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Abstract 

In common property ecological systems such as shallow lakes, an increasing number of users 

leads to additional Nash equilibria with considerably lower welfare. When the game is 

repeated, these bad outcomes can be turned into an advantage. 
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1. Introduction 

 

Lakes provide a variety of services such as water for irrigation, drinking and industrial uses, 

fishery, recreation and aesthetic enjoyment. But lakes are also used for dumping pollutants 

such as phosphorus from agricultural activities. These services are conflicting in the sense 

that the release of too many pollutants makes the lake useless in the other services. Especially 

shallow lakes have been studied intensively and it has been shown that due to internal loading 

processes, a sudden loss of ecological services may occur which is very difficult to restore 

(Carpenter and Cottingham, 1997; Scheffer, 1997). Lakes are usually also open-access 

resources. If a lake is used by a number of communities, open access implies the lake is not 

managed efficiently. In a Nash equilibrium the communities will release more phosphorus 

than they would in case of joint management of the lake, with a welfare loss as the result of 

that. 

It has been shown that the internal loading processes in the lake also affect the number of 

Nash equilibria of this game (Mäler, Xepapadeas and de Zeeuw, 2000). More specifically, for 

a low number of communities the Nash equilibrium is unique in their model, with a modest 

welfare loss, but when the number of communities is increased, a second Nash equilibrium 

occurs with a high loss in welfare. This result is worrisome at first sight but we like to argue 

in this paper that it may also be turned into an advantage. 

Remember that the folk theorem in repeated games teaches us that cooperation can be 

sustained by an equilibrium in trigger strategies if the discount factor is high enough. The 

basic idea is that the communities stick to efficient loadings of phosphorus under the threat 

that deviation triggers the repeated static Nash equilibrium with lower welfare. The higher 

that loss of welfare, the lower is the minimal discount factor for which cooperation can be 

sustained by trigger strategies. An increase in the number of communities that use the lake 

has many effects. Welfare per community under optimal management changes as well as 

welfare in the static Nash equilibrium and welfare in case of cheating but as long as the static 

Nash equilibrium is unique, the minimal discount factor will not change much. However, 

when the second static Nash equilibrium occurs, this one will be used as trigger threat point 

and a non-monotonic jump in the minimal discount factor will occur. A similar result was 

found in the effect of changing numbers of firms on cartel formation in repeated Bertrand 

oligopolies with capacity constraints (Brock and Scheinkman, 1985). 

 

2. The lake model 



 

The most important indicator for the pollution of lakes is the amount of phosphorus 

sequestered in algae. The essential dynamics of the pollution process (called lake 

eutrophication) is given by (see Carpenter, Ludwig and Brock, 1999) 

where P is the amount of phosphorus in 

algae, L (for loading) is the release of 

phosphorus on the lake, s is the rate of 

loss consisting of sedimentation, outflow and sequestration in other biomass, r is the 

maximum rate of internal loading and m is the anoxic level (for an extensive treatment of the 

lake model see Carpenter and Cottingham, 1997, or Scheffer, 1997). It is assumed that the 

lake dynamics is much faster than the changes in the agriculture activities that are responsible 

for the release of phosphorus. It follows that the loading L can be treated as a parameter: each 

level L leads to a steady-state level P for the differential equation (1). 

By substituting x = P/m, a = L/r, b = sm/r and by changing the time scale to rt/m, equation (1) 

can be rewritten as 

For most lakes it is found that ½ < b < 3 

3/8. Figure 1 depicts for b = 0.6 the 

steady-states x of differential equation (2) as a function of the loading parameter a. If the 

loadings a are increased from 0, at a certain point the steady-state phosphorus level x jumps 

to a high level which explains the sudden loss of ecological services. It is said that the lake 

flips from an oligotrophic state to a eutrophic state. If the loadings a are gradually decreased 

again, the lake remains eutrophic for a while before it flips back to an oligotrophic state 

(hysteresis effect). 

