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Abstract 
 
We explore the emissions–income relationship for CO2 in OECD countries using various 
modelling strategies. Even for this relatively homogeneous sample, we find that the 
inverted-U-shaped curve is quite sensitive to the degree of heterogeneity included in the 
panel estimations. This finding is robust, not only across different model specifications but 
also across estimation techniques, including the more flexible non-parametric approach. 
Differences in restrictions applied in panel estimations are therefore responsible for the 
widely divergent findings for an inverted-U shape for CO2. Our findings suggest that 
allowing for enough heterogeneity is essential to prevent spurious correlation from 
reduced-form panel estimations. Moreover, this inverted U for CO2 is likely to exist for 
many, but not for all, countries. 
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1. Introduction 

The typical empirical approach towards estimating the inverted-U-shaped relationship 

between economic growth and the environment, the so-called Environmental Kuznets 

Curve (EKC), has been based on the assumption of homogeneity: the same shaped EKC 

applies to all countries or regions involved. It is commonly assumed that every cross-

sectional unit reacts similarly to shifts in the income parameters, even if the cross-sections 

are allowed to differ in their intercepts. Recently, Brock and Taylor (2004) cast doubt on 

this homogeneity assumption on both theoretical and empirical grounds.1 They argue that 

income–emissions profiles are likely to vary across countries if countries differ in initial 

conditions or in structural parameters such as savings, technological change (in abatement) 

and population growth rates. Such divergences across countries (over time) would not be 

adequately captured by country- and time-specific fixed effects in an econometric 

modelling environment based on the homogeneity assumption. Therefore, Brock and 

Taylor (2004) claim that it is hardly surprising that the EKC literature has so many 

difficulties in demonstrating this relationship.  

The literature on inverted-U-shaped patterns for CO2 emissions is a case in point. 

Using the traditional parametric panel data approach with region-specific and time effects, 

Shafik (1994) and Holtz-Eakin and Selden (1995) report a turning point, though far out of 

sample ($7 million per capita). Schmalensee et al. (1998) introduce a much more flexible 

spline-based estimation technique (allowing for both region-specific and time effects) and 

report clear evidence of a within-sample turning point with negative income-elasticities for 

the highest income segment. However, with the even more flexible non-parametric panel 

data approach, Azomahou et al. (2001) claim that the inverted-U shape would no longer 

                                                 
1 Seminal theoretical contributions to the EKC literature, such as Stokey (1998) and Andreoni and Levinson 
(2001), primarily focus on models of ‘representative economies’ that replicate the inverted-U-shaped 
relationship for all countries from the start. 
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hold in the CO2 case. In their sample, the countries at the highest income levels do not 

reach a phase of declining per-capita emissions, which challenges the idea that countries 

become automatically cleaner if they reach higher income levels. Moreover, they confirm 

the finding of Millimet et al. (2003) that non-parametric estimation rejects the traditional 

parametric approach. Interestingly, Azomahou et al. (2001) do not include region- and 

time-specific effects, based on the rejection of a poolability test proposed by Baltagi et al. 

(1996). 

Accordingly, much confusion exists as to whether CO2 emissions follow an 

inverted U or not. The homogeneity assumption, however, has been questioned only in a 

few papers so far. List and Gallet (1999) demonstrate that parametric estimations for NOx 

and SO2 emissions in the USA including region- and time-specific effects do not satisfy the 

homogeneity assumption, although without any consequence for their basic findings on the 

existence of an EKC. Dijkgraaf and Vollebergh (2005) report similar estimation problems 

for CO2 emissions using various parametric panel data specifications as well as the spline 

technique applied by Schmalensee et al. (1998). Martinez-Zarzoso and Bengochea-

Morancho (2004) confirm these problems, applying the pooled mean group estimator as 

proposed by Pesaran et al. (1999) while assuming a cointegrated relationship between CO2 

emissions and GDP per capita. Finally, Millimet et al. (2003) report sensitivity of their 

semi-parametric panel data results for the homogeneity assumption, particularlyfor the case 

of SO2 emissions.  

These papers illustrate that heterogeneity is indeed an important issue when 

investigating the EKC. However, they only go as far as a linear time trend, and typically do 

not allow for more general (heterogeneous) time effects. In particular, full heterogeneity is 
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not yet combined with a non-parametric approach. 2 This paper demonstrates the 

importance of estimating the EKC relationship for CO2 by – at the same time – allowing 

for heterogeneity across regions, flexible (non-parametric) functional forms and general 

time effects. For this purpose, we use a panel for CO2 emissions in 24 OECD countries 

between 1960 and 2000.  

Our results are striking. First of all, we more-or- less confirm the highly different 

findings in the existing literature and their dependence on the estimation technique applied. 

However, the non-parametric results are highly sensitive to the inclusion of one country in 

particular, namely Luxemburg. This finding already suggests that the homogeneity 

assumption commonly applied in panel data estimations is not innocent. Indeed, further 

testing of parametric specifications as well as the non-parametric specification based on the 

partial linear regression (PLR) estimator following Robinson (1988) or Stock (1989) and 

applied by Millimet et al. (2003) confirms the importance of allowing for enough 

heterogeneity across countries. Unfortunately, it is not possible to apply this PLR estimator 

with a general time effect while allowing for heterogeneity across countries. The time 

effect has to be restricted to a parametric form, and, consequently, the heterogeneous PLR 

model does not nest the homogeneous PLR model.  

Therefore, we take a different approach and propose to apply a pairwise estimation 

of comparable countries. Taking differences between comparable countries eliminates the 

time effect, and taking differences between comparable countries only requires the time 

effect to be the same for these comparable countries. After differencing, the country-

specific regression curves can be estimated non-parametrically by applying, for example, 

Linton and Nielsen (1995). This procedure allows us to extend the homogeneous non-

                                                 
2 Only Dijkgraaf and Vollebergh (2005) and Martinez-Zarzoso and Bengochea-Morancho (2004) allow for 
linear heterogeneous time trends. However, their analyses are restricted to parametric estimations.  
 



 4 

parametric approach with a (common) general time effect to a heterogeneous non-

parametric approach allowing for general time effects, which only have to be the same for 

comparable countries. Applying this pairwise approach yields clear evidence for an EKC 

for CO2 emissions. For many of the highest-income countries, we find support for an EKC 

pattern. Moreover, this finding is robust across different estimation techniques, in 

particular for both parametric and non-parametric estimation. Accordingly, our results 

yield strong support for the claim of Brock and Taylor (2004) that allowing for enough 

heterogeneity is essential to understanding the EKC. 

