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CONCURRENT ENGINEERING: Research and Applications

Collaborative Metamodeling:
Coordinating Simulation-based Product Design

Bart Husslage,1,* Edwin van Dam,1 Dick den Hertog,1 Peter Stehouwer2 and Erwin Stinstra2

1Department of Econometrics and Operations Research, Tilburg University, P.O. Box 90153, 5000 LE Tilburg, The Netherlands

2Centre for Quantitative Methods, P.O. Box 414, 5600 AK Eindhoven, The Netherlands

Abstract: High-tech products, like automobiles and aircrafts, consist of many components. To evaluate component designs, simulation

tools are frequently used. However, component complexity often results in very large simulation times, so the number of evaluated designs is

limited. Further, relations among components make the design of the final product a very hard task that can only be accomplished by a proper

coordination of all the simulation tools.

The first part of this paper gives a framework to deal with simulation-based product design for cases where there are multiple coupled

simulation tools and large simulation times. We call our approach Collaborative Metamodeling (CMM). The CMM approach focuses on the

construction of metamodels for components, in order to gain insight in the behavior of components and the final product. This knowledge is

used in finding an optimal and robust product design.

The second part of this paper deals with the coordination of simulation tools. Therefore, we define three coordination methods: Parallel

simulation, Sequential simulation, and Sequential modeling. To compare these three methods, we focus on five aspects: use of precedent

information, coordination complexity, simulated product designs, flexibility, and throughput time. For the throughput time aspect we derive

mathematical formulas and give relations between the throughput times of the three coordination methods. At the end of this part we

summarize the results and give recommendations on the choice of a suitable coordination method.

The third part of this paper contains a case-study, in which the CMM approach is applied to the design process of a color picture tube.

Key Words: design optimization, coordination, simulation, collaboration, black box, metamodel.

1. Introduction

Simulation tools, like FEM or CFD, are frequently
used nowadays in the design process to predict product

or process characteristics. Because of the complexity of
many of those simulation tools there are often no
explicit input–output formulas known. This is why these

tools are referred to as black boxes. Further, simulation
runs are often very time-consuming, so the number of
simulated scenarios is limited in practice.

Several sequential optimization methods have been
introduced in the literature to deal with optimization

involving expensive simulations. These methods try to
find an optimal product design by means of derivative-
free optimization and search methods; see, e.g.,

[6,7,10,20,26].
Alternatively, it has been proposed to replace the

black boxes by approximation models, also called

metamodels; see, e.g., [2,5,11,12]. Equivalent terms
that appear in the literature are compact models,

surrogate models, and response surface models. With

such metamodels we can evaluate product designs

relatively fast and thus gain insight in the product and

find optimal and robust product designs in an admis-

sible time.

The manufacturing industry produces a lot of complex

products that consist of several coupled components.

Due to the complexity of many components, their design

is often distributed over specialized design teams. Each

of those teams uses its own black box(es) to evaluate the

component designs. Because of the coupling among the

components, their black boxes are also coupled. Up to

now, mainly sequential optimization methods have been

proposed in the literature to deal with these kind of

problems. In engineering practice, Multidisciplinary

Design Optimization (MDO) techniques are often

used to deal with coupled design problems, e.g., see

[8,14,18,21]. These techniques are based on optimization

procedures that iteratively solve several small opti-

mization problems in order to gradually converge to

the optimal solution.

In practice, however, we are not just interested in the

optimal solution, but we also want to gain insight in the

product behavior in order to design a reliable product.
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This is accomplished by an efficient construction of
a metamodel for the product as a whole. Because of
the large number of design (or input) and response
(or output) parameters of the product, we cannot do
this all-at-once, e.g., using the metamodeling approach.
Instead, we exploit the product’s architecture by cons-
tructing metamodels for all black boxes and combine
these models into a metamodel for the product.
However, due to the coupling among black boxes, we
must carefully coordinate this modeling process. We do
this by defining a coordination method that controls
the order of the simulation runs and the construction
of metamodels. This coordination method enables us to
construct metamodels for all black boxes in an efficient
way. The set of these models then implicitly forms
the required metamodel for the product. We call this
approach Collaborative Metamodeling (CMM).
The paper is organized as follows. Section 2 gives

a general framework for CMM. Here the steps to be
followed and the questions and problems that arise at
these steps are discussed. Section 3 focuses on the first
step of the CMM approach. It introduces the notion of
coordination methods and defines three different
methods. Section 4 discusses five important aspects of
coordination methods and uses these aspects to compare
the three methods. Section 5 contains a case study in
which the CMM approach is applied to the design
process of a color picture tube. Finally, Section 6 gives
the conclusions and some topics for further research.
The Appendix contains the mathematical derivations for
the throughput time aspect in Section 4.5.

