
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
No. 2004–17 

 
 
 

DESIGN AND ANALYSIS OF MONTE CARLO EXPERIMENTS 
 

By J.P.C. Kleijnen 
 

February 2004 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ISSN 0924-7815 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6714907?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


CS_Handbook_version_2.doc; written 2 February 2004; printed 2/2/2004 3:44 PM 

 

 

 

Design and analysis of Monte Carlo experiments 

 

Jack P.C. Kleijnen 

 

Department of Information Systems and Management/Center for Economic Research 

(CentER), Tilburg University, Postbox 90153, 5000 LE Tilburg, The Netherlands 

E-mail address: Kleijnen@UvT.NL; http://center.kub.nl/staff/kleijnen/ 

 

Chapter III. 3 of 

Handbook of computational statistics 

Volume I: concepts and fundamentals 

 

Edited by  

 James E. Gentle <jgentle@gmu.edu> George Mason University 

 Wolfgang Haerdle <haerdle@wiwi.hu-berlin.de>  Humboldt-Universitat zu Berlin 

 Yuichi Mori <mori@soci.ous.ac.jp> Okayama University of Science 

 

To be published by  
Springer-Verlag, Heidelberg, Germany



 2

 

1. Introduction 

 

By definition, computer simulation (or Monte Carlo) models are not solved by 

mathematical analysis (for example, differential calculus), but are used for numerical 

experimentation. These experiments are meant to answer questions of interest about 

the real world; i.e., the experimenters may use their simulation model to answer what  

if questions—this is also called sensitivity analysis. Sensitivity analysis—guided by 

the statistical theory on design of experiments (DOE)—is the focus of this chapter. 

Sensitivity analysis may further serve validation, optimization, and risk (or 

uncertainty) analysis for finding robust solutions; see Kleijnen (1998), Kleijnen et al. 

(2003a) and Kleijnen et al. (2003b). Note that optimization is also discussed at length 

in Chapter II.6 by Spall. 

Though I assume that the reader is familiar with basic simulation, I shall 

summarize a simple Monte Carlo example (based on the well-known Student t 

statistic) in Section 2. This example further illustrates bootstrap and variance 

reduction techniques 

Further, I assume that the reader ’s familiarity with DOE is restricted to 

elementary DOE. In this chapter, I summarize classic DOE, and extend it to newer 

methods (for example, DOE for interpolation using Kriging; Kriging is named after 

the South-African mining engineer D.G. Krige). 

Traditionally, ‘the shoemaker’s children go barefoot’; i.e., users of computational 

statistics ignore statistical issues—such as sensitivity analysis—of their simulation 

results. Nevertheless, they should address tactical issues—the number of 

(macro)replicates, variance reduction techniques—and strategic issues—situations to 

be simulated and the sensitivity analysis of the resulting data. Both types of issues are 

addressed in this chapter. 

Note the following terminology. DOE speaks of ‘factors’ with ‘levels’ whereas 

simulation analysts may speak of ‘inputs‘ or ‘parameters’ with ‘values’. DOE talks 

about ‘design points’ or ‘runs’, whereas simulationists may talk about ‘situations’, 

‘cases’, or ‘scenarios’.  

Classic DOE methods for real, non-simulated systems were developed for 

agricultural experiments in the 1930s, and—since the 1950s—for experiments in 

engineering, psychology, etc. (Classic designs include fractional factorials, as we shall 
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see.) In those real systems it is impractical to experiment with ‘many’ factors; k = 10 

factors seems a maximum. Moreover, it is then hard to experiment with factors that 

have more than ‘a few’ values; five values per factor seems a maximum. Finally, 

these experiments are run in ‘one shot’—for example, in one growing season— and 

not sequentially. In simulation, however, these limitations do not hold! 

Two textbooks on classic DOE for simulation are Kleijnen (1975, 1987). An 

update is Kleijnen (1998). A bird-eye’s view of DOE in simulation is Kleijnen et al. 

(2003a), which covers a wider area than this review. 

Note further the following terminology. I speak of the Monte Carlo method 

whenever (pseudo)random numbers are used; for example, I apply the Monte Carlo 

method to estimate the behavior of the t statistic in case of non-normality, in Section 2 

(the Monte Carlo method may also be used to estimate multiple integrals, which is a 

deterministic problem, outside the scope of this handbook). I use the term simulation 

whenever the analysts compute the output of a dynamic model; i.e., the analysts do 

not use calculus to find the solution of a set of differential or difference equations. 

The dynamic model may be either stochastic or deterministic. Stochastic simulation 

uses the Monte Carlo method; it is often applied in telecommunications and logistics. 

Deterministic simulation is often applied in computer-aided engineering (CAE). 

Finally, I use the term metamodel for models that approximate—or model—the input/ 

output (I/O) behavior of the underlying simulation model; for example, a polynomial 

regression model is a popular metamodel (as we shall see). Metamodels are used—

consciously or not—to design and analyze experiments with simulation models. In the 

simulation literature, metamodels are also called response surfaces, emulators, etc. 

