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Abstract

In this paper we prove the counterintuitive result that the quadratic least squares approx-
imation of a multivariate convex function in a �nite set of points is not necessarily convex,
even though it is convex for a univariate convex function. This result has many consequences
both for the �eld of statistics and optimization. We show that convexity can be enforced in
the multivariate case by using semide�nite programming techniques.

Key words: Convex function, least squares, quadratic interpolation, semide�nite program-

ming

1 Introduction

Interpolation and approximation are widely used techniques in many research �elds. See
[4, 13, 14]. In this paper we investigate whether the quadratic interpolation and quadratic
least squares approximation of a convex function in a �nite number of points preserves the
convexity property or not. We call this the convexity preserving property. We will prove
that the quadratic least squares approximation is convexity preserving for the univariate case,
but that even the quadratic interpolation function for the multivariate case is not convexity
preserving.

These results are counterintuitive and to the best of our knowledge not described in the
literature. Our conjecture is that the result for the multivariate case has not been discovered
since least squares approximation is mostly used for the univariate case. We also could not
�nd a proof in the literature for the convexity preserving property of quadratic least squares
for the univariate case.

The consequences of these results are signi�cant, both in the �eld of statistics and op-
timization. Several optimization methods use quadratic interpolation or quadratic least
squares approximations to (locally) approximate the objective and/or the constraint func-
tions. See [2, 3, 5, 6, 7, 8, 9, 17, 18, 19, 20, 23, 24]. Due to the absence of the convexity
preserving property, it may happen that the resulting optimization is nonconvex. Such a
nonconvex problem is not only di�cult to solve, but may also be a bad approximation of the
original problem.
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We show that convexity can be enforced via semide�nite programming formulations.
More precisely, the problem of �nding the best convex quadratic approximation in the least
squares sense, may be formulated as a semide�nite programming problem. Such problems
can be solved e�ciently nowadays ([1, 10, 15, 16, 21]).

We note that especially in the �eld of Computer Aided Design much attention has been
given to convexity preserving properties for several interpolation and approximation tech-
niques ([11, 12]). However, this research is mostly restricted to splines and to the univariate
and bivariate cases.

This paper is organized as follows. After some preliminaries in Section 2, we treat the
univariate case in Section 3. We show that the quadratic least squares solution is convexity
preserving. In Section 4 we give an example for the bivariate case which shows that the
quadratic interpolation function (and thus the least squares function) is not convexity pre-
serving. We show that requiring convexity leads to a semide�nite programming problem,
which can e�ciently be solved. In Section 5 we suggest some future research.

2 Preliminaries

Let n � 1 and f : IRn ! IR a convex function. Given distinct points z1; z2; � � � ; zN in IRn we
consider the problem of �nding a quadratic function g : IRn ! IR such that

f(zi) = g(zi); i = 1; 2; � � � ; N: (1)

The function g being quadratic, we can write it as

g(z) = zTQz + rT z +  (2)

for some suitable symmetric n � n matrix Q, n-vector r and some scalar . Hence, the
problem of �nding g such that (1) holds amount to �nding Q, r and  such that

zTi Qzi + rT zi +  = f(zi); i = 1; 2; � � � ; N: (3)

This is a linear system of N equations in the unknown entries of Q, r and . The number of
unknowns in Q is equal to n+ 1

2
(n2 � n), hence the total number of unknowns is given by

n+ 1

2
(n2 � n) + n+ 1 = 1

2
(n+ 1)(n+ 2):

Let us call the points z1; z2; � � � ; zN quadratically independent if

zTi Qzi + rT zi +  = 0; i = 1; 2; � � � ; N ) Q = 0; r = 0;  = 0: (4)

Note that in this case N � 1

2
(n+1)(n+2). Moreover, if N = 1

2
(n+1)(n+2) then system (3)

has a unique solution. We conclude that if the given points z1; z2; � � � ; zN are quadratically
independent and N = 1

2
(n+ 1)(n+ 2) then there exists a unique quadratic function g such

that (1) holds. This is the interpolation case. When N > 1

2
(n+1)(n+2), the linear system

(3) is overdetermined, in which case quadratic least squares can be applied.