2. Collaborative Metamodeling

In case of a single black box the design optimization
process can be divided into four basic steps; Problem
Specification, Design and Analysis of Computer Experi-
ments (DACE), Metamodeling, and Design Optimiza-
tion [22]. Our CMM approach uses the same steps, be it
that some extra work has to be performed at each step,
in order to deal with the relations among black boxes.
Next, the four steps in our CMM approach are

discussed, as well as the problems that are encountered
when applying this procedure to complex product design
problems.

2.1 Step 1: Problem Specification

At this step we examine the most important features
of the product design problem. We investigate the pro-
duct’s architecture, i.e., we determine all components the
product consists of and the relations between them. This
includes the definition of all design and response para-
meters of the black boxes, as well as the determination
of the simulation times and the number of simulated

component designs needed or possible. The latter holds
in cases where there is a budgetary maximum on the
time spent on simulation. Then it may be wise to cluster
several black boxes into larger black boxes, in order
to reduce the total simulation time. A methodology
for clustering, in order to reduce the design project
makespan, can be found in [16]. Note, however, that
clustering can have unwanted effects on the construction
of metamodels, which may not weigh up against the
reduction in simulation time.

Further, we investigate the restrictions on design
parameter settings or combinations of design para-
meters. All these restrictions together form the design
space for the product. Attention has to be paid to design
parameters that are input to multiple black boxes, due
to the fact that this allows restrictions on one black box
to affect other black boxes, and, hence, their design
spaces.

Another issue is that response parameters of a black
box may be used as input to another black box.
Depending on the coordination method, values of
response parameters may not be known before the simu-
lations take place. Then we can only use the expected
parameters’ lower and upper bounds that are provided
by the design teams.

The problems mentioned above ask for a proper
coordination of the product design process. In Section
3.2 we define coordination methods to deal with this.

2.2 Step 2: Design and Analysis of Computer
Experiments (DACE)

Once all parameter ranges are known (or estimated),
we have information about the design spaces of the
components and the product. Next, we have to decide
which component designs to simulate. Every design
team will have to simulate several designs for their
component. We will call such a set of simulation points a
simulation scheme.

The construction of a simulation scheme depends on
the chosen coordination method, since this method
determines whether there is information available prior
to the simulation process of a particular component.
However, there are some basic requirements that we
would like our simulation scheme to meet. For one, we
like our simulation scheme to be space-filling, i.e., the
simulation points to be distributed over the design
space, in order to gain information about the whole
design space. Further, we like to have a noncollapsing
simulation scheme. This means that every simulation
point should have different settings for the design para-
meters. When, after the simulation process, it turns
out that a particular design parameter is not important,
no simulation results have collapsed, and we do not
loose valuable simulation time. For the construction of
space-filling, noncollapsing simulation schemes, see [17]
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in cases where the design space is a box region and [22]
for nonbox regions.

Depending on the coordination method we may be
able to carry out system level simulations, i.e., the
simulation of designs of the final product. Section 4.3
gives reasons why we want to do this. The construction
of the corresponding simulation schemes is subject of
current research.

2.3 Step 3: Metamodeling

When all points in a simulation scheme have been
simulated, we can use the observed simulation results to
construct a metamodel. The model types most often
used are polynomials, response surface approximations,
neural networks, and Kriging models, e.g., see [2].

After constructing metamodels for all black boxes,
we can use the relations between the components
to combine these models into a metamodel for the
product. Combining the approximation models for
the black boxes can lead to serious error propagation,
which can result in a poor metamodel for the product.
Therefore, we should validate the product’s metamodel,
e.g., using cross-validation, see [13,22]. Should the
metamodel appear to be invalid, then we need to carry
out an additional set of simulation runs to improve
this model. The problem then is to determine
which components to grant extra simulation runs and
which designs to simulate. This is subject of further
research.

2.4 Step 4: Design Optimization

The last step in our CMM approach is to use the
product’s metamodel and optimization techniques to
gain insight in the product and find an optimal product
design that fulfills all restrictions, i.e., lies within the
product’s design space. Due to the fact that the
metamodel is an explicit function, function evaluations
are relatively fast, and, hence, approaches like
Mathematical Programming and Global Optimization
can be applied to the problem; see, e.g., [4,19].

Since the resulting optimal product design will be
an approximation of the real (unknown) optimum, it is
wise to simulate the found product design. When
the observed responses do not deviate too much from
the responses estimated by the metamodel, we can be
confident in having found a good product design.