The remainder of this chapter is organized as follows. Section 2 presents a simple 

Monte Carlo experiment with Student’s t statistic, including bootstrapping and 

variance reduction techniques. Section 3 discusses the black box approach to 

simulation experiments, and corresponding metamodels——especially, polynomial 

and Kriging models. Section 4 starts with simple regression models with a single 

factor; proceeds with designs for multiple factors including designs for first-order and 

second-order polynomial models, and concludes with screening designs for hundreds 

of factors. Section 5 introduces Kriging interpolation, which has hardly been applied 

in random simulation—but has already established a track record in deterministic 

simulation and spatial statistics. Kriging often uses space-filling designs, such as 



 4

Latin hypercube sampling (LHS). Section 6 gives conclusions and further research 

topics. 

 

2. Simulation techniques in computational statistics 

 

Consider the well-known definition of the t statistic with n – 1 degrees of freedom:  

 

ns
xt
x

n /1
µ−=−          (1) 

 

where the ix  (i = 1, …, n) are assumed to be normally (Gaussian), independently, and 

identically distributed (NIID) with mean µ  and variance 2σ : 

 

),,1(),( niNIIDxi �=∈ σµ        (2) 

 

 Nearly 100 years ago, Gossett used a kind of Monte Carlo experiment 

(without using computers, since they were not yet invented), before he analytically 

derived the density function of this statistic (and published his results under the 

pseudonym of Student). So, he sampled n values ix  (from an urn) satisfying (2), and 

computed the corresponding value for the statistic defined by (1). This experiment he 

repeated (say) m times, so that he could compute the estimated density function 

(EDF)—also called the empirical cumulative distribution function (ECDF)— of the 

statistic. (Inspired by these empirical results, he did his famous analysis.) 

 Let us imitate his experiment, in the following simulation experiment (this 

procedure is certainly not the most efficient computer program).  

i. Read the simulation inputs: µ  (mean), 2σ (variance), n (sample size), m 

(number of macro-replicates, used in step iv). 

ii. Take n samples ),NIID( σµ∈ix (see equation 2 and Chapter II.2 by 

L’Ecuyer). 

iii. Compute the statistic 1−nt  (see equation 1). 

iv. Repeat steps ii and iii m times. 

v. Sort the m values of 1−nt . 
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vi. Compute the EDF from the results in step v. 

To verify this simulation program, we may compare the result (namely the EDF) 

with the results that are tabulated for Student’s density function; for example, does 

our EDF give a 10%  quantile that is not significantly different from the tabulated 

value (say) 90.0;1−nt . Next we may proceed to the following more interesting 

application.  

We may drop the classic assumption formulated in (2), and experiment with non-

normal distributions. It is easy to sample from such distributions (see again Chapter 

II.2). However, we are now confronted with several so-called strategic choices (also 

see Step i above): Which type of distribution should be selected (lognormal, 

exponential, etc.); which parameter values for that distribution type (mean and 

variance for the lognormal, etc.), which sample size (for asymptotic, ‘large’ n, the t 

distribution is known to be a good approximation for our EDF). 

Besides these choices, we must face some tactical issues: Which number of 

macro-replicates m gives a good EDF; can we use special variance reducing 

techniques (VRTs)—such as common random numbers and importance sampling—to 

reduce the variability of the EDF? We explain these techniques briefly, as follows. 

Common random numbers (CRN) mean that the analysts use the same 

(pseudo)random numbers (PRN)—symbol r— when estimating the effects of 

different strategic choices. For example, CRN are used when comparing the estimated 

quantiles 90.0;1
ˆ

−nt  for various distribution types. Obviously, CRN reduces the variance 

of estimated differences, provided CRN creates positive correlations between the 

estimators 90.0;1
ˆ

−nt  being compared. 

Antithetic variates (AV) mean that the analysts use the complements (1 - r) of the 

PRN (r) in two ‘companion’ macro-replicates. Obviously, AV reduces the variance of 

the estimator averaged over these two replicates, provided AV creates negative 

correlation between the two estimators resulting from the two replicates. 

Importance sampling (IS) is used when the analysts wish to estimate a rare event, 

such as the probability of the Student statistic exceeding the 99.999% quantile. IS 

increases that probability (for example, by sampling from a distribution with a fatter 

tail)—and later on, IS corrects for this distortion of the input distribution (through the 

likelihood ratio). IS is not so simple as CRN and AV—but without IS too much 

computer time may be needed. See Glasserman et al. (2000). 
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There are many more VRTs. Both CRN and AV are intuitively attractive and easy 

to implement, but the most popular one is CRN. The most useful VRT may be IS. In 

practice, the other VRTs often do not reduce the variance drastically so many users 

prefer to spend more computer time instead of applying VRTs. (VRTs are a great 

topic for doctoral research!) For more details on VRTs, I refer to Kleijnen and 

Rubinstein (2001). 