3 Quadratic least square solutions for the univariate

case

In this section we consider the univariate case (n = 1). So f is a one-dimensional convex
function. It is obvious that for any three quadratically independent points z1; z2; z3 the
function g will be convex. In other words, the quadratic interpolation function is convexity
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preserving. Weproceed to show that also the quadratic least squares solution is convexity
preserving. More precisely, we show that the quadratic least squares approximation g of f
with respect to a set of points

Z := fz1; z2; � � � ; zNg

is convex.

Theorem 3.1 Let z1 < z2 < : : : zN and yi = f(zi) (i = 1; : : : ; N) be given, where f is a

univariate convex function. The quadratic least squares approximation to this data set, i.e.
g, is a convex quadratic function.

Proof: Let yi denote the value of f in zi and let g be given by g(t) = qt2 + rt + . Then
the coe�cients q, r and  follow from the least squares solution of the system

y =

0
BBB@

y1
...

yN

1
CCCA =

0
BBB@

1 z1 z21
...

...
...

1 zN z2N

1
CCCA
0
BBB@



r

q

1
CCCA :

By using Gram-Schmidt we can reformulate this system as

y =

0
BBB@

y1
...

yN

1
CCCA =

0
BBB@

1 z1 � z z21 � z2 � b (z1 � z)

...
...

...

1 zN � z z2N � z2 � b (zN � z)

1
CCCA
0
BBB@

0

r0

q

1
CCCA ; (5)

where

 = 0 � zr0 � (z2 � bz)q

r = r0 � bq

and

z =

PN

i=1 zi

N
; z2 =

PN

i=1 z
2
i

N
; b =

PN

i=1(zi � z)
�
z2i � z2

�
PN

i=1(zi � z)2
:

Let X denote the matrix of coe�cients of the linear system (5). Then the least squares

solution of (5) is given by
�
XTX

��1
XTy. Using that the columns of X are orthogonal, and

hence the inverse of XTX is a diagonal matrix, one easily �nds

q =

PN

i=1 yi

�
z2i � z2 � b (zi � z)

�
PN

i=1

�
z2i � z2 � b (zi � z)

�2 :

The quadratic least squares solution is convex if and only if q � 0, i.e. if and only if

NX
i=1

yi

�
z2i � z2 � b (zi � z)

�
� 0: (6)

Without loss of generality we may assume that

z1 < z2 < � � � < zN :

De�ne
pi := z2i � z2 � b (zi � z) ; 1 � i � N;
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e as the all-one vector, z = (z1; � � � ; zN)
T , and z2 =

�
z21 ; � � � ; z

2
N

�T
. It is obvious that pT e = 0,

since eT (z � z e) = 0 and eT
�
z2 � z2 e

�
= 0, due to the de�nition of z and z2. One can

also prove that pT z = 0. To this end, recall that

b =

PN

i=1(zi � z)
�
z2i � a

�
PN

i=1(zi � z)2
=

(z � z e)T
�
z2 � z2 e

�
kz � z ek

2
=

zT
�
z2 � z2 e

�
kz � z ek

2
:

Hence

pT z = zT
�
z2 � z2 e� b (z � z e)

�

= zT
�
z2 � z2 e

�
�

zT
�
z2 � z2 e

�
kz � z ek

2
zT (z � z e) :

Since
zT (z � z e) = (z � z e)

T
(z � z e) = kz � z ek

2

it follows that pT z = 0.
To decide whether condition (6) is always satis�ed, we consider the problem of minimizing

the expression at the left in (6) under the condition that for each i, yi = f(zi), where f is a
convex function.

Assume that z is given we therefore consider the linear optimization (LO) problem:

(LO) : min
y

(
NX
i=1

yipi : yi �
(zi � zi�1) yi+1 + (zi+1 � zi) yi�1

zi+1 � zi�1
; 2 � i � N � 1

)
:

Note that the constraints enforce the convexity requirement on the yi-values. Since the
constraints are homogeneous in y, condition (6) is satis�ed if and only if the LO problem
has optimal value zero.

We proceed to show that problem (LO) has optimal value zero. Assume that a feasible
solution �y to problem (LO) is given such that pT �y < 0. Each feasible solution of (LO)
corresponds to some convex function, in the sense that we can assume �yi = �f(xi) (i =
1; : : : ; N) for some convex function �f .

