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Abstract: Multi-item inventory systems with joint replenishment costs are studied for constant determin- 
istic demand. Two different types of strategies are distinguished: direct grouping strategies and indirect 
grouping strategies. For these types of strategies different heuristics are reviewed. The performances of 
the strategies is measured as the percentage cost savings of a joint replenishment strategy relative to an 
independent strategy. These performances are quantified through simulation. The input-output  be- 
haviour of several simulation experiments is summarized by regression analysis. 
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1. Introduction 

Joint replenishment strategies can be used in 
multi-item inventory systems. A characteristic of 
multi-item systems is the existence of some kind 
of interaction among items. Joint replenishment 
strategies are based on the interaction of the 
set-up or order costs. These costs can be subdi- 
vided into major and minor costs. Interaction 
arises because the major set-up cost is indepen- 
dent of the number of items in the replenish- 
ment. In addition to the major set-up cost, there 
is a minor set-up cost, charged to each particular 
item included in the replenishment. Cost savings 
can be obtained by coordinating the replenish- 
ments of several items: the major set-up cost is 
shared if two or more items are jointly replen- 
ished. In many practical situations it makes sense 
to coordinate replenishments of individual items. 
If several items are purchased from the same 

supplier, the fixed order cost can be shared by 
replenishing two or more items jointly. Joint re- 
plenishments may also be attractive if a group of 
items use the same vehicle or the same machine. 

In the case of constant demands, the strategies 
can be classified into two classes, which will be 
called 'indirect grouping strategies' and 'direct 
grouping strategies'. Both classes of strategies 
assume that the replenishment cycle, which is the 
time between two subsequent replenishments of 
an individual item, is constant. A group is defined 
as the set of those items that have the same 
replenishment cycle. Consequently, items of the 
same group are jointly replenished. 

Under an indirect grouping strategy, a family 
replenishment is made at constant intervals. The 
replenishment cycle of each item (or group) is an 
integer multiple of this basic cycle time. The 
problem is to determine the basic cycle time and 
the replenishment frequencies of all items simul- 
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taneously. A group is then (indirectly) formed by 
those items that have the same replenishment 
frequency. In the last two decades several authors 
have studied this sort of joint replenishment 
problem. For extended reviews we refer to Aksoy 
and Erenguc (1988) and Goyal and Satir (1989). 
A different type of strategy which is not men- 
tioned in these surveys is a direct grouping strat- 
egy. Here, the replenishment cycles of the groups 
are not an integer multiple of a basic cycle, so the 
family replenishments are not equally spaced. In 
this case the problem is to form (directly) a 
predetermined number of groups in such a way 
that the total costs of the items in the family are 
as low as possible. 

One might conjecture that indirect grouping 
strategies outperform direct grouping strategies 
for high major set-up cost, because different 
groups are jointly replenished when using an indi- 
rect grouping strategy. However, indirect group- 
ing strategies are less flexible in setting replenish- 
ment cycles, since these cycles are restricted to 
integer multiples of the basic cycle time. One can 
imagine that direct grouping strategies outper- 
form indirect grouping strategies when the sav- 
ings from coordination are low (small major set-up 
cost). To the best of our knowledge, a comparison 
between the class of indirect grouping and direct 
grouping strategies has never been made. The 
purpose of our study is twofold: first, to find out 
whether there is a threshold value of the major 
set-up cost above which it makes sense to use an 
indirect grouping strategy; secondly, to determine 
the effects of some factors in the performance 
evaluation of joint replenishment strategies. Per- 
formance is measured as the percentage cost 
savings when a joint replenishment strategy is 
used instead of an independent strategy. 

The paper is organised as follows: Section 2 
gives a short review of the literature on joint 
replenishments, and discusses the kind of algo- 
rithms for direct grouping and indirect grouping. 
Section 3 describes the experimental design and 
simulation results. Section 4 gives conclusions. 

