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Vector computers provide a new tool for management scientists. The application of that tool 
requires thinking in vector mode. This mode is examined in the context of Monte Carlo experiments 
with regression models: these regression models may serve as metamodels in simulation experi- 
ments. The vector mode needs to exploit a specific dimension of the Monte Carlo experiment, 
namely the replicates of that experiment. Taking advantage of the machine architecture gives a 
code that computes Ordinary Least Squares estimates on a Cyber 205 in only 2% of the time 
needed on a Vax 8700. For Generalized Least Squares estimates. however. the code runs slower 
on the Cyber 205 than on the VAX. if the regression model is small: for large models the CYBER 
205 runs much faster. 
(SUPERCOMPUTERS: DISTRIBUTION SAMPLING; MULTIVARIATE DISTRIBUTION: 
COMMON SEEDS: METAMODEL) 

1. Introduction 

In this paper we illustrate three important points about the new generation of computers 
called "supercomputers:" 

( i )  Efficient supercomputing requires that algorithms be adjusted to take advantage 
of the specific architecture of the computing hardware. 

(ii) Expensive supercomputers are slower than general purpose machines are, for cer- 
tain types of problems. 

(iii) The increased speed of the supercomputing calculation may not outweigh the 
burden of constructing the specialized code: the researcher's time is valuable too. 

We focus on the use of supercomputers in Monte Carlo experiments with regression 
analysis. So this paper may be of interest to management scientists for several reasons: 

( i )  Regression analysis is often used by management scientists to analyze simulation 
data and real-world data. The role of regression analysis in simulation will be explained 
in 52. 

(ii) The study shows how supercomputers can be applied in Monte Carlo experiments. 
Monte Carlo experiments are related to stochastic discrete event dynamic simulation: 
both methods use pseudorandom numbers, but Monte Carlo experiments are static 
whereas simulation models are dynamic ( a  case in point is a queueing simulation); see 
Teichroew ( 1965) .  So Monte Carlo experiments are simpler. Our study may challenge 
other researchers to apply supercomputers to Monte Carlo and simulation models. 

There are several types of supercomputers: vector computers, traditional scalar com- 
puters, and truly parallel computers. Traditional computers, such as the IBM 370 and 
the VAX series, execute one instruction after the other; so they operate sequentially. 
Truly parallel computers such as the HYPERCUBE have many Central Processing Units 
(CPUs) that can operate independently ofeach other; this is called coarse grain parallelism. 
Vector computers such as the CRAY 1 and the CYBER 205 have a "vector processing" 
capability: fine grain parallelism. Consider, for example, the computation of the inner 
product of two vectors: v', v2 = Cy=vl,v2,. This computation requires n identical scalar 
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operations ~ ~ , t ' ~ , .  The vector processor starts computing vlJv2, while the computation 
of the predecessors t'l (,-I L '~ ( , - I ) ,L ' ~(,-2) L ' ~ ( , - ~ ) ,  . . . is still in process! So a vector computer 
works as an assembly line. A technical condition is that the scalar operations do not 
depend on each other; in the example the computation of the scalar product v , ,L '~ ,does 
not need the other scalar products, especially the predecessors U I  (,- )u ~ ( , - ~through 
vl v2, .The architecture of a vector computer is called a pipeline. The pipeline or assembly 
line requires a fixed set up cost; consequently a vector computer works efficiently only 
if a "large" number of identical (scalar) operations can be executed independently of 
each other. In the example, n must be large; a rule of thumb is n 2 50 (we shall return 
to this issue). Our main issue is how to formulate the Monte Carlo model such that a 
vector computer can be applied efficiently. We do not discuss the use of truly parallel 
computers in simulation but refer to Heidelberger ( 1988), Adams (1990) and Reiher 
( 1990). Technical details on the new generation of "supercomputers" are given by 
Levine ( 1982) . 

Our paper is organized as follows. In 52 we summarize the well-known linear regression 
model and its application in simulation experiments. We also discuss the role of exper- 
imental designs in simulation. The regression model is studied in a Monte Carlo exper- 
iment. In 53 we show how the Monte Carlo program can be vectorized: we discover a 
"third dimension" of Monte Carlo experiments. 54 gives numerical results, and 55 gives 
conclusions. References and appendices complete the paper. 

