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Abstract

In this paper we study the class of infrastructure cost games. A game in this class models the infrastructure costs
(both building and maintenance) produced when a set of users of different types makes use of a certain infrastructure.
which may consist of several facilities. Special attention is paid to one facility infrastructure cost games. Such games are
modeled as the sum of an airport game and a maintenance cost game. It turns out that the core and nucleolus of these
games are very closely related to the core and nucleolus of an associated generalized airport game. Furthermore we
provide necessary and sufficient conditions under which an infrastructure cost game is balanced. © 2002 Elsevier
Science B.V. All rights reserved.
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1. Introduction

The main motivation for this paper 1s a cost allocation problem arising from the reorganization of the
rallway sector in Europe. Application of the European Community (EC) directive 440/91 involves the
separation between infrastructure management and transport operations. In this situation two main
problems arise. One 18 to allocate the track capacity among the various operators. This issue has been
treated, for instance, 1n Nilsson (1995), Brewer and Plott (1996) and Bassanini and Nastasi (1997). The
second problem 1s to study how the infrastructure costs must be allocated to the operators through a fair
fees system. We devote the present paper to approach this second problem from a game theoretical point of
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view. Tijs and Driessen (1986) and Young (1994) provide a survey on game theoretical applications in cost
allocation problems. _

Consider a railway infrastructure, that is used by different types of trains (fast trains, local trains, freight
trains) belonging to several operators. and consider the problem of dividing the infrastructure costs among
these trains. Clearly it 1s a problem of joint cost allocation. To settle the question, one can see the infra-
structure as consisting of several facilities (tracks, signaling system, stations, etcetera). Trains of different
type need these facilities at different levels of sophistication: fast trains need a track and signaling system of
a higher quality than local trains, for which instead station services are more important (in particular
“small” stations). Furthermore, infrastructure costs can be seen as the sum of “building™ costs and
“maintenance’ costs. If we consider only building costs, especially in the case of a single facility, we are
facing a problem similar to the so-called ““airport game™ (see. for instance, Littlechild and Owen, 1973 and
Dubey, 1982). For what concerns maintenance costs, it is a reasonable first-order approximation to assume
that they depend on the type of trains, and are proportional both to the building costs and to the number of
USErs.

Similar considerations extend to related problems: for example the costs for a bridge, to be used by small
and big cars. There are building costs, that depend on the type of bridge needed (one for small cars only or
one to be used by big cars too) and maintenance costs, that depend on the type of bridge but also on the
type of car using the bridge. Moreover these costs are proportional to the number of vehicles using the
bridge. Another related problem arises when some community has to buy a set of glasses: the “*building”
costs depend on the kind of glasses, while the maintenance costs can be considered as proportional to the
number of glasses (the proportionality coeflicient could be related with the probability of breaking a glass
during some given unit of time).

In order to model the infrastructure costs we use the class of infrastructure cost games. which has been
introduced by Fragnelli et al. (2000). In this paper we analyze these games from the point of view of the core
(exploiting the special structure of these games, we get a minimal collection of conditions that are equiv-
alent to balancedness). In Section 2 we give some preliminary definitions and results on airport games and
generalized airport games (a new class of games which turns out to be closely related to that of one tacility
infrastructure cost games). In Section 3 we focus on one facility infrastructure cost games (being the sum of
an airport game and a maintenance cost game). In particular we study under what conditions such a game
Is balanced. Moreover, we provide simple formulas for solutions based on the concept of egalitarianism (see
Dutta and Ray, 1989) and on the nucleolus. These solutions always select a core element if the game is
balanced. Section 4 1s devoted to the study of infrastructure cost games, where the infrastructure consists of
two or more facilities. Again, we analyze under what conditions such a game is balanced.

Notation. Throughout this paper capital letters with one subscript are used to denote partial sums. e.g.

Bi=0,+-+b,N=n+---+n, B, =b +---+ b, etcetera. For a vector (x;)..v and an § C N we will
write x(S) instead of ) | . x,. For a k € N we denote the set {1..... k} by K.

Y

2. Airport games

First we recall the definition of an airport game (see Littlechild and Owen. 1973 and Littlechild. 1975).

Definition 2.1. Suppose we are given k& non-empty groups of players g,..... g; With ny,.... n, players re-

spectively and A non-negative numbers b, . ... biy. The airport game corresponding to g,,.... g; and
. : Fr : .- A . : .

T - by 1s the cooperative (cost) game (N.c) with N =, g and cost function ¢ defined by

('(.S‘):B;\ (:/}I'i'"""f"h_,h,)
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for every § C N, where j(S) = max{j:SnNg #0}. We denote' by B(gy;.: g, ) the set of all airport games
with groups of players g,.. ... 7.

Airport games are cost games for the building of one facility (a landing strip) where the wishes of the
coalitions are linearly ordered. Coalitions desiring a more sophisticated facility (a larger landing strip) have
to pay at least as much as coalitions desiring a less sophisticated facility (a smaller landing strip). If we drop
this monotonicity condition we get the class of generalized airport games.

Definition 2.2. Suppose we are given & non-empty groups of players g,... .. gy with n, ..., n, players re-
spectively and k real numbers b,. .. .. by such that 0 < B, < B; forevery /l € {I,..., k — 1}. The generalized
atrport game corresponding to g,..... g, and by,.... b, 1s defined 1n the same way as an airport game
corresponding to g,..... o and by, ..., b;.

Alrport games are known to be concave. Consequently. the Shapley value of such a game provides a
core element. In fact this core element is symmetric, i.e., treats players belonging to the same group 1n the
same way.

Definition 2.3. Let (V,¢) be a cooperative game and let g,,. ... g, be a partition of N. The symmetric core of
(N, c) corresponding to g,,.... g, 1s the collection

CY%e) = 10).. € Cle) i % = % Tot every i,i' € N with j(i) = j(i')}.

y e | L S B K - : = )
Here C(c) := {(x)),.y € R" : x(5) < c(S) for every S C N, x(N) = c(N)} denotes the core of (N,¢) and /(i)
denotes the index of the group to which player i/ belongs. For a symmetric core element
{277 F— (Xk ) icp, ) WE Wil write briefly (x,,...,. X1 ).
In the following proposition we provide a complete description of the symmetric core of a generalized
aIrport game.