Now de�ne the convex quadratic function

p(t) := t2 � z2 � b (t� z) ; t 2 IR;

and note that p(zi) = pi (i = 1; : : : ; N). Since pT e = 0, we know that the function value of
p changes sign at least once in the interval [z1; zN ]. By the convexity of p, the level set

ft : p(t) � 0; t 2 [z1; zN ]g

is a closed sub-interval of [z1; zN ]. All the nonpositive pi's correspond to zi values in this
interval. The index set

I := fi : pi � 0g

is therefore a set of consecutive indices (or of one index). Assume for the moment that I is
not a singleton. Let the �rst index in I be i1 and the last i2 > i1.

Construct the chord between the points (zi1 ; �yi1) and (zi2 ; �yi2) in the z-y plane. By the
convexity of �f , all the points (zi; �yi) lie on or below this chord for i 2 I (see Figure 1). Now
replace the �yi values for i 2 I with the values on the chord. Note that this does not increase
the objective function of (LO) evaluated at the new y-values, since we are increasing the �yi
values for i 2 I and pi � 0 for i 2 I .

Next, extend the chord over the entire interval [z1; zN ]. By the convexity of �f , the points
(zi; �yi) (i 2 f1; : : : ; NgnI) lie on or above the chord (see Figure 1). We again replace the �yi
values by the corresponding values on the chord.
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Figure 1: Illustration of the proof of Theorem 3.1.

Again, this does not increase the objective function of (LO), since we are decreasing the
�yi values (i 2 f1; : : : ; NgnI), while the corresponding pi's are nonnegative.

We have thus constructed a new feasible solution of (LO), say ~y, with a negative objective
value pT ~y < 0. Note that ~y is feasible since it corresponds to a linear function, namely the
linear function de�ned by the chord.

In other words, we have:

~yi = c1zi + c2; i = 1; : : : ; N

for some constants c1 and c2. This implies:

pT ~y = c1p
T z + c2p

T e = 0;

since pT z = pT e = 0, which is a contradiction.
All that remains is to analyse the case where I is a singleton (i1 = i2). In this case, it

is easy to see that we can replace the chord in the above construction with a line de�ned by
any subgradient of �f at zi1 . This completes the proof. 2

4 Quadratic approximation for the multivariate case

As already said in the previous section, it is obvious that if n = 1 (univariate case) then for
any three quadratically independent points z1; z2; z3 the function g will be convex. Surpris-
ingly enough the analogous property does not hold if n is larger than 1 (multivariate case).
This means that quadratic interpolation in the multivariate case is not convexity preserving.
Consequently, also quadratic approximation in all norms (1-norm, 2-norm (least squares),
1-norm) is not convexity preserving. In this section we will �rst give a bivariate example
for which the quadratic interpolation is not convexity preserving. Then we will show that
convexity can be preserved by using semide�nite programming techniques.
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4.1 A counter-example for the bivariate case

The following (bivariate) example shows the counterintuitive fact that quadratic interpola-
tion is not convexity preserving in multivariate cases.

Example 4.1 Consider the case where f is given by

f(x) = � lnx1x2; x1 > 0; x2 > 0;

which is clearly a convex function, and the points are the 6 columns of the matrix Z given
by

Z =

0
@ 1 2 3 2 4 6

2 1 2 3 4 6

1
A :

These points are quadratically independent since the coe�cient matrix of the linear system
(4), and hence also of (3), is given by0

BBBBBBBBBBBB@

1 2 4 1 2 1

4 2 1 2 1 1

9 6 4 3 2 1

4 6 9 2 3 1

16 16 16 4 4 1

36 36 36 6 6 1

1
CCCCCCCCCCCCA
;

and this matrix is nonsingular. The (unique, but rounded) solution of (3) is given by

Q =

0
@ �0:2050 0:2628

0:2628 �0:2050

1
A ; r =

0
@ �0:7804

�0:7804

1
A ;  = 1:6219:

The eigenvalues of Q are �0:4677 and 0:0578, showing that Q is inde�nite. Hence the
quadratic approximation g of f determined by the given points z1; z2; � � � ; z6, is not convex.
Figure 4.1 shows some of the level curves of f (dashed) and g (solid) as well as the points
zi; i = 1; 2 � � � ; 6.

