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Local Asymptotic Normality and efficient estimation for INAR(p)

models
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Abstract

Integer-valued autoregressive (INAR) processes have been introduced to model nonnegative integer-

valued phenomena that evolve in time. The distribution of an INAR(p) process is determined by two

parameters: a vector of survival probabilities and a probability distribution on the nonnegative inte-

gers, called an immigration or innovation distribution. This paper provides an efficient estimator of

the parameters, and in particular, shows that the INAR(p) model has the Local Asymptotic Normality

property.
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1 Introduction

The INAR(1) process has been introduced by Al-Osh and Alzaid (1987) to model nonnegative integer-
valued phenomena that evolve in time. The INAR(1) process is defined by the recursion,

Xt = ϑ ◦Xt−1 + εt, t ∈ Z+ = N ∪ {0}, (1)

where,

ϑ ◦Xt−1 =
Xt−1∑

j=1

Z
(t)
j .

Here
(
Z

(t)
j

)
j∈N,t∈Z+

is a collection of i.i.d. Bernoulli variables with success probability θ ∈ (0, 1), indepen-

dent of the i.i.d. innovation sequence (εt)t∈Z+ with distribution G on Z+. Finally, the starting value X−1,

∗Econometrics group, CentER, Tilburg University, P.O. Box 90153, 5000 LE Tilburg, The Netherlands.
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with distribution ν on Z+, is independent of (εt)t∈Z+ and (Z(t)
j )j∈N,t∈Z+ . Equation (1) can be interpreted

as a branching process with immigration. The outcome Xt is composed of the surviving elements of Xt−1

during the period (t− 1, t], ϑ ◦Xt−1, and the number of immigrants during this period, εt. Each element
of Xt−1 survives with probability θ and its survival has no effect on the survival of the other elements,
nor on the number of immigrants. The more general INAR(p) processes were first introduced by Al-Osh
and Alzaid (1990) but Du and Li (1991) proposed a different setup. In the setup by Du and Li (1991)
the autocorrelation structure of an INAR(p) process is the same as that of an AR(p) process, whereas it
corresponds to the one of an ARMA(p, p−1) process in the setup by Al-Osh and Alzaid (1990). The setup
by Du and Li (1991) has been followed by most authors, and we use their setup as well. The INAR(p)
process is an analogue of (1) with p lags. An INAR(p) process is recursively defined by,

Xt = ϑ1 ◦Xt−1 + ϑ2 ◦Xt−2 + · · ·+ ϑp ◦Xt−p + εt, t ∈ Z+, (2)

where, for i = 1, . . . , p,

ϑi ◦Xt−i =
Xt−i∑

j=1

Z
(t,i)
j .

Here Z
(t,i)
j , i ∈ {1, . . . , p}, j ∈ N, t ∈ Z+, are independent Bernoulli distributed variables, where Z

(t,i)
j

has success probability θi ∈ (0, 1), independent of the Z+-valued i.i.d. G-distributed innovations (εt)t∈Z+ .
The starting value (X−1, . . . , X−p)′ is independent of (εt)t∈Z+ and (Z(t,i)

j )i∈{1,...,p},j∈N,t∈Z+ , and has dis-
tribution ν on Zp

+. The corresponding probability space is denoted by (Ω,F ,Pν,θ,G).

Applications of INAR(p) processes in the medical sciences can be found in, for example, Franke and
Seligmann (1993) and Cardinal et al. (1999); applications to economics in, for example, Böckenholt
(1999), Berglund and Brännäs (2001), Brännäs and Hellström (2001), Rudholm (2001), Böckenholt (2003),
Brännäs and Shahiduzzaman (2004), Freeland and McCabe (2004), and Gourieroux and Jasiak (2004).

In this paper we allow for parametric INAR(p) models, i.e., G belongs to a parametric class of distri-
butions, say (Gα|α ∈ A ⊂ Rq). Estimators of the parameters are provided by several authors. For p = 1
and Gα = Poisson(α), Franke and Seligmann (1993) analyzed maximum likelihood. Du and Li (1991)
derived the limit-distribution of the OLS-estimator of θ. Brännäs and Hellström (2001) considered GMM
estimation, and Silva and Oliveira (2005) proposed a frequency domain based estimator of θ. In this paper
we are interested in asymptotic efficient estimation of the parameters in an INAR(p) model. In Appen-
dix C, we review the modern notion of asymptotic efficiency: the Hájek-Le Cam convolution theorem gives
a lower-bound to the accuracy of regular estimators for experiments which have the Local Asymptotic
Normality (LAN) structure. An estimator is called efficient if it is regular and attains this lower-bound.
Hence, once we have established the LAN-property, the next goal is to construct an estimator which at-
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tains the lower-bound. Maximum likelihood is, in general, not feasible for INAR(p) models, since it is not
clear which optimization routines could be used to determine (a point close to) a maximum location of the
likelihood. This is caused by the complicated nature of the transition-probabilities. Therefore, we will not
try to establish efficiency of the maximum likelihood estimator. Instead, we provide a one-step method,
which updates an initial

√
n-consistent estimator into an efficient one. This yields a computationally at-

tractive and statistically efficient estimator.

The setup of the paper is as follows. In Section 2 we discuss some preliminary properties of INAR(p)
processes: the existence of a stationary distribution and existence of moments. Section 3 introduces two
models. In the first model the immigration distribution G is completely known and the vector of survival-
probabilities, θ = (θ1, . . . , θp), is the only unknown parameter. The goal is to estimate θ efficiently. In the
second model, G belongs to a parametric class of distributions, say (Gα|α ∈ A ⊂ Rq). For this model,
the goal is to estimate the parameter (θ, α) efficiently. In Section 3.1 we establish the LAN-property, that
yields, by the Hájek-Le Cam convolution theorem, a lower-bound to the accuracy of regular estimators.
The proof of the LAN-property is facilitated by a certain representation of the transition-scores, which
is explained by an information-loss interpretation of the model. Section 3.2 provides efficient estimators.
A one-step update estimator is proposed, that, besides being efficient, is also computationally attrac-
tive (compared to maximum likelihood). The proofs can be found in Appendix B. Appendix A contains
some auxiliary results. As already mentioned, Appendix C gives a short review of the modern notion of
asymptotic efficiency for parametric models.

2 Preliminary results

This section discusses some preliminary properties of INAR(p) processes. Throughout the paper the num-
ber of lags, p ∈ N, is fixed. The following notation is used: G denotes the set of all probability measures
on Z+ = N ∪ {0}. The Binomial distribution with parameters θ ∈ [0, 1] and n ∈ Z+ is denoted by Binn,θ

(Bin0,θ is the Dirac-measure concentrated in 0), bn,θ denotes the corresponding point mass function, and
δx denotes the Dirac measure concentrated in x. In general, we denote a probability measure on Z+ by a
capital, and denote the associated probability mass function by the corresponding lower case. For G ∈ G,
µG denotes the mean of G, and σ2

G denotes its variance. As usual Eν,θ,G (·) is shorthand for
∫

(·) dPν,θ,G.
For (probability) measures F and G, F ∗ G denotes the convolution of F and G. Finally, F = (Ft)t≥−p

is the natural filtration generated by X, i.e. Ft = σ (X−p, . . . , Xt). Note that, contrary to classical AR(p)
processes, Ft 6= σ (X−p, . . . , X−1, ε0, . . . , εt).

We compute the first two conditional moments of an INAR(p) process to gain some insight in its de-
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pendence structure. It immediately follows from (2) that, for t ∈ Z+,

Eθ,G [Xt | Ft−1] = Eθ,G [Xt | Xt−1, . . . , Xt−p] = µG +
p∑

i=1

θiXt−i ∈ [0,∞],

Varθ,G [Xt | Ft−1] = Varθ,G [Xt | Xt−1, . . . , Xt−p] = σ2
G +

p∑

i=1

θi(1− θi)Xt−i ∈ [0,∞].

Hence an INAR(p) process has the same auto-regression function as an AR(p) process. However, an
INAR(p) process has conditional heteroskedasticity of autoregressive form, whereas the conditional vari-
ance is constant for AR(p) processes. By straightforward calculations one can see that an INAR(p) process
has the same autocorrelation structure as an AR(p) process.

Next we determine the conditional distribution of Xt given Ft−1. From (2) it follows, for t ∈ Z+,

Pν,θ,G {Xt = xt | Ft−1} = Pν,θ,G {Xt = xt | Xt−1, . . . , Xt−p} = P θ,G
(Xt−1,...,Xt−p),xt

,

where, for xt−p, . . . , xt ∈ Z+, the transition-probability P θ,G
(xt−1,...,xt−p),xt

is given by,

P θ,G
(xt−1,...,xt−p),xt

= Pν,θ,G

{
p∑

i=1

ϑi ◦Xt−i + εt = xt | Xt−1 = xt−1, . . . , Xt−p = xt−p

}

=
(
Binxt−1,θ1 ∗ · · · ∗ Binxt−p,θp ∗G

) {xt}.

