Optimization Methods and Software Taylor & Francis
Vol. 20, No. 1, February 2005, 99-113 e Tapar B francis Groug

Limiting behavior of the central path in
semidefinite optimization

M. HALICKA*, E. DE KLERK?* and C. ROOS§

tFaculty of Mathematics, Physics and Informatics, Comenius University, Mlynska dolina,
842 48 Bratislava, Slovakia
FFaculty of Mathematics, Department of Combinatorics and Optimization,
University of Waterloo, Waterloo, Canada N2L 3G1
§Faculty of Information Technology and Systems, Delft University of Technology,
P.O. Box 5031, 2600 GA Delft, The Netherlands

(Received 17 June 2002; revised 30 June 2003; in final form 20 May 2004)

This paper is dedicated to Professor Yury Evtushenko in honor of his 65th birthday

Tt was recently shown by [Halick4 et al. (2002). On the convergence of the central path in semidefinite
optimization. SIAM J. Optimization, 12(4), 1090-1099] that, unlike in linear optimization, the central
path in semidefinite optimization (SDO) does not converge to the analytic center of the optimal
set in general. In this article, we analyze the limiting behavior of the central path to explain this
unexpected phenomenon. This is done by deriving a new necessary and sufficient condition for strict
complementarity. We subsequently show that, in the absence of strict complementarity, the central
path converges to the analytic center of a certain subset of the optimal set, We further derive sufficient
conditions under which this subset coincides with the optimal set, i.e, sufficient conditions for the
convergence of the central path to the analytic center of the optimal set. Finally, we show that convex
quadratically constrained quadratic optimization problems, when rewritten as SDO problems, satisfy
these sufficient conditions. Several examples are given to illustrate the possible convergence behavior.
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Analytic center
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1. Introduction

We first formulate semidefinite programs and recall the definition of the central path and some
of its properties,

We denote by S" the space of all real symmetric n x n matrices and for any M, N € §*,
we define

M - N = trace(MN) = Zm,-jng.
ij
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The convex cones of symmetric positive semidefinite matrices and positive definite matrices
will be denoted by §% and S% , respectively; X = 0 and X > 0 mean that a symmetric matrix
X is positive semidefinite and positive definite, respectively.

We will consider the following primal-dual pair of semidefinite programs in the
standard form

(P): min{C-X:A  X=b(@=1,...,m),X >0},
Xes§t

m
. T, i =
(D) : e BTy: EA w+Z=CZ»0},

where Al € " (i=1,...,m) and C € §", b € R™. The solutions X and (y, Z) will be
referred to as feasible solutions as they satisfy the primal and dual constraints, respectively.
The primal and dual feasible sets will be denoted by P and D, respectively, and P* and D*
will denote the respective optimal sets. We make the following two standard assumptions
throughout the article.

Assumprion 1.1 A(i = 1,..., m) are linearly independent.
ASSUMPTION 1.2 There exist X° € P and (Z°, y°) € D such that X° > 0 and Z° > 0.

It is well known that under our assumptions both P* and D* are non-empty and bounded.
Moreover, (X, Z) € (P x D) is an optimal solution pair if and only if X-Z =0, or
equivalently X Z = 0. The last equation is a complementarity condition. A strictly comple-
mentary solution is defined as an optimal solution pair (X, Z) satisfying the rank condition:
rank(X) + rank(Z) = n. Contrary to the case for linear optimization (L.O), the existence of a
strictly complementary solution is not generally ensured in semidefinite optimization (SDO).
A pair of optimal solutions (X, Z) € P* x D* is called a maximally complementary solution
pair if it maximizes rank(X) + rank(Z) over all optimal solution pairs. The set of maximally
complementary solutions coincides with the relative interior of (P* x D).
In order to define the central path, we consider the centering system

Al X=b, X=0@G=1,...,m
m .
Y Ay+z=C Zx0 m
j=1

XZ = ul,

where I is the identity matrix and g > 0 is a parameter. It is easy to see that for u = 0,
equation (1) forms the necessary and sufficient conditions for optimality, and hence may
have multiple solutions, On the other hand, it is well known that for x> 0, the system 5]
has a unique solution, denoted by (X (1), Z(u), y(u)). Similarly as for LO, this solution is
seen as the parametric representation of an analytic curve (the central path) in terms of the
parameter (.