Mäler, Xepapadeas and de Zeeuw (2000) consider the situation that n communities have open 

access to the lake and introduce welfare indicators ln ai - cx2, i = 1,...,n, c > 0. These 

indicators reflect the benefits of loading and the damage of accumulated pollution. Optimal 

management of the lake requires us to solve 

It is easy to show that the stationary points 

are given by 

(1)P dot (t) ~=~ L `-` sP(t) `+` r{P sup 2 (t)} 

over {P sup 2 (t) `+` m sup 2}, ~P(0) `=` P sub 0 

, 

(2)x dot (t) ~=~ a `-` bx(t) `+` {x sup 2 (t)} over 

{x sup 2 (t) `+` 1}, ~x(0) `=` x sub 0 . 

(3)maximize ~sum from {i=1} to n `ln `a sub i 

`-` ncx sup 2, ~s.t. ~ a `-` bx `+` {x sup 2 } over 

{x sup 2 `+` 1} ~=~ 0, ~a ~=~ sum from {i=1} 

to n `ln `a sub i . 



which is independent of n. For b = 0.6 and 

c = 2, figure 1 depicts the result: optimal 

management leads to one oligotrophic 

steady-state level of phosphorus. 

Mäler, Xepapadeas and de Zeeuw (2000) also show that the Nash equilibria, resulting from 

are given by 

More precisely, if equation (6) has one 

solution, one oligotrophic Nash 

equilibrium results, and if it has three 

solutions, two Nash equilibria result, one 

oligotrophic and one eutrophic. It is easy 

to see graphically, in figure 1, what happens. Compare the right-hand sides of equations (4) 

and (6): increasing n means that the dashed curve is stretched out while the intersection 

points with the x-axis remain in place. For n large enough, the curves have two more 

intersection points, of which the right one is a Nash equilibrium in the eutrophic area. Note 

that for n    , the series of oligotrophic Nash equilibria approaches the flip point. 

 

[Insert Figure 1 here] 

 

3. Trigger strategy equilibria 

 

Suppose now that the game in section 2 is infinitely repeated. In each period the communities 

choose phosphorus loadings, the lake adjusts and welfare levels result. Future welfare levels 

are discounted with discount factor   per period. Trigger strategies prescribe that the 

communities cooperate but switch to non-cooperative behavior when one of the communities 

deviates. The switch to the repeated static Nash equilibrium can be seen as a punishment that 

is credible since it is an equilibrium of the repeated game: trigger strategies are subgame 

perfect. If it does not pay to deviate unilaterally, trigger strategies are in equilibrium and 

support optimal management of the lake. This holds if (e.g. Friedman, 1989) 

where Wd denotes the highest welfare for 

a community if it deviates and the other 

communities stick to cooperative 

behavior, Wc denotes the welfare per community in the Nash equilibrium for the stage game 

and Wo denotes the welfare per community per period under optimal management. It is, of 

(4)a ~=~ bx `-` {x sup 2 } over {x sup 2 `+` 1} 

~=~ 1 over c `(b over {2x} `-` 1 over {(x sup 2 

`+` 1) sup 2 }), 

(5)maximize ~ln `a sub i `-` cx sup 2, ~i `=` 

1,...,n, ~s.t. ~ a `-` bx `+` {x sup 2 } over {x sup 

2 `+` 1} ~=~ 0, 

(6)a ~=~ bx `-` {x sup 2 } over {x sup 2 `+` 1} 

~=~ n over c `(b over {2x} `-` 1 over {(x sup 2 

`+` 1) sup 2 }). 