Du and Li (1991) and Latour (1998) prove the existence of a (second order) stationary INAR(p) process
in case EGε2

0 < ∞ and
∑p

i=1 θi < 1. Franke and Seligmann (1993) give conditions for the existence of a
(strictly) stationary INAR(1) process using generating functions. Dion et al. (1995) give conditions for the
existence of (strictly) stationary INAR(p) using multitype branching processes with immigration. Using
elementary Markov chain techniques, we give an alternative (shorter) proof under the same conditions.

Theorem 2.1 For all G ∈ G with g(0) ∈ [0, 1), µG < ∞, and θ ∈ (0, 1)p with
∑p

i=1 θi < 1, there exists a

probability measure νθ,G on Zp
+ such that X is a strictly stationary process under Pνθ,G,θ,G. The support

of νθ,G is given by {α, α + 1, . . . }p, where α = min{k ∈ Z+ | g(k) > 0}.

Clearly, in case g(0) = 1, a strictly stationary solution is given by Xt = 0 for all t, i.e. νθ,G = δ0. The next
lemma gives sufficient conditions for the existence of the first three moments of the stationary distribution.

Lemma 2.1 Let G ∈ G with g(0) ∈ [0, 1), µG < ∞, and θ ∈ (0, 1)p with
∑p

i=1 θi < 1. Then, for

k ∈ {1, 2, 3}, EGεk
0 < ∞ if and only if Eνθ,G,θ,GXk

0 < ∞.
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3 Efficient estimation

In this section we consider INAR(p) models, where we always restrict ourselves to the stationary parameter
regime, i.e., θ ∈ (0, 1)p with

∑p
i=1 θi < 1 (see Drost et al. (2006) for the asymptotic structure of an INAR(1)

model at the boundary of the parameter space). In a first model, the immigration-distribution G and the
initial distribution ν are completely known, which leads to the following sequence of statistical experiments
induced by observing (X−p, . . . , Xn),

E(n)
1 (ν,G) =

(
Zn+1+p

+ , 2Z
n+1+p
+ ,

(
P(n)

ν,θ,G | θ ∈ Θ
))

, n ∈ Z+,

where the initial distribution ν and the immigration distribution G ∈ G are fixed, Θ = {θ ∈ (0, 1)p |∑p
i=1 θi < 1}, and P(n)

ν,θ,G denotes the law of (X−p, . . . , Xn) on the measurable space
(
Zn+1+p

+ , 2Z
n+1+p
+

)

under Pν,θ,G. In this model G is completely known, but we also want to consider the case where G belongs
to a parametric model, for example, G = Poisson(α). So let A ⊂ Rq and GA = (Gα)α∈A be a family of
elements in G, such that α 7→ Gα is sufficiently smooth (this will be made precise later). We then consider
the sequence of experiments, induced by observing (X−p, . . . , Xn),

E(n)
2 (ν,GA) =

(
Zn+1+p

+ , 2Z
n+1+p
+ ,

(
P(n)

ν,θ,α | θ ∈ Θ, α ∈ A
))

, n ∈ Z+,

where, for notational convenience, we abbreviate Gα in sub- and superscripts by α.

The goal of this section is to estimate the parameters in both models efficiently. As mentioned in the
introduction, a short review of the modern notion of asymptotic efficiency is given in Appendix C.

3.1 The LAN-property

In this subsection we prove the LAN-property for the sequence of experiments E(n)
2 (ν,GA), n ∈ Z+, im-

mediately implying the LAN-property for the sequence of experiments E(n)
1 (ν, G), n ∈ Z+.

Let GA = (Gα|α ∈ A) be a parametric family of immigration-distributions, where A is an open, con-
vex subset of Rq such that,

(A1) the support of Gα does not depend on α and we have 0 < gα(0) < 1;

(A2) for all e ∈ Z+ and α ∈ A, the expressions,

hα(e) =
∂

∂α
log (gα(e)) 1(0,1] (gα(e)) ∈ Rq,

ḣα(e) =
∂2

∂αT ∂α
log (gα(e)) 1(0,1] (gα(e)) ∈ Rq×q,
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are defined and, for all e ∈ Z+, they are continuous in α;

(A3) for every (θ, α) ∈ Θ×A, there exists δ > 0 and random variables Mθ,α
1 and Mθ,α

2 such that,

sup
(θ̃,α̃):|(θ̃,α̃)−(θ,α)|<δ

Eθ̃,α̃

[|hα̃(ε0)|2 | X0, . . . , X−p

] ≤ Mθ,α
1 , Eνθ,α,θ,αMθ,α

1 < ∞, (3)

and, for i, j = 1, . . . , q,

sup
(θ̃,α̃):|(θ̃,α̃)−(θ,α)|<δ

Eθ̃,α̃

[∣∣∣ḣα̃,ij(ε0)
∣∣∣ | X0, . . . , X−p

]
≤ Mθ,α

2 , Eνθ,α,θ,αMθ,α
2 < ∞, (4)

where ḣα,ij(e) is the (i, j)-entry of the matrix ḣα(e);

(A4) the information-equality EαhαhT
α(ε0) = −Eαḣα(ε0) is satisfied, and EαhαhT

α(ε0) is non-singular and
continuous in α;

(A5) Eαε2
0 < ∞;

(A6) Gα = Gα′ implies α = α′.

Remark 1 It is well-known that Assumptions (A2) and (A4) ensure that GA is differentiable in quadratic

mean with score hα(ε0) (see, for example, Lemma 7.6 in Van der Vaart (2000)) and consequently Eαh(ε0) =
0, see the proof of Theorem 7.2 in Van der Vaart (2000).

Remark 2 Assumptions (A1)-(A6) are of the Cramér-type. Conditions (3) and (4) in Assumption A3

are rather awkward. A simple sufficient condition is given by |hα,i(e)| ≤ aα + cαe and |ḣα,ij | ≤ bα + dαe2

for aα, bα, cα and dα that are (locally) bounded in α. Now it is easy to see that the (in the literature

often-used) example A = (0,∞) and Gα = Poisson(α) satisfies the conditions above.

To see that the sequence of experiments (E(n)
2 (ν,GA))n∈Z+ has the LAN-property, we need to determine

the asymptotic behavior of a localized log-likelihood ratio. To that end we first write down the likelihood.
By the p-th order Markov-structure, the likelihood is given by,

Ln(θ, α | X−p, . . . , Xn) = ν{X−1, . . . , X−p}
n∏

t=0

P θ,α
(Xt−1,...,Xt−p),Xt

.

Since the likelihood is extremely smooth in (θ, α), it seems to be appropriate to establish the LAN-
property directly, using a Taylor-expansion. This is the path we take. To get a useful expression of the
transition-scores for θ and α, we briefly discuss how we can view upon the model as an information-loss
model. Suppose that, instead of just observing X−p, . . . , Xn, we would also be able to observe ϑi ◦Xt−i,
i = 1, . . . , p, t = 0, . . . , n. Then εt = Xt −

∑p
i=1 ϑi ◦ Xt−i also belongs to the information set at time
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t, just as in the classical AR(p) model. In our model, with only observations on X−p, . . . , Xn, this does
not hold true; there is loss of information. The ‘information-loss principle’, see for example Proposition
A.5.5 in Bickel et al. (1998), suggests that the transition-score for θi in the model where we only observe
Xt−p, . . . , Xt, equals the conditional expectation, given Xt−p, . . . , Xt, of the transition-score for θi in the
model with also observations on ϑi ◦Xt−i, i = 1, . . . , p. It is not difficult to see that the transition-score
for θi in the model with the additional observations ϑi ◦ Xt−i is nothing but the score of a BinXt−i,θi

distribution. Recall that the score of a Binx,θ distribution is given by, for θ ∈ (0, 1),

ṡx,θ(k) =
(

∂

∂θ
log bx,θ(k)

)
1(0,1](bx,θ(k)) =

k − θx

θ(1− θ)
1{0,...,x}(k), x ∈ Z+. (5)

Hence, the information-loss structure suggests that the transition-score for θi in our model equals,

Eθ,α

[
ṡXt−i,θi

(ϑi ◦Xt−i) | Xt, . . . , Xt−p

]
.

Similarly, the transition-score for α is conjectured to be equal to,

Eθ,α [hα(εt) | Xt, . . . , Xt−p] .