Proposition 2.1. Let (N,c¢) be a generalized arrport game corresponding to ¢,. ... . g, and by, . ... b,. Then
(b — xx) € C*(c) iff

x; 20 foreveryiceKk,

mx)+---+nx;<B; foreveryie{l,..., k— 1}, (1)
MX1 T T MpXp = B;\.
PIooL. - =" SUpPPose. X=X i x) € C*"(c). Then for every i€ K we have nx, =x(g)=

X(N)—x(N\g)=c(N)—x(N\g)=c(N)—c(N\ g) =0 which implies x, = 0. The other conditions in
(1) are implied by x(S) <c¢(S) for S =J,_, g withi e {1,... .k — 1} and x(N) = ¢(N).

“<=". Suppose that (xi,...,. v, ) satisfies the conditions (1). Take S € N and let s; ;= |8 Ng;| for every
J € K. Then x(S) = j“l SIS Py '“,' nix; < Bjs) = c(S). Clearly, the last condition in (1) guarantees efh-
clency.

-

As a consequence of Proposition 2.1 we get that generalized airport games are balanced.

Corollary 2.1. Every generalized airport game is balanced.
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Proof. Let (N, ¢) be a generalized airport game corresponding to gy, . . .. g, and by, ..., b;. One easily verifies
that (x,,...,. x;) defined by x; := 0 for every i € {1,..., k — 1} and x; := B, /n, satisfies conditions (1).

The following proposition provides a relation between generalized airport games and airport games.
With every generalized airport game we associate an airport game in the following way: join a group with
negative marginal costs with its preceding group and repeat this procedure as long as necessary. Eventually
we will end up with an airport game whose symmetric core is closely related to the symmetric core of the
generalized airport game we started with.

Proposition 2.2. Let (N.¢) be a generalized airport game corresponding to g,,....g, and by, . ... b, and let
i€ {2,..., k} be such that b, < 0. Let (N.c') be the generalized airport game corresponding 1o
[ PET g o g @ it g and by, ... . bi_s.bi + b, by ., b,. Then we have

— i -

(1) if (x1,..... X,) € C**(¢) then (xi,...,. X1y Vo Xt Ligion o o ;) € CY™(c'), where y= (nj_1xi_, +nx;)/

-—

(1) 2 (X1, . . o Xi2y Py Xigds oues 3 ;) € CYM(c') then (xy,..... ) € C™M(c) for every non-negative x, | and x; sat-

Proof. The result 1s an immediate consequence of Proposition 2.1 for both games (N, ¢) and (N.¢') and the
fact that, for (N.c¢), the condition nyx, +--- +n, x, | < B, | can be skipped. since 1t 1s implied by the other
inequalities. [

Example 2.1. Let (N.¢) be the generalized airport game corresponding to g,.¢-.¢:.¢s and
by =7,by =2, by = 3. by =4. Application of Proposition 2.2 (twice) yields that we can compute the
symmetric core of (N.c¢) by considering the airport game (N.c¢') corresponding to g, Ug> U ¢+, ¢y and
c,=7+24+(-3)=6 and ¢, =4. For every (y,») e C*™(c') (.e. for every (y,») satisfying
i 20, 20,(n +n+n3)y <6, (n + n + ny)y + nyy» = 10), every vector (x;,x,x3,x4) satisfying x; = 0
for every i € {1..... 4}, nyx; + naxs + nxy = (n + n> + ny)y, and xg = » 1S @ symmetric core element of

\

(N.c). In this way we obtain all symmetric core elements of (N, ¢).

3. One facility infrastructure cost games

[n airport games costs for the building of one facility (the landing strip) are modeled. Now we consider
the maintenance costs of this facility, which lead to the class of maintenance cost games. Maintenance cost
games have been introduced and studied more widely in Fragnelli et al. (2000). Basic assumptions are that
maintenance costs depend on the type of user and are increasing with the degree of sophistication of the
facility and that each group contributes to the cost an amount which 1s proportional to its size.

Definition 3.1. Suppose we are given A non-empty groups of players ¢,,.... g, with ny, ..., n, players re-
spectively and k(k + 1)/2 non-negative numbers {4,} ., . . with 4, <A, forevery i< ;< /. The main-
tenance cost game corresponding to g,.. ... gr and {4}, .4, -, 18 the cooperative (cost) game (N,c) with

' A . : i
N = J _, g and cost function ¢ defined by

DS

L(S) = Z .'S § .‘\r:g“l;r b (2)
j=|

for every S C N. We denote by M(g,,.... 2, ) the set of all maintenance cost games with groups of players
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The following interpretation can be given to formula (2). Suppose that coalition § faces the problem of
estimating the maintenance costs that are due to the fact that all players in S have used some facility. Since
all players in S want to use this facility again it has to be restored up to level j(§). However, players In S can
be of different types. i.e.. belong to different groups. and hence cause different maintenance costs. It a player
in S belongs to group g, (with i< j(S)) then the maintenance costs, caused by this player, are A4,s,.
Summing up the costs of all players in S yields formula (2). So, the number A4, represents the maintenance
costs, caused by one player in group g,. if the facility is going to be restored up to level ;. Observe that the
higher the level of restoration of the facility 1s (1.e. the higher ; is) the higher the maintenance costs are.

Cost games which take both building and maintenance costs into account are infrastructure cost games.
In Fragnelli et al. (2000) these games are introduced and a simple expression of the Shapley value of such a
game 1s provided.

Definition 3.2. A one facility infrastructure cost game with groups of players g,,.... g, 1s the cooperative
(cost) game (N.c) with N =|J , g and cost function ¢ = ¢’ + ¢” such that (N,c') € B(g),. .., g;) and
(N.c"y e M(g,.....2). An infrastructure cost game with groups of players g;..... ¢, 1s the cooperative
(cost) game (N.c) with N = L_J‘L £, and cost function ¢ = c' +:--+c¢' such that, for every r € {1,..., [},
(N,c") 1s a one facility infrastructure cost game with groups of players g..(;,..... g~ ), where n" 1S a per-
mutation of K(={1..... k}).

In infrastructure cost games both building and maintenance costs are taken into account. From an
applicational point of view one could for example think of the building of a freeway. First, a loan 1s taken 1n
order to construct the freeway and later the users have to pay the loan together with the maintenance costs.
Another example that fits in our model 1s the maintenance of a raillway infrastructure. The infrastructure
has been built many years ago and the building costs have already been paid for. So. the maintenance costs
are the only costs to be taken into account. However, these maintenance costs can be decomposed into a
1xed part, 1.e., a part that does not depend upon the number of users, and a vaniable part that depends on
he number of users. In this situation the fixed costs correspond to an airport game, and the variable costs
0 a maintenance cost game. See for example Fragnelli et al. (2000) for a realistic example.

