
No. 2002-58

STATISTICAL ANALYSIS OF RANDOM
SIMULATIONS: BOOTSTRAP TUTORIAL

By David Deflandre, Jack P.C. Kleijnen

June 2002

ISSN 0924-7815

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6714971?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


  1 / 23 

File: bootMM1CDP.doc 

Written: 3 June 2002 

Printed: 03-06-02 16:51  

 

Statistical analysis of random simulations: bootstrap tutorial 

 

 

David Deflandre 1 and Jack P.C. Kleijnen 2 

   

 1 Laboratoire Inter-établissement d’Informatique, de Modélisation et d’Optimisation 

des Systèmes (LIMOS) 

Equipe de Recherche en Systèmes de Production de l’Institut Français de Mécanique 

Avancée (IFMA) 

B.P. 265, F-63175 Aubière Cedex, France  

 

2 Corresponding author 

Department of Information Management/Center for Economic Research (CentER) 

Tilburg University (KUB), Postbox 90153, 5000 LE Tilburg, The Netherlands 

Phone: +31 13 4662029; Fax: +31 13 4663377; E-mail: kleijnen@kub.nl  

Web: http://www.tilburguniversity.nl/faculties/few/im/staff/kleijnen/ 



  2 / 23 

Abstract 

 

The bootstrap is a simple but versatile technique for the statistical analysis of random 

simulations. This tutorial explains the basics of that technique, and applies it to the 

well-known M/M/1 queuing simulation. In that numerical example, different 

responses are studied. For some responses, bootstrapping indeed gives better 

statistical results than parametric statistical techniques do. 

 

Keywords: Bootstrapping; normality; robustness; queuing simulation; statistics 

 

JEL: C1 

 

1. Introduction 

 

This paper is a tutorial that explains the basics of the statistical analysis technique 

known as the bootstrap, and illustrates the application of the bootstrap through the 

derivation of confidence intervals for various responses of an M/M/1 queuing 

simulation. The M/M/1 is a well-known building block in discrete-event simulation; 

see Law and Kelton [6].   

 Bootstrapping implies resampling - with replacement – of a given sample. In 

our numerical illustration, this sample consists of the responses of (say) m simulation 

runs or replicates. For example, the response is the average waiting time per 

simulation run, and the sample consists of this average response observed for ten runs 

that use ten different pseudorandom number (PRN) streams - but the same traffic rate. 

In practice, much computer time (for example, five hours) is often needed to obtain 



  3 / 23 

the response for a single simulation run. However, once these data are obtained, 

bootstrapping is a fast analysis technique, which requires only seconds to compute 

statistically sound conclusions. Bootstrapping does not assume a specific distribution 

– such as the normal (Gaussian) distribution -  for the response of interest. 

 Conceptually, the bootstrap may be explained as follows. Suppose that a 

sample of size m is available (for example, m average waiting times per simulation 

run). Now suppose that by chance one of these data elements gets lost. To keep the 

sample size constant at m, another data element is then counted twice. Obviously, the 

value of the sample average now changes. By repeating this chance experiment many 

times, the bootstrap gives many different average values – all computed from the 

same original sample. We shall define and illustrate the bootstrap more precisely, in 

Section 3.2.   

 Our main conclusion will be that bootstrapping can give valid statistical 

results even if the standard statistical assumption of normality does not hold. So, the 

bootstrap is a simple non-parametric (distribution-free) technique. Moreover, the 

statistic to be studied may be more complicated than the mean and variance, which we 

focus on in the illustrations; for example, Kleijnen and Van Groenendaal [5] use 

bootstrapping to classify journals into distinct quality classes. 

 This tutorial is written because the bootstrap technique is simple and versatile, 

but is not well known among simulation practitioners and theorists. A few recent 

discussions of bootstrapping in simulation are Demirel and Willemain [1], Friedman 

and Friedman [3], and  Kleijnen, Cheng, and Bettonvil [4]. 

The remainder of this paper is organized as follows. Section 2 presents a 

simulation of the M/M/1 queuing system, using the Arena software and the C 

language respectively. Section 3 considers M/M/1 simulation outputs that are 
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normally distributed; this section analyzes these responses through both the 

parametric Student t test and the bootstrap, which is explained in some detail. Section 

4 analyzes other M/M/1 responses, including the means and variances of the 

responses in the transient state. Section 5 presents conclusions. 