One way to make this reasoning precise, is to show that the model is differentiable in quadratic mean
with respect to (θ, α). Instead, since the model is extremely smooth, we may derive the transition-scores
directly by calculating the partial derivatives of log P θ,α

(xt−1,...,xt−p),xt
with respect to both θ and α. It is

easy to see that, for xt−p, . . . , xt ∈ Z+, i = 1, . . . , p, θ ∈ (0, 1)p, we have,

˙̀
θ,i(xt−p, . . . , xt−1, xt; θ, α) =

∂

∂θi
log

(
P θ,α

(xt−1,...,xt−p),xt

)
1(0,1]

(
P θ,α

(xt−1,...,xt−p),xt

)

=

∑
k ṡxt−i,θi(k) bxt−i,θi(k)

(
Gα * j 6=i

j=1,...,p
Binxt−j ,θj

)
{xt − k}

P θ,α
(xt−1,...,xt−p),xt

1(0,1]

(
P θ,α

(xt−1,...,xt−p),xt

)

= Eθ,α

[
ṡXt−i,θi(ϑi ◦Xt−i) | Xt = xt, . . . , Xt−p = xt−p

]
, (6)

where we put Eθ,α [ · | Xt = xt, . . . , Xt−p = xt−p] = 0 if Pν,θ,α{Xt−p = xt−p, . . . , Xt = xt} = 0. Similarly
we find, for xt−p, . . . , xt ∈ Z+, and i = 1, . . . , q,

˙̀
α,i(xt−p, . . . , xt−1, xt; θ, α) =

∂

∂αi
log

(
P θ,α

(xt−1,...,xt−p),xt

)
1(0,1]

(
P θ,α

(xt−1,...,xt−p),xt

)

=
∑

e hα,i(e)gα(e)
(
*j=1,...,p Binxt−j ,θj

) {xt − e}
P θ,α

(xt−1,...,xt−p),xt

1(0,1]

(
P θ,α

(xt−1,...,xt−p),xt

)

= Eθ,α [hα,i(εt) | Xt = xt, . . . , Xt−p = xt−p] . (7)
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For the case p = 1 and Gα = Poisson(α), representation (6) was also found by Freeland and McCabe
(2004). Although we established (6) and (7) by direct calculations, we stress that the structure is due
to the information-loss interpretation of the model. It follows that the score is a martingale. A Taylor-
expansion of the localized log-likelihood ratio, a martingale central limit theorem, and a law of large
numbers now suggest that the sequence of experiments (E(n)

2 (ν,GA))n∈Z+ has the LAN-property. The
following theorem gives the precise result.

Theorem 3.1 Let GA ⊂ G satisfy Assumptions (A1)-(A5) and let ν a probability measure on Zp
+ with

finite support. Let θ ∈ Θ and α ∈ A. Then the sequence of experiments (E(n)
2 (ν,GA))n∈Z+ has the LAN-

property in (θ, α), i.e. for every u = (u1, u2) ∈ Rp × Rq the following expansion holds,

log
dP(n)

ν,θ+u1/
√

n,α+u2/
√

n

dP(n)
ν,θ,α

(X−p, . . . , Xn) = log
Ln

(
θ + u1√

n
, α + u2√

n
| X−p, . . . , Xn

)

Ln (θ, α | X−p, . . . , Xn)

= uT Sn − 1
2
uT Ju + Rn,

where the score (also called central sequence),

Sn = Sn(θ, α) =
1√
n

n∑
t=0

(
˙̀
θ(Xt−p, . . . , Xt; θ, α)
˙̀
α(Xt−p, . . . , Xt; θ, α)

)
, (8)

satisfies

Sn
d−→ N(0, J), under Pν,θ,α. (9)

The Fisher-information defined by,

J = J(θ, α) =

(
Jθ Jθ,α

Jα,θ Jα

)
=

(
Eνθ,α,θ,α

˙̀
θ
˙̀T
θ (X−p, . . . , X0; θ, α) Eνθ,α,θ,α

˙̀
θ
˙̀T
α(X−p, . . . , X0; θ, α)

Eνθ,α,θ,α
˙̀
α

˙̀T
θ (X−p, . . . , X0; θ, α) Eνθ,α,θ,α

˙̀
α

˙̀T
α(X−p, . . . , X0; θ, α)

)
,

is non-singular, and Rn = Rn(u, θ, α)
p−→ 0 under Pν,θ,G.

Remark 3 If one wants to draw the initial value, (X−1, . . . , X−p)′, according to the stationary distribu-

tion, one considers the sequence of experiments Ẽ(n)
2 (GA) = (Zn+1+p

+ , 2Z
n+1+p
+ , (P(n)

νθ,α,θ,α | θ ∈ Θ, α ∈ A)),
n ∈ Z+. If the conditions in Theorem 3.1 are satisfied and if the initial value is negligible, i.e. for all

u = (u1, u2) ∈ Rp×Rq we have νθ+u1/
√

n,α+u2/
√

n{X−1, . . . , X−p}− νθ,α{X−1, . . . , X−p} = o(Pνθ,α,θ,α; 1),
then we can obtain the LAN-property for (Ẽ(n)

2 (GA))n∈Z+ analogous to the proof of Theorem 3.1. For

this ‘stationary case’ the LAN-property can alternatively be established using results in Roussas (1972).

In case p = 1, A = (0,∞), and Gα = Poisson(α), it is easy to see, using generating functions, that
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νθ,α = Poisson (α/(1− θ)). For this case the negligibility of the initial value readily follows.

Remark 4 For the case p = 1 and Gα = Poisson(α), the non-singularity of J is obtained via direct

calculation by Franke and Seligmann (1993).

If we want to consider the sequence of experiments E(n)
1 (ν, G), n ∈ Z+, we can always embed G in

a parametric model GA which satisfies Assumptions (A1)-(A5). Then an application of the preceding
theorem with u2 = 0 immediately yields the following corollary.

Corollary 3.1 Let θ ∈ Θ, let G ∈ G with EGε2
0 < ∞, and g(0) ∈ (0, 1), and let ν be a probability measure

on Zp
+ with finite support. Then the sequence of experiments (E(n)

1 (ν,G))n∈Z+ has the LAN-property in

θ, i.e. for every u ∈ Rp the following expansion holds,

log
dP(n)

ν,θ+ u√
n

,G

dP(n)
ν,θ,G

(X−p, . . . , Xn) = uT Sθ
n −

1
2
uT Jθu + Rn,

where Sθ
n = n−1/2

∑n
t=0

˙̀
θ(Xt−p, . . . , Xt; θ, G) d−→ N(0, Jθ) under Pν,θ,G, Jθ = Jθ(θ,G) is invertible, and

Rn = Rn(u, θ, G)
p−→ 0 under Pν,θ,G.

3.2 Efficient estimators

This section provides efficient estimators of the parameters in an INAR(p) model based on the ubiquitous
one-step update method.

3.2.1 G is known

In case µG < ∞, an initial estimator of θ is the OLS-estimator,

θ̂G
n =




∑n
t=0 X2

t−1 . . .
∑n

t=0 Xt−1Xt−p

...
. . .

...∑n
t=0 Xt−pXt−1 . . .

∑n
t=0 X2

t−p




−1 


∑n
t=0 Xt−1(Xt − µG)

...∑n
t=0 Xt−p(Xt − µG)


 .

If we assume the existence of a third moment of X0 under the stationary distribution (which is, by
Lemma 2.1, equivalent to imposing EGε3

0 < ∞), θ̂G
n yields a

√
n-consistent estimator of θ. The following

proposition is well-known (see Du and Li (1991)).

Proposition 3.1 Let θ ∈ Θ, ν a probability measure on Zp
+ with finite support, G ∈ G with g(0) ∈ (0, 1)

and EGε3
0 < ∞. Then

√
n

(
θ̂G

n − θ
)

converges in distribution under Pν,θ,G.
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Next, we apply the one-step-Newton-Raphson-method to update this initial
√

n-consistent estimator into
an efficient estimator. To state this theorem, we need the concept of a discretized estimator. For n ∈ N
make a grid of cubes, with sides of length 1/

√
n, over Rp and, given θ̂G

n , define θ̂G,∗
n to be the midpoint of

the cube into which θ̂n has fallen (for ties take one of the possibilities). Then θ̂G,∗
n is also

√
n-consistent

and is called a discretized version of θ̂n.

Theorem 3.2 Let ν a probability measure on Zp
+ with finite support, G ∈ G with g(0) ∈ (0, 1) and

EGε3
0 < ∞. Let θ̂∗n be a discretized version of θ̂n. Then

θ̂∗∗n = θ̂∗n +
1
n

n∑
t=0

Ĵ−1
θ,n

˙̀
θ(Xt−p, . . . , Xt; θ̂∗n, G),

where,

Ĵn,θ =
1
n

n∑
t=0

˙̀
θ
˙̀T
θ (Xt−p, . . . , Xt; θ̂∗n, G),

is an efficient estimator of θ in the sequence of experiments (E(n)
1 (ν,G))n∈Z+ . Moreover, Ĵ−1

n,θ is a consistent

estimator of the asymptotic covariance matrix of θ̂G
n , i.e.

Ĵ−1
n,θ

p−→ J−1
θ , under Pν,θ,G.

Remark 5 Instead of θ̂G
n , any other

√
n-consistent estimator of θ can be used.

Remark 6 If one can find a
√

n-consistent initial estimator of θ under the weaker assumption EGε2
0 < ∞,

the condition EGε3
0 < ∞ may be replaced by EGε2

0 < ∞.

The proof of this theorem runs along the same lines as the proof of Theorem 3.3.

3.2.2 G belongs to a parametric model

To use the OLS-estimator as an initial estimator of θ we need the existence of a third moment of Xt under
the stationary distribution. Therefore we replace, in this section, Assumption (A5) on GA by,

(A5′) for all α ∈ A: Eαε3
0 < ∞.