It has been shown that the central path for SDO shares many properties with the central
path for LO. First, the basic property was established that the central path, when restricted
to 0 < u < ji for some i > 0, is bounded and thus has limit points in the optimal set as
w {0 [1,2]. Then, it was shown that the limit points are maximally complementary optimal
solutions [1,3]. Finally, it was claimed in ref. [3] that any limit point of the central path for
& | 0 can be characterized as the analytic center of the optimal set. As the analytic center
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is defined uniquely, this claim implies the convergence of the central path to an optimal
solution. However, a counterexample was presented in ref. [4], which shows that the central
path need not converge to the analytic center if the SDO program does not have a strictly
complementary solution.

This fact has reopened the question of characterization of limit points of the central path in
SDO. Moreover, it made it necessary to re-examine proofs of the convergence of the central
path, which do not rely on the analytic center characterization of limit points,

In ref. [5], Kojima et al. established the convergence of the central path for the monotone
linear complementarity problem using a triangularization approach from algebraic geometry.
In ref. [6], Kojima et al. mentioned, without giving details, that a similar approach can be used
to prove convergence of the central path for the monotone semidefinite linear complementarity
problem (SLCP), which includes SDO as a special case.

Convergence of the central path for a class of convex SDO problems that includes SDO was
proved in ref. [7].

A simpler, direct proof of the convergence of the central path for SDO was given in ref. [4].

All these proofs use ‘existence’ results from real algebraic geometry and do not yield any
characterization of the limit point.

The counterexample from ref, [4] shows that the central path may have very unexpected
behavior, if no strictly complementary solution exists. Nevertheless, under the assumption of
strict complementarity, the central path in SDO has the same properties as the central path in
LO: it converges to the analytic center of the optimal set [2,8], the distance of the p-center on
the central path to the optimal set is O(u) [2], and the central path can be analytically extended
beyond . = 0, which implies that the derivatives of the central path are bounded at the limit
point [9].

In this article, we first give a new characterization of strict complementarity. This allows
us to show that, in the absence of strict complementarity, the central path converges to the
analytic center of a certain subset of the optimal set. Then, we derive conditions under which
this subset coincides with the optimal set, and hence the central path converges to the analytic
center of the optimal set. Finally, we show that the convex quadratically constraint quadratic
program, when rewritten as an SDO program, satisfies these sufficient conditions.

2. Preliminaries

As mentioned earlier, the central path (X (1), Z(u), y(u)) converges as g | 0 and its limit
point (X*, Z*, y*) is a maximally complementary optimal solution. This result forms the basis
for our subsequent analysis. Denote

|B| :=rank X* and |N|:=rank Z"

Obviously, | B| + |[N| < n.As X* and Z* commute, they can be simultaneously diagonalized.
Hence, without loss of generality (applying an orthonormal transformation of problem data,
if necessary), we can assume that

X3 0 0 0
X* = B *
"[o 0]’ Z—[o z,*v}’

where X} € S'ﬂ and Z}, € S_m are diagonal. Moreover, each optimal solution pair (X,2)

is of the form
5 Xz O 5 [0 0
=[50 2=l o)
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where X B E S_'f' and Z N € S,',_"'| (The arguments for this claim are given, e.g., in ref. [4].). In
this notation, the condition of existence of a strictly complementary solution is equivalent to
|B| 4+ |N| = n, and non-existence with |B| + |N| < n.

Given an index set T C {1,...,n}, let T denote its complement. In what follows, we
consider the two possible partitions of any # x n matrix M, corresponding to the above
optimal partitions for the optimal X* and Z*, namely,

My Mgy

MB M B . I
M= BB mal partition), M =
[ :l (primal partition) [ My; My

Mz M; :I (dual partition).  (2)
Here My and Mj; are, respectively, the |B| x |B| and (n — |N|) x (rn — |N|) matrices and
hence if no strictly complementary solution exists, they are of different dimensions. We denote
by T = {B, BB, BB, B} and .7 = {N, NN, NN, N} the index sets corresponding to the opti-
mal partitions of X* and Z*, respectively. If we refer, for example, to all the blocks of the
primal partition of M except Mg, we will write M;(i € Z — B). Using this notation, the first
two equations in equation (1) can be rewritten as