Finally, the density function of the sample data ix  may not be an academic 

problem: Suppose a very limited set of historical data is given, and we must analyze 

these data while we know that these data do not satisfy the classic assumption 

formulated in (2). Then bootstrapping may help, as follows (also remember the six 

steps above). 

i. Read the bootstrap sample size B (usual symbol in bootstrapping, 

comparable with m—number of macro-replicates—in step i above). 

ii. Take n samples with replacement from the original sample ix ; this 

sampling gives *
ix  (the superscript * denotes bootstrapped values, to be 

distinguished from the original values). 

iii. From these *
ix  compute the statistic *

1−nt  (see equation 1). 

iv. Repeat steps ii and iii B times. 

v. Sort the B values of *
1−nt . 

vi. Compute the EDF from the results in step v. 

In summary, bootstrapping is just a Monte Carlo experiment—using resampling 

with replacement of a given data set. (There is also a parametric bootstrap, which 

comes even closer to our simulation of Gossett’s original experiment.) Bootstrapping 

is further discussed in Efron and Tibshirani (1993) and in Chapter III.2 (by 

Mammen). 

 

3. Black-box metamodels of simulation models 

 

DOE treats the simulation model as a black box; i.e., only the inputs and outputs are 

observed and analyzed. For example, in the simulation of the t statistic (in Section 2) 

the simulation inputs (listed in Step i) are µ  (mean), 2σ (variance), n (sample size), 

and m (number of macro-replicates); this m is probably a tactical factor that is not of 
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interest to the user.  Suppose the user is interested in the 90% quantile of the 

distribution function of the statistic in case of nonnormality. A black box 

representation of this example is: 

 

),,,( 090.0;1 rnttn σµ=−        (3) 

 

where (.)t  denotes the mathematical function implicitly defined by the simulation 

program (outlined in steps i through vi in Section 2); µ  and σ now denote the 

parameters of the nonnormal distribution of the input ix  (for example, µ  denotes 

how many exponential distributions with parameter λσ =  are summed to form an 

Erlang distribution); 0r  denotes the seed of the pseudorandom numbers. 

One possible metamodel of the black box model in (3) is a Taylor series 

approximation—cut off after the first-order effects of the three factors, n,, σµ : 

 

eny ++++= 3210 βσβµββ       (4) 

 

where y is the metamodel predictor of the simulation output 90.0;1−nt  in (3); Tβ  = 

),,,( 3210 ββββ denotes the parameters of the metamodel in (4), and e is the noise—

which includes both lack of fit of the metamodel and intrinsic noise caused by the 

pseudorandom numbers. 

Besides the metamodel specified in (4), there are many alternative metamodels. 

For example, taking the logarithm of the inputs and outputs  in (4) makes the first-

order polynomial approximate relative changes; i.e., the parameters 1β , 2β , and 3β  

become elasticity coefficients.  

There are many—more complex—types of metamodels. Examples are Kriging 

models, neural nets, radial basis functions, splines, support vector regression, and 

wavelets; see the various chapters in Part III—especially Chapters III.5 (by Loader), 

III.7 (Müller), III.8 (Cizek), and III.15 (Laskov and Müller)—and also Clarke, 

Griebsch, and Simpson (2003) and Antioniadis and Pham (1998). I, however, will 

focus on two types that have established a track record in simulation: 

•  linear regression models (see Section 4) 
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•  Kriging (see Section 5). 

To estimate the parameters of whatever metamodel, the analysts must experiment 

with the simulation model; i.e., they must change the inputs (or factors) of the 

simulation, run the simulation, and analyze the resulting input/output data. This 

experimentation is the topic of the next sections. 

 

4. Designs for linear regression models 

 

4.1 Simple regression models for simulations with a single factor 

 

I start with the simplest metamodel, namely a first-order polynomial with a single 

factor. An example is the ‘Student’ simulation in Section 2, where I now assume that 

we are interested only in the power so y in (4) now denotes the type II error predicted 

through the regression model. I further assume a single factor (say) σ/nx =  (‘relative’ 

variability; i.e., absolute variability corrected for sample size); see (4). Elementary 

mathematics proves that—to fit a straight line—it suffices to have two input/output 

observations; see ‘local area 1’ in Figure 1. It is simple to prove that the ‘best’ 

estimators of the regression parameters in (4) result if those two values are as far apart 

as ‘possible’. 

 

INSERT Figure 1 

 

In practice, the analysts do not know over which experimental area a first-

order polynomial is a ‘valid’ model. This validity depends on the goals of the 

simulation study; see Kleijnen and Sargent (2000). 

 So the analysts may start with a local area, and simulate the two (locally) 

extreme input values. Let’s denote these two extreme values of the ‘coded’ variable x 

by -1 and +1, which implies the following standardization of the original variable z: 

 

2minmax )/z(z
zzx

−
−=       (5) 
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where z  denotes the average value of the relative variability σ/nz =  in the (local) 

experiment. 