This yields, by Lemma 2.1, the existence of a third moment of X0 under the stationary distribution. Just
as for the case G known, OLS yields a

√
n-consistent estimator of (θ, µG) (see, for example, Du and Li

(1991)).

Proposition 3.2 Let θ ∈ Θ, ν a probability measure on Zp
+ with finite support, G ∈ G with EGε3

0 < ∞

10



and g(0) ∈ (0, 1). Then
(√

n
(
θ̂n − θ

)
,
√

n (µ̂G,n − µG)
)

converges in distribution under Pν,θ,G, where,

(
µ̂G,n

θ̂n

)
=




n
∑n

t=0 Xt−1 . . .
∑n

t=0 Xt−p∑n
t=0 Xt−1

∑n
t=0 X2

t−1 . . .
∑n

t=0 Xt−1Xt−p

...
...

. . .
...∑n

t=0 Xt−p

∑n
t=0 Xt−pXt−1 . . .

∑n
t=0 X2

t−p




−1 


∑n
t=0 Xt∑n

t=0 Xt−1Xt

...∑n
t=0 Xt−pXt




.

The OLS-estimator also yields a
√

n-consistent estimator of α in case GA = (Poisson(α) | α > 0), since
then µGα = α.

For other specific choices of Gα, it might by easy to find a (moment-based) estimator of α. This is the
approach, we recommend. However, it would be reassuring to know that a

√
n-consistent estimator of α

always exists. The following observation is the key to the general existence of a
√

n-consistent estimator of
α. Although we do not observe the innovation process (εt)t∈Z+ , we have observations on some innovations
(if g(0) > 0), since

Xt1{Xt−1 = 0, . . . , Xt−p = 0} = εt. (10)

By Assumptions (A1)-(A6) GA is an identified regular parametric model (see Definition 2.1.1 and Propo-
sition 2.1.1 in Bickel et al. (1998)). By a theorem by Le Cam (see, e.g., Theorem 2.5.1 in Bickel et al.
(1998)) there exists an ‘estimator’ Tn = tn(ε1, . . . , εn) of α such that

√
n(Tn − α) is tight under Pν,θ,α for

all α ∈ A. Using display (10) we could use such an ‘estimator’ to construct a
√

n-consistent estimator of
α.

Proposition 3.3 Let θ ∈ Θ, ν a probability measure on Zp
+ and G ∈ G with g(0) ∈ (0, 1) and σ2

G < ∞.

Let

τ0 = 0, τk = inf{t > τk−1 | Xt−p = · · · = Xt−1 = 0}, k ∈ N, and Nn = max{j ∈ Z+ | τj ≤ n}.

Then α̂n = tNn

(
Xτ1 , . . . , XτNn

)
, defines a

√
n-consistent estimator of α. In particular, if for some σ2 > 0,

√
n (tn(ε1, . . . , εn)− α) d−→ N(0, σ2), under Pν,θ,α,

then we have,
√

n (α̂n − α) d−→ N
(

0,
σ2

νθ,α{0, . . . , 0}
)

, under Pν,θ,α.

Since we have a
√

n-consistent estimator of (θ, α), we can update this estimator into an efficient estimator.
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Theorem 3.3 Let ν a probability measure on Zp
+ with finite support, and GA ⊂ G satisfying Assumptions

(A1)-(A6) with (A5′) instead of (A5). Let (θ̂n, α̂n) be a
√

n-consistent estimator of (θ, α) and (θ̂∗n, α̂∗n) a

discretized version of it. Then,

(
θ̂∗∗n

α̂∗∗n

)
=

(
θ̂∗n
α̂∗n

)
+

1
n

n∑
t=0

Ĵ−1
n

(
˙̀
θ(Xt−p, . . . , Xt; θ̂∗n, α̂∗n)
˙̀
α(Xt−p, . . . , Xt; θ̂∗n, α̂∗n)

)
,

with,

Ĵn =

(
1
n

∑n
t=0

˙̀
θ
˙̀T
θ (Xt−p, . . . , Xt; θ̂∗n, α̂∗n) 1

n

∑n
t=0

˙̀
θ
˙̀T
α(Xt−p . . . , , Xt; θ̂∗n, α̂∗n)

1
n

∑n
t=0

˙̀
α

˙̀T
θ (Xt−p, . . . , Xt; θ̂∗n, α̂∗n) 1

n

∑n
t=0

˙̀
α

˙̀T
α(Xt−p, . . . , Xt; θ̂∗n, α̂∗n)

)
,

is an efficient estimator of (θ, α) in the sequence of experiments (E(n)
2 (ν,GA))n∈Z+ . Moreover, Ĵ−1

n yields

a consistent estimator of the asymptotic covariance matrix of (θ̂∗∗n , α̂∗∗n ), i.e.,

Ĵ−1
n

p−→ J−1, under Pν,θ,α.

Remark 7 The same remarks as after Theorem 3.2 apply.

A Auxiliary results

The setup is as described in Sections 1 and 2 of the main text.

Note that X = (Xt)t≥−p is a p-th order Markov chain. To exploit this Markovian structure we intro-
duce a process Y = (Yt)t≥0 defined by Yt = (Xt−1, Xt−2, . . . , Xt−p)′. Under Pν,θ,G the process Y is a
Markov chain in Zp

+ with initial distribution ν and transition-probabilities

Qθ,G
y0,y1

= Pν,θ,G {Yt+1 = y1 | Yt = y0} =

{
P θ,G

y0,x0
, if y1 = (x0, x−1, . . . , x−p+1)′;

0 , otherwise,

where y0 = (x−1, . . . , x−p)′, y1 ∈ Zp
+ and x0 ∈ Z+. It is easy to see that, in case g(0) < 1 and θ ∈ (0, 1)p, the

Markov chain Y is irreducible on S = S(G) = {α, α + 1, . . . }p, where α = min{k ∈ Z+ | g(k) > 0} ∈ Z+.
It is also not hard to see that, under these conditions, the chain is also aperiodic.

Next we recall some (adaptions of) results from the literature.

Lemma A.1 Let G ∈ G with g(0) ∈ [0, 1) and θ ∈ (0, 1)p. Assume that we have a unique distribution

νθ,G such that Y is stationary under Pνθ,G,θ,G. If there exists a finite set A ⊂ Zp
+, δ > 0, and a nonnegative

function f : Zp
+ → R such that Eθ,G [f(Yt) | Yt−1 = y] ≤ (1− δ)f(y), for y ∈ Ac, and f > 0 on A, then f

is νθ,G-integrable, i.e. Eνθ,G,θ,Gf(Yt) =
∑

y∈S(G) f(y)νθ,G{y} < ∞.
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Proof:

Since Y lives in a countable state space and is recurrent and irreducible, the chain Y is Harris recurrent.
We already noticed that Y is also aperiodic under the imposed conditions. Now we can apply Theorem 3
in Tweedie (1983) (display (1.3) in this paper is trivially satisfied since A is finite). 2

Lemma A.2 Let ν be a probability measure on Zp
+, G ∈ G with g(0) ∈ [0, 1) and µG < ∞, θ ∈ (0, 1)p

with
∑p

i=1 θi < 1. Then for every function h : Zp+1
+ → R satisfying Eνθ,G,θ,G|h(X−p, . . . , X0)| < ∞, the

following strong law of large numbers holds

Pν,θ,G

{
lim

n→∞
1
n

n∑
t=0

h(Xt−p, . . . , Xt) = Eνθ,G,θ,Gh(X−p, . . . , X0)

}
= 1.

Proof:

Since Y is an irreducible Markov chain with stationary distribution νθ,G, Zt = (Yt, Yt−1)′, yields an irre-
ducible Markov chain with stationary distribution νθ,G⊗Qθ,G. Now the result follows from a law of large
numbers for Markov chains (see, e.g., Theorem 4.3.15 in Dacunha-Castelle and Duflo (1986)). 2

Lemma A.3 Let ν be a probability measure on Zp
+, G ∈ G with g(0) < 1, µG < ∞, and θ ∈ (0, 1)p with∑p

i=1 θi < 1. If h : Zp+1
+ → R satisfies Eνθ,G,θ,Gh2(X−p, . . . , X−1, X0) < ∞, then,

1√
n

n∑
t=0

(h(Xt−p, . . . , Xt)− Eθ,G [h(Xt−p, . . . , Xt) | Xt−1, . . . , Xt−p])
d−→ N(0, σ2), under Pν,θ,G,

where σ2 is given by,

σ2 = Eνθ,G,θ,Gh2(X−p, . . . , X−1, X0)− Eνθ,G
(Eθ,G [h(X−p, . . . , X0) | X−1, . . . , X−p])

2
.