DAL Xwy=b G=1,...,m),

jeT
m (3)
YA+ Ziw=C; (jed).

i=1

Owing to the optimality conditions [equation (1), where u = 0], the optimal sets P* and D*
can be characterized, respectively, by using the primal and dual optimal partitions:

P ={X: Ay Xg=b(i=1,...,m,XgeS Xy, =0(keIT-B), &

m
D" = {(Z,y):ZAﬂvy; +2Zy =Cy, Zy € 5},

i=l

D Ay =CZi=0(keJ—-N). )

i=1

This description of the optimal sets allows to identify the relative interiors of P* and D*,
respectively, as 1i(P*) = {X e P*: X € S_l‘ﬂ} andri(D*) = {(Z,y) e D*: Zy € Sﬁ'}.

The analytic centers of these sets are defined as follows: X¢ € P* is the analytic center
of P* if

X% =arg ma)l(gl{lndctXB: A"B Xp=b;(i=1,...,m)}, (6)
Xp€Syy

and (y?, Z) € D* is the analytic center of D* if

" Z§) =arg max
yeR", Zyesi

m m €]
Indet Zy: Y Alyyi +Zy =Cy, ) Abyi =Cr (k€ J - N)] .

i=1 i=1
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By the Lagrange rule, the analytic center of P* can be characterized as X® € P* that sat-
isfies the condition (X4)™' — "7 u’ A% =0, for some w’ (i =1, ..., m) or, equivalently,
(X3)™! € R(AL). Here R(AY) is the range of the linear operator AT (AT associates y € R™

with 31" | Aby;). The analytic center of D* can be characterized mmxlarly

Remark The descriptions (4) and (5) of the optimal sets allow us to identify the necessary and
sufficient conditions for the uniqueness of the optimal solutions. In fact, the primal optimal

solution is uniquely defined if and only if the matrices A% (i = 1, ..., m) span the space S'Z!,
Similarly, the dual optimal solution is uniquely defined if and only if the matrices
A’ Al
NN P —
[A’ O]’ i=1,...,m

are linearly independent.! These conditions coincide with the concepts of weak dual and
weak primal non-degeneracy, respectively, as introduced by Yildirim [10]. Obviously, if weak
primal (dual) non-degeneracy holds, then the dual (primal) central path converges to the unique
solution, which is the analytic center of D*(P*). In what follows, we are interested in the case
when weak primal or dual non-degeneracy does not hold.

3. Characterization of the limit point of the central path

We first identify a property of the central path, which holds if and only if a strictly com-
plementary solution exists. In other words, we give an alternative characterization of strict
complementarity. To this aim, we introduce

i 1 . 1 '
Zp(u) = (;) Zp(p) and Xy(u) = <;) Xy (), ()

and we study the limiting behavior of Z 5 (1) and Xy ().

THEOREM 3.1 Both ZB(M) and XN(/L) converge as p | 0, and the limit matrices Z; =
lim, 4o Zp(u)and X% = lim, 0 Xn(i) are positive deﬁm'te Moreover,|B| + |N| = n (strict
complementarity holds) if and only if (Z;;)‘ = X} and (X Yy = 2% N

Proof We first note that Zs (u) and X ~{(p) are bounded as p | 0. This follows from
X5 Zg(u)+Z} - Xn(u) =n, 9)

which is implied by the identity (X* — X(w)) - (2* — Z(w)) = 0. Now, the proof of con-
vergence for Zg(1) and X ~ () follows the same pattern as the proof of convergence for the
central path in ref. [4]. The latter proof exploited the fact that the centering system of conditions
defines a semialgebraic set. However, if we substitute Zg = /LZ p and Xy = uX y into the
centering conditions, the new system of conditions defines a semialgebraic set as well. Hence,
the same procedure as in the proof of Theorem A.3 in ref. [4] yields the convergence Zp (i)
and Xy (). This means that the limit points Z % and X % exist and are positive semidefinite.