2. Regression Models and Simulation 

2.1. Regression Models 

Consider the well-known linear regression model 

with y = ( y l ,  . . . , y , ,  . . . , J ' ~ ) ' ,/3 = (Dl, . . . , PJ, . . . , Pa)' and X = (x,) where i = I, 
. . . ,n and j = I ,  . . . ,Q. We assume additive errors e = ( e l ,. . . ,e l ,  . . . , e,,)'(the errors 
are also called disturbance or noise): 

We further assume that e is n-variate normally (AT,,) distributed: 

where 0,, denotes a column of n zeros; cov ( e )  denotes the variance-covariance matrix 
of e ;  cov ( e )  equals cov (y )  because of (2.2); cov (y )  is assumed to be nonsingular. 

2.2. Regression ~Metarnodels in Sirnulation 

The regression model can be applied not only to analyze real-world data but also to 
analyze the results of a simulation experiment. We first consider a simplistic simulation 
experiment, namely a GIG/ 1 queue with a fixed asrival rate of (say) one and n different 
service rates p, ( i  = 1, . . . , n) .  The n simulation responses are the average sojourn times 
(waiting plus service times) Z, ( = CL1w,(p, ) /  T assuming T customers are simulated 
for each p, ) . In the specification of a metamodel we are guided by the exact mathematical 
analysis of the steady-state mean sojourn time for a simpler M / M /  1 queue; see Gross 
and Harris (1985). So we may model the response curve E ( Z )  = f (p)  by the second- 
order approximation in which the independent variables are powers of p-' , the reciprocal 
of the service rate: E ( Z )  = a l (p - I )  + a2(Y-1)2with mini pi 5 p 5 maxi p i ,  the exper- 
imental area. In the notation of (2.1 ) we then have y = Z, D l  = a1,xl = pP1,P2 = a2, 
x2= (p-I ) 2 .  Such an approximation is called a regression metamodel, since it is a model 
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of the input / output behavior of the underlying simulation model. Kleijnen ( 1987) gives 
details including realistic examples. 

2.3. Experimental Design Theory 

To illustrate the role of experimental design theory in regression modeling, we extend 
the G /  G/ 1 example a bit. Suppose we study not only the effect of the service rate p, but 
also the effect of the priority rule. Until now that rule was implicitly first-in-first-out 
(FIFO), but now we also examine an alternative rule, say short-jobs-first (SJF). Suppose 
further that we extend the queueing model such that Sservers are simulated with S = 1, 
2, 3, 4. Then there are three "factors" in the simulation experiment: service rate, priority 
rule, and number of servers. The statistical theory of expermental design helps to decide 
which combinations of factor "levels" or "values" to simulate. That theory assumes a 
regression metamodel! Suppose (just for illustration purposes) we assume that the response 
surface can be modeled by a first-order approximation: = P1 + P2x2 + PIX^ + P4x4 
wi th j9=  C , x ,  = 1;x2= -1 i f p  = mini pi andx2 = + l  i f p  = max,p l ;xg= -1 i f S =  1 
and x3= +1 if S = 4; x4= -1 if FIFO applies and x4= +1 if SJF holds. We can estimate 
these four regression parameters ( D l  through P4)if we simulate only 4 = 2 3 1  combinations 
of these three factors; see Table 1. We point out that the four column vectors x, (J = I ,  
2, 3, 4 )  are mutually orthogonal; x l  is a constant, not a factor, and is not shown in Table 
1. For a second-order approximation, design theory gives analogous tables, albeit that 
more than two levels per factor must be included and that some columns are not or- 
thogonal. There is a vast literature on experimental design; Kleijnen ( 1987) gives designs 
that are particularly useful in simulation experiments. 