From the definition above we see that a one facility infrastructure cost game 1s the sum of an airport
game and a maintenance cost game with the same groups of players ordered in the same way. An infra-
structure cost game 1s the sum of a finite set of one facility infrastructure cost games with the same groups
of players but, perhaps, ordered in a different way. Because of this, 1t 1s not true that every infrastructure
cost game 1s a one facility infrastructure cost game.

[n this section we focus on one facility infrastructure cost games. In Section 4 we study infrastructure
cost games, where the infrastructure consists of two or more facilities. First we provide a characterization of
the balanced one facility infrastructure cost games.

Proposition 3.1. Let (N.c) be the one facility infrastructure cost game with groups ¢, . . .. 2. and non-neg-
ative numbers {b;},_, and {A,}, ., .. Then (N c) is balanced iff

/

Zn;(m — A LR (3)

=]
for every je{l,...,k—1}.

j
A

Proof. “=>". Suppose that (N, c) is balanced. Let j € {1,...,k— 1}. The collection {| }_, gi,\Ji_;., &} 1s a

balanced collection. Hence ¢(N) <c(l J,_, g&/) + ('(Uj .1 &) or, equivalently,
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/

an i — Aii) < B;.

i=]

So the conditions (3) are satisfied.
“<«="", Suppose that the conditions (3) are satisfied. Define the symmetric allocation x = (x,), _, by

s A,; 11* | € {1 ..... K — ]}
| A+ (Bi/ng) If i =k.

We will show that x € C*™(c¢). First note that x(N) = ¢(N). Take S C N and let s; := |SNg,| for every
je€ K. If j(§) = k then

B, i A
XY) = .5 - r Z.S,A;; < By + ;5,4,; = el )-

=]

If / := j(S) < k then

[

E S‘,.‘LA

=1

Zs-lr—l—z 4. — A;;)

x()

A
--l“'"
__+_
ot
l

Condition (3) 1s obtained by considering minimal balanced collections which correspond to “splits™ of N
Into two groups of the following kind: g, U---Ug, and g,., U---Ug,. The interpretation of these condi-
tions 1s the following: the maintenance costs that the players in g, U--- U g, have to pay for the level of the
“needs of the other players should be less than or equal to the building costs for the facility at the level
needed by these groups themselves. In the following proposition we present a complete description of the
symmetric core n case the one facility infrastructure cost game 1s balanced.

Proposition 3.2. Let (N,c) be the one facility infrastructure cost game with groups g, ... . g,, and non-
negative numbers (b}, and {4,}, . Then (xi.....x) € CV(¢) iff

x; = Ayx for every jE€K,

Zn Xi S B+ Zn Ay Jorevery j€4l,..., k— 1}, (4)

;=]

A
Z nx, = B; + Zn‘,.—l!;.
=] f=1
Proof. =" SUPPO‘*"’-‘ X = (X, ---~.1‘;) € C“"'"({'). Then for every j €K we have nx; =x(g;) =
X(N) —x(N\g;))=c(N)—x(N\g;) =2c(N)—c(N\g;,) =nA; which implies x; = 4;. The other condi-

tions 1n (4) are imphed bv '( < e (S) for S = U;’ g u.ilh e Al ks k— 1} and x(N) = ¢(N).
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“<="". Suppose that (x,,...,x;) satisfies the conditions (4). Take S € N and let 5, := [SN g,| for every
J € K. Then

x(S) — ¢(S)

/f“x I | | |
. A O
s —_— —
o~ g N
R |
| |
N oD,
= -~ ___D:J
. - .
| | T
™ S g -
o~ - .
-
2
>

The first inequality follows from the fact that x, > 4, > 4,, ¢, for every 1 € {1,..., J(S)} and the second

inequality from conditions (4). [

In the following proposition we show that the symmetric core of a one facility infrastructure cost game is
in fact the shifted symmetric core of a corresponding generalized airport game.

Proposition 3.3. Ler (N c) be the one facility infrastructure cost game with groups g,,..., 2., and non-
negative numbers {b,} . and {A,} . . Suppose that (N.c) is balanced. i.e.. that conditions (3) are sat-
isfied. Let (N, c¢) be the generalized airport game corresponding to g, . . . .. g and b, . . ... b,. where the numbers
by..... b, are given by

b, - By — (A —An)

by + b — B, - S  NilAy — Ap)

. . | — K — | |

h| T h.'_‘ T Ll /]i I = Ba} - \I__“. | ”.'(-":i o ‘44{ | )

by + b + -+ + b, + b = B,.

for every i € K. Then we have x € C*™(c) iff x € CY™(¢).

Proof. The proof follows directly from Propositions 2.1 and 3.2. [

T'he interpretation of Proposition 3.3 1s the following. In order to determine the symmetric core of a one
tacility infrastructure cost game the infrastructure costs should be divided in the tollowing way. Let every
player pay the maintenance costs which occur if he uses the facility and this facility is going to be restored
up to the highest level of sophistication. Now divide the building costs by considering any symmetric core
allocation of the generahzed airport game in which the costs for ¢, U---Ug, (j& {1..... k —1}) are the
costs for building the facility at the level they wish minus the extra amount of maintenance costs they
already paid for the level of the needs of the other players.

For airport games the egalitarian solution (see Dutta and Ray, 1989) and the nucleolus (see. e.g., Liat-
tlechild, 1974) provide core elements and are easily computable. Their formulas can be extended in a
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straightforward way to generalized airport games, which leads to two solutions for one facility infra-
structure cost games. These solutions are described in Definitions 3.3 and 3.4.

Definition 3.3. Let (N.¢) be a balanced one facility infrastructure cost game with groups g, .. ., g, and
non-negative numbers {b,} , and {4, }, . .- Let the numbers bi,..., h,; be defined as in Proposition 3.3.
Let the vector (3, - v, ) be defined recursively by
B,
Wi=ming —: 1 < j<K
N, '
| By= (nuyi + woibmpiyici) . cu o
y: ;= min " — r ' IS ISk
\r; — ;\f |
for every i € {2,..., k},
1.e., the vector (v,.....y) is the egalitarian solution of the generalized airport game corresponding to
gy, .., ¢, and b,..... b.. Define the allocation @'(¢) = (d):(c') ..... (Di(f;)) by d’}'(r) = A, + y; for every
I € K
Proposition 3.4. Ler (N.c) be the one facility infrastructure cost game with groups g,, . .. . 2,. and non-neg-

ative numbers {b,} . and {A,,} . . Suppose that (N, c) is balanced. Then @' (c) € CY™(c).