(7)W sub d `+`   over {1 `-`  } `W sub c ~<~ 1 

over {1 `-`  } `W sub o ~ ~   ~>~ {W sub d `-` 

W sub o } over {W sub d `-` W sub c }, 



course, possible to use equilibria in more sophisticated strategies and achieve stronger 

properties like renegotiation proofness, but we prefer to use the simplest framework to make 

our point. Welfare levels Wo and Wc are given by ln a0 - ln n - 2x0
2 and ln ac - ln n - 2xc

2, 

where (ao, xo) is the solution of equation (4) (for b = 0.6 and c = 2) and (ac, xc) is a solution of 

equation (6). If the number of communities n increases, both welfare levels Wo and Wc 

decrease by ln n but Wc decreases more because (ac, xc) moves away from the optimal point 

(ao, xo). More importantly, however, for n big enough (n > 3) two Nash equilibria occur, one 

oligotrophic and one eutrophic. Because the Nash equilibrium is used as a threat, the 

eutrophic one is chosen, so that moving from n = 3 to n = 4 shows a significant drop in Wc. 

The numbers are given in table 1. It remains to derive Wd. Suppose that community i decides 

to deviate, the best it can do is described by 

which leads to 

It follows that Wd is simply given by ln aid 

- 2xd
2, where (aid, xd) is the solution of 

equation (9) (for b = 0.6 and c = 2). The 

numbers are presented in table 1. The 

welfare level Wd decreases but not as 

much as the welfare level Wo under 

optimal management. The reason is that a large number of cooperating communities is 

relatively beneficial for the one that deviates. 

 

[Insert Table 1 here] 

 

We are now ready to make our point. As can be seen from table 1, when n is increasing from 

2 to 3 and from 4 onwards, the minimal discount factor for which optimal management of the 

lake can be sustained by trigger strategies, increases gradually. However, when n increases 

from 3 to 4, this value drops dramatically. The occurrence of a second Nash equilibrium of 

the static game, with much lower welfare, threatens a much stronger punishment in case of 

deviation so that also for low discount factors, deviation is deterred. 

In order to keep our result transparent, we have chosen to present it in a simple framework 

with fixed parameter values. It is not so easy to derive the result analytically, because the 

dependence of the minimal discount factor  m, given by the right-hand side of inequality (7), 

on the number of communities n is rather complicated. It is shown in figure 2 how the 

minimal discount factor  m depends on n if the parameter b is disturbed to b = 0.58 and b = 

(8)maximize ~ln `a sub i `-` cx sup 2 ~s.t. ~ a 

sub i `+` {n `-` 1} over n `a sub o `-` bx `+` {x 

sup 2 } over {x sup 2 `+` 1} ~=~ 0, 

(9)a sub i ~=~ bx `-` {x sup 2 } over {x sup 2 

`+` 1} `-` {n `-` 1} over n `a sub o ~=~ 1 over c 

`(b over {2x} `-` 1 over {(x sup 2 `+` 1) sup 2 

}). 



0.62. The qualitative pattern remains the same. Numerical calculations for other parameter 

values show the same picture. 

 

[Insert Figure 2 here] 

 

4. Conclusion 

 

The folk theorem in repeated games teaches us that optimal management of a shallow lake, 

seen as repeated game, can be sustained by trigger strategy equilibria for high enough 

discount factors. How high the discount factor should be depends on several factors such as 

how serious the threat is in case of deviation. Previous papers have shown that when the 

number of communities that use the lake is increased, additional Nash equilibria occur with 

low welfare. This paper employs that result to show that at some point a further increase in 

the number of communities leads to a large decrease in the minimal discount rate for which 

optimal management can be sustained. What may be seen as a negative result in the static 

context, can be turned into a positive one when the game is repeated. 
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Table 1 

n Wo Wc Wd   > 

1 -2.507    

2 -3.200 -3.214 -3.179 0.606 

3 -3.606 -3.635 -3.546 0.669 

4 -3.893 -7.514 -3.792 0.027 

5 -4.117 -8.656 -3.972 0.031 

 



 

Figure 1 The lake model under optimal management 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 The minimal discount factor as a function of the number of communities 
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