IThis observation was made thanks to an e-mail discussion with Yildirim.
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We now prove that Z 3 and X % are positive definite. To this end, we use both the primal and
dual partition of the equation X () Z(u) = I to obtain the following two pairs of equations:

X5 (W) Z5 () + X550 Z5p (W) = ulp,  Xp(W)Zps () + Xps(W)Z5(w) =0, (10)
XN Zn () + X g ) Ziw () = idys X ) Ziy (1) + Xy (W)Zw () = 0. (1)

Expressing X pz (1) and Z g, (u) from the second equation of each pair and substituting this
to the first ones, we obtain

Zp(u) = X5 (W) + Gp(w), Xn(w) = Zy' (W) + Ga(w), (12)

where

Gp(u) = (i) Zgs(WZ5 (W Z5p(u),  Gulp) = (-};) Xy (W) X5 (1) X oy ().
(13)
As Zg(u), Xy (), X;‘ () and Z;l () converge as /4 | 0, we obtain that G g(x) and Gy (1)
converge to G and G (say). Moreover, as (X%) ™' and (Z})~! are positive definite, Z}; and
X% are positive definite as well.
Now, we prove the last part of the theorem. Substituting equation (12) into equation (9) and
letting ;+ — 0, we obtain

Xy X+ 2y 2T+ Xy G+ Zy Gy =n.

Itis easy to see that the first two terms in the last expression are equal to { B| + | N | and the other
two are non-negative. Hence |B| + |[N| = n if and only if the latter two terms vanish that are
equivalent to G = 0 and G} = 0, i.e., Z} = (X})~! and X} = (Z})", by equation (12).

]
Hence the theorem states that both the matrices X} — (Z%)™' and 2}, — (X%)~" vanish if
and only if there exists a strictly complementary solution, In Lemma 3.1, we derive another

interpretation for these matrices, which relate them to Schur complements of X5 and Zg,
respectively. To this end, we define

Fp(u) = Xps(u)X3(u) "' X55(u) and Fy(u) = Zyz (W Zy(w) ™ Zyy(w), (14)

and note that X p(u) — Fp(u) is the Schur complement of X z(w) in X (1) and Zy(u) —
Fy (i) is the Schur complement of Z 5 (1) in Z(w).

LEMMA 3.2 Fp(u) and Fy(u) given by equation (14) converge as i |, 0 and

Fj i=lim Fp(u) = X} — Zp~'esP and F} = lim Fiy () =Zj; — Xt e s,
U ©
(15)

Proof Applying the formula for the inverse of a block matrix [see, e.g., ref. 11] to X (u),
and using equation (15), we obtain (X' (1)) = (Xz(u) — Fz(w))™~'. Combining this with
X" u)p = ZB(M) implied by X (4)Z (1) = pl, and taking the inversion yields Fp(u) =
Xpg(u) — Z;‘ (u). Analogously, we obtain Fy (i) = Zy(w) — X ﬁl(u). Now, the lemma fol-
lows from Theorem 3.1, where the convergence of Z p(w) and X n{u) to positive definite
matrices is ensured. Positive semidefiniteness of Fz and Fy; follows from equation (15). W
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From Lemma 3.1 and Theorem 3.1 we obtain the following corollary.

CoRrOLLARY 3.1  Defining Fj and F3, as in equation (15), one has
() Xy —F; >0and Z}, — Fy, > 0,
(ii) [B|+IN|=nifand only if F; =0and F}, =0,

We can define subsets of the primal and dual optimal sets in terms of Fj and Fy as follows:

Preoi=(X: Ay Xp=b (i=1,...,m),Xs— F} e S¥, X, =0 (keI - B)},

m m
Dy 1= i(z, Y ) ANyi+Zn=Cn, Zy - Fy e SV Alyi =G,

i=1 i=1

Zk=0(kEJ—N)].

It is easy to see that Pp+ € P* and Dp. € D*, Moreover, both Pg. and Dg» are non-empty
as X* € Pp« and (Z*, y*) € Dp.. The relative interiors can be described as

i(Pr) = (X € P Xp — Fy € S} and  ri(Dp) = ((Z,y) € Dpe: Zy — F}y € SIE1)

and due to Corollary 3.1 (i), the analytic centers of these set are well defined as the unique
solutions to the following problems

max {Indet(Xp— Fp): AL -Xp=b; (i =1,...,m)}, (16)

Xy-Fesi®l

max lln det(Zy — F‘;}):ZA'}Vy, + Zy = Cy,

yeR™ Zy—F}esi am

D Ayi=Crlke J—N)}‘ (17)

i=1

THEOREM 3.2  The limit point (X*, Z*, y*) of the central path and the corresponding matrices
Fg and Fy; have the following properties:

(i) X3} is the analytic center of P« and
B
(i) (Z*, y*) is the analytic center of Dg-.

