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Simulation of ruin Drobabilities 

P, BOOGAERT and A. DE WAEGENAERE 
UIA, University of Antwerp, 2610 Antwerp. Beigium 

In this paper we describe the simulation of ruin probabilities 

using a new simulation technique based on a martingale trans- 

formation. 
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1. Introduction 

To study the evaluation of an insurance com- 
pany’s portfolio, we can, besides making analyti- 
cal calculations, perform simulation of the risk 
process. These simulation models offer a powerful 
tool for analyzing actuarial problems. For in- 
stance, instead of calculating the upper (or lower) 
bounds on the probability that an insurance com- 
pany is ruined before (or after) some time t, one 
can approximate the ruin probabilities using simu- 
lation techniques. This last method is growing in 
importance because of the advancement of com- 
puter science which allows for new techniques to 
be used. 

Let {N,: t E W + } be the random process that 
counts the claims of an insurance portfolio and let 
(X,: n E N} be a sequence of positive and i.i.d. 
random variables representing the sizes of the 
successive claims. We suppose that the claim num- 
ber process {N,: I E R + } is a homogeneous Pois- 
son process with the risk parameter h (> 0). The 
moments of occurrence of the successive claims 
are represented by T,(n E No) with T, 3 0, and 
the interoccurrence times of the claims are repre- 
sented by U,(n E I%), i.e. 

U,, = T, - T,_,. (1.1) 

The interoccurrence times (U,: n E WI} form a 
sequence of i.i.d. random variables, which are 
exponentially distributed with parameter X. The 
surplus of the insurance company at some time t 
is now given by 

z?=k+pt-S,, ZEW,, I (1.2) 

where k is the initial reserve and p the constant 
premium density, i.e. 

~=(1+8)hE[X,], 

where 8 represents the safety loading. Further- 
more, f S,: t E R + } is the risk process with 

s,= ; x,, tER+. (1.3) 
n=l 

All these random variables are defined on some 
probability space (Sz, ,aP, P). 

Simple methods exist to simulate the risk pro- 
cess. See, for instance. Knuth (1973) and Morgan 
(1984). The ruin time is defined as usual: 

R,=inf{r~O: Z,(“<O}, 

= cc if .Zjk’2 0 for every t 2 0. 0.4) 

Suppose we simulated the risk process n times and 
that ruin occurred r times. Then we get the fol- 
lowing approximation: 

P( R, > t) = 1 - r/n. 0.5) 

It is clear that when the number of simulations n 
increases the result will be more accurate. A disad- 
vantage of this method is the fact that for some 
values of the parameters the number r will be very 
small. If we then run the simulation program a 
second time, a small difference in r can cause a 
great difference in the approbation of the ruin 
probability. Furthermore, it is also possible that 
the claim sizes are difficult to simulate. Therefore 
we will try, in those cases, to use a martingale 
equivalent probability distribution Q instead of P 
to simulate the risk process. For instance, a prob- 
ability dist~bution Q such that the number of 
ruins that occur in the time interval [0, t] and 
under this probability distribution is greater than 
the number of ruins that occur in the same time 
interval and under the original probability distri- 
bution P. A transformation on the obtained num- 
ber of ruins r under Q will then provide us with 
an accurate approximation of the ruin probability. 

This procedure is described in Section 2. In 
Section 3 we will consider some examples and 
illustrate these numerically. 
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2. The simulation procedure 

In the first part of this section we consider the 
definitions and properties we need to construct 
our simulation procedure. 

Definition 2.1. Take T E R,. Then 

*=a(s”: Olult) (2.1) 

and 

Sm =u{s,: teR+). (2.2) 

Definition 2.2. Let P and Q be two probability 
distributions on (ti, &). If for each 0 I t < co, P 
and Q have the same null sets in 3EL;, i.e. 

{NE@: P(N)=O) = (NE*: Q(N)=O}, 

then we say that P and Q are progressively equiv- 
alent. 

In the following Eo[.] denotes the expectation 
under Q and Ep[.] denotes the expectation under 
P. Let p be a Borel-measurable mapping from R + 
into !R such that 

Ep[eBcxR)] < co. 