2. Literature review 

The joint replenishment problem has been in- 
vestigated under a set of assumptions that are the 
same as those for the classical economic order 
quantity (EOQ) model, except for the major set- 

Table 1 
Glossary of most important symbols 

A: 

a i " 
Di: 
hi: 
ki: 

M: 
N: 
S: 
s; 
T: 

T]: 

TRC: 

Ys: 

major set-up cost 
minor set-up cost for item i 
demand per period for item i 
inventory carrying cost per unit of item i per period 
the number of basic cycles between two successive 
replenishments of item i 
number of groups to be formed 
number of items in the family 
set of all items in the family 
set of items in group j 
basic cycle time, the time between two successive 
family replenishments 
replenishment cycle of group j, the time between 
two successive replenishments of group j 
total carrying plus set-up cost of the family per 
period (subscripts refer to the strategy used) 
percentage cost savings of joint replenishment strat- 
egy s relative to an independent strategy 

up cost. Because of these assumptions the rele- 
vant costs are the set-up costs and the carrying 
inventory cost. We review the literature for both 
grouping strategies. 

2.1. Indirect grouping 

The decision variables in the indirect grouping 
model are T, the basic cycle time (the time be- 
tween two successive family replenishments), and 
k i, the number of basic cycles between two suc- 
cessive replenishments of item i, with i = 1 . . . . .  N 
where N is the number of items in the family. 
The objective is to find combinations (T, k i ( i  = 

1 . . . . .  N))  such that TRC, the total relevant cost 
of the family, is as low as possible. Let A denote 
the major set-up cost, a i the minor set-up cost of 
item i, D i the demand per period for item i, and 
h i the inventory carrying cost per unit of item i 
per period (the symbols are also shown in the 
glossary of Table 1), then 

( 1 N ai 1 
T R C = ~  A +  Y'. + ~ T ~ , k i D i h  i (1) 

i=1  i=1  

s.t. k i ~  {1, 2, 3 . . . .  }. 

By taking the first derivative of TRC with respect 
to T and ki ( k  i is then treated as a continuous 
variable), we can derive the optimal T* and the 
optimal k*. However, T* can not be determined 
without knowing k/*, and vice versa. Several au- 
thors have encountered this problem: Brown 
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(1967), Goyal (1973a, 1973b, 1974a, 1974b, 1988), 
Goyal and Belton (1979), Silver (1979), Kaspi and 
Rosenblatt (1983, 1985), etc. Only one of them 
(Goyal, 1974a) presented an (enumerative) algo- 
rithm that gives the global optimum under the 
assumption that the actual family replenishments 
are equally spaced. In this case at least one ki 
must be equal to one. So Goyal's approach re- 
sults in an optimal solution but it may be compu- 
tationally prohibitive. Therefore, heuristic algo- 
rithms were developed. These heuristics may be 
classified into two classes: iterative algorithms 
and noniterative algorithms. It is not our inten- 
tion to give a detailed review of the literature. 
We refer back to the extensive surveys of Aksoy 
and Erenguc (1988) and Goyal and Satir (1989). 

2.2. Direct grouping strategies 

The main difference between indirect group- 
ing and direct grouping strategies is that the 
replenishment cycles of the groups formed by 
indirect grouping are multiple integers of some 
basic cycle time, whereas this is not the case for 
groups formed by direct grouping. Note that the 
number of groups is an output variable in indirect 
grouping, whereas the number of groups (de- 
noted by M) is predetermined in direct grouping. 
Let Sj denote the set of items in group j, then 
the direct grouping problem is to divide S, the set 
of all items in the family, into M disjunct sets Sj, 
with j = 1, . . . ,  M. If the time between two suc- 
cessive replenishments of all items in group j is 
denoted by Tj, then 

A +  ~ a  i ) 
M iESj 

TRC = ~., + ½Tj E Dihi • 
j= 1 Tj i ~Sj 

(2) 

The problem of dividing N items into M 
groups is hard, because there may be numerous 
combinations. Fortunately, Chakravarty (1981) 
and later Bastian (1986) proved a theorem that 
they called the 'consecutiveness property'. This 
property means that when the items are arranged 
in increasing order with respect to the ratio 
Dihi/ai ,  then the optimal groups can be created 
from this sequential list. For example, consider a 
set of items {1, 2, 3, 4}, which is arranged in in- 
creasing order of the ratio Dihi /a  i (so, item 1 is 

the item with the smallest ratio). In this case, the 
groups S 1 = {1, 2} and S 2 = {3, 4} can be optimal, 
but $1 = {1, 3} and S 2 = {2, 4} cannot. 