 The Taylor series argument implies that—as the experimental area gets bigger 

(see ‘local area 2’ in Figure 1)—a better metamodel may be a second-order 

polynomial:  

 

exβxββy +++= 2
210 .       (6) 

 

Obviously, estimation of the three parameters in (6) requires at least the simulation of 

three input values. Indeed, DOE provides designs with three values per factor; for 

example, 3k designs. However, most publications on the application of DOE in 

simulation discuss Central Composite Designs (CCD), which have five values per 

factor; see Kleijnen (1975). 

I emphasize that the second-order polynomial in (6) is nonlinear in x  (the 

regression variable), but linear inβ (the regression parameters or factor effects to be 

estimated ). Consequently, such a polynomial is a type of linear regression model 

(also see Chapter III.8). 

Finally, when the experimental area covers the whole area in which the 

simulation model is valid (see again Figure 1), then other global metamodels become 

relevant. For example, Kleijnen and Van Beers (2003a) find that Kriging (discussed in 

Section 5) outperforms second-order polynomial  fitting. 

Note that Zeigler, Praehofer, and Kim (2000) call the experimental area the 

‘experimental frame’. I call it the domain of admissible scenarios, given the goals of 

the simulation study. 

I conclude that lessons learned from the simple example in Figure 1, are: 

i. The analysts should decide whether they want to experiment locally or 

globally. 

ii. Given that decision, they should select a specific metamodel type (low-order 

polynomial, Kriging, spline, etc.); also see Chapters III.5, III.7, and III.8. 

 

4.2 Simple regression models for simulation models with multiple factors 
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Let’s now consider a regression model with k factors; for example, k = 2. The design 

that is still most popular—even though it is inferior— changes one factor at a time. 

For k = 2 such a design is shown in Figure 2 and Table 1; in this table the factor 

values over the various factor combinations are shown in the columns denoted by 1x  

and 2x ; the ‘dummy’ column 0x  corresponds with the polynomial intercept 0β̂  in 

(4). In this design the analysts usually start with the ‘base’ scenario, denoted by the 

factor combination (0, 0); see scenario 1 in the table. Next they run the two scenarios 

(1, 0) and (0, 1); see the scenarios 2 and 3 in the table.. 

In a one-factor-at-a-time design, the analysts cannot estimate the interaction 

between the two factors. Indeed, Table 1 shows that the estimated interaction (say) 

2;1β is confounded with the estimated intercept 0β̂ ; i.e., the columns for the 

corresponding regression variables are linearly dependent. (Confounding remains 

when the base values are denoted not by zero but by one; then these two columns 

become identical.) 

 

INSERT Figure 2 
 
INSERT Table 1 

 

In practice, analysts often study each factor at three levels (which may be denoted 

by -1, 0, +1) in their one-at-a-time design. However, two levels suffice to estimate the 

parameters of a first-order polynomial (see again Section 4.1). 

To enable the estimation of interactions, the analysts must change factors 

simultaneously. An interesting problem arises if k increases from two to three. Then 

Figure 2 becomes Figure 3, which does not show the output (w),  since it would 

require a fourth dimension (instead x3 replaces w); the asterisks are explained in 

Section 4.3.  And Table 1 becomes Table 2. The latter table shows the 23 factorial 

design; i.e., in the experiment each of the three factors has two values and all their 

combinations of values are simulated. To simplify the notation, the table shows only 

the signs of the factor values, so - means -1 and + means +1. The table further shows 

possible regression variables, using the symbols ‘0’ through ‘1.2.3’—to denote the 

indexes of the regression variables 0x  (the dummy, always equal to 1) through 
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321 xxx  (third-order interaction). Further, I point out that each column is balanced; 

i.e., each column has four plusses and four minuses —except for the dummy column. 

 

INSERT Table 2 

 

The 23 design enables the estimation of all eight parameters of the following 

regression model, which is a third-order polynomial that is incomplete; i.e., some 

parameters are assumed zero: 

 

exxxxxxy
jj

jjjj
j

j
j

j ++++= ∑∑∑
>==

3213;2;1

3

'
'';

2

1

3

1
0 ββββ .   (7) 

 

 INSERT Figure 3 

 

Indeed, the 23 design implies a matrix of regression variables X that is orthogonal: 

 

IXX nT =           (8) 

 

where n denotes the number of scenarios simulated; n = 8 in Table 2. Hence the 

ordinary least squares (OLS) estimator 

 

wXXXβ TT 1)(ˆ −=        (9) 

 

simplifies for the 23 design —which is orthogonal so (8) holds—to 8/ˆ wXβ T= . 