Proof. One easily verifies that, according to Proposition 2.1, the vector (y,.... V) 1S @ symmetric core
element of the generalized airport game (N.¢), corresponding to the one facility infrastructure cost game
(N.c¢). By Proposition 3.3 we infer that @'(¢) € C¥™(¢). [

Definition 3.4. Let (N.c¢) be a balanced one facility infrastructure cost game with groups g,,..., g, and
non-negative numbers {h,} , and {4,} _, . Let the numbers b, ..., b, be defined as in Proposition 3.3.
Let the vector (z,,....z:) be defined rr.x.urxm.lt. by

B,

Zi'=min¢ —=:1< 7k
| I 3

| By — (B2 & = W Zea ) 5 4
Zi 7= 1Nin : _ - 1< <k
W — N._, -
for every i € {2,..., Kk},
where llj. = + 1 I'or every j€4{l,.... k—1} and W, := N,. Define the allocation & (c) =
(L o ) FEE, ] ) by @ (¢) := Ay + z for every i € K.
Proposition 3.5. Let (N.c) be the one facility infrastructure cost game with groups gi, . .., 2;, and non-

negative numbers {b,;} . um!{ Y o . Suppose that (N,c) is balanced. Then ®(c) € C*¥™(c). Moreover,
& (¢) is the nucleolus of (N,c).

Proof. First of all we will show that 0 <z, <z, < -+ <z According to Proposition 3.1 balancedness of
(N, c) implies that B; = 0 for every j € {1,...,k}. Therefore, z; = 0. It z;;, < z; for some i € {1,..., k— 1}
thereisaje{i+1,..., k} with
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B, — (mz; + -+ nz;)
Zi4] = . L 2
W, — N,

Hence B;— (mzi+---+nz) < (W, — N,)z, which 1s equivalent to B;— (mzy+ -+ n_121_1) <
(W, — N;_)z;. Consequently

illls,

1’_:.)’;—(!]']:.“[***""?‘H*Jr 12 |)
W, — N,_, ‘

Z; >

contradicting the definition of z;. Hence 0 <z, <z, < -+ < z.

Let, for every allocation (x;),., and every coalition § C N, e(S,x) := ¢(S) — x(S) be the excess of co-
alitton S with respect to allocation x, and let E(x) := (e(S,x))s- be the vector of excesses. Let ¢/ be the map
that assigns to every v € R~ the vector that orders all coordinates of y in a non-decreasing way. Let = be
the lexicographical order on R~ . In order to show that w := @ (¢) € C¥™(c) 1t is sufficient to show that w is
the nucleolus of (N,¢). However, since (N,c¢) 1s balanced, 1t 1s even sufhicient to show that w 1s the
prenucleolus of (N.c¢). Therefore, we have to show that for every efhcient allocation (x;)_, with

O(E(x)) =y O(E(w)) we have x = w.
5o, suppose that (x,) . 1s an efhicient allocation such that 0(E(x)) =, 0(E(w)). In order to show that

x = w1t sufhces to show forevery / € {0, ..., k — 1} that the following statement 1s true: if x, = w, for every
. [ : . . i . -
i € |J,_, g (which is true by convention for / = 0) then x, = w, for every i € g,.,. So, let / € {0,.... k—1}

and assume that x, = w, foreveryic |J | g,
First, note that

eld,x) = elS) — x(S) = e(S) —w(S) = e(S,w) (5)
for every S C U . £,. and
e(S,x) =c(S) — x(S)

=c(S) — (x(N) —x(N\S))

|

c(S) — (WwN)—w(N\S))

c(S) — w(S)

e(S.w) (6)

for every S € N with N\ S C |, g,. Define now

I

A
S =¢85 C N : there exist i,,i» € U g withi,eSandi» €8
1={+ 1
If ¥ = () then for every S C N we have either S C U giorN\ S C U’; - g, and hence, according to (5) and
(0), e(S,x) = e(S,w). Therefore x = w. So, we may assume that . # (), which implies [Uj 1 &l 2 2. S0,
[+ 1< korn = 2. ()
First we will show that

njiiw(Sn.t-) = B, (8)

5
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Therefore, let S € .. If j(S) < k (but j(S) = [+ 1 since §N (Uj‘ .1 &) #0) we have

e(S,w) =c¢(S) — w(S)

J( Hy ) T
= B + E sid;is) — E siAy + E §:2Z,
i=| =1 =]
1Y) 1S
= B! 3) E S:(A.'A - ‘4.'; 5 ) o E 5=
j=| =1
J1(S) J(S
.->-" B! S) E ”J("‘in e 4;; 5 ) o E n,z,
== =]
1S |

At the first inequality we used the fact that 4, > 4, ¢ and z, > 0 for every i € {1...../(S)}. The second
Inequality 1s a consequence of the definition of the number z, ;.
If j(S)=kthenlet ;e {l+1,.... k} be such that (N\ S)N g, # (. Then

e(S,w) =c(S) — w(S)

B, + Zi:g‘_*{“- = Zal . i.ﬁ[:)
=1 .- | .

|

A

= B; - E Sl
=]
A A
— E (74 E \Y74

i=] =]

1
-
L

|
-
t

WV

Z 2141

At the fourth equality we used the fact that 37" nz = B, and at the first inequality that n, > s, + 1.
Moreover, for every i € g,.;, we have N\ {i} € .¥ (as a consequence of the fact that Uf o Zil=2). If
§ = N \ {1} then the two nequalities above are satisfied by equality. Hence ¢(N \ {i}.w) = z,.,. This es-
tablishes (8).

Since 0(E(x)) = 0(E(w)) and e(S,x) = e(S,w) for every S CN with S €. we find e(S.x) > z,., for
every § € &. Let j° be the smallest index m {/+1,..., k} such that
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&ly]l =

3 [
B',* o Z: =1 iz
”Jr = N;

In order to show that x, = , for every i € g;.; we distinguish between two cases. ﬁ
Case (1} J* < k. Let § = U & and S = U g1 & Then S\S U &5 5015\5 w(S \ S). More-
over, we have x(N) = ¢(N) and hence

(W- — N))zi1 = ( ni+ 1 |24
=1+

|
~
P
L~
—
|
-
-r"""
_—
e,
*-—-.-—-
_l,
—~
¥
|
o
A

Y (e(N\ {i}) = x(N)) +¢(S) —.r(S\S)

= ) (c(N\{i}) = c(N)) +¢(S) - “'(5\3)

i ! ‘.I'

= - E n,A e § B. + E ”,r-‘f_-r‘ o E ”:-'{xi 13 E n,<,
=] j=] j=1

.
| / |

= B~ — ZH.(.-I 2 — Ao — Zn.:.