The remainder of the paper is organized as follows. Section 2 describes our data-set 

and briefly discusses the econometric model specifications. Section 3 shows that applying 

commonly used estimation techniques to our data-set reproduces the mixed picture for the 

existence of an EKC found in the literature. Section 4 explores in detail the role of 

heterogeneity using both parametric and more flexible estimation techniques. Section 5 

concludes. 

 

2. Empirical strategy  

2.1 Data 

Our results are based on the same national- level data-set for the 24 countries with the 

longest membership of the OECD countries as employed by Dijkgraaf and Vollebergh 

(2005) with an extension of the most recent data to 2000. Thus, we concentrate exclusively 

on the subsample of traditional OECD countries between 1960 and 2000, which alone is 

responsible for 50% of overall world CO2 emissions in 2000. The data included are the 

following: 

 C = CO2 emissions from energy consumption, millions of metric tons of carbon 

 Y = GDP, millions of 1990 US dollars 
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 N = population 

 E = energy consumption, million tons of oil equivalent (TOE). 

Data on C are calculated from E using OECD (2000) and IEA/OECD (1991). To calculate 

CO2 emissions, we use data for total primary energy supply (TPES) per fuel, corrected for 

non-energy use of fuels such as chemical feedstocks. The fuels incorporated in the 

calculations are coal, other solid fuels (for example, wood), crude oil, petroleum products 

and natural gas. Total energy use and emissions per country are corrected for exports and 

imports of fuels, as well as for stock changes and international marine bunkers.3 Data on Y 

and N were taken from the OECD (2000). All figures are expressed in 1990 dollars, using 

purchasing power parities. Time coverage of these data is considerably more recent than 

that of the widely used Penn World Table, which has figures only up to 1992. The data on 

Germany require some additional attention due to the country’s unification in 1991. The 

OECD has reconstructed data on Y for Germany as a whole (including the former GDR) 

for the years between 1970 and 1989. We further extrapolated GDP figures backward to 

1960 using adjusted GDP levels for West Germany with the number of inhabitants of East 

Germany.  

Table 1 shows some descriptive statistics. [INSERT TABLE 1] Our overall data-set 

contains 984 observations for all variables, and for each country we have 41 observations 

available. Given the importance of Luxemburg for our results, we also provide descriptive 

statistics for the subsample without this country. Indeed, from the scatter plot in Figure 1, 

the peculiar pattern of the data for Luxemburg becomes immediately clear. Not only does 

the country dominate the upper tail of the income distribution, but it also follows an 

                                                 
3 Our procedure for calculating CO2 emissions from OECD energy consumption data is similar to the 
approach followed by the Oak Ridge National Laboratory (ORNL), whose data are usually included in 
empirical research on CO2 emissions (see, in particular, Holtz-Eakin and Selden (1995) and Schmalensee et 
al. (1998)). 
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atypical pattern, with declining emissions per capita over the whole range of observations. 

[INSERT FIGURE 1] 

Finally, note that our findings are based on a subset of the countries that are usually 

analysed in the case of CO2 emissions. Our panel, however, is particularly useful for a 

study of the homogeneity versus heterogeneity assumption at the country level because 

there is a wide overlap of observations on different countries at similar income levels. 

Moreover, the range of observations is long enough to test for each country whether its 

slope coefficients are sufficiently close to allow for panel-based estimations of an EKC for 

CO2.4 If a problem arises for this (high- income) subsample of OECD countries, one might 

expect the homogeneity assumption to be even more problematic for samples including 

both OECD and non-OECD countries. In addition, this panel also includes data on CO2 

emissions covering the 1990s and is by far the most reliable source of information on these 

emissions compared with non-OECD sources and non-energy-related CO2 emissions. 

To investigate whether unit roots might be present, we applied the IPS test for unit 

roots in heterogeneous panels, as proposed by Im, Pesaran and Shin (2003). In the case of 

GDP per capita, we rejected the hypothesis of unit roots, while in the case of CO2 

emissions, we rejected the presence of unit roots, when allowing for linear time trends. On 

the basis of these results, we shall restrict attention to static relationships between CO2 

emissions and GDP, but with time-specific effects. 

 

2.2 Econometric approach  

In its most general form, we consider the specification 

0],,[,),,( =+= tryEtryhc εε      (1) 

                                                 
4 Potential problems with unit roots are eliminated by using a deterministic trend. The findings of Lanne and 
Liski (2003) support our assumption that it is rather unlikely that we are missing a structural break for the 
limited period spanned by our data. 
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with c = log (C/N) and y = log (Y/N), C being CO2 emissions from energy consumption, Y 

the GDP level and N population size, and with the controls r and t referring to country (or 

region) r and year t, respectively. Note that the control r reflects persistent country-specific 

differences, such as fossil- fuel availability and prices, regulatory differences and 

preferences, and that the control t picks up changes over time, such as changing prices or 

technologies. To start with, the function h is left unspecified. However, without further 

restrictions, this function is not identified, since for each (r,t) combination, only one (c,y) 

observation is available.  

 

Homogeneity 

In the traditional, homogeneous approach, one imposes a structure like the following: 

t
t

tr
r

r dtdrygtryh ∑∑ ++= λαβ ),(),,(      (2) 

with β  = (β0, β1, β2, β3)' such that 

( ) 3
3

2
210, yyyyg βββββ +++=       (3) 

with drr being a dummy for country/region r and dtt a dummy for year t. This model can be 

estimated using standard panel data techniques (after imposing appropriate distributional 

assumptions) and the typical EKC pattern follows from ( ) yyg ∂∂ /, β  first being positive 

and then, after the turning point (if present), becoming negative. This traditional approach 

is quite restrictive because it is typically assumed that every cross-sectional unit reacts 

similarly to shifts in the income parameters, even if the units are allowed to differ in their 

intercepts. This homogeneity assumption also characterizes more flexible estimation 

techniques applied in the literature, such as the spline method used by Schmalensee et al. 
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(1998) and the semi-parametric methods used by Galeotti and Lanza (1999) and Millimet 

et al. (2003).5 These semi-parametric alternatives estimate a version of  

 t
t

tr
r

r dtdrygtryh ∑∑ ++= λα)(),,(      (4) 

with g(.) left unspecified. This model has been estimated following Robinson (1988) or 

Stock (1989), as, for example, in the analysis of Millimet et al. (2003), who apply the 

semi-parametric partially linear regression (PLR) model.6 

 

Heterogeneity 

In the homogeneous framework, only country-specific heterogeneity intercepts are 

allowed, not heterogeneous slope parameters, i.e. g(y) in (4) is postulated not to depend on 

r (except for its level). To allow for heterogeneity in the case of equation (2), one can 

consider the following generalization of (4): 

t
t

tr
r

rr dtdrygtryh ∑∑ ++= λαβ ),(),,(     (5) 

                                                 
5 Note, however, that Millimet et al. (2003) also relaxed this assumption by estimating the PLR model 
separately for each state. However, this precludes general time effects. 
 