 

2. M/M/1 queuing simulation  

 

By definition, M/M/1 assumes that the interarrival times of customers are 

independently and exponentially distributed with a constant arrival rate (say) ; 

likewise, the customer service times are independently exponentially distributed with 

constant service rate ; arrival and service times are also independent of each other. 

The symbol M in the notation M/M/1 refers to the Markov properties of the arrival 

and service times in this model; the symbol 1 means that there is a single server. 

Implicit in this notation are the assumptions of an unlimited capacity of the waiting 

room, and a First-In-First-Out (FIFO) priority rule (queue discipline). The traffic rate 

(utilization factor, load)  equals µλ / . The M/M/1 reaches a steady state provided �

< 1. In our examples we assume that the steady state is indeed reached if we select �= 

1/3 and simulate n = 107 customers per run. However, when we simulate only ten 

customers per run, the M/M/1 shows transient behavior (see Section 4.2). 

In the steady state, the M/M/1 has analytically known means (so it is easy to 

compare simulation results with the ‘true’ results) for the following responses: the 

number of customers in the system (say) L , the number of customers in queue 

(excluding the customer being served) Lq, the waiting time in the system W, and the 

waiting time in the queue (excluding the customer being served) Wq: 

  
λµ

λ
−

=L      (1) 
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( )λµµ
λ

−
=

2

Lq      (2) 

λµ −
= 1

W      (3) 

( )λµµ
λ
−

=Wq      (4) 

At the start of each M/M/1 simulation run, we make the server idle and the queue 

empty. We program the simulation in the Arena simulation package and in the faster 

C language. In Arena we use its standard PRN generator. In C, we use L’Ecuyer’s 

generator taken from Law & Kelton [6] (432-435). This generator will also be used to 

implement the bootstrap. 

 

3. M/M/1 example with Gaussian simulation responses 

 

In the first example we analyze the M/M/1 when we conjecture that its simulation 

gives responses that are normally distributed. A parametric statistical technique - such 

as the Student t test - should then give a correct coverage probability: the 1- α 

confidence interval should cover the true value with a 1- α probability. This true value 

is given by (1) through (4) if the simulation has indeed reached the steady state. 

Therefore, we simulate ten million (107) customers per run. For each run we estimate 

the four responses corresponding with (1) through (4) through their averages (say) 

jiY ;  with i = 1, … , 4 and j = 1, … , m. These m averages are independent and 

identically distributed (IID) because they result from the same M/M/1 simulation 

program with the same input value for ρ and non-overlapping PRN streams. This IID 

assumption is crucial for both the parametric and the bootstrap techniques. Moreover, 
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we select a ‘large’ m value so that the Central Limit Theorem (CLT) applies; for 

example,  we select an m of 80. 

Let us first consider only one of the four responses, and let Y  denote the average 

of the m IID jY . Further, let  denote the mean of these jY , and let 0 denote the true 

value following from (1) through (4). Then H0 in (5) is the null hypothesis, whereas 

H1 is the alternative hypothesis:  

H0:  = 0; H1:  ≠ 0.    (5) 

 

To test each of the four null hypotheses, we use a type-I error probability of  = 0.05. 

First we apply the parametric t test (Section 3.1); then the bootstrap (Section 3.2).  

 

3.1 Student t test 

 

To test the normality assumption implied by the t test, we construct the empirical 

probability distribution F̂  that has a probability of 1/m at each element jY  of the 

sample. Figure 1 gives this F̂  and the corresponding estimated density function f̂  for 

one of the four responses, namely qW . The chi-square goodness-of-fit test accepts F̂  

as a Gaussian distribution. 

Table 1 displays the results of the t test for the four outputs. This table shows 

very small standard errors S, so – on hindsight – m = 80 is a high value. The t test 

does not reject H0, as we expected from the start. 

 

3.2 Bootstrap test 

 



  7 / 23 

Based on Efron and Tibshirani [2] (45-53, 170-173) - and also Mooney and Duval [7] 

(10-11, 36-40) - we bootstrap the original sample of m IID observations jY  (j = 1,…, 

m), as follows.  