During manufacture of the product design, the design
parameters may be subject to noise, e.g., due to small
errors in the construction of components, resulting in
a somewhat different design. To deal with this last
problem, as well as possible modeling errors in the
metamodels, it is wise to take robustness into account.
See [23] for a more complete discussion and application
of robust design.

With this last step we finish the first part of this paper.
We now turn to the problem specification and to
coordination methods in particular.

3. Coordination Methods

This section focuses on the first step of the CMM
approach, i.e., the problem specification. The problem’s
architecture is discussed and three coordination meth-
ods are defined that enable an efficient construction of
metamodels for the coupled black boxes.

3.1 Product’s Architecture

Every black box within the product’s architecture has
several design and response parameters. The design
parameters can be divided into local design parameters
and linking design parameters. Local design parameters
are input to a single black box, whereas linking design
parameters are input to multiple black boxes. There is
also a special type of input parameter, i.e., the response
input parameter, which is a black box response that is
input to other black boxes. Figure 1 shows the design
and response parameters, as well as all possible
couplings, for two coupled black boxes.

From Figure 1 it can be seen that black boxes can be
coupled by linking design parameters and response input
parameters. The presence of response input parameters
gives rise to the need for a coordination method; see
Section 3.2.

We can represent this type of coupling by a directed
graph in which the nodes represent the black boxes
and the arcs represent their relations or couplings. We
assume that there exist no cycles in the directed graph.
This is a common assumption in the literature, e.g., see
[1,25]. More important, this assumption is substantiated
by problems found in practice. The nonexistence of cycles
gives our directed graph a forward structure, i.e., there
is an explicit precedence ordering of the black boxes.
Therefore, we refer to the directed graph as a black box
chain. See Figure 2 for an example of such a chain.

Figure 1. Design and response parameters for two coupled black
boxes.
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In Figure 2 an arc represents one or more response
input parameters. Note that there may be multiple
independent black box chains within the product’s
architecture. All these chains can be dealt with
concurrently in the way described here.

3.2 Three Coordination Methods

As mentioned in Section 2.1, the coupling among
black boxes asks for some kind of coordination of the
product design process. We define a coordination
method to be a rule that determines the order in which
simulation runs are carried out and metamodels are
constructed by the different component design teams.
In this paper we introduce and analyze the following
three coordination methods.

Parallel simulation Every black box is dealt with
separately, i.e., independent of all others. Linking and
response input parameters are seen as local design
parameters and a simulation scheme is constructed
based on local restrictions only. Every design team
carries out their simulations concurrently.

Sequential simulation In Sequential simulation we use
simulation results from black boxes preceding the one in
question. Once a component design has been simulated,
the simulation results are transferred to all its successors
(if any). When a particular black box has received the
simulation results from all its predecessors, a simulation
run is carried out, i.e., one component design is
simulated. This procedure is repeated until the needed
number of simulations is reached.
It is important to note that the simulations at every

design team are carried out one-by-one, following the
precedence ordering in the black box chain and using
simulation results of predecessors.

Sequential modeling This method closely resembles
Sequential simulation. The main difference is that
the simulation runs for a black box are carried out
all-at-once and the simulation results, along with
the constructed metamodel, are transferred to all its
successors.
Again, the precedence ordering in the black box chain

is followed, but now design teams have to wait until

their predecessors are completely finished with their
simulation and metamodeling processes. However,
note that this provides them with much information
about their predecessors.

In the next section we look at the coordination
methods more closely. We define and analyze several
aspects, in order to compare the three coordination
methods.

4. Aspects of Coordination Methods

Once all points in a simulation scheme for a black box
have been simulated, we can construct a metamodel
for that black box, based on the simulation results
found. These metamodels are then used in the product
design optimization process. However, the construction
and validation of metamodels depends heavily on the
availability of proper data. This, in order, depends on
the way the simulations have been carried out, and, even
more important, which simulations have been carried
out. Clearly, the chosen coordination method plays a
major role in this.

In this section we compare the three coordination
methods. As a measure for comparison we look at the
following five aspects:

1. Use of precedent information;
2. Coordination complexity;
3. Simulated product designs;
4. Flexibility;
5. Throughput time.

For every aspect, after defining it, we discuss the
effect of the three coordination methods on this aspect
and compare the methods. Finally, in Section 4.6, we
summarize the results found and give recommendations
on the choice of a coordination method.

4.1 Use of Precedent Information

This aspect refers to the use of simulation and
modeling results from preceding simulation tools. The
latter results can help in the determination of designs
that are expected to yield the most valuable information
about the components. Note that in case of response
input parameters the use of precedent information
is a necessity to obtain simulated product designs;
see Section 4.3. Clearly, both sequential coordination
methods use precedent information by means of the
response input parameters. In Parallel simulation there
is no precedent information used.