= | j=]

= (” as \): [
Al the sixth equalty we used the fact that for every je {/+1,.... J°} and i€ g, we have
c(N) —c(N\{i}) =A4;. This implir:*; that e(N \ { +.x) =z, for every i€ S. In particular we get
e(N\ {it,x) =z, =e(N\{i},w) for every i € g;,,, which implies x, = w, for every i € g,.,.

- Case (n): j° = k. First of all we show that n, > 2. According to (7), we may assume / + | < k. Since
B, = B, > B, we get

a { N - { . ‘ [
Bi — ) ._, nz, By =) iymzi By —) . ngz

. =, = F— <
-—f.l_' ‘['“‘-. =

W, — N, Wiy —N, —  W,_, =N,

where the strict mequality is due to the minimality assumption upon ;. Consequently W, > W, | or
Ni > N;,_, + 1. Hence n, > 2. Let S = U g Then x(N\'S) = w(N \ S) by assumption. For every i € S
we have N\ {/} € .¥. Using moreover x (_4\’) = ¢(N) we find
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(”i = N;):z.l = (NA — IV, )z,

< e\ {i}.x)

=5

» Z(t'(N\ {i}) = x(N\ {i}))
- Z( N\ {i}) — x( V))+1(§)

V\ {i}) — ¢(N)) + x(N) — -1-(.-\/ \ S)

7

=D

-

= Z niAu + c(N) — H'('\; \ S)

i'. J* .|"I

B, + E n:Ag — E nA. + E n;z,
= | = | =1

B.-; = E n;<,;

|

= (W, — N,)z,.
Consequently e(N \ {i},x) = z,., for every i € = S In the same w ay as for case (1) we derive that x; = w; for

everyi € g;.,. U

4. Infrastructure cost games

In this section we consider infrastructure cost games, 1.e., cost games which are dealing with the building
costs and maintenance costs of an arbitrary number m of facilities, where no special requirements upon the
ordering of the wishes of the coalitions for the several facilities will be made.

SO. suppusc we are given an infrastructure cost game (N, ¢) with groups of plavers ¢,..... 2y et
¢ =c' +---+¢" be such that, for every / € M := {1,....m}, (N.¢') is a one tacility infrastructure cost
game with groups of pltm.ra - ST g. . where 7' is some permutation of K(= {1,.... k}). Let,
moreover, (b)), and (4)) ., be the non-negative numbers which define the one facility infrastructure
game (N,c¢') and let n' :=n_ bL the number of le\LrH In the Lmup ranked at the ith place for facility /.
Define j'(L) := max{, : n'(j) € L} forevery L C K and / € M. So, J'(L) medsures the level of sophistication

of facility /, desired by the union of the groups in L (instead of ;/({i}) we write j'(i)). A group j € K is said
Lo be dominated by the collection of groups L if j'(LU{/}) = j'(L) forevery I € M, i.e., jis dominated by L
Il the needs of j are covered by the needs of L. The collection L is complete if there is no j € K \ L such that ;
1s dominated by L. Let L € K and define M| := {/ € M : j'(L) < k}, i.e.., M, 1s the collection of facilities for
which the level of sophistication, desired by the groups in L, is not maximal. Suppose M, # ). Define for
every / € M, the collection R| := {n'(j) : j > j'(L)}. denoting the collection of groups whose wishes with
respect to facility / exceed the wishes of the groups in L. Two facilities / and /" in M, are called directly
connected if Ry MR, # 0, i.e., there is at least one group whose wishes with respect to both facilities / and /'’
exceed the wishes of the groups in L. Two facilities / and /" are called indirectly connected if there is a
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sequence it = s |. =!I in M, such that /,_, and /, are directly connected for every ¢t € {1,...,. st. A
complete collection of groups L is called essential if M; # () and every pair of facilities in M, 1s directly or
indirectly connected.

Example 4.1. Consider the infrastructure cost game, dealing with the building and maintenance costs of
tour facilities, where the ordering of the wishes of the groups for the several facilities are given by

tacihity 1 ¢, ¢ g3 g4 25 26 27 g5
facility 2 g¢ 24 27 21 2« g5 2 g:
tacility 3 g7 g3 g5 2 g 21 24 2
facility 4 g4 g5 g6 2 25 g7 &1 2s.

Consider the complete collection L = {4}. Then M, = {1,2,3,4}, R = {5,6,7,8}, R; = {1,2,3,5,7,8},
R, = {6} and R} = {1.2,3,5,6,7.8}, and the corresponding graph on M; 1s given in Fig. 1. This graph
consists of one component, so L = {4} 1s essential.

Now consider L = {1,2,5,7}. Then M, = {1,2,3,4}, R| = {8}, R{ = {3}, R{ = {4,6} and R} = {3}
and the corresponding graph on M; is given in Fig. 2. This graph consists of three components, so
L=4{1,257}1s not essential.

[f an infrastructure cost game is the sum of balanced one facility infrastructure cost games then clearly
this game 1s balanced. The following example shows that the converse statement is not true. For balanc-
edness of an infrastructure cost game the balancedness of the corresponding one facility infrastructure cost
games 1S not required.

Example 4.2. Consider the infrastructure cost game (V. ¢), dealing with the building and maintenance costs
of two facilities, where the ordering of the wishes of the three groups involved for the facilities are given by

3, 5

Fig. 1. The graph on M| for L = {4}

/
) 9

tig. 2. The graph on M, for L = {1,2,5,7}.
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facility 1 g, ¢, g;
facility 2 g, g, g;.

Suppose that every group has precisely one player, say g, = {1}, g = {2}, and g; = {3}. The one facility
infrastructure cost games (N.c') and (N, c¢”) are defined by the numbers

bl = b =1 bl =0 =9 bl =02 =1
LS R Y [N (R 4}1:,411_3
4, =427 d,=54,=3
Al = 43, = 3.

One eaml) verlhes that ¢'(1

20.
Since ¢ (123) (]) c'(23) we conclude that (N,c¢') is not balanced. Moreover, we have ¢ (1) = 12,
c-(2) = 2. ¢ (1)_( 2(12) = 14, ¢*(13) = *(23) = 17, and ¢?(123) = 20. From c*(123) > ¢*(2) + c*(13) we
iInfer that (N,c’) is not balanced. The game (N,c) is specified by the data c¢(1) = 14, c'(?_) =14
e(3) =¢(12) c(13) = ¢(23) = 34, and ¢(123) = 40. One easily verifies that (6,6, 28) i1s a core element

of (N,c), so (N } 1s balanced.