1. From the original sample, we draw a random sample of the same size m - with 

replacement – denoted by { *
1Y , …, *

jY , …, *
mY } (j = 1, .., m ).  Figure 2 gives an 

example of the resulting bootstrapped distribution function *F̂ and density function 

*f̂ , which resembles Figure 1 but is not identical to that figure. This bootstrap sample 

gives the bootstrap estimator ∑
=

=
m

j
j mYY

1

** / , which has zero probability of being 

identical to the original value of Y . 

2. We replicate Step 1 (say) B times, where replicate b gives ∑
=

=
m

j
jbb mYY

1

*
;

* /  (b = 1, 

…, B). We take B = 1,000 . 

3. We sort the B bootstrap observations *
bY , from the smallest observation – denoted 

by *
)1(Y  - to the largest one – denoted by *

)(BY . (The sorted observations *
)(bY  are the so-

called order statistics.) Figure 3a shows an example of the resulting empirical 

distribution function, which has a probability mass of 1/B at each point. A bootstrap 1 

- α confidence interval is then [ *
)2/( αBY  , *

])2/1[( α−BY ]. For example, if B = 1,000 and α  = 

0.05, then the lower limit is the 25th ordered value of the bootstrapped observations, 

and the upper limit is the 975th value. If non-integer values result for the particular B 

and α values, then we round to the next integer.  

In Figure 3, the solid vertical line is at qW = 1.250191; the square-dotted lines 

at 1.249817 and 1.250586, which are the 2.5% and 97.5% percentiles of the 

histogram; the dashed line is at 0 = Wq0 = 1.25. So this figure implies that the 
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bootstrap interval does cover the true value 0. Table 2 shows the bootstrap 

confidence interval for all our four responses. 

 

4. M/M/1 example: more simulation responses 

 

The preceding section gave normally distributed M/M/1 simulation responses with 

correct results for both the parametric t test and the bootstrap. This result agrees with 

the statistics literature showing that the t statistic is not very sensitive to non-

normality. Obviously, this sensitivity decreases as the sample size m increases. We 

therefore investigate the effect of the number of simulation runs, m (Section 4.1). 

Moreover, the simulation literature shows that the average of a long run is 

asymptotically normally distributed – even though the individual observations are 

non-normal and auto-correlated. We therefore investigate the effect of the number of 

customers per simulation run, n (Section 4.2). 

Finally, the statistics literature shows that the χ2 and the F statistics are more 

sensitive to non-normality than the t statistic. We therefore analyze the variances – 

instead of the means - of the simulation responses (Section 4.3). 

 

4.1 Mean responses of run with n = 107 customers and varying number of runs m 

 

Table 3 shows the t and the bootstrap intervals for five values of m, namely 2, 5, 10, 

25, 50. This table shows that for m = 2, the bootstrap does not include the true value 

E(Wq) = 1.25. In fact, in this example the simulation provides only two numbers – 

namely 1.250349 and 1.250928, which both exceed E(Wq); so each bootstrap sample 
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average exceeds the true value. In general, we recommend that m = 2 should not be 

used in bootstrapping. 

 

4.2 Mean responses of run with  n = 10 customers and varying run numbers m  

 

With only n = 10 customers per run, the simulation remains in the transient state so 

we should not apply (1) through (4). In this academic example we can afford to 

estimate the true mean  through a big number of runs, namely 106; see Table 4. This 

table shows very small standard errors. So we use the averages in this table as the true 

values  to decide whether the confidence intervals cover the true mean. Figure 4 

illustrates that the density function (estimated from m = 10,000 observations) does not 

look Gaussian. 

 Table 5 shows that neither the parametric interval nor the bootstrap interval 

ever misses  for m ≥ 50. The t statistic turns out to be insensitive to the non-

normality shown in Figure 4. In general, we conclude that bootstrapping is not useful 

when the simulation response is a run average. 

 

4.3 Response variances of run with n = 10 customers and varying run numbers m 

 

As the simulation response of interest we now consider variances instead of means, so 

(5) is replaced by 

 

H0: �
2 = 2

0σ ; H1: �
2 � 2

0σ .     (6) 
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To obtain the ‘true’ value 2
0σ , we again use Table 4: we multiply the numbers in the 

last column by 103 (= m ). We consider different run numbers: m = 5, 10, 25, 40, 50, 

80, 100.  