Proof:

Since Y is a positive recurrent Markov chain on S, this follows from Theorem 4.3.16 in Dacunha-Castelle
and Duflo (1986) in case ν = δy. From this, the result extends to arbitrary ν by looking at pointwise con-
vergence of characteristic functions, conditioning on the initial value and using dominated convergence. 2

Lemma A.4 Let G ∈ G with g(0) ∈ [0, 1), µG < ∞, θ ∈ (0, 1)p with
∑p

i=1 θi < 1, and ν a probability mea-

sure on Zp
+ whose support is a finite subset of S. If g : Zp+1

+ → [0,∞) satisfies Eνθ,G,θ,Gg(X−p, . . . , X0) < ∞
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then,

lim
t→∞

sup
0≤h≤g

∣∣Eν,θ,Gh(Xt−p, . . . , Xt)− Eνθ,G,θ,Gh(X−p, . . . , X0)
∣∣ = 0. (11)

Proof:

This follows by Theorem 2 and the remark after this theorem in Tweedie (1983), since Wt = (Yt+1, Yt)′ is
an aperiodic Harris recurrent Markov chain with stationary distribution νθ,G ⊗ P θ,G. 2

Lemma A.5 Let G ∈ G with g(0) ∈ [0, 1), µG < ∞, θ ∈ (0, 1)p with
∑p

i=1 θi < 1, and ν a probability

measure on Zp
+ whose support is a finite subset of S. Let K be a compact subset of Rk. Let, for every

κ ∈ K, f(·; κ) : Zp+1
+ → R such that the following conditions hold,

(C1)

Eνθ,G,θ,G sup
κ∈K

|f(X−p, . . . , X0;κ)| < ∞;

(C2) for every x−p, . . . , x0 ∈ Z+ the map κ 7→ f(x−p, . . . , x0; κ) is continuous.

Then,

sup
κ∈K

∣∣∣∣∣
1
n

n∑
t=0

f(Xt−p, . . . , Xt;κ)− Eνθ,G,θ,Gf(X−p, . . . , X0;κ)

∣∣∣∣∣
p−→ 0, under Pν,θ,G. (12)

And, for K 3 κn → κ0,

1
n

n∑
t=0

f(Xt−p, . . . , Xt; κn)
p−→ Eνθ,G,θ,Gf(X−p, . . . , X0; κ0), under Pν,θ,G. (13)

Proof:

By Assumption (C1) and Lemma A.4 we have, for M > 0,

lim
t→∞

Eν,θ,G sup
κ∈K

|f(Xt−p, . . . , Xt; κ)| 1[M,∞)

(
sup
κ∈K

|f(Xt−p, . . . , Xt; κ)|
)

= Eνθ,G,θ,G sup
κ∈K

|f(X−p, . . . , X0; κ)| 1supκ∈K |f(X−p,...,X0;κ)|>M .

Hence we obtain, for M > 0,

lim
n→∞

1
n

n∑
t=0

Eν,θ,G sup
κ∈K

|f(Xt−p, . . . , Xt; κ)| 1[M,∞)

(
sup
κ∈K

|f(Xt−p, . . . , Xt; κ)|
)

= Eνθ,G,θ,G sup
κ∈K

|f(X−p, . . . , X0; κ)| 1[M,∞)

(
sup
κ∈K

|f(X−p, . . . , X0;κ)|
)

.
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Using (C1) we now obtain,

lim
M→∞

lim
n→∞

1
n

n∑
t=0

Eν,θ,G sup
κ∈K

|f(Xt−p, . . . , Xt; κ)| 1[M,∞)

(
sup
κ∈K

|f(Xt−p, . . . , Xt; κ)|
)

= 0.

Hence Assumption DM in Andrews (1992) is satisfied. Assumption TSE-1B in that paper is also satis-
fied, by the compactness of K, by (C2) and by limn→∞(1/n)

∑n
t=0 Pν,θ,G {(Xt−p, . . . , Xt) ∈ A} = νθ,G ⊗

P θ,G(A) for A ⊂ Zp+1
+ (Lemma A.4). Since we have Lemma A.2, an application of Theorem 4 in Andrews

(1992) yields,

sup
κ∈K

∣∣∣∣∣
1
n

n∑
t=0

f(Xt−p, . . . , Xt; κ)− Eν,θ,Gf(X−p, . . . , X0; κ)

∣∣∣∣∣
p−→ 0, under Pν,θ,G.

This yields (12), since

sup
κ∈K

∣∣Eν,θ,Gf(Xt−p, . . . , Xt; κ)− Eνθ,G,θ,Gf(X−p, . . . , X0; κ)
∣∣ → 0 as t →∞,

which follows by applying Lemma A.4 to f+ and f−. Display (13) follows by applying dominated conver-
gence. 2

B Proofs

Proof of Theorem 2.1:

First note that it suffices to prove that the Markov chain Y , introduced in Appendix A, has a stationary
distribution. We prove this for the case g(0) > 0. The case g(0) = 0 runs along the same lines.
By Qn

i,j we denote the n-step probability of moving from state i to j of the process Y , i.e., Qn
i,j =

Pδi,θ,G{Yn = j}. Since, under the imposed conditions, Y is aperiodic and irreducible on Zp
+, it suffices, by,

for example, Theorem 8.8 in Billingsley (1995), to prove that there exist states i, j ∈ Zp
+ for which Qn

i,j

does not converge to 0 as n →∞.
It is easy to see that, for all t ∈ Z+, Eδ0,θ,GXt < ∞ when EGε0 < ∞. We first show that we even
have supt∈Z+

Eδ0,θ,GXt < ∞. Note that this statement indeed holds if we can show that Eδ0,θ,GXt ≤
µG

∑t
j=0 θj

∗, where θ∗ =
∑p

i=1 θi which is less than 1 by assumption. Obviously we have Eδ0,θ,GX−1 =
· · · = Eδ0,θ,GX−p = 0 and Eδ0,θ,GX0 = µG. Hence the statement holds for t ∈ {−p, . . . , 0}. Let N ∈ Z+.
Assuming that Eδ0,θ,GXt ≤ µG

∑t
j=0 θj

∗ is valid for all t ∈ {−p, . . . , N} we obtain

Eδ0,θ,GXN+1 = µG +
p∑

i=1

θiEδ0,θ,GXN+1−i ≤ µG +
p∑

i=1

θiµG

N∑

j=0

θj
∗ = µG

N+1∑

j=0

θj
∗,
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which concludes the induction argument.
Using supt∈Z+

Eδ0,θ,GXt < ∞, Markov’s inequality yields, for M > 0,

sup
t∈Z+

Pδ0,θ,G

{
max

i=1,...,p
Xt−i > M

}
≤ p

M
sup
t∈Z+

Eδ0,θ,GXt.

Hence there exists M ∈ N such that, for all t ∈ Z+, Pδ0,θ,G {maxi=1,...,p Xt−i ≤ M} ≥ 1/2.
Define

BM = {(x1, . . . , xp) ∈ Zp
+ | xi ≤ M, ∀i ∈ {1, . . . , p}},

then, for n ≥ 1,

Qn+p
0,0 = Pδ0,θ,G{Yn+p = 0} ≥ Pδ0,θ,G{Yn ∈ BM , Yn+p = 0} =

∑

(i1,...,in−1)∈Z(n−1)p
+

in∈BM

(in+1,...,in+p−1)∈Z(p−1)p
+

Q0,i1 · · ·Qin+p−1,0

=
∑

(i1,...,in−1)∈Z(n−1)p
+

in∈BM

Q0,i1 · · ·Qin−1,inQp
in,0.

Using in ∈ BM we obtain the (very crude) bound

Qp
in,0 ≥

[
g(0)(1− θ∗)pM

]p
,

where θ∗ = maxi=1,...,p θi. Since,

∑

(i1,...,in−1)∈Z(n−1)p
+ ,in∈BM

Q0,i1 · · ·Qin−1,in = Pδ0,θ,G {Xn−p ≤ M, . . . ,Xn−1 ≤ M} ≥ 1
2
,

we obtain,

Qn+p
0,0 ≥ [

g(0)(1− θ∗)pM
]p ∑

(i1,...,in−1)∈Z(n−1)p
+

in∈BM

Q0,i1 · · ·Qin−1,in ≥
1
2

[
g(0)(1− θ∗)pM

]p
> 0.

This concludes the proof.