Using this ranking scheme, several authors 
proposed algorithms for direct grouping: Page 
and Paul (1976), Chakravarty (1981, 1985), and 
Bastian (1986). We note that in the original pa- 
pers of Page and Paul, and Chakravarty, the 
major set-up cost is not incorporated explicitly. 
The algorithms can be adjusted easily for the 
major set-up cost, except for that of Chakravarty 
(1985). Chakravarty (1981) uses dynamic pro- 
gramming to create groups. This algorithm identi- 
fies the global minimum of (2). However, com- 
puter time increases exponentially with the size 
of the problem. After analyzing the heuristics of 
Bastian (1986), Page and Paul (1976) and 
Chakravarty (1985), we found that Bastian's algo- 
rithm was the best heuristic with respect to both 
costs and complexity. This simple heuristic starts 
with N consecutive groups (an individual item 
forms a group). Each iteration combines two 
neighbouring groups such that the increase (de- 
crease) of the objective function is minimal (maxi- 
mal). The procedure terminates as soon as M 
groups are formed. Bastian proved that this 
grouping heuristic is optimal when the major 
set-up cost is zero. 

2.3. Choice of  algorithms for comparison 

In this section we select an indirect grouping 
and a direct grouping algorithm for our compari- 
son of the two different types of strategies. The 
selection is based on complexity, deviation from 
the optimal solution and computer time needed. 

2.3.1. Indirect grouping 
Because the optimal solution method of Goyal 

(1974a) is complex and computationally pro- 
hibitive for large-size problems, we use a heuris- 
tic method. In a simulation study, Kaspi and 
Rosenblatt (1985) compared iterative algorithms 
due to Brown (1967) and Goyal (1974b), and 
noniterative algorithms due to Silver (1976), Goyal 
and Belton (1979), and Kaspi and Rosenblatt 
(1983). They also suggested a combined approach 
that uses the noniterative heuristic of Silver (1976) 
with the modification of Goyal and Belton (1979) 
as starting point in the iterative algorithm of 
Goyal (1974b). The heuristic with the smallest 
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Table 2 
Average computer  time of 500 runs (expressed in milli-sec- 
onds) 

N Indirect grouping Direct grouping 

lterative a Noniterative t, Optimal c Heuristic d 

10 2.2 1.4 3.0 2.4 
20 4.9 2.8 12.1 5.9 
40 11.0 5.5 45.9 13.3 
80 25.0 11.2 187.0 34.1 

a Combined approach based on Goyal (1974b). 
b Algorithm of Kaspi and Rosenblatt  (1983). 
c Algorithm of Chakravarty (1981). 
d Algori thm of Bastian (1986). 

average deviation from the optimal solution 
turned out to be the combined approach, fol- 
lowed by that of Goyal, Brown, Kaspi and Rosen- 
blatt, Goyal and Belton, and finally that of Silver. 
We compare the computer time of the best itera- 
tive algorithm (the combined approach) with the 
best noniterative algorithm (Kaspi and Rosen- 
blatt). For each item Dih  i and a i are randomly 
generated where Dih  i and a i are uniformly dis- 
tributed respectively over the range [200; 1800] 
and [7.5; 12.5]. Different values of A and N are 
considered. The computer times on a VAX- 
8700-computer for A = 20 are tabulated in Table 
2. Although the computer time for the iterative 
heuristic is twice as much as for the single-itera- 
tion heuristic, we conclude that this difference is 
not important in an absolute sense. Conse- 
quently, we use the iterative algorithm. 

2. 3. 2. Direc t  grouping 
Test examples show that the differences be- 

tween Bastian's heuristic solution and Chakravar- 
ty's optimal solution are very small, even with a 
high major set-up cost. We also consider the 
computer time needed for both algorithms using 
the same problem settings as for the indirect 
grouping algorithms. To avoid the effect of the 
number of groups (M), we fix M at the value 
five. The computer times for A = 20 are also 
given in Table 2. As expected, the differences in 
computer time are important. For these two rea- 
sons we use the heuristic of Bastian. 

After simulating various inventory situations 
we conclude that direct grouping algorithms take 
more computer time than indirect grouping algo- 
rithms. However, the difference between the 
computer times required by the iterative indirect 

grouping algorithm and the heuristic direct 
grouping algorithm is small. 

3. Experimental design and simulation results 

Several inventory situations with constant de- 
mands are simulated to compare the perfor- 
mances of direct grouping and indirect grouping 
strategies. We analyse the differences between 
these two ways of grouping, and compare the 
performances of the strategies with the perfor- 
mance of an independent single-item strategy. 
We use regression analysis to summarise the out- 
put of several simulation runs. 