If there exists a strictly complementary solution, then Pp+ = P* and Dp» = D*,

Proof The last part of the theorem follows from Corollary 3.1 (ii). We only prove (i) as the
proof of (ii) follows the same pattern. To this end, it suffices to prove that (X} — F})™! €
R(A}), asthere existu’ (i = 1,..., m) suchthat (X} — F3)~! — 21| u A}, = 0, and hence
X* satisfies the sufficient condition for the optimal solution to equation (16).

Applying the primal optimal partition to the dual feasibility condition, we obtain

m m
ZAI'B)’* =Cp and EA%J’(P«) + Zp(p) = Cs,

=1 i=1
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which implies that Z g(u) € R(A'g) for all & > 0. As the space R(A'g) is closed, and Z ()
converges to Zj by Theorem 3.1, we have Z} € R(A}). Now by Lemma 3.1 we have (X} —
F3)~! = Z} € R(A]), which completes the proof. n

4. Examples

We provide two simple examples for which the central paths can be expressed in closed form.,
Both examples do not have strictly complementary solutions and have multiple dual optimal
solutions. For both examples, we construct the corresponding sets Dp-. For the first example,
Dr. # D* and the analytic center of Dg. does not coincide with the analytic center of D*,
Hence, the dual central path does not converge to the analytic center of the dual optimal set.?
For the second example, Dr+ = D* and thus the central path converges to the analytic center
of the optimal set.

Example] letn=4,m=3,b=[00 —1]T and

0 00O 0 00 O 0 0 -1 0
0 0 0 O 0 600 O 0 -1 0 0
C=loo10o|" oot of “=[21 o o ol
0000 0 0 0 -1 0 0 0 0
-1 0 0 0
0 000
=19 00 0
0 000
The dual problem maximizes —yy such that
» 0 y» 0
0 » 0 0
> 0.
> 0 1-y» 0

00 0 |y

The optimal solutionsare y, = y3 = 0and 1 — y; > 0, y; > 0. The analyticcenteris y; = 1/2.
The primal problem minimizes X3 such that

1
1 X —§X22 X4
X = -’1(12 X X Xu > 0. (18)

—EXzz Xn X Xu
X4 X X34 X33

2An example for which the central path does not converge to the analytic center was first described in ref, [5].
The example presented here is much simpler ~its central path can be analytically computed —and it allows geometric
insight into limiting behavior of the central path (see section 7).
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The unique optimal solution is X; = 1 and the other components of X are 0. It can easily
be verified that the central path is y; (1) = 3/5, y2(1) = ' B/10)u, y3 = B/2) i, X33(u) =
(5/2), Xoz(p) = +/(10/3) 1, and the other components of X in equation (18) are O along

the central path. Hence, the dual central path does not converge to the analytic center of the
dual optimal set, as y{ = 3/5. However, for this example, we have

0 0 0 0
o _|» O o _|» O _ 2| _
ZN_[O yz]’ ZNN“[O 0]’ Fv=1o y—z}*[o 1}_“’

y3 5

and thus y{ = 3/5 is the analytic center of Dp., where

1-y1 0
Dpe = ,Z) e D*: 1|>0;.
F (v, 2) 0 g

Example 2 letn=5m=3,b=[00 —~1]T and

0 0000 000 0 O
00 00O 000 0 O
c=|0 010 0|, A=|001 0 0f,
0 0000 000 -1 090
[0 0 0 01 000 0 O
[0 0 -1 00 -1 0000
0 -1 0 00 0 0000
Ay=]-1 0 0 O O0f, A3=|0 O 0 0 O
0 0 0 00O 0 00 00O
0 0 0 00 0 0000
The dual problem maximizes —ys such that
3 0 y» 00
0 » 0 0 0
Z=|y, 0 1—-y 0 0j=0
0 0 0 »n O
0 o0 0 0 1