"

=2 ¢'(2)= 12, ¢"(3)=¢'(12) =14, ¢"(13) =c'(23) =17, and ¢ (12 )
(

In the tollowing proposition we show that, in order to get a symmetric core element of an infrastructure
cost game, 1t 1s sufficient that every player pays at least his maintenance costs and that every coalition.
which 1s the union of an essential collection of groups, 1s satisfied.

Proposition 4.1. Ler (N.c) be an infrastructure cost game as defined above. Then (x,. .. ... xx) € C™ (c) iff

l r erery 1o 3
= E Aa Jor every i € K,

(=M

nx, <clU{g, :j€L}) for every essential collection L. (9)

e
E n:x; = c(NV).
j=A

Prool. "= DUPPose [Migeus s xx) € C*"(c). Then for every i€ K we have nx; = x(g;) =x(N)—
x(N\g)=c(N)—x(N\g)=c(N)—c(N\g) = nl. l; o+ oo AR ) 'Which mmplies x; 2 *‘4:1.,-; + -+
A", ... The other conditions in (9) are imphed by x(§) < ¢(S§) for every coalition S, which is the union of an
essential collection of groups, and x(N) = ¢(N).

& duppose that (X, s 5 v, ) satishes the conditions (9). Define e(S,x) := ¢(S) — x(S) for every S C N.
We have to show that every coalition S 1s satisfied, 1.e., e¢(S.x) = 0. Denote by 4, the set of coalitions.
which are the union of an essential collection of groups. by .4, the set of coalitions, which are the union of a
complete collection of groups. by 4 the set of coalitions, which are the union of an arbitrary collection of
groups, and by 4, the collection of all coalitions. Clearly, 4, C 4, C 4, C 4,. By assumption every
coalition 1n .4, 1s satishied. In order to show that every coalition 1in 4, 1s satisfied, we will first show that
every coalition in 4, 1s satistied (step 1), secondly, that every coalition in 45 1s satisfied (step 2), and finally
that every coalition 1n 4, 1s satisfied (step 3).

Step 1: Let S € #,,1.e., § =U{g :i € L}, where L 1s a complete collection of groups. If L 1s essential,
then § 1s satisfied by assumption. Otherwise, there 1s at least one pair of facilities in M; which are not
indirectly connected. Let M’ be a connected componentin M|, L' :=U{R] :s€e M'}and §' :=U{g;: i € L'}.
Let, moreover; L*:=LUL" and 8" :='Uig; si el =SS . Foreveryi e M- we have ji(L")=k = 7(K)
and /(K \ L") = j'(L) and for everyi € M| \ M’ we have /(L") = j/(L) and j/(K \ L') = j/(K). Hence, L" 1s a
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. - . - V v Y- ¥ ‘r
complete collection of groups such that M,;» has one component less than M; and K \ L' 1s an essential
collecion. Moreover, we have

(L) 4 J' (L) A
('I(S) e (""(S”) o ('I(:)V \S,) o ('I(_EV) — Z A) 4” A U Z.S‘Tﬂh il Z("I: . ‘Y;)AJ;;"J'-I i1 Z ”JfA;A
=1 =] f=1 =1
A f (L)
— :E::(f — 5, )A 4 — :E::(rr: — 8 =S
j=| j=|
A (L)
— (7, — 5, )4, — :E::(;r — 5, )4y 20
j=1 j==1
tor every i € M’ (where s, := |SN g, [, etc.), and
/' (1 J' (1 A A
(8) = () = (N\S) + ' (N) = 3 sidjyy = | DosiAl | = D (0 =)+ mid,
=1 fe=] j=| j=1
L 71

WV

0

- l.F ..I - ‘l [
B E -H;,l!i E 3,"—’.’,." .';

| f=1
tor every / € M \ M'. Summation of these inequalities over all i € M gives
c(S)—c(§S)=c(N\S)+c(N)=0
which 1s equivalent to ¢(S) = ¢(S") + ¢(N\ §') — ¢(N). Hence

e(5,x) =c(S) —x(S) 2 c(S)+c(N\S') —c(N) —x(S)
=c(S")+c(N\S') —x(N) — x(S)
=c(S") = x(§") +c(N\S') =x(N\S)
=e(S",x) +e(N\ S, x)

> e(S".x).

where the last inequality 1s due to the fact that N\ S € 4,. So. coalition S is (weakly) more satisfied than
coalition §”, which 1s the union of the complete LL‘l”LLIIUﬂ of groups L” with M, having one component less
than M, . In this way we can prove by induction to the number of components in M, that every coalition,
which 1s the union of a complete collection of groups, 1s satisfied. The induction base is provided by the
assumption that every coalition, which is the union of an essential collection of groups, 1.e., a complete
collection L such that .-'\I, has one component, 1s satisfied.

Step 2: Let S € 45, 1.e., S = U{g :i € L}, where L is some collection of groups. If L is complete, then
S € 4, and we have Lllrmd\ shown in step | that S 1s mmhcd Otherwise, there is a group j € K\ L. which

1S dommaled by L. Define L' := LU {j} and 8" :=U{g,: i € L'} = S U g,. Since j/(L') = J'(L) foreveryi € M
¢ have
L'(SI} o L(S) == ‘”.F('_IJ- Ny ™ T T 42” J) (1 )
<ni(A o+ + AT )

] IR
SNiX;

x(8) — x(8).
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Hence ¢(S.x) = e(S'.x). So. coalition S is (weakly) more satisfied than coalition S, which 1s the union of the
collection of groups L', which admits one dominated group less than the collection of groups L does. So, by
induction to the number of dominated groups we can prove that every coalition, which 1s the union of some
collection of groups, 1s satisfied.

Step 3: Let S € 4,. i.e.. S is a coalition which 1s not necessarily the union of a collection of groups. If
i€ N\S 1s a player which belongs to a group g, which is already present in S (1.e. SN g, # () then
c(SU{i}) —elS) < {4 + + Al i) S X = x(SU{i}) —x(S) and hence e(S,x) = e(S U {i},x). So, de-
fining § € 45 as the coalition which is the wmplelmn of S, 1.e., the union of the groups which are already

present in S, we get e(S.x) = e(S,x) = 0, which finishes the proof.

In Proposition 4.1 it is shown that an infrastructure cost game (N, ¢) 1s balanced if and only 1f system (9)
has a solution. If m = 1 this system is equivalent to system (4), since the essential collections are precisely
the collections {='(1),...,7'(i)} withi € {I,..., k — 1}. Moreover, 1t follows from Propositions 3.1 and 3.2
that system (4) has a solution 1f and only 1if conditions (3) are satisfied.