The covariance matrix of the (linear) OLS estimator given by (9) is 

 
TTTTT ])[()(])[()ˆ( 11 XXXwcovXXXβcov −−= .   (10) 

 

In case of white noise; i.e.,  

 

Iwcov 2)( σ= ,       (11) 
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 (10) reduces to the well-known formula 

 
12 )()ˆ( −= XXβcov Tσ .             (12) 

 

However, I claim that in practice this white noise assumption does not hold: 

i. The output variances change as the input changes so the assumed common 

variance 2σ  in (11) does not hold. This is called variance heterogeneity. (Well-known 

examples are Monte Carlo studies of the type I and type II errors, which are binomial 

variables so the estimated variances are y(1 – y)/m; also see Section 2) 

ii. Often the analysts use common random numbers (see CRN in Section 2), so the 

assumed diagonality of the matrix in (11) does not hold. 

Therefore I conclude that the analysts should choose between the following two 

options. 

i. Continue to apply the OLS point estimator (9), but use the covariance formula 

(10) instead of (12) 

ii. Switch from OLS to Generalized Least Squares (GLS) with )(wcov  estimated 

from m > n replications (so the estimated covariance matrix is not singular); for 

details see Kleijnen (1992, 1998). 

The variances of the estimated regression parameters—which are on the main 

diagonal of )ˆ(βcov  in (10)—can be used to test statistically whether some factors 

have zero effects. However, I emphasize that a significant factor may be 

unimportant—practically speaking. If the factors are scaled between –1 and +1 (see 

the transformation in (5)), then the estimated effects quantify the order of importance. 

For example, in a first-order polynomial regression model the factor estimated to be 

the most important factor is the one with the highest absolute value for its estimated 

effect. See Bettonvil and Kleijnen (1990). 

 

4.3 Fractional factorial designs and other incomplete designs 

 

The incomplete third-order polynomial in (7) included a third-order effect, namely 

3;2;1β . Standard DOE textbooks include the definition and estimation of such high-

order interactions. However, the following claims may be made: 

i. High-order effects are hard to interpret 
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ii. These effects often have negligible magnitudes. 

Claim # 1 seems obvious. If claim #2 holds, then the analysts may simulate fewer 

scenarios than specified by a full factorial (such as the 23 design). For example, if 

3;2;1β is indeed zero, then a 23 - 1 fractional factorial design suffices. A possible 23 – 1 

design is shown in Table 2, deleting the four rows (scenarios) that have a minus sign 

in the 1.2.3 column (i.e., delete the rows 1, 4, 6, 7). In other words, only a fraction—

namely 2-1 of the 23 full factorial design—is simulated. This design corresponds with 

the points denoted by the symbol * in Figure 3. Note that this figure has the following 

geometrically property: each scenario corresponds with a vertex that cannot be 

reached via a single edge of the cube. 

 In this 23 - 1 design two columns are identical, namely the 1.2.3 column (with four 

plusses) and the dummy column. Hence, the corresponding two effects are 

confounded—but the high-order interaction 3;2;1β is assumed zero, so this 

confounding can be ignored! 

 Sometimes a first-order polynomial suffices. For example, in the (sequential) 

optimization of black-box simulation models the analysts may use a first-order 

polynomial to estimate the local gradient; see Angün et al. (2002). Then it suffices to 

take a 2k - p design with the biggest p value that makes the following condition hold: 

2k— p > k. An example is: k = 7 and p = 4 so only 8 scenarios are simulated; see Table 

3. This table shows that the first three factors (labeled 1, 2, and 3) form a full factorial 

23 design; the symbol ‘4 = 1.2’ means that the values for factor 4 are selected by 

multiplying the elements of the columns for the factors 1 and 2. Note that the design 

is still balanced and orthogonal. Because of this orthogonality, it can be proven that 

the estimators of the regression parameters have smaller variances than one-factor-at-

a-time designs give. How to select scenarios in 2k - p designs is discussed in many 

DOE textbooks, including Kleijnen (1975, 1987). 

 

INSERT Table 3 

 

Actually, these designs—i.e., fractional factorial designs of the 2k - p type with 

biggest p value still enabling the estimation of first-order polynomial regression 

models—are a subset of Plackett-Burman designs. The latter designs consists of k + 1 

combinations with k + 1 rounded upwards to a multiple of four; for example, if k = 11, 
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then Table 4 applies. If k = 8, then the Plackett-Burman design is a 2 7 - 4 fractional 

factorial design; see Kleijnen (1975, pp. 330-331). Plackett-Burman designs are 

tabulated in many DOE textbooks, including Kleijnen (1975). Note that designs for 

first-order polynomial regression models are called resolution III designs. 

 

INSERT Table 4 

 

Resolution IV designs enable unbiased estimators of first-order effects—even if 

two-factors interactions are important. These designs require double the number of 

scenarios required by resolution III designs; i.e., after simulating the scenarios of the 

resolution III design, the analysts simulate the mirror scenarios; i.e., multiply by –1 

the factor values in the original scenarios.  