4.2 Coordination Complexity

Coordination complexity refers to the amount of
communication and time that is needed to implement

Figure 2. Black box chain with six black boxes coupled by
response input parameters.
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a coordination method. It also includes extra costs
that are incurred by, e.g., the need for an automated
communication system.

In Parallel simulation every design team operates
independently and there is no need for a complex
organizational structure; see, e.g., [15], where managing
the simultaneous execution of two coupled development
phases plays a central role.

In Sequential simulation, communication is needed
after each global design simulation, see Appendix A.2,
at every black box. Therefore, this coordination method
results in a complex coordination process that needs
sophisticated communication methods, which have to be
supported by the design tools. Communication between
design teams is also required in Sequential modeling, be
it only after a complete simulation scheme has been run.
Hence, the coordination process is relatively simple.

4.3 Simulated Product Designs

A product design is a particular setting of all the
design parameters in the product specification. When we
simulate such a setting, we obtain a simulated product
design or system level simulation. However, the simula-
tions are carried out by simulation tools at the
component level, which all have a subset of the
product’s design parameters as input. Further, linking
design parameters and response input parameters create
overlap in the sets of design parameters and couple the
simulation tools. In order to obtain a simulated product
design, we must use the same setting for the linking
design parameters at every simulation tool and use the
simulation results of response input parameters as
settings in succeeding simulation tools.

Clearly, it is not possible to obtain simulated product
designs in Parallel simulation, since all linking design
and response input parameters are seen as local design
parameters. Simulated product designs can be obtained
in Sequential simulation and Sequential modeling, since
these coordination methods use the simulation results
from preceding simulation tools as inputs, via the
response input parameters. Besides this, it is also
necessary to use the same settings for the linking
design parameters at all simulation tools. This can be
accomplished by the construction of coupled simulation
schemes, which is subject of current research.

Obtaining simulated product designs may require
some effort, but it is a great help in the product design
process. We get information about the characteristics
of feasible product designs, which gains insight in
the product, and can be used in the product design
optimization, e.g., by using the characteristics as lower
bounds. Further, simulating product designs also
increases the credibility of the used optimization and
robust design approaches. Finally, it shows the design
teams the effects of their components on the final

product, and it is more easy to compare component
designs between two teams of designers.

4.4 Flexibility

Flexibility of a coordination method means that it
does not take a lot of effort to validate or adjust the
constructed metamodels, when a small change is made
to one or more simulation tools.

Metamodels are based on results found by the simu-
lation tools. Hence, should a simulation tool be adjusted,
e.g., due to changes in the underlying component, then
the constructed metamodel will probably no longer
be valid. In Parallel simulation, this can be fixed by
simulating an extra set of designs for the corresponding
component, since the metamodels for the various black
boxes are constructed independently.

However, at the two sequential coordination meth-
ods, one must be more careful, since coupling among
simulation tools is preserved in the construction of
metamodels. Therefore, invalidity of one metamodel can
affect the validity of the metamodels of all its successors.
Since small changes can require much effort in the
validation and, possibly, adjustment of many metamo-
dels, the sequential coordination methods are not
flexible with respect to changes in the simulation tools,
while Parallel simulation is flexible.

4.5 Throughput Time

The throughput time of a coordination method is defi-
ned as the total time it takes to carry out all simulation
runs needed to construct metamodels for every black
box in the chain. From a time-to-market perspective it is
desirable to have short product development times, so
the throughput time should preferably be small. Since
the construction time of metamodels is assumed to be
negligible, relative to the simulation run time, we ignore
it in this analysis.

In the Appendix we derive formulas for the through-
put times of all three coordination methods and give the
relations between them. We show that Parallel simula-
tion always leads to the shortest throughput time,
Sequential simulation takes a longer time, and Sequen-
tial modeling the longest. Using the formulas given in the
Appendix one can simply compute the exact throughput
time for each coordination method at a particular
problem instance. This information, along with the four
other aspects, can be used to make a decision about the
coordination method to use.