We put 

0.3) 

s,B= c 8(X,), tEW+. (2.4) 
n-l 

Let us consider the following random process on 

(G 2-9 0 

(2.5) 

Proposition 2.1. The random process {IV/? t E 
88 + } is a stricrly positiue martingale on (0, xW, P) 
w.r.t. (4: t E R,}. Moreover, 

M:B=exp(S,B-_tE,lea(~)-l]~. (2.6) 

Proof. The random process { Sf”: t E R +} has 
independent increments since it is a compound 
Poisson process. Furthermore, it is well known 
that a real random process with independent in- 
crements ( q: t E W + ) generates the following two 
types of martingaIes: 

(1) if each r; is integrable, then 

(I;-E[Y;]: EKE+} 

is a martingale 

(2) if r is a real number such that 0 < E[exp{ ‘I; )] 
-=z to for some t belonging to R +, then 

exp{rY, > 
E[exp{ rlr;}] ’ 1E *+ 

is a martingale. 

This proofs the first part of the proposition. 
Expression (2.6) is an immediate consequence 

of Proposition 2.2 in Boogaert and Haezendonck 
(1989). 

Proposition 2.2. If P and Q are two progressive!) 
equivalent probability distributions on (9, %?.I). 
then the corresponding probability distributions Qs, 
and Px, of the random variable X, are equivalent. 

Proof. See Deibaen and Haezendonck (1989). 

Proposition 2.3. Let /3 be a Bore/-measurable 
mapping from R + into R which fulfiis condition 
(2.3), then there exists a unique probability distribu- 
tion Q on (f2, s$) determined by 

Q~A~=~~~ dP (2.7) 

for a/l 0 I s I t and for ali A belonging to 3i$ 
This probability distribution satisfies the follow- 

ing properties: 

(I) Q and P are progressiueiy equiualent; 
(2) ( S,: t E R + ) is still a compound Poisson pro- 

cess on (a, Z,, Q); 

(3) A’ = E&W = ~E~[exp~~~X~)}l; 
(4) for all A belonging to .@+, 

Qx1(A) = E,[exp{b(X,))1 

xlexp{ P(x)] dPx,(x); (2-g) 
A 

(5) the random process {l/M/? t E 118 + } is a 
martingale on (8, $ZW, Q). 

Proof. See Delbaen and Haezendonck (1989) 

Now, if we can find a Borel-measurable map- 
ping j3 from W, into 88 with 

E,[exp(P(X,))j < ~1 

and such that 

E&Y]Eo[X,] =hE,[X, exp{b(Xr)}l (2.9) 
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is large, then, during the simulation, the number 
of ruins under the probability distribution Q will 
be greater than the number of rums under the 
probabi~ty dist~bution P. Using the foregoing 
proposition it is also possible to transform the 
probability distribution of the ciaim size in a more 
manageable form. 

The probability of rum before (or after) some 
time t can now be approximated as follows. Con- 
sider on (0, Z=, Q) a sequence of i.i.d random 
variables (Y,: n E N) such that Y, has the same 
probability distribution as (l/M&)ltRt s lj. This 
means that 

QY, = Q(I/M~~)I~~~~~,* 
The law of large numbers implies that 

lim 1 e Y=EEo[Y,]. 
n-m n ;*, 

(2.10) 

(2.11) 

Therefore we successively find 

since 
i j$: tEW+ 

i 

is u Q-martingale 

= gdP from (2.8) 
Ns 

= P(R, I t). 

Hence, 

CLIEi 
P(R,>t)=l-- n , 

(2.12) 

(2.13) 

where n is the number of simulations and where 

E, = l/M& if R, s t, 

= 0 if R, > t, 

or, equivalently, 

E,=exp(-~~~+hR,E,[eS(x~)-l]) if R,st, 

= 0 if R, > t. 

3. Examples 

In this section we will illustrate the preceding 
simulation procedure by some examples. 

Example 3.1. We put 

fl: x-t1 _ 
-e “1,,.&). xi-2 

Then we find that 

f 
owj(x) dx = 1 - ezjPqdx = C. 

2 

(3.1) 

Thus C= 1 - e’E,(2) = 1 - e2 * 0.04890 (see for 
instance Schaum’s mathematical Handbook, p. 
251). 