6 In the case of PLR, the estimation procedure consists of three rounds. In the first round, one estimates 

( )E c y , ( )rE dr y  and ( )tE dt y . In the second round, one estimates the region- and time-specific effects in 

 ( ) ( )( ) ( )( )ydtEdtydrEdrycEc tt
t

trr
r

r −+−=− ∑∑ λα + error  

(using ( )( ) ( ),ygyygE =  and the estimated conditional expectations from the first round). In the final 

round, one can estimate ( )yg non-parametrically from 

 ( ) ( ) ( )ygdtdrc t
t

tr
r

r =−− ∑∑ λα  + error   

(using the estimated region- and time-specific effects from the second round). Notice, however, that in the 
current application, the number of parameters in the linear regression part (the region- and time-specific 
effects) increases with the sample size. This is not entirely according to Robinson (1988) or Stock (1989), 
who both assumed that the number of parameters in the linear regression part is fixed. The reason why the 

estimation procedure still might work is the use of panel data: in the first round, ( )ydrE r can be estimated 

consistently using the increasing number of time periods, while ( )ydtE t can be estimated consistently 

using the increasing number of regions. 
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and test the null hypothesis βr = β; compare, for example, Dijkgraaf and Vollebergh 

(2005). This generalization also applies to the spline specifications.  

Note, however, that in the case of equation (5), rejection of the null hypothesis βr = 

β  might also indicate model misspecification, and, thus, does not necessarily imply non-

homogeneity. 7 So, to proceed, it makes sense to consider 

t
t

tdtryftryh ∑+= λ),(),,(        (6) 

with f(.,.) left unspecified, and to test f(y,r) = g(y). Specification (6) fits in the Robinson 

(1988) and Stock (1989) PLR framework, but there is one difficulty. In order to apply 

Robinson (1988) or Stock (1989), one now has to estimate in a first round 

0],[ =rydtE t .        (7) 

But for a given country/region r, the dummy variable dtt is always zero, except for one 

observation, namely year t, implying that there is not enough variation in the data to 

estimate (7).8 As a consequence, non-parametric testing for homogeneity does not seem to 

be possible if the starting point is specification (4) as employed by, for instance, Millimet 

et al. (2003). The problem is lack of identification. Indeed, consider 

)(),(),,( tGryftryh +=        (8) 

for some function G(t). It is easy to see that estimating according to the Robinson/Stock 

PLR framework actually allows G(t) to depend on r as well, i.e. one actually allows for the 

more general possibility G(t,r) instead of just G(t). But with G(t,r) left unspecified, f(y,r) is 

clearly not identified, since G(t,r) can be chosen to fit the time path of per-capita emissions 

c of region r exactly. Only by restricting G(t,r) to some parametric form, i.e. restricting the 

                                                 
7 This can easily be illustrated by considering the case of two countries whose y-values do not overlap (e.g. 
Luxemburg and Turkey). In the case of rejection of βLuxemburg  = βTurkey, homogeneity might still be present. 
 
8 Compare footnote 6: one cannot use the increasing number of regions any more to estimate the conditional 

expectation 0],[ =rydtE t consistently. 
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degrees of freedom of G(t,r) to some finite number, does it become possible to identify 

f(y,r). A typical choice would be to restrict G(t,r) to a linear time trend, as Millimet et al. 

(2003) actually do, or to allow for higher-order terms, such as G(t,r) = 2
,1 ,2 ...r rt tλ λ× + × + , 

etc. 

However, this yields heterogeneous specifications not nesting the homogeneous 

variants. Moreover, the identification of f(y,r) strongly depends upon the imposed 

parametric structure of G(t,r), which is clearly undesirable. Our solution for constructing a 

heterogeneous extension of the homogeneous semi-parametric specification (4), without 

imposing any restrictions on G(t) in (8), is to consider taking the difference between 

countries r and s at some given time t, yielding 

)(),(),( srsrsr syfryfcc εε −+−=− .    (9) 

The unknown regression functions ( )ryf r , and ( )syf s , can be estimated by applying, for 

example, Linton and Nielsen (1995), imposing their regularity conditions and distributional 

assumptions. 

Notice that this approach can easily be generalized to allow for country-specific 

time trends. Indeed, consider 

( )rtGryftryh ,),(),,( += .       (10) 

Again, take the difference in the function h for countries r and s at some given time t : 

( ) ( ).,,),(),( stGrtGsyfryfcc srsr −+−=−    (11) 

Assuming now that ( ) ( )stGrtG ,, =  (for two closely related regions r and s),9 the time 

effect again drops out. To compare the non-parametric specification (9) with parametric 

analogues, we also use parametric specifications of h(.) – such as equation (3) – in order to 

                                                                                                                                                    
 
9 Note that this specification implicitly accounts for potential endogeneity if the time trend captures 
technological change which – in turn – depends on (the level of) emissions and income (i.e. if both c = h(y, t) 
and t = g(e, y), the reduced-form estimation would typically simplify to e = ßy). 
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obtain more accuracy in our estimations of country-specific EKC patterns and possible 

turning points. Note that this procedure is the ultimate reduced-form estimation of the 

inverted-U curve, because identifying the inverted-U relation for income and emissions no 

longer depends on the effects of the time variables. For a pair of countries r and s with G(t) 

= G(t,r) = G(t,s), the time effect G(t) can be estimated parametrically or non-parametrically 

from 

( )
( ) errortGsyfc

errortGryfc

ss

rr

+=−
+=−

),(
),(

      (12) 

using the estimated functions f on the left-hand sides. In this way, each pair of comparable 

countries will have its own time effect. 