4.6 Summary of Aspects

We now summarize the results found above. Table 1
gives the five aspects discussed in Sections 4.1–4.5, as
well as the following scores for each of the three
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coordination methods at these aspects. Two pluses
(þ þ) indicate that the coordination method has a
positive effect on a particular aspect; one plus (þ)
indicates a moderately positive effect. With one minus
(�) the effect of the coordination method on a particular
aspect is slightly negative; with two minuses (��) this
effect is negative. Note that in Table 1 a (mode-
rately) positive effect (þ or þ þ) on the coordination
complexity means that the coordination process is not
complex.
The main advantages of Parallel simulation are a

small throughput time, much flexibility, and a lack of
complexity at the coordination process. However, for
the designers it is important that they obtain accurate
metamodels for the components and the product.
Parallel simulation may need several extra simulation
runs, besides the designs already simulated, to include
the coupling among black boxes properly in the
metamodels. Further, there should be simulated product
designs, for reasons mentioned in Section 4.3. This
requirement makes the sequential coordination methods
more suitable than the parallel coordination method, at
least in those cases with response input parameters.
Choosing between the two sequential coordination

methods mainly depends on the throughput time and
the availability of good means of communication among
the design teams. Using Sequential simulation results in
a more complex coordination process, whereas Sequen-
tial modeling yields a larger throughput time. Therefore,
when dealing with large simulation times and an
automated communication system, the Sequential simu-
lation method is preferable. Sequential modeling is a
good choice when communication among design teams
is hard and the simulation times are not too large.
Of course, the determination of the best coordination

method is not so strict and depends on the kind of
product design problem we are dealing with. This is
why a careful study of all aspects for each of the three
coordination methods is extremely important. This
can be done by using Table 1, along with the discussion
in Sections 4.1–4.5, and the formulas derived in the
Appendix.

Section 2.3 mentions the problem of constructing
proper metamodels. Since the initial sets of simulation
runs may not suffice to construct proper metamodels for
each black box, a two-stage simulation procedure is
often used. For the first stage we advise to use Parallel
simulation and to run all simulation schemes concur-
rently. This gives a good idea about the black box
behavior and the most important parts of the compo-
nent and product design spaces. In the second stage
we can combine the simulation results with a sequential
method, and simulate extra sets of component
designs. These extra simulation runs will give more
insight into the most important parts of the product
design space. Therefore, the resulting metamodels
will give good representations for the whole product
design space, but they still emphasize the most
important parts of it.

5. Case Study: Color Picture Tube Design

This section summarizes the results found at a
successful application of our Collaborative Metamodel-
ing approach to the design process of a color picture
tube at LG. Philips Displays in Eindhoven. For a
detailed discussion of this application the reader is
referred to [24].

Contents of this study was the collaborative design of
several aspects of the shadow mask and screen for a
color picture tube. The problem specification resulted in
the problem structure that is given in Figure 3.

In this figure there are four black boxes, which are
represented by the ellipses. The numbers in brackets give
the time needed per simulation run and the numbers
above the black boxes give the number of simulation
runs performed. Rectangles represent design para-
meters, with their corresponding numbers given in italic.
Note that MicMac center and MicMac northeast have
local design parameters only, whereas Landing also has
linking design parameters. Microphony has linking, as
well as response input parameters. Table 2 summarizes
these data.

Parallel simulation was chosen as coordination
method. The main reason for this choice was that the
design optimization tool COMPACT [22] could be used
to find simulation schemes and to construct metamodels
for all four black boxes. The quality of the constructed
metamodels, given by the cross-validation RSME, as
well as the number of simulations performed, can be
found in the last two columns of Table 2.

Combining these individual metamodels leads to the
construction of a system level metamodel. This was done
using COMPACT-CO, the collaborative version of
COMPACT, see [24]. For the validation of the system
level metamodel a test set was used, that was taken from
the predicted feasible product design space.

Table 1. Comparison of the three coordination methods
with respect to five aspects.

Aspect/
Coordination Method

Parallel
Simulation

Sequential
Simulation

Sequential
Modeling

Use of precedent
information

� � þ þþ

Coordination
complexity

þþ � � þ

Simulated
product designs

� þþ þþ

Flexibility þþ � � � �

Through out time þþ þ � �
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Since only quadratic metamodels were used, we got a
quadratic optimization problem. CONOPT [9] and a
multistart technique were used to solve for a global
optimum. The optimal Microphony design found turned
out to be an improvement of 50% with respect to the
current design. In order to test the robustness of the
design, Monte-Carlo analysis was applied to the design.
Since metamodels are explicit functions, this type of
analysis is very fast.

This study showed that Collaborative Metamodeling
improves the insight in the design problem. Further, the
constructed metamodels can be used for Monte-Carlo
analysis, to ensure that the product design remains valid
under small perturbations.

However, in this study it can be expected that the
quality of the metamodel for Microphony is improved
when one of the two sequential coordination methods is
used, since the latter black box has response input para-
meters coming from the three other black boxes. Since
Microphony directly affects the objective this would
probably lead to a better system level metamodel, given
that the same number of simulations is used. However,
using one of the sequential coordination methods
makes the coordination process much more complex;
the question is whether these costs weigh up against the
possibility of a better metamodel.