 Resolution V designs enable unbiased estimators of first-order effects plus all 

two-factor interactions. To this class belong certain 2k - p
 designs with small enough p 

values. These designs often require rather many scenarios to be simulated. 

Fortunately, there are also saturated designs; i.e., designs with the minimum number 

of scenarios that still allow unbiased estimators of the regression parameters. 

Saturated designs are attractive for expensive simulations; i.e., simulations that require 

relatively much computer time per scenario. Saturated resolution V designs were 

developed by Rechtschaffner (1967). 

 Central composite designs (CCD) are meant  for the estimation of second-

order polynomials. These designs augment resolution V designs with the base 

scenario and 2k scenarios that change factors one at a time; this changing increases 

and decreases each factor in turn. Saturated variants (smaller than CCD) are discussed 

in Kleijnen (1987, pp. 314-316). 

The main conclusion is that incomplete designs for low-order polynomial 

regression are plentiful in both the classic DOE literature and the simulation 

literature. (The designs in the remainder of this chapter are more challenging.) 

  

4.4 Designs for simulations with too many factors 

 

Most practical, non-academic simulation models have many factors; for example, 

Kleijnen et al. (2003b) experiment with a supply-chain simulation model with nearly 

100 factors. Even a Plackett-Burman design would then take 102 scenarios. Because 
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each scenario needs to be replicated several times, the total computer time may then 

be prohibitive. For that reason, many analysts keep a lot of factors fixed (at their base 

values), and experiment with only a few remaining factors. An example is a military 

(agent-based) simulation that was run millions of times for just a few scenarios—

changing only a few factors; see Horne and Leonardi (2001). 

 However, statisticians have developed designs that require fewer than k 

scenarios—called supersaturated designs; see Yamada and Lin (2002). Some designs 

aggregate the k individual factors into groups of factors. It may then happen that the 

effects of individual factors cancel out, so the analysts would erroneously conclude 

that all factors within that group are unimportant. The solution is to define the -1 and 

+1 levels of the individual factors such that all first-order effects jβ  (j = 1, …, k) are 

non-negative. My experience is that in practice the users do know the direction of the 

first-order effects of individual factors. 

There are several types of group screening designs; for a recent survey including 

references, I refer to Kleijnen et al. (2003b). Here I focus on the most efficient type, 

namely Sequential Bifurcation designs. 

This design type is so efficient because it proceeds sequentially. It starts with only 

two scenarios, namely, one scenario with all individual factors at –1, and a second 

scenario with all factors at +1. Comparing the outputs of these two extreme scenarios 

requires only two replications because the aggregated effect of the group factor is 

huge compared with the intrinsic noise (caused by the pseudorandom numbers). The 

next step splits— bifurcates—the factors into two groups. There are several heuristic 

rules to decide on how to assign factors to groups (again see Kleijnen et al. 2003b). 

Comparing the outputs of the third scenario with the outputs of the preceding 

scenarios enables the estimation of the aggregated effect of the individual factors 

within a group. Groups—and all its individual factors—are eliminated from further 

experimentation as soon as the group effect is statistically unimportant. Obviously, 

the groups get smaller as the analysts proceed sequentially. The analysts stop, once 

the first-order effects jβ  of all the important individual factors are estimated. In their 

supply-chain simulation, Kleijnen et al. (2003b) classify only 11 of the 92 factors as 

important. (Next, this shortlist of important factors is further investigated to find a 

robust solution.) 
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5. Kriging 

 

Let’s return to the example in Figure 1. If the analysts are interested in the 

input/output behavior within ‘local area 1’, then a first-order polynomial may be 

adequate. Maybe, a second-order polynomial is required to get a valid approximation 

in ‘local area 2’, which is larger and shows non-linear behavior of the input/output 

function. However, Kleijnen and Van Beers (2003a) present an example illustrating 

that the second-order polynomial gives very poor predictions—compared with 

Kriging. 

Kriging has been often applied in deterministic simulation models. Such 

simulations are used for the development of airplanes, automobiles, computer chips, 

computer monitors, etc.; see Sacks et al. (1989)’s pioneering article, and—for an 

update—see Simpson et al. (2001). For Monte Carlo experiments, I do not know any 

applications yet. First, I explain the basics of Kriging; then DOE aspects. 

 

5.1 Kriging basics 

 

Kriging is an interpolation method that predicts unknown values of a random process; 

see the classic textbook on Kriging in spatial statistics, Cressie (1993). More 

precisely, a Kriging prediction is a weighted linear combination of all output values 

already observed. These weights depend on the distances between the input for which 

the output is to be predicted and the inputs already simulated. Kriging assumes that 

the closer the inputs are, the more positively correlated the outputs are. This 

assumption is modeled through the correlogram or the related variogram, discussed 

below. 

 Note that in deterministic simulation, Kriging has an important advantage over 

regression analysis: Kriging is an exact interpolator; that is, predicted values at 

observed input values are exactly equal to the observed (simulated) output values. In 

random simulation, however, the observed output values are only estimates of the true 

values, so exact interpolation loses its intuitive appeal. Therefore regression uses 

OLS, which minimizes the residuals—squared and summed over all observations. 