The parametric 90% confidence interval for �
2 is 

 

( ) ( ) ( ) ( )
2

1;95.0

2
2

2
1;05.0

2 11

−−

−≤≤−

mm

YSmYSm

χ
σ

χ
    (7) 

 

where 2
1;05.0 −mχ  and 2

1;95.0 −mχ  are the 5% and the 95% quantiles of the χ2 distribution 

with m – 1 degrees of freedom. 

For the bootstrap intervals, we resample the m run averages, and re-estimate 

the variance from these m bootstrap observations, etc. 

Table 6 shows that for m ≥ 50 the bootstrap intervals do cover 2
0σ , whereas 

the parametric intervals do not. 

Finally, we do not study the individual variance magnitudes, but compare the 

variances of two independent random samples. The first sample consists of m 

averages of n = 10 customers each, obtained through PRN stream 1 of L’Ecuyer’s 

generator defined in Law & Kelton [6] (433-434); the second sample is obtained with 

stream 10. We test 

 

H0: 
2
1σ  = 2

10σ ; H1: 
2
1σ  ��

2
10σ    (8) 

 

where 2
1σ  and 2

10σ  are the variances obtained through streams 1 and 10 respectively, 

so we know that this null-hypothesis is true. We consider m = 10, 50, 100 runs.  
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 The parametric 90% confidence interval for the ratio 2
1σ / 2

10σ  is given by 

1,1;95.02
10

2
1

2
10

2
1

1,1;05.02
10

2
1

−−−− ≤≤ mmmm F
S

S
F

S

S

σ
σ    (9) 

where F0.05; m-1,m-1 and F0.95; m-1,m-1 are the 5% and the 95% quantiles of the F 

distribution with m – 1 degrees of freedom for both the numerator and the 

denominator. 

Next, we bootstrap the m run averages, estimate the variance from these m IID. 

averages, etc. Table 7 shows that  for m ≥ 50 the bootstrap intervals do cover the ratio 

2
10

σ / 2
100

σ  = 1, whereas the parametric intervals do not; that is, the F statistic is 

sensitive to non-normality. 

 

5. Conclusion 

 

We used a basic simulation model – namely the M/M/1 queue – to compare 

parametric and bootstrap tests. In case of normally distributed responses both methods 

give correct results; that is, the procedures give confidence intervals that cover the 

true value with a probability of 1 - α. In case of ‘serious’ non-normality, however, 

only the bootstrap gives good confidence intervals; such non-normality occurs if other 

responses than means are of interest, for example, variances. 
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Table 1: Student t test for mean responses of M/M/1 simulation 

with m = 80 runs and n = 107 customers per run; critical value 

79;05.0t =1.99045 

 0η  Y  S 0t  

L 0.50000 0.50005 0.00037 1.24215 

Lq 0.16667 0.16670 0.00025 1.07155 

W 3.75000 3.75044 0.00237 1.67355 

Wq 1.25000 1.25019 0.00175 0.97651 

 

 

Table 2: Bootstrap confidence intervals with B = 1000 bootstrap samples, for 

the M/M/1 responses corresponding with Table 1  

 0η  Confidence Interval 

L 0.50000  [0.499972,0.500134] 

Lq 0.16667 [0.166644,0.166751] 

W 3.75000  [3.749963,3.750972] 

Wq 1.25000 [1.249817,1.250586] 
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Table 3: Parametric and bootstrap confidence intervals for varying m; 

bold face denotes type-I error; remaining symbols defined in Tables 1 and 2 

 Parametric t test Bootstrap 

 
L [ 0.499850 ; 0.500080 ]  [ 0.499849 ; 0.500061 ] 

m = 50 Lq [ 0.166564 ; 0.166730 ] [ 0.166565 ; 0.166716 ] 

 W [ 3.749144 ; 3.750531 ]  [ 3.749158 ; 3.750409 ] 

 Wq [ 1.249317 ; 1.250454 ] [ 1.249335 ; 1.250340 ] 

L [ 0.499876 ; 0.500194 ]  [ 0.499883 ; 0.500175 ] 