6. Conclusions and Further Research

In order to gain insight in the behavior of a product
and its components, we replace time-consuming simu-
lation tools by metamodels. The construction of such
models is based on results found by simulating com-
ponent designs. Products that consist of several compo-
nents usually have several of these time-consuming
simulation tools, or black boxes, that are used in the
component design processes. Coupling among com-
ponents requires coupling among the black boxes,
and results in a need for coordinating the simulation,
metamodeling, and optimization process.

This paper introduced a framework, called Colla-
borative Metamodeling (CMM), to deal with product
optimization in case of coupled, time-consuming
simulation tools. The four steps of the CMM approach:
Problem Specification, Design and Analysis of Compu-
ter Experiments (DACE), Metamodeling, and Design
Optimization, were discussed, as well as problems that
may arise at each of these steps.

We focused on the first step of the CMM approach,
and the coordination of the simulation and metamodel-
ing process in particular. Three coordination methods
were introduced: Parallel simulation, Sequential simula-
tion, and Sequential modeling. The five aspects: use of
precedent information, coordination complexity, simu-
lated product designs, flexibility, and throughput time,
were used to compare the three methods. The results of
this comparison can be found in Table 1.

This table, along with the throughput time formulas
that were derived in the Appendix, can be used to
determine the best coordination method for a specific
product design problem. Next, the method chosen can
be used to construct simulation schemes for all coupled
simulation tools. The latter construction method is
subject of current research. Based on the simulation
results, metamodels can be constructed for all black
boxes. These metamodels can then be used for finding
an optimal or robust product design.

Figure 3. The problem structure.

Table 2. Black box characteristics and metamodel
validation results.

Black Box
# Design

Parameters
# Response
Parameters # Simulations

Average
Relative
CV-RMSE

(%)

Landing 12 10 300 2.86
MicMac
center

10 5 300 3.06

MicMac
northeast

10 5 300 4.08

Microphony 28 720 350 8.60
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To end the paper we gave a successful application of
our CMM approach to the design process of a color
picture tube at LG. Philips Displays in Eindhoven.
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Appendix

This appendix derives mathematical formulas for the
throughput time aspect in Section 4.5. Further, we
clarify the throughput time computation for all three
coordination methods, by means of a numerical
example. Since the construction time of metamodels is
assumed to be negligible, relative to the simulation run
time, we ignore it.
Throughout this appendix we use the following nota-

tion to indicate the black boxes and their characteristics:

B : set of black boxes, B ¼ 1, 2, . . .f g;
Pb : set of all black boxes that directly precede black

box b 2 B;
Be : set of all black boxes with no successors, i.e.,

Be ¼ Bn [b2BPbð Þ;
nb : number of required simulation runs at black box

b 2 B;
sb : time per simulation run at black box b 2 B.

Using this notation we can always number the black
boxes in such a way that their numbering reflects the
precedence ordering in the chain, i.e., b =2P ~bb

if b � ~bb.
Note that Pb ¼ 6 0 if black box b 2 B is at the beginning
of the chain; b 2 Be if b is at the end of the chain.
Figure 4 gives the numerical example that is used to

clarify the throughput time computation. The figure
shows eleven black boxes that are coupled by response
input parameters. The actual time unit of the simulation
times is not important for our discussion; we let it be
minutes.

A.1 Parallel Simulation

With Parallel simulation all design teams carry
out their simulations concurrently. Hence, the corre-
sponding throughput time, denoted by TTparallel, is equal
to the maximum of the total simulation times at every
black box:

TTparallel ¼ max
b2B

nbsb: ð1Þ

We call a black box a bottleneck when a small
increase of its simulation time sb results in an increase of
the throughput time. In Parallel simulation the bottle-
necks are all black boxes b̂b 2 B that satisfy

b̂b ¼ argmax
b2B

nbsb: ð2Þ

For the black box chain in Figure 4 it can readily be
computed that TTparallel is equal to 1050min and that
black box 7 (BB 7) forms the bottleneck.

A.2 Sequential Simulation

In Sequential simulation the results of simulating
a component design at a particular black box are
passed down to its succeeding black boxes. This process
can be viewed as a flow of information objects
through the entire black box chain, where an infor-
mation object carries the simulation results from
preceding black boxes. Therefore, the simulations
that make use of this information are referred to as
global (component) design simulations. The maximum
number of this type of simulation runs, say n̂n, is
restricted by the minimum number of required
simulated designs per black box, i.e., n̂n ¼ minb2B nb.
Because n̂n is a minimum, there may be several
black boxes that require more simulations. The simula-
tion results of the latter are used only locally, i.e., at a
certain black box, and therefore these simulations

Figure 4. Numerical example of coupling among eleven black boxes by response input parameters.