 The simplest type of Kriging—to which I restrict myself in this chapter—

assumes the following metamodel (also see (4) with 0βµ = and 0321 === βββ ): 
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eµy +=  with         (13a) 

)(var0 2 xσ(e),E(e) ==        (13b) 

 

where µ  is the mean of the stochastic process (.)y , and e  is the additive noise, which 

is assumed to have zero mean and non-constant finite variance )(2 xσ  (furthermore, 

many authors assume normality). Kriging further assumes a stationary covariance 

process; i.e., the expected values )(xµ in (13a) are constant, and the covariances of 

)( hx +y and )(xy depend only on the distance (or ‘lag’) between their inputs, namely 

|)()(||| xhxh −+= . (In deterministic simulation, the analysts assume that the 

deterministic I/O behavior can be adequately approximated by the random model 

given in (13).) 

 The Kriging predictor for the unobserved input 0x —denoted by )(ˆ 0xy —is a 

weighted linear combination of all the n output data already observed— )( iy x : 

 

yλxx ⋅=⋅=∑
=

/

1
0 )()(ˆ i

n

i
i yy λ  with       (14a) 

∑
=

=
n

i
i

1

1λ           (14b) 

 

where T
n ),,( 1 λλ l=λ  and T

nyy ),,( 1 l=y .  

 To quantify the weights λ  in (14), Kriging derives the best linear unbiased 

estimator (BLUE), which minimizes the Mean Squared Error (MSE) of the predictor: 

 

( ) ( )( )2
000 )(ˆ)()(ˆMSE xxx yyEy −=  

 

with respect to λ . Obviously, these weights depend on the covariances mentioned 

below (13). Cressie (1993) characterizes these covariances through the variogram, 

defined as ))()(()(2 xhxh yyvar −+=γ . (I follow Cressie (1993), who uses 

variograms to express covariances, whereas Sacks et al. (1989) use correlation 

functions.) It can be proven that the optimal weights in (14) are 
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T

T

T
T        (15) 

 

with the following symbols: 

γ : vector of the n (co)variances between the output at the new input 0x  and the 

outputs at the n old inputs, so γ = T
n ))(,),(( 010 xxxx −− γγ l  

Γ : nn ×  matrix of the covariances between the outputs at the n old inputs—with 

element (i, j) equal to )( ji xx −γ  

1 : vector of n ones.  

 I point out that the optimal weights defined by (15) vary with the input value 

for which output is to be predicted (see γ ), whereas linear regression uses the same 

estimated parameters β̂  for all inputs to be predicted. 

 

5.2 Designs for Kriging 

 

The most popular design type for Kriging is Latin hypercube sampling (LHS). This 

design type was invented by McKay, Beckman, and Conover (1979) for deterministic 

simulation models. Those authors did not analyze the input/output data by Kriging 

(but they did assume input/output functions more complicated than the low-order 

polynomials in classic DOE). Nevertheless, LHS is much applied in Kriging 

nowadays, because LHS is a simple technique (it is part of spreadsheet add-ons such 

as @Risk).  

LHS offers flexible design sizes n (number of scenarios simulated) for any 

number of simulation inputs, k. A simplistic example is shown for k = 2 and n = 4 in 

Table 5 and Figure 4, which are constructed as follows. 

1. The table illustrates that LHS divides each input range into n intervals of equal 

length, numbered from 1 to n (in the example, we have n = 4; see the numbers in the 

last two columns); i.e., the number of values per input can be much larger than in the 

designs discussed in Section 4. 
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2. Next, LHS places these integers 1,…, n such that each integer appears exactly 

once in each row and each column of the design. (This explains the term ’Latin 

hypercube’: it resembles Latin squares in classic DOE.)  

3. Within each cell of the design in the table, the exact input value may be 

sampled uniformly; see Figure 4. (Alternatively, these values may be placed 

systematically in the middle of each cell. In risk analysis, this uniform sampling may 

be replaced by sampling from some other distribution for the input values.) 

 

INSERT Figure 4 

INSERT Table 5 

 

 Because LHS implies randomness, the resulting design may happen to include 

outlier scenarios (to be simulated).  For example, it might happen—with small 

probability—that in Figure 4 all scenarios lie on the main diagonal, so the values of 

the two inputs have a correlation coefficient of -1. Therefore LHS may be adjusted to 

give (nearly) orthogonal designs; see Ye (1998). 

Let’s compare classic designs and LHS geometrically. Figure 3 illustrates that 

many classic designs consists of corners of k-dimensional cubes. These designs imply 

simulation of extreme scenarios. LHS, however, has better space filling properties.  

This property has inspired many statisticians to develop other space filling 

designs. One type maximizes the minimum Euclidean distance between any two 

points in the k-dimensional experimental area. Related designs minimize the 

maximum distance. See Koehler and Owen (1996), Santner et al. (2003), and also 

Kleijnen et al. (2003a). 