Lq [ 0.166587 ; 0.166813 ] [ 0.166592 ; 0.166799 ] 

W [ 3.749380 ; 3.751203 ]  [ 3.749435 ; 3.751153 ] 
m = 25 

Wq [ 1.249497 ; 1.251015 ] [ 1.249537 ; 1.250928 ] 

L [ 0.499890 ; 0.500270 ] [ 0.499920 ; 0.500222 ] 

Lq [ 0.166573 ; 0.166867 ] [ 0.166595 ; 0.166831 ] 

W [ 3.749097 ; 3.751223 ]  [ 3.749268 ; 3.750967 ] 
m = 10 

Wq [ 1.249278 ; 1.251225 ]  [ 1.249455 ; 1.250981 ] 

L [ 0.499792 ; 0.500419 ] [ 0.499911 ; 0.500288 ] 

Lq [ 0.166504 ; 0.166963 ] [ 0.166590 ; 0.166876 ] 

W [ 3.747991 ; 3.752172 ]  [ 3.748745 ; 3.751368 ] 
m = 5 

Wq [ 1.248638 ; 1.251893 ]  [ 1.249265 ; 1.251351 ] 

L [ 0.497573 ; 0.502909 ] [ 0.500031 ; 0.500451 ] 

Lq [ 0.164953 ; 0.168739 ] [ 0.166697 ; 0.166995 ] m = 2 

W [ 3.739419 ; 3.762676 ]  [ 3.750593 ; 3.752502 ] 

 Wq [ 1.239679 ; 1.262842 ]  [ 1.250349 ; 1.250928 ] 
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Table 4: Mean responses of simulation run with only 10 customers each, 

estimated from 106 observations 

 
Average Standard error 

L 

Lq 

W 

Wq 

0.487292 

0.164769 

3.469899 

0.970643 

0.000382 

0.000266 

0.001828 

0.001280 
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Table 5: Confidence intervals for only n = 10 customers per simulation run for varying 

m; see Tables 3 and 4 

  Parametric (t-test) Bootstrap  

L [ 0.378961 ; 0.678679 ] [ 0.410282 ; 0.691098 ] 

Lq [ 0.081722 ; 0.326162 ] [ 0.110272 ; 0.333543 ] 

W [ 3.274720 ; 4.391356 ] [ 3.320852 ; 4.418864 ] 
m = 50 

Wq [ 0.703133 ; 1.632256 ] [ 0.761513 ; 1.651382 ] 

L [ 0.337200 ; 0.474021 ] [ 0.343763 ; 0.471647 ] 

Lq [ 0.063101 ; 0.133002 ] [ 0.068224 ; 0.132341 ] 

W [ 2.853836 ; 3.684307 ] [ 2.882404 ; 3.666295 ] 
m = 25 

Wq [ 0.473647 ; 0.928672 ] [ 0.507649 ; 0.925314 ] 

L [ 0.341220 ; 0.474677 ] [ 0.320291 ; 0.503626 ] 

Lq [ 0.038709 ; 0.134443 ] [ 0.050122 ; 0.126516 ] 

W [ 2.641867 ; 3.546088 ] [ 2.755872 ; 3.443103 ] 
m = 10 

Wq [ 0.331028 ; 0.836934 ] [ 0.385879 ; 0.790322 ] 

L [ 0.205214 ; 0.676804 ] [ 0.300132 ; 0.581887 ] 

Lq [ -0.000873 ; 0.199383 ] [ 0.039158 ; 0.161557 ] 

W [ 2.451091 ; 4.164820 ] [ 2.817221 ; 3.831998 ] 
m = 5 

Wq [ 0.145700 ; 1.194277 ] [ 0.346806 ; 0.993171 ] 

L [ -1.615904 ; 2.576032 ] [ 0.315107 ; 0.645021 ] 

Lq [ -0.625336 ; 0.832008 ] [ 0.045988 ; 0.160684 ] 

W [ -3.287186 ; 10.746990 ] [ 3.177641 ; 4.282159 ] 
m = 2 

Wq [ -3.312499 ; 4.796973 ] [ 0.423121 ; 1.061353 ] 
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Table 6: Response variance 2 of four responses 