Finally, we normalize the levels of the estimated curves such that the average levels 

equal the sample average, since in the semi-parametric specifications the level of the 

curves is not identified. 

 

3. Empirical results based on the homogeneity assumption 

In this section, we reproduce earlier estimations in the literature based on the homogeneity 

assumption as our benchmark. Table 2 summarizes our main findings for the (pooled) 

parametric (log- linear) cubic specification. [INSERT TABLE 2] The response coefficients 

for income in the cubic specification with both time- and country-specific fixed effects are 

significantly different from zero at the p<0.01 levels. Interestingly, our results present a 

much more optimistic picture of an EKC pattern for CO2 emissions than earlier results 

based on polynomial specifications reported by Shafik (1994) and Holtz-Eakin and Selden 

(1995). We find a within-sample turning point (TP) at $14,355, which is at 43% of the 

maximum panel observation. Additionally, the income coefficients are jointly significant in 

at p<0.01. Further evidence for an EKC pattern is produced with the much more flexible 
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piecewise (linear) spline framework first applied in this context by Schmalensee et al. 

(1998).10 Our findings indicate a TP at a much higher income level than the standard 

parametric estimation, though still within the sample, i.e. at 64% of the maximum value 

and significant at p<0.01.11 These findings more-or-less confirm estimates reported by 

Dijkgraaf and Vollebergh (2005).  

These results seem to provide overwhelming evidence for the existence of an 

inverted U for CO2. Applying the semi-parametric estimation technique, however, yields a 

different picture. For ease of comparison, Figure 2 summarizes our main findings for the  

parametric cubic specification, the (linear) spline method and the standard semi-parametric 

PLR estimation (with 95% confidence band) as in Millimet et al. (2003).12 [INSERT 

FIGURE 2] Vertical lines are added at the predicted peak of the parametric EKC and its 

upper and lower limits of the 95% confidence interval.  

Clearly, the estimated parametric peak indicates an inverted U, as does the 

declining highest income spline.13 The fitted line of the PLR estimation, however, more-or-

less follows the EKC pattern produced by the (parametric) cubic specification only for 

income levels up to $20,000 or 59% of the maximum income level. However, we observe 

an emissions–income relationship that casts doubt on the existence of an inverted U for the 

observations in the upper tail of the income distribution. Where both the traditional 

                                                 
10 Like Schmalensee et al. (1998), we first started with a model featuring 20- and 24-segment splines and 
time fixed effects, where each segment contains the same number of data points. In our case, we reject 
simplifications to 10 and 12 splines that preserve this symmetry, but the differences are small. The same 
holds for simplifications from 16 to 8 splines. 
 
11 For the 24-spline estimation, only the first two and the last splines are significant. This finding is robust for 
the 20-, 16- and 12-spline specifications. Note that we only show significant splines in our figures. 
 
12 We report our results using the original values and not the log values.  
 
13 We present results only for the cubic model because the quadratic models were all clearly rejected vis -à-
vis the cubic specifications. Furthermore, both the quadratic and cubic models without any fixed effects were 
also rejected. Response coefficients for the quadratic model, as well as for models without country-specific 
fixed effects and time fixed effects, are available upon request. 
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parametric and the spline methods generate a negative income-elasticity, the semi-

parametric result is much less decisive, with a very wide confidence band for the highest 

income levels. Therefore, we are not as convinced as Azomahou et al. (2001), who – using 

the same specification but without region- and time-specific effects – conclude that the 

overall pattern more-or- less follows a monotonic increasing pattern of CO2 emissions per 

capita with rising (per-capita) income levels and, therefore, has no TP at all. The number of 

observations at the upper end is small and may point both to an upward and to a downward 

slope for the emissions–income relationship.  

Accordingly, we more-or-less reproduce the existing, thoughvarious, findings in the 

literature using the commonly applied estimation techniques. This confirms the main 

finding reported by Millimet et al. (2003) that modelling strategies matter. For our data, 

however, not only is the location of the TPs different, but also the answer to the question of 

whether or not an inverted U exists. Moreover, applying the same specification test as 

Millimet et al. (2003), using the semi-parametric PLR method as the alternative (see Zheng 

(1996) and Li and Wang (1998)), we reject the parametric but not the spline-based 

specification. 14 This is a bit surprising and may be due to the fact that the PLR method is 

highly inconclusive at the upper tail of the income distribution (taking into account the low 

number of observations available there). The last spline, however, closely follows the 

parametric estimation which is rejected. Therefore, we do not believe that the spline 

method is more accurate than the PLR method given the dispersion at the end of the 

distribution.  

                                                 
14 For a reasonable range of smoothness parameters, we find, in the case of the parametric cubic 
specification, values of the test statistic larger than 1.64. Taking into account that in finite samples the test 
statistic might be skewed to the left (see also Millimet et al. (2003)), this clearly indicates rejection of the null 
hypothesis. In the case of the spline specification, we find negative values of the test statistic. It is, however, 
unlikely that the skewness of the test statistic is so far to the left that this justifies rejection of the null 
hypothesis. 
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As noted before, a closer inspection of the data shows that only one or two 

countries dominate the upper tail of the income distribution, in particular Luxemburg and 

the USA (see Figure 1). Re-estimating the specified models without the data for 

Luxemburg does not alter the parametric result, but has a considerable effect on the more 

flexible spline-based and standard PLR estimation methods. For this only slightly smaller 

panel, the last, downward-sloping spline becomes no longer significant, whereas the PLR 

model now also clearly seems to reject the inverted-U emissions–income pattern (see 

Figure 3). However, the uncertainty range rapidly increases in the upper tail of the 

distribution. [INSERT FIGURE 3] 

We conclude that not only parametric but also semi-parametric results may depend 

on relatively few observations in the upper tail of the (income) distribution. 15,16 Indeed, the 

weight of the data for Luxemburg – with only 400,000 inhabitants – is entirely similar to 

those of countries such as the USA, Japan and Germany. Moreover, one major event – the 

closing-down of a large steel firm in the 1980s in Luxemburg17 – may affect our ultimate 

judgement on whether or not an EKC for CO2 exists. It goes without saying that this is 

undesirable. Therefore, it makes sense to investigate the role of heterogeneity in much 

more detail. 