  

6. Conclusions 

 

Because simulation—treated as a black box—implies experimentation with a model, 

design of experiment is essential. In this chapter, I discussed both classic designs for 

low-order polynomial regression models and modern designs (including Latin 

hypercube sampling) for other metamodels such as Kriging models. The simpler the 

metamodel is, the fewer scenarios need to be simulated.  (Cross validation of the 

metamodel selected, is discussed in Chapter III.1 by Wang.)  
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 I did not discuss so-called optimal designs because these designs use statistical 

assumptions (such as white noise) that I find too unrealistic. A recent discussion of 

optimal designs including references is Spall (2003).  

 Neither did I discuss the designs in Taguchi (1987), as I think that the classic 

and modern designs (which I did discuss) are superior. Nevertheless, I think that 

Taguchi’s concepts—as opposed to his statistical techniques—are important. In 

practice, the ‘optimal’ solution may break down because the environment turns out to 

differ from the environment that the analysts assumed when deriving the optimum. 

Therefore they should look for a ‘robust’ solution. For further discussion I refer to 

Kleijnen et al. (2003a). 

 Because of space limitations, I did not discuss sequential designs, except for 

sequential bifurcation and two-stage resolution IV designs. Nevertheless, the 

sequential nature of simulation experiments (caused by the computer architecture) 

makes sequential designs very attractive. This is an area of active research nowadays; 

see Jin et al. (2002), Kleijnen et al. (2003a), and Kleijnen and Van Beers (2003b). 

I mentioned several more research issues; for example, importance sampling. 

Another interesting question is: how much computer time should analysts spend on 

replication; how much on exploring new scenarios? 

Another challenge is to develop designs that explicitly account for multiple 

outputs. This may be a challenge indeed in sequential bifurcation (depending on the 

output selected to guide the search, different paths lead to the individual factors 

identified as being important). In practice, multiple outputs are the rule in simulation; 

see Kleijnen et al. (2003a). 

 The application of Kriging to random simulation models (such models are a 

focus of this handbook, including this chapter) seems a challenge. Moreover, 

corresponding software needs to be developed. Current software focuses on 

deterministic simulation; see Lophaven et al. (2002). 

 Comparison of various metamodel types and their designs remains a major 

problem. For example, Meckesheimer et al. (2001) compare radial basis, neural net, 

and polynomial metamodels. Clarke et al. (2003) compare low-order polynomials, 

radial basis functions, Kriging, splines, and support vector regression. Alam et al. 

(2003) found that LHS gives the best neural-net metamodels. Comparison of 

screening designs has hardly begun; see Kleijnen et al. (2003 a, b). 
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Table 1. A one-factor-at-a-time design for two factors, and possible regression 

variables 

scenario 0x  1x  2x  21xx  

1 1 0 0 0 

2 1 1 0 0 

3 1 0 1 0 

 

Table 2. The 23 design and possible regression variables 

Scenario 0 1 2 3 1.2 1.3 2.3 1.2.3

1 + - - - + + + - 

2 + + - - - - + + 

3 + - + - - + - + 

4 + + + - + - - - 

5 + - - + + - - + 

6 + + - + - + - - 

7 + - + + - - + - 

8 + + + + + + + + 

 

 

Table 3. A 27— 4 design 

scenario 1 2 3 4 = 

1.2 

5= 

1.3 

6 = 

2.3 

7 = 

1.2.3

1 - - - + + + - 

2 + - - - - + + 

3 - + - - + - + 

4 + + - + - - - 

5 - - + + - - + 

6 + - + - + - - 

7 - + + - - + - 

8 + + + + + + + 
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Table 4. The Placket-Burman design for 11 factors 

scenario 1 2 3 4 5 6 7 8 9 10 11

1 + - + - - - + + + - + 

2 + + - + - - - + + + - 

3 - + + - + - - - + + + 

4 + + + - + + - - - + + 

5 + - + + - - - - - - + 

6 + + - + + + + + - - - 

7 - + + + - + + - + - - 

8 - - + + + - + + - + - 

9 - - - + + + - + + - + 

10 + - - - + + + - + + - 

11 - + - - - + + + - + + 

12 - - - - - - - - - - - 

 

Table 5. A LHS design for two factors and four scenarios 

Scenario Interval factor 1 Interval factor 2 

1 2 1 

2 1 4 

3 4 3 

4 3 2 
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Fig. 1: Two simple polynomial regression models with predictor ŷ  for the output of a 

simulation with a single factor x 
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Fig. 2: One-factor-at-a-time design for two factors 1x  and 2x , with output w 
 
 

(i): Scenario i in 23 design (i*): Scenario i in 23 - 1 design
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Fig. 3: The 23 design 
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Fig. 4. A LHS design for two factors and four scenarios 

 
 