Kleijnen (1987) gives the following hierarchical 
modelling approach: (a) determine the response 
or criterion variable of the study; (b) determine 
the independent variables or factors; (c) construct 
a regression metamodel (a cause-effect  relation 
between the response variable and the indepen- 
dent variables of the simulation); (d) determine 
the experimental design (the situations that will 
be simulated); and (e) estimate the regression 
parameters and validate the metamodel. When 
the model is not valid, Step (b) or (c) is repeated; 
otherwise conclusions can be drawn. 

Several authors have used simulation to study 
joint replenishment models. Goyal and Satir 
(1989, p. 11) list some simulation studies. A popu- 
lar response variable is the average cost savings 
of a joint replenishment strategy expressed as a 
percentage of the total cost of an independent 
strategy. This is a dimensionless variable, which 
we denote by Ys. So if TRCeo q denotes the total 
cost of the family of items under an independent 
EOQ-strategy, and TRC s is the total cost of joint 
replenishment strategy s, then 

TRCeo q - TRC s 
Ys = 100" (3) 

TRCeoq 

Potential cost factors in the joint replenish- 
ment problem are: the major set-up cost (A), the 
minor set-up cost (ai) ,  and the inventory carrying 
cost of stocking the periodic demand of item i for 
one period (D ih i ) .  This factor consists of the 
demand for item i per period D i, and the inven- 
tory carrying cost per unit per period h i , which in 
turn is a constant percentage h of the unit cost 
Ui; SO h i = h v  i. Other potential factors are: the 
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number  of items in the family (N) ,  the number  of 
groups to be formed (M),  and the joint replenish- 
ment  strategy s which is used. 

Instead of blindly incorporating all these fac- 
tors in a full-fledged simulation experiment,  these 
factors are first examined in pilot experiments. 
After an extensive analysis, it turns out that only 
two factors must be included in the metamodel:  

(i) Instead of the individual Dih i and a i, we 
can use the means Dh and ~ in the analysis of 
the simulation. In the remainder  of this study the 
bar over a and Dh will be deleted to simplify the 
notation. 

(ii) Instead of the major set-up cost (A)  and 
minor set-up cost (a)  separately, we use their 
ratio (A/a) .  It can easily be shown that a differ- 
ent combination of the major set-up cost (A)  and 
the minor set-up cost (a)  with an equal set-up 
ratio ( A / a )  indeed yields the same value of the 
response variable Ys; see Van Eijs et al. (1990, p. 
18). 

(iii) It is easy to prove that an increase of Dh 
does not affect the response variable Ys, all other 
things being equal. Therefore,  the factor Dh is 
not a separate factor in the simulation. 

(iv) The number  of groups is an input variable 
in direct grouping, whereas it is an output vari- 
able in indirect grouping. Therefore,  we change 
Bastian's direct grouping algorithm a little: the 
algorithm does not terminate when M groups are 
formed; instead it terminates when the objective 
function starts to increase when combining two 
neighbouring groups. In this way the number  of 
groups is not a factor any more. 

(v) After  performing several pilot experi- 
ments we concluded that the set-up cost ratio 
( A / a )  and the number  of items ( N )  are the only 
important factors. We also incorporated other 
factors such as (A + a)/Dh, the variance of Dh, 
and the variance of the minor set-up cost a, but 
these factors were not important.  In the remain- 
der of this study we concentrate on these two 
factors: the set-up cost ratio ( A / a )  and the num- 
ber of items (N).  

A graphical analysis of the pilot experiments 
showed that an increase of the set-up cost ratio 
yields decreasing returns to scale and so does the 
number  of items. Therefore  we specify a regres- 
sion metamodel  with decreasing marginal procen- 
tual cost savings for the variables A / a  and N. 
Possible metamodels  with decreasing marginal 

Table 3 
Factors and values 

Factor Levels 

A / a  1 2 4 8 12 16 
N 10 20 30 60 

procentual cost savings are quadratic models, 
square root models, logarithmic models, and re- 
ciprocal models. All these models are linear in 
the parameters ,  so we can apply linear regression 
analysis to estimate the parameter  vector /3 of 
these regression models. 

By definition, an experimental design deter- 
mines which combinations of factor values are 
simulated. The choice of the experimental design 
is affected by the metamodel.  Since in our case 
there are only two factors, a full factorial design 
can be used. The factor A / a  is varied over six 
values; the factor N over four values; see Table 3. 