Remark 8 It is also possible to prove this theorem using the, quite mechanical, proof of Lemma 2.1

by applying Theorem 1 in Feigin and Tweedie (1985). We prefer the present proof since it is far more

intuitive.
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2

Proof of Lemma 2.1:

We prove the lemma by applying Lemma A.1. The difficulty is to pick the proper function f in Lemma A.1.
Note that Theorem 2.1 yields the stationary distribution of Y . Checking that the chosen function indeed
satisfies the conditions in Lemma A.1 is easy, but boring and tedious, calculus. Remember that S =
{α, α + 1, . . . }p, where α = min{k ∈ Z+ | g(k) > 0}.
The case k = 1 For k = 1 we take g : S → R+ given by g(y) = 1 +

∑p
i=1 aiyi with ai = (θi + · · ·+ θp)

for i = 1, . . . , p, and 0 < δ < (1− a1)minj=1,...,p θj < 1. We prove that the conditions in Lemma A.1 are
satisfied, from which we can conclude that

∫
g dνθ,G < ∞, which implies that Eνθ,G,θ,GX0 < ∞. Note first

that g ≥ 1 on S and,

(1− δ)g(y)− Eθ,G [g(Yt+1) | Yt = y] = a +
p∑

j=1

[(1− δ)ai − ci] yi,

for some constant a and ci given by ci = a1θi+ai+1, where we set ap+1 = 0. We show that (1−δ)ai−ci > 0
which implies that,

(1− δ)g(y)− Eθ,G [g(Yt+1) | Yt = y] , > 0,

outside a finite set. We have (use ai = θi + ai+1),

(1− δ)ai − a1θi − ai+1 = −δai + (1− a1)θi > −δ + (1− a1) min
j=1,...,p

θj > 0,

which concludes the proof for the case k = 1.
The case k = 2 For k = 2 we take g : S → R+ given by g(y) = 1 +

∑p
i=1

∑p
j=1 aijyiyj , where aij =

(θi + · · ·+ θp)(θj + · · ·+ θp) < 1 and aij = 0 if max{i, j} > p, and 0 < δ < (1− a11)(minj θj)2. After some
calculus we find,

Eθ,G [g(Yt) | Yt−1 = y] = a +
p∑

i=1

αiyi +
p∑

i=1

p∑

j=1

βijyiyj ,

where βij = a11θiθj + θia1,j+1 + θjai+1,1 + ai+1,j+1. Analogous to the previous case it suffices to prove
that (1− δ)aij − βij > 0 for all i, j = 1, . . . , p. Using that,

aij = θiθj + θi(θj+1 + · · ·+ θp) + θj(θi+1 + · · ·+ θp) + ai+1,j+1,

and aij < (θi + · · ·+ θp), we obtain,

(1− δ)aij − βij > (1− a11)θiθj − δaij ≥ (1− a11)(min
j

θj)2 − δ > 0,
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which concludes the proof for k = 2.
The case k = 3 Finally we consider the case k = 3. Define g : S → R+ by g(y) =

∑p
i=1

∑p
j=1

∑p
k=1 aijkyiyjyk,

where aijk = (θi + · · · + θp)(θj + · · · + θp)(θk + · · · + θp) < 1 for i, j, k = 1, . . . , p, and aijk = 0 if
max{i, j, k} > p. And we take 0 < δ < (1−a111)(minj θj)3. Using that the third moment of a Binomial(n, p)
distribution is given by np(1− 3p + 3np + 2p2 − 3np2 + n2p2), it follows, after some nasty calculus,

Eθ,G [g(Yt) | Yt−1 = y] = a +
p∑

i=1

biyi +
p∑

i=1

p∑

j=1

cijyiyj +
p∑

i=1

p∑

j=1

p∑

k=1

βijkyiyjyk,

where,

βijk = a111θiθjθk + ai+1,j+1,k+1 + θia1,j+1,k+1 + θjai+1,1,k+1 + θkai+1,j+1,1

+ θiθja1,1,k+1 + θjθkai+1,1,1 + θiθka1,j+1,1.

Note that,

aijk = θiθjθk + θiθk(θj+1 + · · ·+ θp) + θjθk(θi+1 + · · ·+ θp) + θiθj(θk+1 + · · ·+ θp)

+ θi(θj+1 + · · ·+ θp)(θk+1 + · · ·+ θp) + θj(θi+1 + · · ·+ θp)(θk+1 + · · ·+ θp)

+ θk(θi+1 + · · ·+ θp)(θj+1 + · · ·+ θp) + ai+1,j+1,k+1.

Now the rest of the proof proceeds as in the case ‘k = 2’. 2

Proof Of Theorem 3.1:

Using Assumption (A5) on GA and Lemma 2.1 we obtain Eν0,θ,αX2
0 < ∞, where, for notational conve-

nience, we denote ν0 = νθ,α.
Expansion of log-likelihood ratio:
Let u = (u1, u2) ∈ Rp × Rq, u 6= 0 (the case u = 0 is trivial). Since Θ× A is open and convex we obtain,
by Taylor’s theorem,

log
Ln

(
θ + u1√

n
, α + u2√

n
| X−p, . . . , Xn

)

Ln (θ, α | X−p, . . . , Xn)
= uT Sn(θ, α)− 1

2
uT Jn(θ̃n, α̃n)u, (14)

where (θ̃n, α̃n) is a random point on the line-segment between (θ, α) and (θ + u1/
√

n, α + u2/
√

n) and

Jn(θ, α) = − 1√
n

∂

∂(θ, α)T
Sn(θ, α). (15)
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First, we give some auxiliary calculations in Part 0. In Part 1 we show that Sn(θ, α) d−→ N(0, J) under
Pν,θ,α, in Part 2 we prove that Jn(θ̃n, α̃n)

p−→ J under Pν,θ,α, and, finally, in Part 3 we prove the non-
singularity of J .
Part 0: auxiliary calculations
In this part we show that certain expressions are integrable, which is needed in Step 1 and Step 2.
It is easy to see that, for θ ∈ (0, 1), ` ∈ N, we have

∂`

∂θ`
log bx,θ(k) = (−1)`+1(`− 1)!

k

θ`
− (`− 1)!

x− k

(1− θ)`
,

and hence ∣∣∣∣
∂`

∂θ`
log bx,θ(k)

∣∣∣∣ ≤ (`− 1)!x
(

1
(1− θ)`

∨ 1
θ`

)
≤ (`− 1)!

x

(1− θ)`θ`
. (16)

For notational convenience we denote ṡx,θ(k) = (∂/∂θ) log bx,θ(k) and s̈x,θ(k) = (∂2/∂θ2) log bx,θ(k).
From (6) and (16) we obtain the bound

∣∣∣ ˙̀
θ,i(X−p, . . . , X0; θ, α)

∣∣∣ ≤ 1
θi(1− θi)

X−i.

From Assumption (A3) on GA we obtain δ > 0. If necessary, decrease δ such that the ball round θ with
radius δ is a subset of Θ. Of course, this has no influence on the validity of (3) and (4).
Using the previous display and Cauchy-Schwarz, we obtain, for i, j = 1, . . . , p,

Eν0,θ,α sup
(θ̃,α̃):|(θ̃,α̃)−(θ,α)|<δ

∣∣∣ ˙̀
θ,i

˙̀
θ,j(X−p, . . . , X0; θ̃, α̃)

∣∣∣ ≤ Mθ

√
Eν0,θ,αX2

−iEν0,θ,αX2
−j

= MθEν0,θ,αX2
0 < ∞, (17)

where Mθ ∈ R+. Using (3) from Assumption (A3) on GA we obtain, for i, j = 1, . . . , q,

Eν0,θ,α sup
(θ̃,α̃):|(θ̃,α̃)−(θ,α)|<δ

| ˙̀α,i
˙̀
α,j(X−p, . . . , X0; θ̃, α̃)|

≤ Eν0,θ,α sup
(θ̃,α̃):|(θ̃,α̃)−(θ,α)|<δ

√
Eθ̃,α̃ [|hα̃,i(ε0)|2 | X0, . . . , X−p]Eθ̃,α̃ [|hα̃,j(ε0)|2 | X0, . . . , X−p]

≤ Eν0,θ,αMθ,α
1 < ∞. (18)

Using Cauchy-Schwarz, (16) and (3) from Assumption (A3) on GA we also have, for i = 1, . . . , p, j =
1, . . . , q,

Eν0,θ,α sup
(θ̃,α̃):|(θ̃,α̃)−(θ,α)|<δ

∣∣∣ ˙̀
θ,i

˙̀
α,j(X−p, . . . , X0; θ̃, α̃)

∣∣∣ ≤ Mθ

√
Eν0,θ,αMθ,α

1 Eν0,θ,αX2
0 < ∞. (19)
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In the same way as we derived (6) we obtain the representations,

∂2

∂θ2
i
P θ,α

(X−1,...,X−p),X0

P θ,α
(X−1,...,X−p),X0

= Eθ,α

[
s̈X−i,θi(ϑi ◦X−i) + ṡ2

X−i,θi
(ϑi ◦X−i) | X0, . . . , X−p

]
,

and for i 6= j,

∂2

∂θj∂θi
P θ,α

(X−1,...,X−p),X0

P θ,α
(X−1,...,X−p),X0

= Eθ,α

[
ṡX−i,θi

(ϑi ◦X−i)ṡX−j ,θj
(ϑj ◦X−j) | X0, . . . , X−p

]
.

Using (16) we obtain the bound,

∣∣∣∣∣∣

∂2

∂θi∂θj
P θ,α

(X−1,...,X−p),X0

P θ,α
(X−1,...,X−p),X0

∣∣∣∣∣∣
≤ 1

θi(1− θi)
1

θj(1− θj)
(
X2
−i + X2

−j

)
,

which implies,

Eν0,θ,α sup
(θ̃,α̃):|(θ̃,α̃)−(θ,α)|<δ

∣∣∣∣∣∣

∂2

∂θi∂θj
P θ̃,α̃

(X−1,...,X−p),X0

P θ̃,α̃
(X−1,...,X−p),X0

∣∣∣∣∣∣
< ∞. (20)

In the same way as we derived (7) we obtain the representation

∂2

∂αi∂αj
P θ,α

(X−1,...,X−p),X0

P θ,α
(X−1,...,X−p),X0

= Eθ,α

[
ḣα,ji(ε0) + hα,j(ε0)hα,i(ε0) | X0, . . . , X−p

]
.