In the social sciences, the analysts cannot fix the independent variables X in (2.1); 
they can only observe those variables. (This lack of experimental control implies that it 
is virtually impossible to replicate specific situations; we shall briefly return to replication.) 
In simulation experiments the analysts can perfectly control all factors or simulation 
inputs; also see Kleijnen (1987, pp. 158-160). Then X follows from the experimental 
design matrix D = ( d l / , )with h = 1, . . . ,12 (and 2 = 1, . . . ,n ) ;Table 1 gives an example 
of D with 1c = 3 and n = 4. Indeed X follows from D; for example, a first-order approx- 
imation implies X = (I, , ,  D )  where I,, denotes a column of n ones, and a second-order 
approximation implies X = ( I , , ,  D ,  D2) where D2 = (d,,d,,) with g = h, . . . , k. Note 
that in some applications we force the regression equation through the origin, so the 
dummy column 1, vanishes (see the GIG/  1 queueing example in 52.2). The number 
of regression parameters is denoted by Q; the example of Table 1 implies Q = 4. In a 
second-order approximation Q = 1 + 1c+ lc(1c - 1 ) / 2  + 12. In a well-designed simulation 
experiment it is easy to replrcate each factor combination; that is, row i of X or D is 
observed m, 2 2 times. So a terminating simulation is repeated with m, independent 
pseudorandom number streams, whereas in nonterminating or steady-state simulations 
rn, subruns may be obtained; see Kleijnen ( 1987, pp. 8-10, 63-83). 

1 
TABLE 1 

13-'Experrrnentai Desrgrz for Three Factors 

,x2 F ~ C ~ C J ; ~ V ~ ~ S  
Combination 

1 .x4 
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We may simulate the n queueing systems with the same pseudorandom number se- 
quence. This means that the n combinations of factor levels use the same seed. We repeat 
each combination a number of times, namely m times (so m, of the preceding paragraph 
reduces to a constant m ) .  Obviously cov(e) in (2.3) is nondiagonal if common seeds 
are used. 

2.4. Focus of Payer 

In the remainder of this paper we focus on the regression model specified by (2.1) 
through (2.3). Originally we wished to examine different estimators of the regression 
parameters p and different tests for validating the fit of the resulting regression model. 
For that study we use Monte Carlo simulation: we select X ,  /3, cov(e) and m ;  next we 
use those selected data to generate responses Y = ( y , , ) ;that data X and Y yield L3 estimators; 
these estimators are compared with the true parameter vector P (which is known in the 
Monte Carlo experiment); this comparison is repeated (say) L = 100 times to obtain 
reliable Monte Carlo results. That whole experiment is reported in Kleijnen (1991). 
Originally we planned to use a vector computer for that experiment, but it turned out 
that a vector computer may be inefficient in this case. In the present paper we explain 
why this is so. So we concentrate on those aspects of the original experiment that we 
need to explain the use of vector computers in Monte Carlo experiments with regression 
models applied to simulation data that are obtained by a sound experimental design. 

Table 2 summarizes the data that are available to estimate the regression param- 
eters p.  The responses y,, yield the following unbiased estimators of a,, = cov (y, ,  4,) 
= cov (y,,, y ~ , )  where y,, is the rth replication of the ith factor combination: 

( i ,  f = 1 , .  . . , n) ( m2 2) ,  

with the averages pi = z7- yir/rn; by definition aii = a: . Neely ( 1966) discusses the 
different numerical accuracies of the two expressions in (2.4).  In matrix notation the 
last expression in (2.4) becomes 

cGv (y)  = (W'- yy 'm) / (m - I ) ,  (2.5) 

with ccv ( y) = ( ;,,) and y = (y,) . It is simple to prove that c& ( y ) is singular for m 
5 n .  

We consider two different point estimators for the regression parameters 0.The simple 
classic estimator uses Ordznaly Least Squares or OLS: 

which assumes n 2 Q and rank(X) = Q. However, if cov ( y )  were known, then a better 
estimator would use Generalized Least Sqifares (GLS). Since cov (y )  is unknown in 

TABLE 2 

Regression Data 

Combination i 
(effects: PI. . . PJ . . . Be) (seed 1). 

Responses );, 
. . (seed 1 . ) .  . . (seed 112) 

Average 
Response 

J'I 

Estimated 
(co)variances 

Oiil 
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practice, we may replace it by the estimator c% (y) of (2.5), and use Estimated Generalized 
Least Squares or EGLS: 

which assumes that cGv ((y is nonsingular; also see (2.3) and Dijkstra ( 1970). 

3. Vectorizing the Monte Carlo Program 

To generate the data X and Y ,  to which the regression model is applied, we could have 
run the queueing simulation of the preceding section (52). However, for the purpose of 
this paper such an approach is inferior, since we wish to compare the efficiency of vector 
computers relative to traditional computers in the domain of regression analysis, as we 
stated in $1 (second paragraph). Regression models can be used to analyze simulation 
data; and simulation models can be run on vector computers, but these issues are not 
the focus of this paper. Therefore we generate the data X and Y by executing a Monte 
Carlo experiment with the regression model (2.2) itself. 