The level sets of g are clearly not convex and di�er very much from the corresponding
level sets of f .

In many cases it is important to have a convex quadratic approximation of f . In the next
section we show how this can be achieved.

4.2 Convex quadratic approximations for the multivariate case

Our aim is to obtain a good convex quadratic approximation g of f on the points in the
�nite set

Z := fz1; z2; � � � ; zNg :

Convexity of g is equivalent to the matrix Q in (2) being positive semide�nite, yielding the
condition

Q � 0: (7)

It is clear from the above example that it is impossible to guarantee convexity if we want g
to coincide with f on Z . Therefore, to achieve a convex quadratic approximation we need
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Figure 2: Level curves of f and g and the points where they coincide

to relax the condition (1). This can be done in several ways. Here we will treat the in�nity
norm, the 1-norm and the 2-norm.

First one may want to minimize the in�nity norm of f � g at Z , yielding the objective

minmax
z2Z

jf(z)� g(z)j : (8)

It will be convenient to use the notation

s(z) = f(z)� zTQz � rT z � ; z 2 Z :

With the above objective we can �nd g by solving the problem

min (t : �t � s(z) � t (8z 2 Z); Q � 0) : (9)

One also might minimize the 1-norm of f � g at Z , yielding the objective

min
X
z2Z

jf(z)� g(z)j : (10)

Then g can be found by solving

min

 X
z2Z

tz : �tz � s(z) � tz (8z 2 Z); Q � 0

!
: (11)

Finally, we can minimize the 2-norm of f � g at Z (least squares), yielding the objective

min
X
z2Z

(f(z)� g(z))
2
; (12)
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and then g can be found by solving

min

0
@t :

sX
z2Z

s(z)2 � t; Q � 0

1
A : (13)

For the �rst two cases the resulting problems (9) and (11) have linear constraints and
a semide�nite constraint Q � 0. Such a semide�nite programming problem can e�ciently
be solved ([1, 10, 15, 16, 21, 25]). The third resulting problem (13) again can be e�ciently
solved, since the new constraint is a second order cone (Lorentz cone) constraint ([21]).

In practice one sometimes want to add the condition that the approximation is exact or
an upper- or underestimate in several points in Z . Observe that such additional properties
that f(z) � g(z); z 2 Z (or f(z) � g(z); z 2 Z) then we simply add the constraints s(z) � 0
(respectively s(z) � 0) to the above minimization problems. The resulting problems can still
be formulated as semide�nite programming problems.

Example 4.2 For the bivariate example given above we calculated the least squares solution
while preserving convexity. Using SeDiMu ([22]) we solved problem (13). We obtained the
following (rounded) solution:

Q = 0:02750

0
@ 1 1

1 1

1
A ; r = �0:7287

0
@ 1

1

1
A ;  = 1:2196:

The eigenvalues of Q are 0:55 and 0, showing that Q is positive semide�nite. Hence the
quadratic approximation g of f determined by the given points z1; z2; � � � ; z6, is convex, but
degenerate. Note that Q is not positive de�nite because the constraint Q � 0 is binding at
the optimal solution of problem (13). (If we remove the constraint Q � 0, then we get the
non-convex interpolation function of the previous example.)

Figure 3 shows some of the level curves of f (dashed) and g (solid) as well as the points
zi; i = 1; 2 � � � ; 6. Comparing with Figure 2 we see that the convex approximation approx-
imates f much better within the convex hull of the six speci�ed points, if the measure of
quality is the maximum error or integral of the error function

err(z) = jf(z)� g(z)j

over the convex hull. (The convex hull de�nes a natural trust region for the approximation).

5 Future research

In this paper we showed (among other things) that the quadratic 2-norm (least squares)
approximation of a convex univariate function in a �nite number of points is convex. It is
an interesting question whether this is also true for other norms then the 2-norm (e.g. the
in�nity norm, or the 1-norm).

As already mentioned in the introduction, several optimization methods for solving prob-
lems with expensive function evaluations, use quadratic interpolation or approximation. A
consequence of this paper is that for convex problems the interpolation or approximation
may be nonconvex, which may increase the number of iterations of such optimization meth-
ods. In the near future we will investigate how we can improve these methods by exploiting
the convex structure.
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