Using (3) from Assumption (A3) on GA we obtain,

Eν0,θ,α sup
(θ̃,α̃):|(θ̃,α̃)−(θ,α)|<δ

∣∣∣Eθ̃,α̃ [hα̃,j(ε0)hα̃,i(ε0) | X0, . . . , X−p]
∣∣∣

≤ Eν0,θ,α sup
(θ̃,α̃):|(θ̃,α̃)−(θ,α)|<δ

√
Eθ̃,α̃ [|hα̃,j(ε0)|2 | X0, . . . , X−p]Eθ̃,α̃ [|hα̃,i(ε0)|2 | X0, . . . , X−p]

≤ Eν0,θ,αMθ,α
1 < ∞.

Hence, an combination with (4) from Assumption (A3), yields,

Eν0,θ,α sup
(θ̃,α̃):|(θ̃,α̃)−(θ,α)|<δ

∣∣∣∣∣∣

∂2

∂αi∂αj
P θ̃,α̃

(X−1,...,X−p),X0

P θ̃,α̃
(X−1,...,X−p),X0

∣∣∣∣∣∣
< ∞. (21)
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Next we compute for i = 1, . . . , p, j = 1, . . . , q, the representation,

∂2

∂αj∂θi
P θ,α

(X−1,...,X−p),X0

P θ,α
(X−1,...,X−p),X0

= Eθ,α

[
hα,j(ε0)ṡX−i,θi(ϑi ◦X−i) | X0, . . . , X−p

]
,

which, using (16) and (3), yields,

Eν0,θ,α sup
(θ̃,α̃):|(θ̃,α̃)−(θ,α)|<δ

∣∣∣Eθ̃,α̃

[
hα̃,j(ε0)ṡX−i,θ̃i

(ϑi ◦X−i) | X0, . . . , X−p

]∣∣∣

≤ Mθ

√
Eν0,θ,αX2

0

√
Eν0,θ,αMθ,α

1 < ∞. (22)

Part 1: the score
From (6) it follows that,

Eθ,α

[
˙̀
θ,i(Xt−p, . . . , Xt; θ, α) | Xt−1, . . . , Xt−p

]
= Eθ,α

[
ṡXt−i,θi(ϑi ◦Xt−i) | Xt−1, . . . , Xt−p

]
= 0, (23)

since ϑi ◦Xt−i, conditional on Xt−p, . . . , Xt−1, has expectation θiXt−i. From (7) it follows that,

Eθ,α

[
˙̀
α,j(Xt−p, . . . , Xt; θ, α) | Xt−1, . . . , Xt−p

]
= Eθ,α [hα,j(εt) | Xt−1, . . . , Xt−p] = 0, (24)

since εt is independent of Xt−p, . . . , Xt−1 and Eαhα,j(ε0) = 0. Let w = (w1, w2) ∈ Rp × Rq. From (23)
and (24) it follows that,

Eθ,α

[
wT

1
˙̀
θ(Xt−p, . . . , Xt; θ, α) + wT

2
˙̀
α(Xt−p, . . . , Xt; θ, α) | Xt−1, . . . , Xt−p

]
= 0,

and, by (17) and (18),

Eν0,θ,α

[
wT

1
˙̀
θ(X−p, . . . , X0; θ, α) + wT

2
˙̀
α(X−p, . . . , X0; θ, α)

]2

= wT Jw < ∞.

Hence we have, by Lemma A.3,

1√
n

n∑
t=0

[
wT

1
˙̀
θ(Xt−p, . . . , Xt; θ, α) + wT

2
˙̀
α(Xt−p, . . . , Xt; θ, α)

]
d−→ wT N(0, J), under Pν,θ,α.

Display (9) now follows by applying the Cramér-Wold device, which concludes Part 1.
Part 2: the Fisher information
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In this part we prove that Jn(θ̃n, α̃n)
p−→ J under Pν,θ,α, where

Jn(θ, α) =

(
Jθ

n Jθ,α
n

Jα,θ
n Jα

n

)
= − 1

n

n∑
t=0

(
∂

∂θT
˙̀
θ(Xt−p, . . . , Xt; θ, α) ∂

∂αT
˙̀
θ(Xt−p, . . . , Xt; θ, α)

∂
∂θT

˙̀
α(Xt−p, . . . , Xt; θ, α) ∂

∂αT
˙̀
α(Xt−p, . . . , Xt; θ, α)

)
. (25)

Using Assumption (A2) on GA it is easy to see that for fixed x−p, . . . , x0 ∈ Z+ the maps (θ, α) 7→
(∂/∂θ) log ˙̀

θ(x−p, . . . , x0; θ, α), (θ, α) 7→ (∂/∂θ) log ˙̀
α(x−p, . . . , x0; θ, α), (θ, α) 7→ (∂/∂α) log ˙̀

θ(x−p, . . . , x0; θ, α)
and (θ, α) 7→ (∂/∂α) log ˙̀

α(x−p, . . . , x0; θ, α) all are continuous. Since we already proved (17), (18), (19),
(20), (21), and (22), it is sufficient, by Lemma A.5, to prove that we have Jn(θ, α)

p−→ J .
First we consider the diagonal of Jθ

n. For i ∈ {1, . . . , p}, the calculations in Part 0 and Lemma A.2, yield,

Jθ
n,ii

p−→ −Eν0,θ,α

[
Eθ,α

[
s̈X−i,θi

(ϑi ◦X−i) + ṡ2
X−i,θi

(ϑi ◦X−i) | X0, . . . , X−p

]
− ˙̀2

θ,i(X−p, . . . , X0; θ, α)
]

= Jθ
ii,

where the last equality follows from,

Eν0,θ,α

[
s̈X−i,θi(ϑi ◦X−i) + ṡ2

X−i,θi
(ϑi ◦X−i)

]

= Eν0,θ,αEθ,α

[
s̈X−i,θi(ϑi ◦X−i) + ṡ2

X−i,θi
(ϑi ◦X−i) | X−1, . . . , X−p

]
= 0,

which is standard once one realizes that ϑi ◦X−i given X−p, . . . , X−1 is BinX−i,θi distributed.
Next we consider the off-diagonal elements of Jθ. Let i 6= j. Applying the representations in Part 0 and
Lemma A.2 gives,

Jθ
n,ij

p−→ −Eν0,θ,α

[
Eθ,α

[
ṡX−i,θi(ϑi ◦X−i)ṡX−j ,θj (ϑj ◦X−j) | X0, . . . , X−p

]− ˙̀
θ,i

˙̀
θ,j(X−p, . . . , X0; θ, α)

]

= Eν0,θ,α
˙̀
θ,i

˙̀
θ,j(X−p, . . . , X0; θ, α) = Jθ

ij ,

since,

Eν0,θ,αṡX−i,θi(θi ◦X−i)ṡX−j ,θj (ϑj ◦X−j)

= Eν0,θ,αEθ,α

[
ṡX−i,θi(ϑi ◦X−i)ṡX−j ,θj (ϑj ◦X−j) | X−1, . . . , X−p

]
= 0,

because ϑi ◦X−i and ϑj ◦X−j given X−p, . . . , X−1 are mean-zero and independent.
Next we consider the block Jθ,α

n (by symmetry this also yields the result for the block Jα,θ
n ). Using the

representations derived in Part 0 and Lemma A.2 we obtain,

Jθ,α
n,ij

p−→ −Eν0,θ,α

[
Eθ,α

[
hα,j(ε0)ṡX−i,θi(ϑi ◦X−i) | X0, . . . , X−p

]− ˙̀
α,j

˙̀
θ,i(X−p, . . . , X0; θ, α)

]

= Eν0,θ,α
˙̀
α,j

˙̀
θ,i(X−p, . . . , X0; θ, α) = Iθ,α

ij ,
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since,

Eν0,θ,α

[
Eθ,α

[
hα,j(ε0)ṡX−i,θi

(ϑi ◦X−i) | X0, . . . , X−p

]]
= Eν0,θ,αhα,j(ε0)ṡX−i,θi

(ϑi ◦X−i) = 0,

because hα,j(ε0) and ṡX−i,θi(ϑi ◦X−i) are independent and have mean zero.
Finally we treat Jα

n . Using the representations in Part 0 and Lemma A.2 again, we obtain

Jα
n

p−→ −Eν0,θ,α

[
Eθ,G

[
ḣα(ε0) + hαhT

α(ε0) | X0, . . . , X−p

]
− ˙̀

α
˙̀T
α(X−p, . . . , X0; θ, α)

]

= Jα,

since, by Assumption (A4) on GA,

Eν0,θ,αEθ,α

[
ḣα(ε0) + hαhT

α(ε0) | X0, . . . , X−p

]
= Eαḣα(ε0) + EαhαhT

α(ε0) = 0.