We might use the vector mode to compute an individual element J*,,of Y through 
(2.2). The matrix X in (2.2) is n X Q; typically n and Q range between n = 4 and Q = 4 
(see Table 1) and n = 32 and Q = 22 ( see Table 3 later on) .  But vector computers are 
inefficient if the number of parallel operations is smaller than 50, as Levine ( 1982) and 
SARA ( 1984) state. So it is inefficient to vectorize the computation of an individual y,, . 

Next we consider the vector computation of either the rows or the columns of Table 
2. Since there are only n rows (factor combinations), vectorization is again inefficient. 
The columns of Table 2 are statistically independent (see 52), so vectorization is possible. 
But since simulation replication is expensive, m will be small in practice (the minimum 
is rn = n + 1; otherwise c% (y)  is singular). So vectorizing the columns of Table 2 is 
also inefficient. 

3.1. The Third Dimension 

The Monte Carlo experiment is replicated L = 100 times (to obtain reliable Monte 
Carlo results; see 52.4). We speak of Monte Carlo replicates I with I = 1, . . . ,L, which 
must be distinguished from the simulation replicates r = 1, . . . , m .  The Monte Carlo 
replicates are statistically independent; they can be vectorized as we shall see. The more 
of these replicates we obtain, the more efficient the vector computer becomes. We may 
visualize our problem as filling a three-dimensional box in parallel with errors e,,,with i 
-
- 1, . . . , n ;  r = 1, . . . , nz; I = 1, . . . ,L; this is explained in detail in Steps 1 through 
3 below. In Step 4 statistics such as cgv ((y are computed. 

Step 1. Samplepsez~dorando nz~mbers. Kleijnen ( 1989) evaluates several procedures 
for the parallel generation of pseudorandom numbers u - U(0, 1 ) . Kleijnen and Annink 
( 1990) recommend the following generator. Take a scalar multiplicative congruential 
generator with a multiplier that gives acceptable statistical behavior; such generators are 
discussed by Park and Miller (1988). To initialize the vector version of this generator, 
first generate-in scalar mode-a vector of Jsuccessive pseudorandom integers K = (KO, 
K I , K 2, . . . , KJ-2,KJ~I)1~ith~eedKoandK1=(aK1~1)modmforj=1 , 2 , .  . . , J- 1. 
To obtain numbers between zero and one, divide by m.  Once and for all compute a 
scalar multiplier ( a J )  mod m.Vector multiplication of the vector K with this scalar 
multiplier gives a new vector: (Kj, KJ+ . . . ,K2,>, K2 In this way the pseudorandom ) I .  

numbers are generated in parallel and yet in exactly the same order as they would have 
been produced in scalar mode. At the end of the Monte Carlo experiment the vector of 
the last J numbers should be stored, so that the experiment may be continued later on. 

We mentioned that vector computers become more efficient as the number of parallel 
operations increases. For the CYBER 205, however, there is a technical upper limit: J 
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-- 2 16 - 1 = 65,535 (since this computer uses 16 bits for addressing; see SARA 1984, 

p. 26). 
There is a computational problem: overflow occurs when computing (aJ )  mod nz.We 

solve this problem through the computer science techniques of controlled integer overflow 
and the CYBER 205's two's complement representation of negative integers. The com-
puter program in Appendix 1gives technical details; Park and Miller ( 1988) also discuss 
overflow. 

So we generate a vector of J pseudorandom numbers. We store that vector, which is 
then available to fill the three-dimensional box. 

Step 2. Sample independent standard normal variates. There are several techniques 
for generating normal variates; see, for example, Devroye ( 1986). We take a procedure 
that fits a vector computer: 

z2 = (-2 In u l )' I 2  sin 27ru2, (3.1.b) 

where the mutually independent pair ul and u2 with u - CT(O,1)  yields the mutually 
independent pair zl  and z2with z -- N(0, 1). To compute the functions In, cos and sin 
for a vector of numbers, we use the FORTRAN 200 vector functions VLN, VCOS, and 
VSIN. Given a vector of L independent pseudorandom numbers 11, we use the first half 
to compute L /2  independent parallel realizations of In til, and the second half to compute 
cos (2nu2) and sin (27ru2). Figure 1 gives a pseudo-FORTRAN program where n is 
computed through the arccosine function, as SARA (1984, p. 13) suggests. To convert 
this pseudo-FORTRAN into a FORTRAN 200 program, we can replace the DO loops 
by the special syntax of FORTRAN 200. The supercomputer, however, can also auto-
matically translate the FORTRAN program of Figure 1, provided we add CONTINUE 
statements; see CDC ( 1986), SARA ( 1984, p. 17). 