Also for m = 2 it is possible to provide a collection of conditions on (N,c¢), which turn out to be
equivalent to the solvability of system (9) (and hence to the balancedness of (N, ¢)). In order to do so we
assume, without loss of generality, that n'(i) =i for every i € K and we write 7 = n°. Moreover, let
n' :=n,, for every i€ K, so n’ is the number of players in g. . which is ranked at place / for the second
facility. A group g, i1s dominated by another group g, if g, precedes g, for both facilities, 1.e., / < ; and
(i) < j°(j). Let Ky € K denote the collection of dominated groups and K, = K \ K; the collection of
undominated groups. The ordering of the groups in K, for the first facility 1s precisely the reverse of the
ordering of these groups for the second facility. To see this write K, = {/,..... Jot With jj < + 2 < ;. Tor:the
collection of undominated groups. If the first group in K, for facility 2 1s not g, . then this first group 1s
dominated by g, which gives a contradiction. So, the first group 1n K, for facility 2 1s g, . If the second
group of K, for facility 2 1s not g, . then this second group 1s dominated by g, =~ which gives a con-
tradiction. So, the second group In AH for facility 21s ¢, . and so on.

We provide a collection of conditions which turn out to be necessary and sufficient for the balancedness
of (N.c). These conditions can be divided into two groups: the conditions of “‘type 1" and the conditions of

“type 2.

Conditions of type 1. These conditions are defined 1n the following way. Let L € K be a complete col-
lection of groups such that there 1s a k* € K with J (A ) > j'(L) and (k") > j°(L). So, the needs of group
g;- exceed the needs of any of the groups 1n L, 1e., & R' N R;. So, the facilities 1 and 2 are directly
connected and hence L 1s essential. Define § -{s:  J € L} and wnxldcr the partition {S, N \ §}, which

will be called a type 1 split. Since this partition 1s a balanced collection the condition ¢(N) < ¢(S) + c¢(N \ §)
1s a necessary condition for the game (N,c¢) to have a non-empty core. This inequality 1s Lqunalenl Lo

or

> ni(4) + A%, ) <c(S). (11)

el

The interpretation of inequality (10) 1s that the maintenance costs that the players in U{g, : j € L} have to
pay for the two facilities for the level of the needs of the other players should be less than or equal to the
building costs for both facilities at the level needed by these groups themselves (ct. mequalities (3)).
Conditions of type 2. These conditions are defined 1n the following way. Let /,, /> € {1,...,k — 1} and let
ATE— 2 [ [ Li ¥l =Rl )is e n(/>)}. Suppose that /, and /> are such that L, U L, = K, 1.e., the union of
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the first /; groups for facility 1 and the first /, groups for facility 2 1s K. Let S| :=U{g,:j € L},
S;:=U{g;:j€L>} and S;:=U{g,: je K\ (L, NL,y)}. Then {S),5,,5:} 1s a balanced collection (with
welghts 1/2 for every coalition) and hence 2¢(N) < ¢(S)) + ¢(S>) + ¢(Sy). This last inequality is equivalent to

| q 2 {2 | 2
Z’II(‘4IA _“';"lnp‘) +Z’II(J4J:'I"‘ ‘_’rj,":'l"f:) gBh +BH:' (12)
1<y

I"a"[

or

B, + B <c(S1) = D _m(dl+43,,) +e(8) - Son(al +43,,). (13)

T 'f-i J ¢ 1"._‘

The interpretation of inequality (12) is the following: the maintenance costs that the groups in L, have to
pay for the level of the needs with respect to facility 1 of the other players plus the maintenance costs that
the groups in L, have to pay for the level of the needs with respect to facility 2 of the other players should be
less than or equal to the building costs of facility 1 for the level of the needs of the groups in L, plus the
building costs of facility 2 for the level of the needs of the groups in L-.

Example 4.3. Let (N.¢) be the sum of two one facility infrastructure cost games where the ordering of the
wishes of the groups for both facilities are given by

facility 1 g, g, g3 g4 &
facility 2 g, gs g1 22 g5.

So the permutation mis given by n(1) = 1, n(2) = 5, n(3) = 4, n(4) = 2 and n(5) = 3. Then the collection of
dominated groups is Ky = {1.2} and the collection of undominated groups 1s K, = {3.4.5}. Note that the
ordering of the groups gi.gs.gs for the first facility is the reverse of the ordering of these groups for
the second facihity. The collections {1} and {1, 2} provide the following necessary type | conditions for the
game (N, c¢) to have a non-empty core:

ni(4,, +4;,)<B| + B,
m(Ad,, + A7 ,) +n(As, +A;,) <B) + B..

where 4! 1s a short-hand notation for 4. — A4’ . The following conditions are the type 2 conditions for
(N, c) to be balanced:

B

| | [ 4 _ 2 > _ pl 2
MA, , +mA, 3, +n3A;; +mA;; + nsAs , + ngA3 , < By + B3,

B I N

| | | 2 g 2
MmAy+mA, 3 +nmAy + mA7  + nsAs ; + ngA5 , + mA; , < B,

] | I . | 2 2 | 2

I I l . l 2 2 . 2 . pl .

A

] | . ] . l 2 2 . + 2 - pl 2

[n order to prove that the conditions (10) and (12) are necessary and sufficient for the balancedness of (N, ¢)
we need the following lemma.

Lemma 4.1. Let seN.s>2 and a,,..., Gt Diviess wus b, y,c be non-negative numbers. Then the following
systent
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2 < a
Z1T <+ 2z < a»
zy + 2z Z3 S a3
2y =z 2 F s O S as
:j + Z1 T + :\, | T i ‘g b'. l (14)

Z1 = = > = Lo} 3 < ‘=<-;. h\ 2

z, & b

Zy, + z»» + z3 + - 4+ oz + 2z, = 6

has a non-negative solution iff a, + b, = ¢ forevery i,je {1,....s =1} withi+ j >s.