The optimal solutions are y, == y3 = Oand 1 — y; > 0,y > 0.The analytic centeris y; = 1/2.
The primal problem minimizes X33 + Xs5 such that

1 X1z "‘%Xzz X1 X5
X2 X Xoz Xoa Xos
X = —';—Xzz Xz Xz3 X3g Xss z 0. 19
X4 Xy Xu X3 Xss
L Xi5  Xas X3 Xgs Xss |
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The unique optimal solution is X;; = 1 and the other components of X are 0. It can be
easily computed that the primal-dual central path is given by y1(u) = 1/2, yo(u) = J/u/2,
3= (3/2)p, Xss(u) = 3/2Dp, X33(1h) = 214, X23(14) = 2/12/2, and the other components
of X in equation (19) are O along the central path. Hence, the dual central path converges to
the analytic center of the dual optimal set. For this example, we have

00 O 00 0
Z,;,:[y(; yoz] zﬁNz[%z 8 8], Fy= |20 y02 =% Y =r
0 0 =% 00 =
¥3 3
We observe that
Zy=| 0 oy 0| ad Zy-Fy={ ° N9
0 0 1 0 0 3

This means that although F # 0, the dual central path converges to the analytic center. This
is caused by the fact that the only non-zero element of Fy, is at the position where Zy has a
fixed element (i.e., equal 1o 1), and hence the optimal set (being constrained by Zy > 0) is
the same as the set Dps (constrained by Zy — Fy, > 0). This observation will be generalized
in section. 5.

5. SDO Problems with a special block-diagonal structure

In this section, we describe a class of SDO problems where the central path converges to the
analytic center of the optimal set. We assume the data matrices to be in the block diagonal form:

; Al 0 , Cy O

i |4V — m C =

A [0 A'v:l’ ¢=Loam, [0 CV]' (20)
A"U,CUES“", for some s < n.

Denote Zy(y) = Cy — Y ie, Ay yiand Zy (y) = Cy — Y v, AL ;. Itis easy to see that each
dual feasible solution (Z, y) is of the block diagonal form with positive semidefinite matrices
Zy(y) and Zy (y) on the diagonal. In what follows, we will make the following assumption.

ASSUMPTION 5.1 There exists Z}; > 0 such that each dual optimal solution (Z, y) satisfies
Zy(y) = Z},. Moreover, there exists an optimal solution (Z, y) for which Zy(y) > 0.

This assumption ensures that the corresponding optimal set can be characterized as

D*={(Z,y): Zu(y) = 2, Zv(y) = O}



Central path and limiting behavior 109

THEOREM 5.1 Let SDO be of the form (20) and satisfy Assumptions 1.1, 1.2, and 5.1. Then
D* = Dpv, and hence the dual central path (y(u), Z(1)) converges to the analytic center
of D*.

Proof Without loss of generality, we may assume that Zy is partitioned as

Zy = [Zw Zuz]
Zyy Zus)’

where at any optimal solution (Z, y), itis Zy(y) = 0, Zya(y) = 0, and Zy3(y) = Z},; > 0.
This and Assumption 5.1 imply that the components Zg, Z gy, and Z of the optimal partition
of Z are

Zys 0
ZN= [ 0 ZV], ZA"[:ZU]v and ZNN=[ZU2 O]. (21)

This implies that the optimal set is

D*={(Z,y): Zx(y) =0, Ziny(y) =0, Zy(y) = 0}
={(Z,9): Zvi(y) =0, Zy2(y) =0, Zy3(y) = Z;3, Zy (y) = 0}.

Substituting equation (21) into equation (14) we obtain the formula for Fy(u), where by
Lemma 3.1, Fy (1) converges. This means we have
Ff, 0
— I: 6/3 0} =F X,

As Zy3(y) = Z};; at any optimal solution y and Z},; — Fj, > 0 by Corollary 3.1, we obtain
that the condition Zy (y) — Fy > 0 is equivalent with Zy (¥) > 0. This means

Fy(p) = [Zzzm)zai)(mzmm) 8]

Dpe ={(Z,y): Zz(y) =0, Zyy(y) =0, Zy(y) — Fy = 0}
={(Z,y): Zv1(y) =0, Zya(y) = 0, Zy3(y) = Z5, Zy(y) = 0} = D*

and the theorem is proved. n

6. Convex quadratically constrained quadratic optimization

In this section, we show that a convex quadratically constrained quadratic program can be
viewed as an SDO problem of the form (20) with Assumption 5.1, and hence the central path
converges to the analytic center of the optimal set.