Note that Petersen ( 1988)generates z in parallel, not through (3.l .a) and (3. l .b) , but 
through Teichroew's procedure, which is described in Naylor et al. ( 1966, p. 94).  

To fill the three-dimensional box with el,/,we store the vectors z (with L elements) of 
Figure 1 into a three-dimensional array 2. 

Step 3. Sample n-variate normally distributed variates. The errors within a column 
of Table 2 are statistically dependent: they are n-variate normal. We first consider a 
computer program for n = 2. In that case we sample the independent univariate standard 
normal variates zl  and z2, and compute the linear transformations el  = olzl  and e2 
= az(pzl+( l - p2)ll2z2)where p = a12/(alo2) .Next we consider the general case. The 
sampling subroutine for multivariate normal e with covariance matrix cov (e )  is 

e = Cz, (3.2 

with z = (z l, . . . , z, , . . . , z,)' and independent z, - N(0, 1), and C a lower triangular 
matrix defined by 

CC' = cov ( e ) .  (3.3) 

L2 = L/2;PI = ACOS(-1 0,; C = 2 * PI 
DO 20 L L =  1,L2 

20 HELPl(LL) = SQRT(-2 * LOG(I'(LL))) 
DO 30 L L =  1,L2 

HELP2(LL) = COS(C'(LL+ L2) * C )  
HELP3(LL) = SIN(U(LL+ L2) * C )  
Z(LL)  = HELPl(LL) * HELPZ(LL) 

30 Z(L2 + LL) = HELPl(LL) * HELP3(LL) 

FIGURE 1 .  Parallel Computation of L Variates z - X(0,  1 ). 
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FIGURE2. Naive FORTRAN Program for e .  

The matrix C is computed by Choleski's technique; see Naylor et al. ( 1966, pp. 97-99) 
and standard software libraries such as IMSL and NAG. Once C is computed, e is generated 
through the linear transformation (3.2) of z .  We do not vectorize that transformation 
since n is too small. 

To obtain M observations and L Monte Carlo replicates of e ,  we might apply the naive 
FORTRAN program of Figure 2, where M denotes the maximum value of vlz in the 
experiment (Table 3 means ,M = 33) and E ( I ,  R ,  LL)  is zero initially. Note that C or 
C( I ,  J)does not vary over seeds ( R )  and Monte Carlo replicates (LL);  it does vary with 
COY (y) .  

SARA ( 1984, pp. 15, 20-2 1, 33) states that when vectorizing a program, the inner 
DO loop should be long, and the elements of the array should be stored columnwise so 
that the innermost DO loop controls the first index of the array. Therefore we move the 
LL loop and replace E ( I ,  R .  LL)  by E(LL,  R ,  I )  to get Figure 3. (The inner loop forms 
a so-called "linked triad," which can be vectorized; see SARA 1984, pp. 18-19.) 

The quantities nz and n vary with the different cases investigated in the Monte Carlo 
experiment, as Table 3 will show. So a case may use only part of the pseudorandom 
numbers stored in the "box" E (LL ,  R ,  I ) .  Figure 3 not only saves computer time, but 
also implements common seeds since all cases pull pseudorandom numbers from the 
same box. 

Note that we could generate 1M*L instead of L elements in parallel, if we replaced the 
loops for R and LL respectively in Figure 3 by the single loop LR = 1, . . . ,1M*L ,  which 
would yield the two-dimensional array E (LR,  I )  of Figure 4. Then, however, we would 
have to rearrange this array into the three-dimensional array E (LL ,  R ,  I ) ,  because the 
latter array is needed to compute statistics such as c& (y)),  as we shall see in the 
next step. 