So, there are 24 different combinations. Every 
combination is simulated for both joint replenish- 
ment strategies, which gives 24 * 2 responses 
(percentage cost savings of both strategies rela- 
tive to an EOQ-strategy).  

Given a certain combination of A / a  and N, 
the simulation program generates particular in- 
ventory situations: the number  of items (N) ,  the 
major set-up cost (A), and the individual values 
of a i and Dih i. Individual values of ai and Diu i 
are randomly generated from a uniform distribu- 
tion on the intervals [1; 5] and [1000; 9000], re- 
spectively. Dih i is obtained by multiplying Div i 
by the given carrying charge (h = 0.2); the major 
set-up cost is selected such that A / a  is equal to 
the given value (thus A = 3 . A / a ) .  So we use 
sampling to generate a situation, but once a situa- 
tion has been created, the inventory problem is 
deterministic. Both direct grouping and indirect 
grouping are applied to the same inventory situa- 
tion. Consequently, the responses (Ys) of differ- 
ent joint replenishment strategies s are based on 
the same random numbers. Each factor combina- 
tion is replicated 500 times (a i and Div ~ differ, 
whereas N, A and h are fixed). The perfor- 
mances of the strategies for the given factor com- 
bination is then measured by the cost savings (in 
%) averaged over 500 replications. 
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The simulation output of the 24 factor combi- 
nations is summarized by regression analysis. 
Since common random numbers have been used, 
the linear metamodels are estimated with Esti- 
mated Generalised Least Squares; also see Kleij- 
nen (1987). We validate the models with Rao's 
lack of fit test (1959), Kleijnen's cross validation 
test (1988), and interpolation. We find that a 
logarithmic model fits and predicts the simulation 
data well within the range over which the two 
factors are varied. This yields eqs. (4) and (5), 
where standard errors are shown in parentheses; 
~3dg denotes the cost savings (in %) of Bastian's 
direct grouping algorithm, a n d  )~ig denotes the 
cost savings (in %) of the combined indirect 
grouping algorithm: 

~9~g = 6.6588 + 15.9710" ln(A/a) + 5.6209" In N 

(1.E-05) (2.3E-04) 

(4) 
~3ig = 6.3064 + 15.7797 . l n ( A / a )  + 5.9964-In N. 

(1.6E-05) (2.2E-04) 

(5) 

The interaction between the variables is not 
significant. We use Rao's F-test (1959) for linear 
hypotheses to see if the effects of the indepen- 
dent variables are equal for both strategies. All 
coefficients differ significantly, because the stan- 
dard errors were virtually zero. 

Figures 1 and 2 show the predicted responses 
~gig and 330g as a function of the cost set-up ratio 
and the number of items, respectively. Over the 

7 0  

g 
c: 
~ 5 0  
¢0 

o 
.~ 3 0  

lO 

- I G  
"DG 

5 9 1 3  1 6  

C o s t  s e t - u p  r a t i o  

Figure 1. Predicted costs savings -~dg and Yig as a function of 
the set-up cost ratio, given N =  20. D G  = direct grouping, 

IG = indirect grouping. 

7 0  

g 
.E 
> 5 0  

~ 30 

lO 

IG 
DG 

0 2 0  3 0  4 0  5 0  6 0  
N u m b e r  o f  i t e m s  

Figure 2. Predicted cost savings )3dg and ~3ig as a function of 
the n u mb er  of i tems in the family given A / a  = 8. D G  = direct 

grouping, IG = indirect grouping. 

observed factor ranges of Table 3, the indirect 
grouping strategy always performs better than the 
direct grouping strategy does, but the difference 
is small. So the coefficients in (4) and (5) differ 
significantly but not importantly. The estimate of 
/3 shows that all coefficients in (4) are higher than 
in (5) except for the coefficient of N. So, the 
better performance of the indirect grouping strat- 
egy depends on the effect of the number of items 
in the family. 

It is not possible to extrapolate the logarithmic 
model to the left of the observed range, since for 
values of A/a smaller than one, the variable 
In(A/a) will be negative. Extrapolation to the 
right of the observed range may result in re- 
sponses ~3 i larger than 100, which is impossible; 
see (3). So the metamodel is only valid for situa- 
tions within the observed ranges. 

Next, various situations are simulated with a 
set-up cost ratio larger than sixteen, the upper 
limit of the range in Table 3. Part a of Table 4 
shows that the responses grow very slowly with an 
increasing set-up cost ratio when the ratio is 
higher than twenty-five. When the ratio is larger 
than seventy-five, the direct grouping and indirect 
grouping strategy become identical, because only 
one group is created. 