Consider the general convex program

(©) min(fo(): i) <0G =1,..., L))

where C is an open convex subset of R", and f;: R" — R (i =0,1,..., L) are convex and
smooth on C, Let C* be the set of optimal solutions which we assume to be nonempty and
bounded.
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The following result was first shown in Monteiro and Zhou [12] for the case where the f;s
are analytic functions defined over the whole R” and was later generalized by McCormick and
Witzgall [13] to the form stated in the following theorem. (The more general result is more
appropriate for purposes of our discussion in the section 5.) Some related results are given in
refs. [14,15].

THEOREM 6.1 If the convex program (C) meets the Slater condition and the functions f; are
weakly analytic,” then the central path of (C) converges to the (unique) analytic center of the
optimal set,

Therefore, it follows from Theorem 6.1 that the central path converges to the analytic center of
the optimal set when the f;s are convex quadratic functions. Here our goal is, therefore, only
to show that the assumptions in Theorem 5.1 are indeed met for some interesting sub-classes
of SDO problems.

Consider the convex program (C), where all functions f; (i =0,..., L) are convex
quadratic, i.e.

i =y"Py—-qfy-r, P x0. (22)

Such a program is called a convex quadratically constrained quadratic program and we will
denote it as (CQ). We first prove an auxiliary result about the set of optimal solutions C* of
(CQ). By I (y), we denote the index set of inequalities, which are active at an optimal point y,

LEMMA 6.1 Let y* € ri(C*), Then foreachi € I(y*) U {0}, both Pillzy and q,-Ty are constant
onC*.

Proof Thefollowing result was proved inref. [16]. Let S* be the optimal set forminyes fo(»),
where fo(y) is of the form (22) and S is convex; then Ppy and gg y are constant on §*. Hence,
thei = 0 (objective function) case of the lemma follows from the result [16]. Now, leti € I(y*)
where y* € ri(C*) and consider the program:

min f;(y). (23)
yeC*

Now, the lemma for i & I (y*) follows by application of the aforementioned result in ref. [16]
to equation (23), provided f;(y) is constant on the whole C*. However, the fact that f;(y) = 0
for each y € C* follows from convexity of C* and f;(y), and the assumption y* € ri(C*). The
proof of this fact is straightforward and hence omitted. n

Itis well known that (CQ) with equation (22) can be equivalently reformulated as the convex
quadratically constrained program:

(Q): nl‘%'x {—t: fo()’)St,fi(}’)ﬁo(i=1--uvL)},

where f; (i =0, ..., L) are given by equation (22). As shown in ref. [17], this problem can
be rewritten as the SDO problem

(SDQ):n}gx {—t:Zo(y, ) =0, Z( =0 (@ = 1,..., L)},

3A function is called weakly analytic if it has the following property: if it is constant on some line segment, then
it is defined and constant on the entire line containing this line segment,
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where

! pi2y ! pi2y
Zo(y, 1) = 0 v Zi(y) = j i=1,...,L).
L’TPOI/Z aly +ro+1 i SR Ty in, ( )

This is an SDO program in the standard dual form (D), if we define Z as the block diagonal
matrix with Z; (i = 0, ..., L) as diagonal blocks. The condition Zg(y, £) = 0 corresponds to
fo(y) < t,andtheconditions Z;(y) = 0,i = 1, ..., L correspond to the constraints f; (y) < 0.

THEOREM 6.2 Let (SDQ) satisfy Assumptions 1.1 and 1.2. Then it also satisfies the other
assumptions of Theorem 5.1. Hence D* = Dp», and the dual central path (y(i), Z(j1))
converges to the analytic center of D*.
Proof Applying Corollary 6.1 to Zy, we can see that both POI/ 2y and rg y are constant on
D*. Moreover, ¢ is also constant, and hence the entire block Z, can be considered as a part of
the block Zy from Assumption 5.1. Now, we consider a block Z; for some i € {1,..., L}.
If there exists a y* € D* such that Z;(y*) > 0, then this block is considered to be a part of
Zy. In other case, Z;(y) is singular on D*, which means that the corresponding inequality
fi(y) < 0is active at each y* € ri(D*), and hence i € I (y*), and we can apply Lemma 6.1,
We obtain that all components of Z; are constant on D* and thus the entire block Z;, for which
i € 1(y*), can be considered to be a part of Zy.

