y<B1) � 1 (A.15)

Pc(Y<B21) � 1 (A.16)

In this case, expressions  (15), (22) and (MON) are the basis for deriving the bounds. The

sample analogues of Pc(Q1=1) and Pc(Q21=1|Q1=1) in our case are smaller than 0.5, while

that of Pc(Q20=1|Q1=0) is larger than 0.5. Thus B1 and B21 are “large” and B20 is “small.”

Ignoring sampling error, this means that (15) and (22) imply

Upper bound on Pc(Y<B20):

where (MON) was used in the last step. Rewriting (A.13) and dividing by P(Q1=0) yields

Upper bound on Pc(Y<B1):

None of the three assumptions in (JK) help to find a nontrivial upper bound, either directly or

using the same decomposition used above. Thus, all that can be said is

Upper bound on Pc(Y<B21):

This immediately follows from (A.15): 

Lower bound on Pc(Y<B20):
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Pc(Y<B20) � 0 (A.17)

Pc(Y<B1) � Pc(Q1�0) (A.18)

Pc(Y<B21) � Pc(Y<B21|Q1�0)Pc(Q1�0) � Pc(Y<B21|Q1�1)Pc(Q1�1)

� Pc(Y<B21)Pc(Q1�0|Y<B21) � Pc(Q21�0|Q1�1)Pc(Q1�1)

� Pc(Y<B21)Pc(Q1�0) � Pc(Q21�0|Q1�0)Pc(Q1�1)

(A.19)

Pc(Y<B21) � Pc(Q21�0|Q1�0) (A.20)

Pc(Y<B21) � Pc(Y<B1) � Pc(Q1�0) (A.21)

Pc(Y<B21) � max[Pc(Q1�0), Pc(Q21�0|Q1�0)] (A.22)

None of the three assumptions in (JK) help to find a nontrivial lower bound, so that all can be

said is

Lower bound on Pc(Y<B1):

The first assumption in (JK) immediately gives:

The other two assumptions do not add anything here.

Lower bound on Pc(Y<B21):

where (MON) is used in the last step. Rewriting (A.19) and dividing it by Pc(Q1=1) gives:

Moreover, the first inequality in (JK) directly implies 

Combining (A.20) and (A.21) yields the lower bound

A3: The Herriges and Shogren (1996) Model
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Pc(Y<B1)�Pc(Q1�0)

Pc(Y<B21|Q1�1)�Pc(Q21�0|Q1�1)

Pc(Y<B20|Q1�0)�Pc(Q20�0|Q1�0)

(HS)

Pc(Y<B20) � Pc(Y<B1) � Pc(Q1�0) (A.23)

Pc(Y<B1) � Pc(Q1�0) (A.24)

Pc(Y<B21) � Pc(Y<B21|Q1�0)Pc(Q1�0) � Pc(Y<B21|Q1�1)Pc(Q1�1)

� Pc(Q1�0) � Pc(Q21�0|Q1�1)Pc(Q1�1)
(A.25)

Pc(Y<B20) � Pc(Y<B20|Q1�0)Pc(Q1�0) � Pc(Y<B20|Q1�1)Pc(Q1�1)

� Pc(Q20�0|Q1�0)Pc(Q1�0)
(A.26)

The assumptions about anchoring in this model can be summarized as

The derivations are much easier than in the previous two cases.

Upper bound on Pc(Y<B20):

Upper and lower bound on Pc(Y<B1):

Upper bound on Pc(Y<B21):

Lower bound on Pc(Y<B20):

The lower bounds on B1 and B21 are also given by (A.24). Thus, the set of nontrivial upper

bounds is given by (A.23) to (A.25), whereas the nontrivial lower bounds are given by (A.26)

and (A.24). Only (HS) is used, (MON) is not needed.