We already mentioned that indirect grouping 
strategies perform slightly better  than direct 
grouping strategies within the observed range of 
Table 3. Table 4 (part b) shows that for very small 
values of the set-up cost ratio, direct grouping 
strategies perform better than indirect grouping 
strategies. With a set-up cost ratio of 0.01, the 
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Table 4 
Simulations with A / a > 25 and A / a < 1 a 

411 

Part a: Simulations with A / a  > 16 (N  = 20) Part b: Simulations with A / a  < 1 ( N  = 20) 

Set-up cost Cost savings (%) Set-up cost Cost savings (%) 

ratio ( A / a )  Direct 1 Indirect 2 ratio ( A / a )  Direct 1 Indirect 2 

grouping grouping grouping grouping 

Part c: Threshold value of A / a  

Number of Threshold 
items ( N )  value A / a  

25.00 69.34 69.44 0.01 0.28 - 0.56 
50.00 72.73 72.74 0.05 1.78 1.33 
75.00 73.94 73.94 0.10 3.66 3.50 

100.00 74.59 74.59 0.25 8.87 9.24 
500.00 76.25 76.25 0.50 15.76 16.56 

1000.00 76.49 76.49 0.75 21.24 22.26 

10 0.08 
20 0.14 
30 0.20 
40 0.30 
50 0.42 
60 0.56 

a 1 = Heuristic algorithm of Bastian (1986). 
2 = Combined approach based on Goyal (1974b). 

indirect grouping strategy performs even worse 
than the independent strategy, because the re- 
plenishment cycles of the groups are restricted to 
an integer multiple of the basic cycle time. In this 
case the extra carrying cost is greater than the 
major set-up cost saved. In these situations, how- 
ever, a joint replenishment strategy does not make 
much sense. 

One of the purposes of our study was to find a 
threshold value of the major set-up cost (relative 
to the average minor set-up cost) above which 
indirect grouping outperforms direct grouping. 
From Table 4 (part b) it follows that the thresh- 
old value of the set-up cost ratio is between 0.10 
and 0.25 for N = 20. The threshold value of A/a 
for different values of n is tabulated in part c of 
Table 4. 

4. Conclusions 

In this paper we investigated two types of joint 
replenishment inventory strategies, namely indi- 
rect and direct grouping strategies, assuming con- 
stant demands. We reviewed optimal and heuris- 
tic solution procedures for both types of strate- 
gies. For reasons of complexity and computer 
time we selected heuristic methods to represent 
direct and indirect grouping strategies. Direct 
grouping algorithms turned out to consume more 
computer time than indirect grouping algorithms. 

We presented a simulation design to study the 
effect of some factors that were expected to be 
important. The performances of the strategies 

were measured as the percentage cost savings of 
a joint replenishment strategy relative to an inde- 
pendent strategy. After some pilot experiments 
we concluded that only two factors are important, 
namely: (i) the ratio of the major set-up cost (A)  
to the mean minor set-up cost (a), and (ii) the 
number of items in the family (N).  Regression 
analysis was used to model the input-output  be- 
haviour of the simulation experiments with these 
two factors. A logarithmic model fitted and pre- 
dicted the experimental data well within the range 
over which the two factors were varied. We also 
performed some extra simulation experiments 
outside the observed range. 

The logarithmic metamodel showed that over 
the observed range of the experiments the indi- 
rect grouping strategy always outperforms the 
direct grouping strategy. The differences between 
the responses are, however, very small. The bet- 
ter performance of the indirect grouping strategy 
depends on the effect of the number of items in 
the family. The cost savings increase only slightly 
when the set-up cost ratio becomes larger than 
fifty. If the ratio is larger than seventy-five; only 
one group is created, and the direct grouping and 
indirect grouping strategy become identical. The 
threshold value of the set-up cost ratio under 
which direct grouping strategies outperform indi- 
rect grouping strategies is very small. If the set-up 
cost ratio is smaller than this threshold, then a 
joint replenishment strategy does not make much 
sense. 

So when it makes sense to replenish items 
jointly, we recommend an indirect grouping strat- 
egy, since: (i) the indirect grouping strategies 
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outperform the direct grouping strategies slightly, 
and (ii) the indirect grouping algorithms need less 
computer time than the direct grouping algo- 
rithms. 
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