Further evidence that the homogeneity assumption might be problema tic comes 

from a recent paper by Brock and Taylor (2004). They argue that income–emissions 

profiles are likely to differ across countries, if countries differ in initial conditions or in 

basic parameters such as savings, technological change (in abatement) and population 

                                                 
15 Note that the data for Luxemburg at lower income levels only affect the confidence bound given the 
dominance of observations with lower per-capita emissions levels at these income levels. 
 
16 We also explored sensitivity of the results for the exclusion of the US data as well, but that did not change 
the outcomes of the spline and the PLR models relative to the case without Luxemburg. 
 
17 Steel production was responsible for over 50% of industrial production in 1980 but was down to 3% in 
2000. 
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growth rates. While their amended or Green Solow model still allows for an EKC relation 

between emissions and income per capita, Brock and Taylor (2004) claim that empirical 

assessments should typically have difficulties in finding this relationship if they do not 

allow for enough heterogeneity across countries. Estimations should allow for 

heterogeneity in when (time) and where (income level) the peak occurs and for differences 

in the growth rate of emissions. Such divergences across countries (over time) are not 

adequately captured by the commonly used country-specific and time fixed effects in an 

econometric modelling environment based on the homogeneity assumption.  

 

4. The role of heterogeneity 

4.1 Investigating the homogeneity assumption 

Reduced-form parametric estimations of the EKC hypothesis focus on the role of the 

income parameters ß, while preserving as much homogeneity between different cross-

sections r as possible, i.e. βr = β  in equation (5). This typically has the advantage of 

yielding predictions: one expects a country at the lower end of the income observations to 

follow the same emissions–income pattern as the other cross-sections even if its emissions 

level is different (controlled for by country fixed effects). Therefore, homogeneity is a 

desirable characteristic of panel-based estimations from an econometric perspective. 

However, explicit testing of the null hypothesis of homogeneous country-specific 

slopes (i.e. whether βr = β  in (5)) of both the parametric and the spline models presented in 

the previous section yields a clear rejection of this core assumption at the p<0.01 levels, as 

in Dijkgraaf and Vollebergh (2005). The magnitudes of the Wald tests for the model with 

country fixed effects only (the estimation results of which are not included here, but are 

available on request) and for the model with both time and country fixed effects are 

Wald(69) = 3,639 and Wald(69) = 817, respectively, so that in both cases we reject the null 
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at the p<0.01 level. These results do not change if one allows for more flexibility in the 

time parameter by including country-specific trends (see second column of Table 2). Even 

though this more general model performs considerably better than the commonly estimated 

parametric models, the homogeneity assumption on the GDP coefficients is still rejected 

(the Wald statistic is Wald(69) = 1,219).18 We also find clear indications that the spline 

models do not allow for enough heterogeneity, even if one allows for country-specific 

trends. With the same income levels for the different segments applied at the country level, 

we find a rejection of the homogeneity assumption for the preferred models in all cases.19 

As we explained in section 2, these results may indicate that reduced-form parametric or 

spline-based estimations assuming homogeneity in either the income or the time parameter 

or both might be misleading.20,21 

Direct testing of the homogeneity assumption in the semi-parametric 

Robinson/Stock framework is not possible, however. More heterogeneity in the regression 

function requires enough (parametric) structure on the time component, as noted before. 

Therefore, we extend the approach of Millimet et al. (2003) by modelling the time trend 

via a country-specific third-order polynomial. Fortunately, this allows us to explore to 

                                                 
18 We generate our Wald statistics by comparing the sum of squared residuals of the general model with and 
without heterogeneous coefficients for only the GDP variables (‘tradit ional models’) and/or for the time-
specific trend variable (general model). Because in the last case all coefficients are country-specific, we 
estimated this model with country-specific time-series analysis.  
 
19 For instance, the Wald test on heterogeneous coefficients of the income variables for the 8-spline model is 
Wald(126) = 1,428. We found similar results for 12-, 10- and the (non-preferred) 6-spline models. Results 
are available upon request. 
 
20 We also tested whether common exogenous covariates, such as differences in temperature, geological 
structure (mountainous landscape) and availability of (fossil-fuel) resources, might affect our findings for the 
income variables. Interestingly, we succeeded in producing similar explanatory power to the (parametric) 
model including fixed country effects without having much effect on the income parameters. This suggests 
that the fixed effects capture these exogenous factors rather well. These results are available upon request. 
 
21 The importance of heterogeneity is further illustrated by Dijkgraaf and Vollebergh (2005), who applied an 
LR test to different possible panel combinations of countries, such as the inclusion of country-specific GDP 
variables for one country at a time. Also, a systematic test for homogeneity of all possible sub-panels (in 
total, nearly 380,000 combinations were checked) showed that sub-panels for which homogeneity is not 
rejected are rare, and never exceed a group of five countries. 
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some extent the consequences of heterogeneity: under homogeneity, there is not much 

difference between the semi-parametric PLR curve with a general time effect (time 

dummies), i.e. the unrestricted case, and the semi-parametric PLR curve when the time 

effect is modelled by means of a third-order polynomial.22 To investigate the implications 

of our results for the EKC hypothesis, we also estimate the models parametrically, 

considering a polynomial model including a (country-specific) trend.23 Estimated plots – 

similar to those presented in Figures 2 and 3 – are presented for each country separately in 

Figure 4. [INSERT FIGURE 4]  

The results are striking. First of all, the graphs clearly indicate heterogeneity. 

Comparing countries with overlapping income levels or comparing a single country with 

the homogeneous case yields remarkable differences in many cases. 

Secondly, the difference between estimation methods is much less pronounced and 

has even disappeared for several countries at different income levels, e.g. Turkey, Australia 

and the USA. For these countries, the parametric pattern fits almost entirely within the 

PLR bound. In some other cases, e.g. Greece and Italy, the difference is still substantial. 

The polynomial-based parametric and the PLR estimates point to very different 

development patterns over time for these countries. This also makes robust judgements 

more difficult as to whether a TP exists or not. 

Thirdly, the TP estimates for the countries differ remarkably, if they exist at all. 