As each block Z;,i =0, ..., L was added either to Zy or to Zy, the problem is of the
form (20) and satisfies Assumption 5.1. Thus, the dual central path converges to the analytic
center of D*, |

7. Concluding remarks

‘We have shown in this article that, in the absence of strict complementarity, the central path
converges to the analytic center of a certain subset of the optimal set. Unfortunately, the
description of this subset does not depend only on the problem data and the optimal (block)
partition, and therefore does not give a nice geometrical characterization of the limit point. It
would be interesting to understand whether such a characterization is possible.

We have also described a class of SDO problems with block-diagonal structure, where
the central path converges to the analytic center of the optimal set. Convex, quadratically
constrained quadratic programs, when formulated as SDO problems, fall in this class.

We conclude with some detailed remarks about the examples we have considered.

e Regarding the SDO reformulation (SDQ) of convex quadratic optimization problems,
we have proved the convergence of the central path to the analytic center of the optimal set
for the program in the standard dual form, but this result does not say anything about the
situation for the corresponding dual counterpart in the standard primal form, In fact, the
dual need not correspond to a quadratic program, and its central path need not converge to
the analytic center of its optimal set. To see this, consider Example 1, where in the primal
formulation we neglect the variables that vanish along the central path. Then the feasibility
constraints can be described by one convex quadratic constraint 1/4x2, — x33 < 0, and two
linear constraints —x3; < 0 and —x33 < 0. Hence, the primal problem corresponds to a
convex quadratic program. However, the corresponding dual problem does not correspond
to a convex quadratic program, and the central path does not converge to the analytic center,
as shown in section 5.
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o The standard duval form of Example 1 is closely related to the non-linear problem:

2

max —}’352'2-")’350,}’120,1—)’120,}’220}, (24

yeC Y1
where C is the open half-space where y; > 0. The optimal set and central path of the standard
dual form of Example 1 coincides with that of problem (24). In particular, the respective
central paths do not converge to the analytic centers of the respective optimal sets. It is
easy to show that all the functions in equation (24) are convex on C, However, the function
y% /y1 — ysis not a weakly analytic function, and this is the reason why Theorem 6.1 does not
apply here. In other words, it shows that the ‘weakly analytic’ requirement in Theorem 6.1
cannot simply be dropped.

e The simplicity of Example 1 allows us a geometric insight, as the central path can be
interpreted as a set of analytic centers of the level sets of the duality gap [see, ¢.g., ref. 18].
For positive u, the hyperbolic inequality of Example 1 ‘pushes’ the analytic center of the
level set away from y; = 0, i.e., ithas an influence on the description of the analytic center of
the level set. However, at 4 = 0 this inequality disappears, and, therefore, has no influence
on the description of the analytic center of the optimal set. Intuitively, this is the reason why
the central path does not converge to the analytic center of the optimal set for this example.

One might suspect from this example that any appearance of a hyperbolic constraint
courses a shift of the limit point away from the analytic center. However, this is not true as
shown in the following example.

Example 3

Yo Y2 y3 b}
max § —ys: > 0, >0, y2=20;.
{ % l:}’2 )’3] - [)’2 (1~ }’1):| 2 }

It can be shown easily that the central path for this problem converges to the analytic center
(y7 = 1/2), and that Dp. # D*.

While the present article was being refereed, new papers appeared treating the central path in
SDO, In refs. [19-21] the limiting behavior of weighted central paths is analyzed under strict
complementarity. Inref. [22], a characterization of the limit point of the central pathis provided
as being a solution of certain convex program; however, the uniqueness of this program is not
ensured in the paper, In ref. [23], the limiting behavior of the central path is analyzed under the
assumption that the distance of the non-strictly complementary components of the central path
to the optimal setis O(,/I). Some deep results on analyticity of the central path are established
there, which imply the convergence of the central path and provide a characterization of the
limit point.
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