Part 3: non-singularity of I

Finally we show that J is non-singular. First we prove that Jα is non-singular. If Jα would be singular
we would have,

aT
2

˙̀
α (X−p, . . . , X0; θ, α) = 0 Pν0,θ,α-a.s. for certain a2 ∈ Rq\{0}.

Note that we have, for all k ∈ support(Gα), Pν0,θ,α {X−p = · · · = X−1 = 0, X0 = k} > 0, and on the event
Ek = {X−p = · · · = X−1 = 0, X0 = k} we have ε0 = k. Hence we obtain, on the event Ek,

0 = aT
2

˙̀
α (X−p, . . . , X0; θ, α) = aT

2 Eθ,α [h(ε0) | X0, . . . , X−p] = aT
2 hα(k) for all k ∈ support(Gα),

which contradicts Assumption (A4) on GA that EαhαhT
α(ε0) is non-singular. Hence Jα is indeed non-

singular.
Suppose that

aT
1

˙̀
θ (X−p, . . . , X0; θ, α) + aT

2
˙̀
α (X−p, . . . , X0; θ, α) = 0 Pν0,θ,α − a.s. (26)

Let i ∈ {1, . . . , p} and note that for k ∈ Z+ the event {Xj = 0 for j ∈ {−p, . . . , 0}\{−i}, X−i = k} has
positive probability under Pν0,θ,α and that on this event we have,

˙̀
θ,i (X−p, . . . , X0; θ, α) = Eθ,α

[
ṡX−i,θi(ϑi ◦X−i) | X0, . . . , X−p

]
= − θik

θi(1− θi)
,
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for j 6= i we have,

˙̀
θ,j (X−p, . . . , X0; θ, α) = Eθ,α

[
ṡX−j ,θj

(ϑj ◦X−j) | X0, . . . , X−p

]
= 0,

and,

˙̀
α,m(X−p, . . . , X−0; θ, α) = Eθ,α [hα,m(ε0) | X0, . . . , X−p] = hα,m(0).

Hence we obtain from (26), for k ∈ Z+, i = 1, . . . , p, the equality,

−a1,iθik

θi(1− θi)
+ aT

2 hα(0) = 0,

which is only possible if a1 = 0. Hence a1 = 0, so from (26) we get aT
2

˙̀
α (X−p, . . . , X0; θ, α) = 0 Pν0,θ,α-a.s.

This is only possible if a2 = 0, since we already proved that Jα is non-singular. We conclude that J is
non-singular. 2

Proof of Proposition 3.3:

By Prohorov’s theorem it suffices to prove that there exists a subsequence nk such that
√

nk(α̂nk
− α)

converges in distribution.
Note first that, by Lemma A.2,

Nn

n
→ νθ,α{0, . . . , 0} > 0, Pν,θ,α − a.s.

Let, for u ∈ Rq,
φn(u) = Eα exp

(
iuT (

√
n(tn(ε1, . . . , εn)− α))

)
.

Since tn(ε1, . . . , εn) is a
√

n-consistent estimator of α, there exists, by Prohorov’s theorem, a subsequence
nk such that

√
nk(tnk

(ε1, . . . , εnk
)− α) converges in distribution under Pν,θ,α. Hence for all u ∈ Rq,

lim
k→∞

φnk
(u) = φ(u),

where φ is a characteristic function of an Rq-valued random variable, which we denote by Z. Using the
strong Markov property, it is not very hard to see that (Xτk

)k∈N are i.i.d. G-distributed independent of
Nn. Hence (use dominated convergence),

lim
k→∞

Eν,θ,α exp
(
iuT (

√
Nnk

(α̂nk
− α))

)
= lim

k→∞
Eν,θ,αφNnk

(u) = Eν,θ,αφ(u) = φ(u),
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which yields, √
Nnk

(α̂nk
− α) d−→ Z, under Pν,θ,α as k →∞.

Now,

√
nk(α̂nk

− α) =
√

nk

Nnk

√
Nnk

(α̂nk
− α) d−→ 1√

νθ,α{0, . . . , 0}Z, under Pν,θ,α as k →∞,

which concludes the proof. 2

Proof of Theorem 3.3:

Let (θ, α) ∈ Θ×A. To prove that (θ̂∗∗n , α̂∗∗n ) is efficient at (θ, α) it suffices (see, for example, Theorem 2.3.1
in Bickel et al. (1998)) to prove that it is asymptotically linear in the efficient influence function at (θ, α),
i.e.

√
n

(
θ̂∗∗n − θ

α̂∗∗n − α

)
= J−1(θ, α)Sn(θ, α) + o(Pν,θ,α; 1).

If we can show that the following conditions hold,

C1 Sn(θ, α) converges in distribution under Pν,θ,α;

C2 for every deterministic sequence (θn, αn) = (θ0, α0) + O(1/
√

n) we have,

Sn(θn, αn)− Sn(θ, α) + J(θ, α)
√

n

(
θn − θ

αn − α

)
p−→ 0, under Pν,θ,α;

C3 Ĵn
p−→ J(θ, α) under Pν,θ,α,

then we obtain, from Theorem 5.48 in Van der Vaart (2000) ((θ̂∗n, α̂∗n) is consistent and discretized) the
desired result.
Condition 1 has already been proved in Part 1 of the proof of Theorem 3.1; Condition 3 is proved in Part 0
and Part 2 of the proof of Theorem 3.1. Let (θn, αn) = (θ, α) + O(n−1/2) be a deterministic sequence.
From the proof of Theorem 3.1 we have,

Sn(θn, αn) = Sn(θ, α)− Jn(θ̃n, α̃n)
√

n

(
θn − θ

αn − α

)
,

where (θ̃n, α̃n) is a point between (θ, α) and (θn, αn). Using Part 0 in the proof of Theorem 3.1 and
Lemma A.5 we obtain Jn(θ̃n, α̃n)

p−→ J(θ, α) under Pν,θ,α. This yields Condition 2, which concludes the
proof. 2
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C Review of modern notion of efficiency for parametric models

This appendix briefly reviews the modern notion of asymptotic efficiency for parametric models. For
details and proofs see, for example, Le Cam and Yang (1990), Bickel et al. (1998), and Van der Vaart
(2000). Given a sequence of statistical experiments En = (Xn,An, (Pn,h | h ∈ H)), n ∈ N, suppose that
the parameter space H is an open subset of Rk. The sequence of experiments (En)n∈N has the Local
Asymptotic Normality (LAN) property in h0 ∈ H if there exist a k × k information-matrix Ih0 , a score
∆n,h0 with ∆n,h0

d−→ Nk(0, Ih0) under (Pn,h0)n∈N such that for all a ∈ Rk

log
dPn,h0+a/

√
n

dPn,h0

= aT ∆n,h0 −
1
2
aT Ih0a + Rn, (27)

where Rn = Rn(a, h0)
p−→ 0 under (Pn,h0)n∈N. (En)n∈N has the Local Asymptotic Normality (LAN)

property if it has the LAN-property for all h0 ∈ H. A method to prove efficiency of an estimator is to
provide a lower-bound to the precision of an estimator and subsequently device an estimator that attains
this bound. For sequences of experiments that have the LAN-property the Hájek-Le Cam convolution
theorem gives a bound to the accuracy of regular estimators. Before we state this important theorem, we
recall the concept of a regular estimator. An estimator (Tn)n∈N of h is regular in h0, if for all a ∈ Rk, we
have

√
n (Tn − (h0 + a/

√
n)) d−→ Lh0 , under (Pn,h0+a/

√
n)n∈N, where the limit-distribution Lh0 does not

depend on a. If this holds for all h0 ∈ H then we say that Tn is a regular estimator of h. An interpretation
is that for regular estimators the convergence to the limiting-distribution is, in some sense, uniform. Now
we can state the Hájek-Le Cam convolution theorem.

Theorem C.1 Assume that En = (Xn,An, (Pn,h | h ∈ H)), n ∈ N has the LAN-property in h0 with

non-singular information-matrix Ih0 and score ∆n,h0 . If Tn is a regular estimator of h in h0, then we have

(√
n

(
Tn − h0 − 1√

n
I−1
h0

∆n,h0

)

I−1
h0

∆n,h0

)
d−→

(
Yh0

Zh0

)
, under (Pn,h0)n∈N, (28)

where Yh0 and Zh0 ∼ N(0, I−1
h0

) are independent.

So the limiting distribution of a regular estimator Tn is the convolution of a N(0, I−1
h0

) distribution,
which only depends on the model, and a distribution which will also depend on the estimator. Hence the
scaled estimation error

√
n(Tn − h0) consists of an unavoidable part Zh0 and additional noise Yh0 . Thus

the following definition is indeed natural: an estimator Tn of h is efficient in h0 if it is regular, and if√
n(Tn − h0)

d−→ N(0, I−1
h0

) under (Pn,h0)n∈N. If Tn is efficient for all h ∈ H, then we call Tn an efficient

26



estimator of h.
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