Now, 17 of the 24 countries have a TP within the pooled sample, and most TPs are within 

their own country’s income range. In contrast, the PLR method yields very different 

results. Looking at the (weak) hypothesis that one could reject a TP for a particular 

                                                 
22 These results are available on request. 
 
23 Too little data are available to estimate splines for each country separately. 
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country, the PLR method quite often does not indicate a TP at all.24 Interestingly, the 

results for the highest- income countries appear somewhat more robust, and several of the 

highest- income countries also indicate a TP according to both methods, with Luxemburg 

(indeed!) and Norway as the main exceptions.  

These results are clearly an improvement on the pooled estimation based on 

homogeneity. Moreover, they are perfectly in line with the predictions based on the Green 

Solow model (Brock and Taylor, 2004). However, judgements are very sensitive to the 

estimation techniques applied. This lack of robustness seems mainly due to the time 

component if one compares the estimation results from different specifications of the time 

trend. Whether a further reduction of the reduced form to the income parameter only might 

solve this problem is the subject of the next subsection.  

 

4.2 Allowing for heterogeneity 

Allowing for a fully flexible time trend is possible in the case of homogeneity, and we can 

check whether or not restricting this time trend to some parametric form is possible. 

However, in the case of heterogeneity, and restricting oneself to country-specific time-

series estimation, a fully flexible time trend makes identification of the EKC pattern 

impossible.25 Fortunately, there are good reasons why some closely linked countries might 

develop similarly over time – for instance, because they are exposed to common 

(technology, regulatory or price) shocks. To allow for general heterogeneity in the time 

                                                 
24 The critical test for the parametric method used is an estimated within-pooled-sample TP. If we require a 
negative derivative for the last, say, three observations, the PLR method yields a different outcome for five 
countries. The judgement for the non-parametric method, however, is a bit arbitrary. For instance, if the last 
couple of observations for a country rise again, one is likely to reject the existence of a TP, whereas these 
observations may well be far below observations at lower income levels.  
 
25 Due to lack of robustness of panel-based inverted-U estimations (see in particular Harbaugh et al., 2001), 
some scholars seem to have lost confidence in pooled estimations of EKC patterns nowadays (Stern, 2004). 
However, without pooling, the only remaining option is country-specific time-series estimation. Separate 
estimation of country-specific emissions–income patterns excludes potential isomorphic patterns between 
countries a priori, and estimators no longer benefit from joint parameter estimation. 
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component of the PLR estimates, while still capturing potential common shocks between 

closely connected countries, we re-estimated our model by applying (9) and using the 

Linton and Nielsen (1995) (LN) method. This approach is based on pairwise combinations 

of countries that are likely to develop more-or-less closely over time. Table 3 shows the 

pairwise combinations we have used as our first and second choices, based on expert 

opinion. [INSERT TABLE 3]  

 In the original LN estimator, the corresponding confidence band is based on the 

assumption of homoskedasticity. We extend the asymptotic limit distribution by also 

allowing for the possibility of heteroskedasticity. 26 The results are reported in Figure 5 for 

both standard parametric and non-parametric panel data techniques, with 95% confidence 

intervals for the non-parametric estimator, both with the imposition of homoskedasticity 

and allowing for heteroskedasticity. [INSERT FIGURE 5]  

 Again, the results are remarkable. First of all, heterogeneity clearly remains 

present. Secondly, the difference between estimation methods has now almost disappeared. 

For rather obvious combinations of countries, usually neighbours, both estimation 

techniques generate more-or-less similar results in most cases. For instance, assuming a 

similar time trend for Belgium and the Netherlands yields a robust emissions–income 

pattern for both countries, whereas there was much more uncertainty with the previous 

specification. Only in a very few cases do the different estimation techniques point to 

different, non-robust patterns. Moreover, these are countries for which it is not always 

obvious to find a neighbour with common shocks, such as Finland.  

                                                 
26 The asymptotic variance of the estimator of ( ),rf y r  changes from the expression in Linton and Nielsen 

(1995) given by ( ) ( ) ,,/ ,
22∫ ssrsrss dyyypypσ  to, referring to equation (9), 

( )( ) ( ) ( ) ,,/, ,
22∫ − ssrsrsssrsr dyyypypyyE εε  

with ( )ss yp the density of sy and ( )srsr yyp ,, the density of ( )., sr yy  The sample analogue follows 

straightforwardly and is similar to Linton and Nielsen (1995). 
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Thirdly, with our ultimate reduction of the reduced-form estimation of the 

emissions–income relationship, we are finally able to judge more robustly whether a TP 

exists or not for particular countries. As long as the estimated patterns are robust, we can 

rely on the more accurate parametric method to conclude whether a TP exists or not for 

particular countries. This is especially helpful because the inconclusive region of the LN 

method sometimes becomes quite large due to cumulating uncertainties resulting in a wider 

confidence bound. Accordingly, using the parametric method, we find evidence for within-

pooled-sample TPs for 16 of the included 24 countries, still covering most countries with 

the highest income levels. This provides new evidence that the earlier result of 

Schmalensee et al. (1998) of the existence of a within-sample TP seems to be right after 

all. Note also that our results provide strong support for the Green Solow model, even for a 

type of emission that is, at best, only indirectly regulated so far.27  

Our results also demonstrate the important role of the time variable. We find that 

estimations of a reduced-form emissions–income relationship are strongly dependent on 

how the time effect is taken into account. This is immediately clear from a comparison of 

the estimations for the different countries represented in Figures 4 and 5. For instance, the 

downward trend in CO2 emissions for Luxemburg in Figure 4 can be due only to the time 

effect because the pure emissions–income effect shown in Figure 5 is upward-sloping. 

Other countries also show remarkable differences between the effects. Figure 6 plots the 

estimated income and time effects as well as their overall in-sample prediction for 

Luxemburg and for some other interesting cases, i.e. Belgium, France, Sweden and the 

USA. [INSERT FIGURE 6]  

                                                 
27 Although some countries may have already implemented some restrictive policies directly aimed at 
reducing CO2 emissions, the implementation of the Kyoto protocol still has to become effective. Nonetheless, 
CO2 emissions have been reduced substantially relative to income, mainly due to energy efficiency 
improvements (see, for instance, Kaufman (2004)). 
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The time effect for Luxemburg now nicely coincides with the gradual decline in 

steel production, whereas our (parametric) estimation of the pure income effect shows 

some indication of a TP only for the last couple of years. Together, these effects more-or-

less cancel each other out, although the rising income effect seems to become more 

dominant at the end of the period. The fit between predicted and actual values is 

particularly bad for Luxemburg, however, which further substantiates the difficulty of 

finding robust within-sample predictions of the inverted U based on pooled data.  