274 B. HUSSLAGE ET AL.

 © 2003 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at Universiteit van Tilburg on May 14, 2007 http://cer.sagepub.comDownloaded from 

http://cer.sagepub.com


are referred to as local design simulations. Clearly, every
black box b 2 B invokes n̂n global and nb � n̂n local design
simulations.

Focusing on the global design simulations, we see
that such a simulation run can only start when all
preceding black boxes have finished their global design
simulation run. In order to compute the throughput
time of the Sequential simulation method we first
introduce the throughput time function fb nð Þ. This
function gives the minimal time it takes for n global
design simulations to be finished at black box b 2 B. We
can then write

fb nð Þ ¼ max sb þmax
~bb2Pb

f ~bb nð Þ, sb þ fb n� 1ð Þ

n o
, n � 1:

ð3Þ

The interpretation of this formula is that black box
b has to wait until all its predecessors have finished
n global design simulations and itself has simu-
lated n� 1 global designs, before it can start with
the nth simulation run. Further, note that fb 0ð Þ ¼ 0
implies

fb 1ð Þ ¼ sb þmax
~bb2Pb

f ~bb 1ð Þ: ð4Þ

This equation computes the longest path up to black
box b, e.g., see [3], starting at a black box in the
beginning of the chain.

Because Equation (3) is dynamic in the variables b
and n, we can rewrite it:

fbðnÞ ¼ max

�
sb þmax

~bb2Pb

f ~bbðnÞ,

max

�
2sb þmax

~bb2Pb

f ~bbðn� 1Þ,

2sb þ fbðn� 2Þ

��

¼ max

�
sb þmax

~bb2Pb

f ~bbðnÞ, 2sb þmax
~bb2Pb

f ~bb n� 1ð Þ,

2sb þ fb n� 2ð Þ

�

¼ max

�
sb þmax

~bb2Pb

f ~bb nð Þ,: 2sb þmax
~bb2Pb

f ~bb n� 1ð Þ,

3sb þmax
~bb2Pb

f ~bb n� 2ð Þ, . . . ,

n� 1ð Þsb þmax
~bb2Pb

f ~bb 2ð Þ, nsb þmax
~bb2Pb

f ~bb 1ð Þ

�

¼ max
k¼1,..., n

�
ksb þmax

~bb2Pb

f ~bbðnþ 1� kÞ

�
, n � 1:

ð5Þ

It can be proven that fb nð Þ is convex in n � 1. Therefore,
Equation (5) can be simplified to the following maxi-
mum function, that is only dynamic in the variable b.

fb nð Þ ¼ max
k2 1, nf g

ksb þmax
~bb2Pb

f ~bb nþ 1� kð Þ

( )

¼ max sb þmax
~bb2Pb

f ~bb nð Þ, nsb þmax
~bb2Pb

f ~bb 1ð Þ
n o

¼
Eq:ð4Þ max sb þmax

~bb2Pb

f ~bb nð Þ, n� 1ð Þsb þ fb 1ð Þ

n o
,

n � 2:

ð6Þ

Next, we define the two sets

Cb, n : set of possible bottlenecks up to black box

b 2 B, when simulating n global designs;

Cn : set of bottlenecks when simulating n global

designs.

Note that the black box chain structure can cause

the sets Cb, n and Cn to differ significantly for distinct

values of n. For n ¼ 1 we use Equation (4) and Cb, 1 ¼

bf g [ [ ~bb2IC ~bb, 1, with I ¼ f ~bbj ~bb 2 Pb; f ~bbð1Þ ¼ fbð1Þ � sbg, to

compute fb 1ð Þ and the corresponding bottlenecks for all

black boxes b 2 B. Combining this information with

Equation (6) enables us to compute the throughput time

f nð Þ and the corresponding sets Cb, n and Cn for every

arbitrary integer n � 2 as follows.

for b 2 B do

ptfb nð Þ ¼ max sb þmax
~bb2Pb

f ~bb nð Þ, n� 1ð Þsb þ fb 1ð Þ
n o

;

ð7Þ

Cb, n ¼

Cb, 1 [
S
~bb2I

C ~bb, n if fb nð Þ ¼ n� 1ð Þsb þ fb 1ð Þ

bf g [
S
~bb2I

C ~bb, n otherwise

8><
>: ;