0
2(L) = 0.1459, 0

2(Lq) = 0.0708, 0
2(W) = 3.3423, 0

2(Wq) = 1.6379 

  Parametric (χ2-test) Bootstrap 

L [ 0.1361 ; 0.2177 ] [ 0.0726 ; 0.2841 ] 

Lq [ 0.0767 ; 0.1227 ] [ 0.0310 ; 0.1781 ] 

W [ 2.5686 ; 4.1081 ] [ 2.0092 ; 4.2601 ] 
m = 100 

Wq [ 1.4207 ; 2.2722 ] [ 0.0197 ; 3.1053 ] 

L [ 0.1517 ; 0.2568 ] [ 0.0943 ; 0.2971 ] 

Lq [ 0.0770 ; 0.1304 ] [ 0.0440 ; 0.1590 ] 

W [ 3.5473 ; 6.0043 ] [ 2.2412 ; 7.0636 ] 
m = 80 

Wq [ 2.0240 ; 3.4259 ] [ 1.1925 ; 4.3765 ] 

L [ 0.2054 ; 0.4015 ] [ 0.0453 ; 0.6153 ] 

Lq [ 0.1366 ; 0.2671 ] [ 0.0179 ; 0.4165 ] 

W [ 2.8507 ; 5.5736 ] [ 1.7493 ; 6.5558 ] 
m = 50 

Wq [ 1.9737 ; 3.8588 ] [ 0.8229 ; 5.1368 ] 

L [ 0.0653 ; 0.1387 ] [ 0.0393 ; 0.1508 ] 

Lq [ 0.0225 ; 0.0479 ] [ 0.0122 ; 0.0515 ] 

W [ 1.7187 ; 3.6501 ] [ 1.3694 ; 3.3209 ] 
m = 40 

Wq [ 0.6514 ; 1.3834 ] [ 0.4649 ; 1.3700 ] 

L [ 0.0181 ; 0.0476 ] [ 0.0170 ; 0.0363 ] 

Lq [ 0.0047 ; 0.0124 ] [ 0.0065 ; 0.0110 ] 

W [ 0.6669 ; 1.7537 ] [ 0.5799 ; 1.3972 ] 
m = 25 

Wq [ 0.2002 ; 0.5265 ] [ 0.1103 ; 0.4756 ] 
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Table 7: Response variance ratios 2
1σ / 2

10σ  = 1 

  Parametric F test Bootstrap 

L [ 0.73807 ; 1.43436 ] [ 0.73914 ; 2.88741 ] 

Lq [ 0.69675 ; 1.35407 ] [ 0.31897 ; 4.17641 ] 

W [ 1.07688 ; 2.09282 ] [ 0.41237 ; 3.01069 ] 
m = 100 

Wq [ 1.15986 ; 2.25409 ] [ 0.65561 ; 1.57299 ] 

L [ 0.93755 ; 2.42206 ] [ 0.47687 ; 4.89792 ] 

Lq [ 1.02148 ; 2.63887 ] [ 0.41887 ; 7.24482 ] 

W [ 1.29542 ; 3.34656 ] [ 0.83133 ; 4.37372 ] 
m = 50 

Wq [ 1.60051 ; 4.13474 ] [ 0.78944 ; 6.79824 ] 

L [ 0.27827 ; 2.81200 ] [ 0.02318 ; 3.21575 ] 

Lq [ 0.21617 ; 2.18444 ] [ 0.00545 ; 3.39574 ] 

W [ 0.07635 ; 0.77159 ] [ 0.09051 ; 0.64896 ] 
m = 10 

Wq [ 0.05964 ; 0.60270 ] [ 0.00632 ; 1.02862 ] 
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Figure 1: (a) Empirical Distribution F̂  (b) Empirical Density Function f̂  from the 

sample qW  (m = 80) 

Figure 2: (a) Empirical Distribution, (b) Empirical Density Function, from the 

bootstrapped *qW  (m = 80) 

Figure 3: (a) Probability Distribution from the B = 1000 sample variables *qW , (b) 

Density Function from the B = 1000 sample variables ( )
*
bqW  

Figure 4: Empirical Density Function for m = 10,000 runs, each run simulating only  

n = 10 customers 
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