The estimations for Belgium and France are another interesting case to illustrate the 

strength of our approach. Our parametric estimation of the pure income effect suggests that 

Belgium has an inverted U and that France does not. This is an intriguing result as both the 

raw data and our in-sample overall prediction for France clearly suggest an inverted U for 

CO2 emissions. Interestingly, we are quite confident that our result makes sense because 

the pure time effect for both countries strongly correlates with the consumption of fossil 

fuels in the energy system. In particular, diffusion of nuclear electricity generation differs 

between both countries as to when and how much nuclear electricity generation has come 

to play a role in the energy system. 28 Note also that the within-sample predictions show a 

much better fit for both countries than the estimations based on the pooled sample.29 As a 

final observation, we include in Figure 6 the other country in the upper tail of the income 

distribution, i.e. the USA. Again, the income and time effects seem to follow opposite 

directions over time, with only some evidence for a TP in the very last observations.  

 

5. Conclusion 

                                                 
28 Interestingly, these time effects do not show up for Sweden (see also Figure 6). This country also shifted 
its electricity production towards nuclear-based generation, but it used to generate from another non-fossil-
fuel source in the past, hydropower.  
 
29 This is true for almost all countries in our sample. Results are available on request. 
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This paper shows that panel-based estimations of the inverted-U hypothesis for CO2 should 

be treated with care. Although non-parametric estimations of a rather restrictive 

specification for the entire panel suggest that no such pattern exists, and specification tests 

hold this technique to be preferable, allowing for country-specific estimations yields a very 

different pattern. It turns out that such inverted-U-shaped patterns do exist for several of 

the highest- income countries. Thus the existence of an overall inverted U for CO2 

emissions ultimately depends on the balance between high- income countries with an 

(expected) inverted U and high- income countries with still-growing (per-capita) emissions. 

We have shown that an overall inverted U seems much more likely if we control for 

country-related time-specific effects. Accordingly, earlier results on the existence of an 

inverted U for CO2 do not seem to be wrong after all. Further research remains necessary 

as to whether this inverted-U pattern is strong enough to compensate for strong upward 

time effects in some countries.  
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Figure 1: Data plot of emissions–income relationship 
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Figure 2: Estimation results for 24 OECD countries, based on the homogeneity 
assumption for GDPa) 
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a) Explanation legenda: 
- Cubic: parametric cubic specification 
- Spline: 24 piece-wise linear (significant splines only) 
- TP±2SD: turning point ± 2 standard deviations 
- NP-LB/AV/UB: non-parametric PLR Lower Bound, Average and Upper Bound 
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Figure 3: Estimation results without Luxemburg, based on the homogeneity assumption for 
GDPa) 
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Figure 4: CO2 emissions for OECD countries (parametric and Robinson/Stock) 
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Figure 5: Pairwise estimation of emissions–income relationship 
 