Step 4. Covlzpute statist~cs c& (y) ,  6 and 6. Given the three-dimensional array e ,  
we can easily compute estimates such as c& (y) .  We reformulate (2.5) as 

with G = ( e l ,  . . . , Z,, . . . , 2,)' and 2, = 2 :"=, el,/ m . Figure 5 shows the vectorizable 
FORTRAN program for the computation of G .  This program can be compiled and 
vectorized automatically. Alternatively we can use special FORTRAN 200 instructions 
such as Q8SSUM, which computes sums like C el,. The computation of c; (y )  in 
(3.4) can be programmed analogous to Figure 5. Alternatively we can program inner 
products (eel and GG') through the special function Q8SDOT, as SARA ( 1980, pp. 22, 
30) mentions. 

FIGURE3. Vectorized FORTRAN Program for e. 
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FIGURE4. Alternative Vectorized FORTRAN Program for e .  

3.2. A Roadblock to Vectorization 

A problem arises when computing the inverse [c& ((y] ' ,which is needed to compute 
the EGLS estimator f i  in (2.7). The trick in the preceding steps was to make the inner 
loop long; that is, we made the LL loop the inner loop. SARA ( 1984, p. 23) states that 
the instruction within the inner loop can be executed in parallel, provided that instruction 
contains no function or subroz~tine references except for basic functions such as sine: the 
vector computer can execute in parallel basic operations only. So the computer cannot 
calculate L inverses in parallel, since inversion requires a subroutine call. 

To invert a matrix we call a routine provided by Numerical Algorithms Group or 
NAG (the routine is FOIAAF, which solves linear equations using Crout's method). 
Obviously a subroutine call can always be avoided, since the subroutine can be replaced 
by the appropriate lines of code. Moreover, there is often more than one computational 
technique; for example, matrices can be inverted in several ways, and covariances can 
be computed in different ways, as (2.4) and (3.4) showed. However, subroutines are 
there to help the user; so most times the user will call upon a subroutine. This problem 
illustrates a more general problem: how much effort does the user want to spend on 
programming in order to fit the problem to a specific computer so that this computer 
runs faster? 

So [&v ( y ) ] '  must be computed in scalar mode. Once this inverse is available, some 
matrix multiplications follow; for example, [c; ( y ) l l X .  The share of the matrix inversion 
in the total computation time determines the gain to be obtained through vectorization. 

4. Computational Tests 

To quantify the ideas formulated in $3, we compute the OLS and the EGLS estimates 
for a number of cases, comparing a CYBER 205 and a VAX 8700; see Table 3. We 
select three cases, as follows. We use a regression metamodel for k factors accounting for 
all k (k  - 1 ) /2  two-factor interactions besides the overall mean and the k main effects; 
so Q = 1 + k + k(k  - 1 )/2. The experimental design is a 2 " ~  design with n = 2 " ~  
2 Q. Consequently, if k = 2 then Q = 4 and n = 22 = 4. If k = 4 then Q = l l  and n 
= Z 4  = 16. If k = 6 then Q = 22 and n = 26p' = 32. We keep the number of simulation 
replicates at its minimum: ulz = n + 1 (if m In then c;v (y)  is singular). To improve 

DENOM = 1.O/M 
DO 10 I = l ,X 

DO 10 R = l , * b f  
DO 10 L L = l , L  

10 EBAR(LL,I) = EBAR(LL,I) + E(LL,R,I) 
DO 20 I = l , N  

DO 20 L L - 1 , L  
20 EBAR(LL,I) = EBAR(LL,I) * DENOM 

FIGURE5. Vectorizable FORTRAN Program for E 
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TABLE 3 

Tofnl CPC ilnles (it1 ~~~icro.r.ecoi~il~r.)(nz = n + 1 .  L - 100) 

Case 1 Case 2 Case 3 
OLS n = 4  Q = 4  n = 1 6  Q = l l  n = 3 2  Q = 2 2  

VAX 8700 710 7,870 29,060 
CYBER: scalar mode 544 6,188 24,035 

vector mode 1 1  123 486 

EGLS 

VAX 8700 total 

inversion 

rest 


CYBER. scalar total 37,797 36 1.322 2,058.737 
inversion 32.267 168,244 584,393 
rest 5.530 193,078 1,474.344 

CYBER: vector total 32.437 172,854 625,000 
inversion 32,297 168.084 583.639 
rest 140 4.770 41,361 

the accuracy of our timing data we repeat the computation 100 times. Into the OLS 
estimator of (2 .6 )we substitute 

W = ( X 1 x ) - l X '  (4 .1 )  

and into the EGLS of (2 .7)we substitute 

W needs to be computed only once, but V is calculated L = 100 times since c& ( y )  
changes every time. Appendix 2 gives the main part of the computer program. 