ð8Þ

where I ¼ f ~bbj ~bb 2 Pb; f ~bbðnÞ ¼ fbðnÞ � sbg;
end

f nð Þ ¼ max
b2Be

fb nð Þ; ð9Þ

Cn ¼
[
b2J

Cb, n; where J ¼ bjb 2 Be; fb nð Þ ¼ f nð Þ
� �

:

ð10Þ

Using Equations (7)–(10), we can compute the

minimal time that is needed to simulate all n̂n global

designs, i.e., f n̂nð Þ. To compute the throughput time, we

must include the time needed to simulate the local
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designs at every black box. In this respect, note that a
black box may be idle, i.e., not simulating, for several
periods of time during the whole simulation process of
global designs. When it is possible to stop a simulation
run at some point in time and later on proceed from that
point, we call the simulation run preemptive. In this
case, we can start simulating local designs within the idle
periods.
The throughput time of the Sequential simulation

method, denoted by TT
pre
seqsim, is then given by

TTpre
seqsim ¼ max max

b2B
nbsb, f n̂nð Þ

n o

¼
Eq:ð1Þ

max TTparallel, f n̂nð Þ
� �

: ð11Þ

In case TTpre
seqsim ¼ TTparallel, the black boxes b̂b 2 B that

satisfy Equation (2) form bottlenecks. If TTpre
seqsim ¼ f n̂nð Þ,

the black boxes b 2 Cn̂n are bottlenecks. Note that in the
latter case not all bottlenecks may have the same impact
on the throughput time. However, the exact impact of
every bottleneck can easily be computed.
Unfortunately, simulation runs are often nonpre-

emptive. Switching between different component
designs within the simulation process may also cost
much time, and may, therefore, not be very practical.
Further, waiting until all global design simulations are
finished gives a design team much information to
determine which local designs to simulate. For these
reasons we suggest to use nonpreemptive simulation
runs and suggest to simulate all local designs after the
global design simulations are finished. The throughput
time then becomes

TTseqsim ¼ max
b2B

fb n̂nð Þ þ nb � n̂nð Þsb
� �

: ð12Þ

In this case the bottlenecks are given by the set C�
n̂n ¼

[b2ICb, n̂n, with I ¼ bj fb n̂nð Þ þ nb � n̂nð Þsb ¼ TTseqsim

� �
. As

above, the impact of these bottlenecks may vary.
For the numerical example in Figure 4 we can use

Equations (7)–(10) to compute that

f nð Þ ¼
250þ 90n if n � 11

140þ 100n if n � 11:

(
ð13Þ

From Equation (13) and the fact that n̂n ¼ 10 we get
f n̂nð Þ ¼ 1150. Recall that TTparallel ¼ 1050min, so
Equation (11) results in TTpre

seqsim ¼ 1150min. Further,
because f11 n̂nð Þ ¼ f n̂nð Þ it follows from Equation (10) that
the bottlenecks are given by the set Cn̂n ¼ C11, n̂n ¼ f1, 2,
5, 8, 10, 11g. Using Equation (12) we find that TTseqsim is
equal to 1490min. Because f9 n̂nð Þ þ n9 � n̂nð Þs9 ¼ TTseqsim,
all black boxes in the set C�

n̂n ¼ C9, n ¼ 1, 2, 5, 6, 9f g are
bottlenecks.

A.3 Sequential Modeling

In Sequential modeling, the required simulations are
carried out all-at-once, before results are passed down to
succeeding black boxes. Therefore, the throughput time,
denoted by TTseqmod, is equal to the longest path in
the black box chain, when we take the total simulation
time per black box, i.e., nbsb, on the nodes of the
directed graph:

TTseqmod ¼ max
B̂B�B

X
b2B̂B

nbsb; ð14Þ

where B̂B is a path in the chain.
In this equation a path is defined as a sequence of

black boxes starting at a beginning of the chain, so at a
black box b for which Pb ¼ 6 0, and ending at an end of
the chain, so at a black box b 2 Be. All black boxes on a
longest, or critical, path form bottlenecks. In Figure 4,
with nbsb on the nodes, the black boxes 1, 2, 5, 7, 10 and
11 form the (unique) longest path, and, therefore, the
bottlenecks. The corresponding throughput time is
equal to TTseqmod ¼ 5350min.

A.4 Throughput Time Relations

From the above observations we can derive general
relations among the throughput times of the different
coordination methods:

TTparallel �
Eq:ð11Þ

TTpre
seqsim

�
Eq:ð12Þ

TTseqsim � TTseqmod: ð15Þ

The first two inequalities readily follow from
Equations (11) and (12). It can easily be proven that
the last inequality also holds.
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