 
  Australia

0

1000

2000

3000

4000

5000

6000

2500 7500 12500 17500 22500

Per capita income

Pe
r 

ca
pi

ta
 C

O
2

NP-UB-H NP-UB NP-AV NP-LB NP-LB-H

P-AV TP-LB TP TP-UB

Austria

0

1000

2000

3000

4000

5000

6000

2500 7500 12500 17500 22500

Per capita income

Pe
r 

ca
pi

ta
 C

O
2

NP-UB-H NP-UB NP-AV NP-LB NP-LB-H

P-AV TP-LB TP TP-UB

Belgium

0

1000

2000

3000

4000

5000

6000

2500 7500 12500 17500 22500

Per capita income

Pe
r 

ca
pi

ta
 C

O
2

NP-UB-H NP-UB NP-AV NP-LB NP-LB-H

P-AV TP-LB TP TP-UB

Canada

0

1000

2000

3000

4000

5000

6000

2500 7500 12500 17500 22500

Per capita income

Pe
r c

ap
ita

 C
O

2

NP-UB-H NP-UB NP-AV NP-LB NP-LB-H

P-AV TP-LB TP TP-UB

Denmark

0

1000

2000

3000

4000

5000

6000

2500 7500 12500 17500 22500

Per capita income

Pe
r 

ca
pi

ta
 C

O
2

NP-UB-H NP-UB NP-AV NP-LB NP-LB-H

P-AV TP-LB TP TP-UB

Finland

0

1000

2000

3000

4000

5000

6000

2500 7500 12500 17500 22500

Per capita income

Pe
r 

ca
pi

ta
 C

O
2

NP-UB-H NP-UB NP-AV NP-LB NP-LB-H

P-AV TP-LB TP TP-UB



 32 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 France

0

1000

2000

3000

4000

5000

6000

2500 7500 12500 17500 22500

Per capita income

Pe
r c

ap
it

a 
C

O
2

NP-UB-H NP-UB NP-AV NP-LB NP-LB-H

P-AV TP-LB TP TP-UB

Germany

0

1000

2000

3000

4000

5000

6000

2500 7500 12500 17500 22500

Per capita income

Pe
r 

ca
pi

ta
 C

O
2

NP-UB-H NP-UB NP-AV NP-LB NP-LB-H

P-AV TP-LB TP TP-UB

Greece

0

1000

2000

3000

4000

5000

6000

2500 7500 12500 17500 22500

Per capita income

Pe
r 

ca
pi

ta
 C

O
2

NP-UB-H NP-UB NP-AV NP-LB NP-LB-H

P-AV TP-LB TP TP-UB

Iceland

0

1000

2000

3000

4000

5000

6000

2500 7500 12500 17500 22500

Per capita income

Pe
r 

ca
pi

ta
 C

O
2

NP-UB-H NP-UB NP-AV NP-LB NP-LB-H

P-AV TP-LB TP TP-UB

Ireland

0

1000

2000

3000

4000

5000

6000

2500 7500 12500 17500 22500

Per capita income

Pe
r 

ca
pi

ta
 C

O
2

NP-UB-H NP-UB NP-AV NP-LB NP-LB-H
P-AV TP-LB TP TP-UB

Italy

0

1000

2000

3000

4000

5000

6000

2500 7500 12500 17500 22500

Per capita income

Pe
r 

ca
pi

ta
 C

O
2

NP-UB-H NP-UB NP-AV NP-LB NP-LB-H
P-AV TP-LB TP TP-UB



 33 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Japan

0

1000

2000

3000

4000

5000

6000

2500 7500 12500 17500 22500

Per capita income

Pe
r c

ap
ita

 C
O

2

NP-UB-H NP-UB NP-AV NP-LB NP-LB-H

P-AV TP-LB T P TP-UB

Luxembourg

0

1000

2000

3000

4000

5000

6000

2500 7500 12500 17500 22500 27500 32500

Per capita income

Pe
r 

ca
pi

ta
 C

O
2

NP-UB-H NP-UB NP-AV NP-LB NP-LB-H

P-AV TP-LB TP TP-UB

Netherlands

0

1000

2000

3000

4000

5000

6000

2500 7500 12500 17500 22500

Per capita income

Pe
r 

ca
pi

ta
 C

O
2

NP-UB-H NP-UB NP-AV NP-LB NP-LB-H
P-AV TP-LB T P TP-UB

Norway

0

1000

2000

3000

4000

5000

6000

2500 7500 12500 17500 22500

Per capita income

Pe
r 

ca
pi

ta
 C

O
2

NP-UB-H NP-UB NP-AV NP-LB NP-LB-H
P-AV TP-LB TP TP-UB

New Zealand

0

1000

2000

3000

4000

5000

6000

2500 7500 12500 17500 22500

Per capita income

Pe
r 

ca
pi

ta
 C

O
2

NP-UB-H NP-UB NP-AV NP-LB NP-LB-H

P-AV TP-LB T P TP-UB

Portugal

0

1000

2000

3000

4000

5000

6000

2500 7500 12500 17500 22500

Per capita income

Pe
r 

ca
pi

ta
 C

O
2

NP-UB-H NP-UB NP-AV NP-LB NP-LB-H

P-AV TP-LB TP TP-UB



 34 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 Spain

0

1000

2000

3000

4000

5000

6000

2500 7500 12500 17500 22500

Per capita income

Pe
r 

ca
pi

ta
 C

O
2

NP-UB-H NP-UB NP-AV NP-LB NP-LB-H
P-AV TP-LB TP TP-UB

Sweden

0

1000

2000

3000

4000

5000

6000

2500 7500 12500 17500 22500

Per capita income

Pe
r c

ap
ita

 C
O

2

NP-UB-H NP-UB NP-AV NP-LB NP-LB-H
P-AV TP-LB TP TP-UB

Switserland

0

1000

2000

3000

4000

5000

6000

2500 7500 12500 17500 22500

Per capita income

Pe
r 

ca
pi

ta
 C

O
2

NP-UB-H NP-UB NP-AV NP-LB NP-LB-H

P-AV TP-LB TP TP-UB

Turkey

0

1000

2000

3000

4000

5000

6000

2500 7500 12500 17500 22500

Per capita income

Pe
r 

ca
pi

ta
 C

O
2

NP-UB-H NP-UB NP-AV NP-LB NP-LB-H

P-AV TP-LB TP TP-UB

UK

0

1000

2000

3000

4000

5000

6000

2500 7500 12500 17500 22500

Per capita income

Pe
r c

ap
ita

 C
O

2

NP-UB-H NP-UB NP-AV NP-LB NP-LB-H

P-AV TP-LB TP TP-UB

USA

0

1000

2000

3000

4000

5000

6000

2500 7500 12500 17500 22500 27500

Per capita income

Pe
r c

ap
ita

 C
O

2

NP-UB-H NP-UB NP-AV NP-LB NP-LB-H

P-AV TP-LB TP TP-UB



 35 

Figure 6: The pure Kuznets curve and overall within-sample predictions for five countries 
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Table 1: Descriptive statisticsa,  
 
Variable  Mean (SD) Minimum Maximum 

All 24 countries    

Per-capita carbon (tons) 2,606 (1,801) 167 12,333 

Per-capita income (1990$) 13,172 (4,992) 2,771 33,635 

Population (mln) 33 (50) 0.2 275 

    

All countries except Luxemburg    

Per-capita carbon (tons) 2,333 (1,177) 167 6,151 

Per-capita income (1990$) 12,959 (4,790) 2,771 27,234 

Population (mln) 34 (51) 0.2 275 

 
a) Descriptive statistics are for the period 1960-2000 (n = 984). 
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Table 2: Main test results for parametric estimations based on homogeneitya  

 Parametric Parametric 
   

Independent variables   
GDP 
 
 

-31.12*** 
(7.58) 

-30.88*** 
(6.12) 

GDP2 

 

 

4.22*** 
(0.83) 

3.80*** 
(0.67) 

GDP3 

 

 

-0.18*** 
(0.03) 

-0.15*** 
(0.02) 

Fixed effects, countries  
 

Yes Yes 

Fixed effects, years  
 

Yes  

Country-specific trend 
 

Yes 

   
Homogeneity tests   
 
Wald (GDP variables)  

 

 
817***b 

 
1,219*** b  

Wald (country-specific trends) 
 

 357***c 
 

Wald (all variables) 

 
 5,389***d  

 
a) Dependent variable is CO2 emissions per capita; standard errors in parentheses. 
b) Wald test with H0: β1r=β1r+1 and β2r=β2r+1 and β3r=β3r+1 . 
c) Wald test with H0: ?irt=?r+1r . 
d) Wald test with H0: β1r=β1r+1 and β2r=β2r+1 and β3r=β3r+1 and ?r= ?r+1 . 
*** Significant at 99% confidence interval. 
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Table 3: Combinations of countries with similar time trends 

Australia  New Zealand 
Austria  Switzerland 

Belgium Netherlands 
Canada USA 

Denmark Austria  
Finland Sweden 
France Germany 

Germany France 
Greece Turkey 
Iceland Norway 
Ireland UK 
Italy France 

Japan Australia  
Luxemburg Belgium 
Netherlands Belgium 

New Zealand Australia  
Norway Iceland 
Portugal Spain 

Spain Portugal 
Sweden Finland 

Switzerland Austria  
Turkey Greece 

UK Ireland 
USA Canada 

 
 
 
  

 