The CYBER 205 can run in vector mode and in scalar mode respectively. The results 
in Table 3 show that for OLS the scalar mode of this expensive computer runs only 
slightly faster than the VAX does. In vector mode, however, the CYBER takes less than 
2% of the VAX time. In our particular EGLS code, matrix inversion cannot be vectorized. 
Therefore we measure how much time inversion takes. Obviously scalar mode and vector 
mode of the CYBER yield the same CPU times for inversion, apart from measurement 
errors. The "rest" in Table 3 refers to the whole computer code excluding matrix inversion. 
In "vector" mode we vectorized all instructions that can be vectorized over the L di-
mension (see again Appendix 2 ) .  In the small problem ( n  = 4, Q = 4 )  nonvectorizable 
inversion takes 85% of total time, so vectorizing the rest can never save more than 15%; 
actually it saves 14%. In the large problem ( n  = 32, Q = 22)  inversion takes only 28% 
of total time; vectorizing the rest saves 70%. We point out that in the small problem, 
EGLS runs faster on the VAX than on the CYBER, even in vector mode. In Appendix 
3 we give some more programming tricks for improving the efficiency of vector computers. 

5. Conclusions 

Vector computers provide a new challenge for management scientists, since their ap- 
plication requires a new way of thinking, namely "thinking in vector mode." We examined 
vector computing in Monte Carlo experiments with regression models, which are also 
used as metamodels in simulation. If the matrix of independent variables X is relatively 
small, then vector computers are inefficient if applied straightforwardly. Monte Carlo 
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experiments, however, are replicated many times, say 100 times. Exploiting this dimension 
of the problem makes vector computers efficient in applications such as Ordinary Least 
Squares. Other applications require subroutine calls; for example, Estimated Generalized 
Least Squares requires matrix inversion. In small problems, vector computers such as 
the CYBER 205 are then slower than are scalar computers such as the VAX 8700. So 
the researcher must estimate which fraction of the total computer time can be saved by 
vectorization. Moreover, exploiting vector computers requires researcher's time to figure 
out efficient implementations. The potential CPU time savings should be weighted against 
the coding effort required to assess the net benefit of this vectorization strategy.' 

' The first author a a s  sponsored by the Supercomputer Visiting Scientist Program at Rutgers University, The 
State University of Nea Jersey. during July 1988. In 19891 1990. computer time on the CYBER 205 in Amsterdam 
was made available by SURF/NFS. The editor (Jim Wilson) and three anonymous referees gave many comments 
that lead to an expanded and better organized paper. and to the elimination of some errors; any remaining 
errors are the authors' respons~b~l~t!. 

Appendix 1. FORTRAN 200 Program for the Pseudorandom Number Generator 

PROGRAM PSEUDORANDOM 
IMPLICIT REAL (U-Z). INTEGER (A-T) 

C N is length of vector of pseudorandom numbers 
C K precedes seed K(0) of initial vector 

PARAMETER (N=65535,K= 1) 
C A1 is multiplier 

PARAMETER (A1 =37772072706109) 
C MVAST, BVAST and MINT are ~ ~ s e d  in controlled integer overfloa 

INTEGER MVAST 
BIT BVAST 
DESCRIPTOR MVAST,BVAST 
DIMENSION T(N) , S I (N) 
DIMENSION X 1(N) 
DATA MINT / X'0000800000000000' / 
CALL RANSET(K) 
DO 5 I = l , N  

U =RANF( ) 
CALL RANGET(T(1) ) 

5 CONTINUE 
ASSIGN MVAST, .DYN.N 
ASSIGN BVAST, .DYN.N 
S l ( l ; N ) = T ( l ; N )  
S l ( I ;N)=Al  * S l ( l ; N )  

C controlled integer overflow 
BVAST=Sl(l;N) .LT.O 
MVAST=S l(1;N)-MINT 
Sl(l;N)=QSVCTRL(MVAST,BVAST;Sl(1;N) ) 
Xl( l ;N)=Sl ( l ;N) /MINT 
FREE 
END 