Proof. “=". Suppose system (14) has a non-negative solution z = (z,,.... z;). Then, for every
i j € {1, 4 s—1jwithi+j>swehavec=z1+---+z,<(z21+ - +2)+ @+ +2)<a + b,
“<=". The proot of this implication is by induction to 5. For s = 2 we have to check whether the system

Z) S 4
=2 < b
4 <) — (

has a non-negative solution, provided that a,. b, ¢ are non-negative numbers satisfying a, + b, > ¢. One
easily verifies this.
Suppose the implication has been proved for s = k and suppose we are given system (14) with s = k + 1.

where the non-negative numbers a,..... Qeitin D1yreon b,_), ¢ are such that a;,+ b, > c for every
N2 E (1 - s— 1} with i+ j 2> 5. If ¢ < min{ay,..., a,_) } one easily verifies that z = (¢,0,...,0) is a so-
lution of (14). If ¢ > min{a,..... a,_} define z; := min{a,,...,a,_,} = a,- for some i* € ) T s — 1},
Then (zy,..., z.) 1s a solution of (14)ff (z-. .. .. =) 1s a solution of
Z? S (a']
22 == 2 ”3
2y < Z3 T Za - a.
22 F 23 T Z§ =T T S5 g “: 2
Zy + 3 4+ z4y + + Ziy + 2z, < b, (15)
zv + z4 + + 2z, + z < b
Z4 T + z1 + 2z < b1
Ze-i + Z K. b3
Lo & h]
Z2 + Z3 + zZy + v o+ zZw 4+ oz = o
where a;, = a;;) —a;- 20 for every i€ {1,...,. s—2} and ¢'=c—a;. 20. Since i* +s5s—1>5s we have
a- + b,y 2 c. Hence ¢’ < b,_|. So, in (15), z + --- +z. < b,_; is redundant and can be omitted. Now. for
every 1,763, .05 s—2} with i+ j>s—1 we have @, + b, =a;,) + b; — a;. > ¢ — a;- = c’. By induction
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hypothesis we may conclude that (15) has a non-negative solution and hence (14) has a non-negative so-
lution.

Now we can prove the following proposition.

Proposition 4.2. Let (N,c) be an infrastructure game with two facilities. Then (N,c) is balanced iff in-
equalities (10) and (12) are satisfied.

Proof. =" This implication is straightforward since the inequalities (10) and (12) are obtained by writing
down the core conditions corresponding to special balanced collections.

“<=". Suppose (N.c) 1s such that the inequalities (10) and (12) are satisfied. We will distinguish between
two cases: (1) Kk = n(k) and (11) k # n(k).

Case (1): k = n(k). 1.e., the last group for the first facility is the same as the last group for the second
facility. Define the vector x = (xy,..... Xx) by
Ay + 45, {
Ay + A4y, + (B, +B)/ny if i=k.

i
P

S0, players belonging to a group i which 1s not the last group only have to pay the maintenance costs
Al + Af; .~ Whereas the players belonging to the last group are also dividing the building costs B, + B;. We
will show that x 1s a symmetric core element of (N, ¢). According to Proposition 4.1, it is sufficient to show
that every coaliion S, which 1s the union of an essential collection L of groups, is satisfied, i.e..
e(5,x) :=c¢(S) —x(§) =2 0. So, let L be an essential collection of groups and S :=U{g,:j € L}. Then
(m(k) =)k & L because otherwise M, = (). So, every group in L is dominated by group g; and hence
x(8) = ), ni(4;, +A4%,.,). Since {S,N\ S} is type 1 split we have, according to (11), ¢(S) = x(S), and
hence e(S,x) = 0.

Case (n): k # n(k). 1.e., the last group of the first facility 1s not the last group of the second facility. Write
Ko =A{r,...,riy with (k) = ry <--- <r, =k for the collection of undominated groups. Write t, = n~'(r,)
for every j € {1, ..., s}, then ¢, < --- < t;. Define for every i € K the coalitions S; := U{g; : 1 <j<i} an
I := U{g:, : | <j<i}.1e. S 1s the union of the first 7 groups of the first facility and 7, is the union of the
first 7 groups of the second facility. Define, moreover, for every j € {I,..... s — 1} the numbers a, and b, by

-

a; :=min< c(S;) — E H;(AL - .-l;~ n) o1

b; :==min{ c(7T;) — E nan(iu F45) 1 L ST <t

and finally, define c:=B,+B;. Let i,je{l,...,. s—1} be such that i+ j>s. There is some
pE L. ..;rur—1} and ge{tigir. t-;— 1} with  a;=c(S,) — Y7, mi(dy + 4%,,) and
b =)= e M (A e ). Since £ ..o p} contains the undominated groups r, ..., r. and the
groups dominated by them and {=n(1),.... n(qg)} contains the undominated groups », ,.,,....r and the
groups dominated by them, we have {I1.,.... o) ALO 0 27 0 K JER e n(q)} = K. According to (13), we have
ai+b; =c(S,) = i mi(Ay +A4%,,) +c(T) =31 nay (AL, + 43) = B} + B? = ¢. Moreover, we have
[OT eVery i & L. oot s— 1% that a;, =>e= b= 0and b= c—a==0. According to Lemma 4.1 system

(14) has a non-negative solution (z;,.... z.). ‘Weclamm:that (D i Y, ) defined by
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.1., i .‘{I "I" ;‘{ : 11‘ ! E A-._ .
Jlll ,:-:IL - e | ‘ (]6)
.1', . — ;‘1”‘ + 4“1;: A + i;" ll f — ff “lth I e { ] ...... 5 }

1S a symmetric core element of (N.c). Players belonging to dominated groups only have to pay the
maintenance costs 4, + Af;.r,,‘. whereas the players belonging to the undominated groups are also dividing
the building costs B, + B;. According to Proposition 4.1 we only have to show that every coalition, which 1s
the union of an essential collection of groups. is satisfied. So, let L be an essential collection and
S:=U{g :jeL}. If M = {1,2}. then there is a group j € R, N R; which dominates all the groups in L.
So, x(S) = >, m(A4;,, + A4 ,,) Since {S,N \ §} is type 1 split we have, according to (11), ¢(S) — x(S) = 0,
and hence e(S,x) = 0. If M, = {1} then S =S, forsomei € {rj...,7s —1}. Leti* € 11,...,. s — 1} be such
that ie {r.,..., res1 —1}. Then x(S)=)>,_, n(A4, + Af:.f.,;) +zy 4z < Yo (4, +A;:3|m)+
a- <c(S;) =c(S) and hence e(S.x) = 0. If M, = {2} the satisfaction of S 1s proved 1n a similar fashion.

The proof of Proposition 4.2 provides the basis for an algorithm that finds a core element of an In-
frastructure cost game with two facilities. First of all the maintenance costs have to be divided by allocating
to every group g, its own maintenance costs 4, + 4~ . Secondly, the building costs are distributed among

i
i

the undominated groups only by looking for a solution of system (14) with the a,’s, b,’s and ¢ as defined 1n
the prootf of Proposition 4.2. The proof of Lemma 4.1 indicates how such a solution can be found re-
cursively in a maximum of s — | steps.
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