We now suppose that the claim size X, has a 
density function given by 

&,(x1 = (I/C>i(x>. (3.2) 

Then we find that 

EP[ X,] = 2(1- C)/C. (3.3) 

Consider the following Bore&measurable mapping 

P: 

/3(x) = ln((x + 2)/(x + 1)) +x(1 -r), (3.4) 

where < is strictly positive. Then 

E,[exp{p(Xt)]] = I/Cc (3.5) 

and therefore finite. This implies that Proposition 
2.3. holds and thus 

E&+X’-X/Cc (3.6) 

and 

=c e I -‘= dx. 
A 

(3.7) 

For the simulation of the interoccurrence times 
and the claim sizes we use a classical procedure. 
But now the claim size X, is exponentially distrib- 
uted with parameter E and the claim number 
process ( N,: t E R + } is a Poisson process with 
risk parameter X/Cc. Finally we get 

P(R,w)=l- 
cl_,4 

n ’ 
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c 

t-l,k=O 

1 

0.9 
0.8 

t=S.k=O 

I 

0.9 
0.8 

t=S,k=l 

1 
0.9 
0.8 

r=5,k=5 

1 
0.9 
0.8 

Table 1 

0 = 0.05 e = 0.10 

0.526 0.527 
0.524 0.528 
0.523 0.527 

0.255 0.281 
0.259 0.284 
0.254 0.278 

0.430 0.461 
0.445 0.451 
0.432 0.469 

0.810 0.872 
0.865 0.875 
0.861 0.874 

Table 2 

c e = 0.05 e = 0.10 

t-l,k=O 

1 0.473 0.482 

0.9 0.473 0.481 

0.8 0.467 0.477 

t=5,k=O 

1 0.217 0.297 
0.9 0.271 0.290 
0.8 0.268 0.288 

t=25,k=O 

1 0.953 0.954 

0.9 0.942 0.943 

0.8 0.953 0.954 

distribution Q. We get 

where 

R(R,>+l- “-rEi, 
n 

where 

E,=exp(-$+XR,(l/Ce-l)] ifR,It, Ei=exp(-S&+ARl(ay”/r-1)) ifR,st, 

= 0 if R, > t. 

Numerical results can be found in Table 1. 

= 0 if R, > t. 

Numerical results for a = 1, y = 2 can be found in 
Table 2. 

Example 3.2. We now suppose that the claim size 

X, is Pareto distributed with parameters a( > 0) 

and 7( > 0), i.e. 

A,(x) = (cV=/xn+l)l[T.oo,(x). (3.8) 

Example 3.3. We now suppose that the claim size 
X, is gamma distributed with parameters a( > 0) 

and b( > 0), i.e. 

In Morgan (1984) we find a method to simulate 

such random variable. We will now show that the 
simulation of such risk process becomes easier 
using the procedure of Section 2. Put 

j?(x)=(a+l)ln(x)-<(x-y), (3.9) 

where c is a strictly positive constant. Then 

E,[e@‘q)] = ay”/c (3.10) 

and therefore fiite. Proposition 2.3 then implies 

E&V,] =h’=X(ay=/<) (3.11) 

and 

jx,(x) = (b”/F(a))x”-’ e-b”lto.,l(x). (3.13) 

We will now show how simulation of such a risk 
process can be done using the procedure of Sec- 
tion 2. Put 

R(x) = (1 - f.7) In(x) + bx - fx, (3.14) 

where e is a strictly positive constant. Then 

E,[es’q)] = b”/r( a)< (3.15) 

and therefore fiite. Proposition 2.3 then implies 

E&V,] =A’=hb“/T(u)~ (3.16) 

and 

Q,(A) = (JAeegx dx. (3.12) Qx,( A) = eLe-‘l dx. (3.17) 

This means that the claim size is exponentially This means that the claim size is exponentially 

distributed with parameter E under the probability distributed with parameter E under the probability 
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Table 3 If we take a = 1 (3.18) reduces to 

c e = 0.05 8 = 0.10 

t=l,k=O 

1 

0.9 
0.8 

r-S,k=O 

I 
0.9 

0.8 

t=ZS,k=O 

1 

0.9 

0.8 

t=I,k=IO 

1 

0.9 

0.8 

0.527 0.535 

0.541 0.547 
0.530 0.535 

0.275 0.290 
0.273 0.287 
0.271 0.290 

0.134 

0.134 

0.131 

l.ooO 

0.999 

0.999 

0.155 

0.155 

0.154 

1.000 

0.999 

0.999 

distribution Q. We get 

c” Ej 
P(R,>+l- *;’ , 

where 

E,=exp( -S~*~XRk(ba/r(a)c-l)) 

if R,sr, 

=O ifR,>t. 

f~,(x) = b e-b”lp,,j(x). 

So the above method can be used to improve 
simulation results for the exponential claim distri- 

bution. Numerical results for b = 1 can be found 
in Table 3. 
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