Appendix 2. FORTRAN 200 Program for the OLS and EGLS Estimators 

OLS ESTIMATOR FOR BETA 

C 	 MXM is a user defined routine that multiplies 2 matnces 
CALL MXM(XGT,X,XTX) 
CALL INVERSE(XTX,XTXI) 
CAL MXM(XTXI,XT,W) 

C N denotes # of rows of X; M denotes # of replicates 
DO 5 I = l , N  

DO 5 J = l , M  
YGEM(l,I;LL)=YGEM(l ,I; LL)+Y(l,J,I; LL) 
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5 CONTINUE 
C Q denotes # of beta's 

DO lo  I = l , Q  
DO 10 J = l , N  

BETA(1,I; LL)=BETA(l,I;LL)+W(I.J) *YGEM(l,J; LL) 
10 CONTINUE 

EGLS ESTIMATOR FOR BETA 

DO 5 I = l , N  
DO 5 J = l , M  

YGEM(1 ,I;+L)=YGEM(l ,I; LL)+Y(l ,J,I; LL) 
5 CONTINUE '' 

C S is estimated covariance matrix 
DO 10 I = I , N  

DO 10 J=I,N 
DO 10 K = l , M  
S(l,I,J;LL)=S(l,I,J;LL)+( -(Y(1 ,K,I;LL) 

$ YGEM(1,I:LL) ) *(Y(l,K,J;LL)-YGEM(1 .J; LL) ) ) 
10 CONTINUE 
C S is symmetric 

DO 15 I = l , N  
DO 15 J = l , N  

S(l,J,I:LL)=S(l,I,J;LL) 
15 CONTINUE 
C Invert 2-dim. matrix DU4, which is part of 3-dim. matrix S 

DO 18 K = l , L L  
DO 20 I = l , N  

DO 20 J = l , N  
DU4(J,I)=S(K,J,I) 

20 CONTINUE 
CALL INVERSE(DU4,MY4,N) 
DO 25 I = l , N  

DO 25 J = l , N  
SI(K,J,I)=MY4(J,I) 

25 CONTINUE 
18 CONTINUE 

DO 30 I = l , R  
DO 30 J = l , N  

DO 30 K = l , N  
XTSI(l,I,J; LL)=XTSI(I ,I,J; LL)+XT(I,K) * SI(l,K,J;LL) 

30 CONTINUE 
DO 35 I = l , R  

DO 35 J=I ,R 
DO 35 K = l , N  

XTSIX(l,I,J; LL)=XTSIX(l,I,J; LL)+XTSI(l,I,K; LL) *X(K,J) 
35 CONTINUE 

DO 40 K=I ,LL 
DO 45 I= l ,R  

DO 45 J = I , R  
DU3(J31)=XTSIX(K,J,I) 

45 CONTINUE 
CALL INVERSE(DU3,MY3,R) 
DO 50 I = l , R  

D O  50 J = l , R  
XTSIXI(K.J,I)=MY3(J,I) 

50 CONTINUE 
40 CONTINUE 

D O  55 I = l , R  
DO 55 J=l .N 

DO 55 K = l , R  
V(l ,I,J;LL)=V(l ,I,J;LL)+XTSIXI(l ,I,K; LL) *XTSI(l,K,J:LL) 
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55 CONTINUE 
DO 60 I = l , R  

DO 60 K = l , N  
BETA(l.I:LL)=BETA(l,I;LL)+V(l,I,K;LL)*YGEM(I,K;LL) 

60 CONTINUE 

Appendix 3: Programming Tricks 

There are several "tricks" for improving the efficiency of vector computers like the Cyber 205. These tricks 
should be applied in any computer program, not only Monte Carlo experiments. 

1. Scalar divides take relatively much coinputer time: 54 cycles versus 5 cycles for multiplication; 1 cycle 
takes 20 nanoseconds. The computation of denominators like 1 / m  (see Figure 5 )  and 1 / ( m  - 1) (see equation 
(3.4 1 )  should therefore be separated by several lines of code; see SARA ( 1984, pp. 5, 7 ) .  

2. Double precision is slow and excludes vector mode; SARA ( 1984, p. 6 ) .  
3. There are special vectorized instructions, namely V-functions and Q8-functions We presented some 

examples; also see SARA ( 1984, pp. 27, 30). 
4. The compiler can optimize the standard FORTRAN program; next special programs (such as SPY and 

CIA) can measure which parts of the program take most time during execution and are candidates for customized 
optimization. 
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