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Abstract: The Power-Series Algorithm has been used to calculate the steady-state distribution

of various queueing models with a multi-dimensional birth-and-death structure. In this paper,

the method is generalized to a much wider class of Markov processes, including for example very

general networks of queues and all kinds of non-queueing models. Also, the theoretical justi�cation

of the method is improved by deriving su�cient conditions for the steady-state probabilities and

moments to be analytic. To do this, a lemma is derived that ensures ergodicity of a Markov

process with generator � if the set of balance equations �� = o has a solution � that satis�esP
i �i = 1 and

P
i j�i�iij <1 but that need not be non-negative.
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1 Introduction

The Power-Series Algorithm (PSA) is a method to calculate the steady-state distribution of a

multi-dimensional Markov process. If the process is ergodic, this steady-state distribution is

determined by a set of balance and normalization equations. But since the number of equations

is equal to the size of the state space these equations can be di�cult to solve. The PSA aims to

be an e�cient way to solve them.

The basic idea is like a homotopy: the original Markov process is transformed with a parameter

 in such a way that for  = 1 the transformed Markov process is the original Markov process

and for  = 0 the transformed Markov process is easy to analyze while the information from the

problem at  = 0 can be used to solve the problem at  = 1. If an appropriate transformation

is used, the steady-state probabilities of the transformed process are analytic functions of  at

 = 0 and the coe�cients of the power-series expansions can be calculated recursively. The
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steady-state distribution of the original process is then found by evaluating these power series at

 = 1. This way, the original di�cult set of equations is replaced by a larger number of easily

solvable equations. The basic idea of the PSA stems from Keane (see [8]). It has been applied to

queueing models with queues in parallel [8, 2], the shortest-queue model [4] and various polling

models [3, 6]. An overview can be found in [5]. For all these models the transformation parameter

 can be interpreted as the load of the system.

Koole [11] suggests a type of transformations that can handle Markov processes with a single

recurrent class, provided that the steady-state probabilities of the transformed process are analytic

in the transformation parameter. In the present paper, a speci�c transformation is proposed that

not only transforms the transition rates but also the transition structure. Su�cient conditions

on the Markov process are derived for this transformation to be appropriate and the steady-state

probabilities to be analytic. The transformation is a generalization of the transformation used in

the papers mentioned in the previous paragraph, so the results in this paper also apply to those

models. With this generalized transformation the method is applicable to a much wider class

of Markov processes, including for example queueing networks with very general arrival, service

and routing processes [10]. Unfortunately, the transformation parameter  no longer has a clear

interpretation for all processes. As a consequence of this, only the value  = 1 is of interest and

no longer the whole range  2 [0; 1]. In queueing models, this could be overcome by using more

than one transformation parameter. For example, in networks of queues a parameter � could be

used to transform the arrival process and a parameter � for the routing process. However, this

clear categorization of transitions is not always possible and using several parameters leads to

power-series expansions in more than one variable which gives rise to more numerical problems.

Besides extending the class of Markov processes that can be handled, also the theoretical

justi�cation of the algorithm is improved by showing that, under certain conditions, the steady-

state probabilities as functions of  are indeed analytic in  in a neighbourhood of  = 0. This

is the basic assumption of the method, but could so far only be proved for some speci�c models

[8, 9]. The proof is comparable to the proof that was given for the BMAP=PH=1 queue [9] but

now in a much more general setting.

The structure of the paper is as follows. In section 2 the notation for the considered Markov

processes is introduced. In section 3 the algorithm to calculate the steady-state distribution and

moments is described, assuming analyticity. Section 4 states su�cient conditions for the steady-

state distribution and moments to be analytic for small values of the transformation parameter.

Finally, in section 5 some conclusions are drawn.

2 The Markov process

Let f(Nt; It); t � 0g be a continuous-time Markov process on state space 
 = IN
S � f1; : : : ; Ig.

In a queueing context, S could be the number of queues, Nt the queue-length process and It
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a supplementary variable to model for example non-exponentiality of the arrival and service

process. Throughout this paper queueing terminology will be used, although the considered

Markov processes need not be queueing processes.

The process has the following transition rates:

(n; i)! (n+ b; j) with rate �bj(n; i); for b 2 ZZ
S ;

for all (n; i); (n+b; j) 2 
. It is assumed that the Markov process is irreducible, non-instantaneous

and ergodic. Therefore, the steady-state probabilities

p(n; i) = Pr f (N ; I) = (n; i) g = lim
t!1

Pr f (Nt; It) = (n; i) g

exist for all (n; i) 2 
. They are uniquely determined by the balance and normalization equations

p(n) �A(n) =
P

b2ZZ
S

p(n� b)Ab(n� b); for n 2 IN
S ;

P
n2IN

S

p(n)e = 1;

where
p(n) = f p(n; i) g1�i�I ;

Ab(n) = f �bj(n; i) g1�i;j�I ;

�A(n) = f ��(n; i) 1(i = j) g1�i;j�I ;

��(n; i) =
P

b2ZZ
S

P
1�j�I

�bj(n; i) <1;

for n 2 IN
S and b 2 ZZ

S . The vector e is a column vector of ones with appropriate size. All other

vectors are row vectors. The vector o is a row vector of zeros with appropriate size.

The set of balance equations can be very large or in�nite and hence di�cult to solve. The PSA

transforms the Markov process with a parameter  in such a way that for  = 1 the transformed

process is equal to the original process. The steady-state distribution of the transformed process

can be regarded as a function of . If the transformation is chosen in an appropriate way these

functions will be analytic functions of  at  = 0 and the coe�cients of the power-series expansions

can be calculated recursively. The steady-state distribution of the original process is then found

by evaluating these power series at  = 1.

In the rest of this paper, the transformed Markov process for arbitrary values of  2 [0; 1] will

be called the -process. To specify the -process, de�ne the following subsets of ZZS :

Z< =
n
b 2 ZZ

S
��� be < 0

o
;

Z� =
n
b 2 ZZ

S
��� be � 0

o
:

The transitions in Z< decrease the total queue length and will be called the downward transitions;

those in Z� will be called upward transitions. In the -process, the downward transitions will be
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the same as in the original Markov process; the upward transitions will be transformed. For each

upward transition b, de�ne a scalar rb and a transition-vector db as

rb =

(
be; if be > 0;

1; if be = 0;

db = [ b ]� :

The number rb is equal to the total increase of the queue lengths caused by transition b if this

increase is positive and equal to 1 if the total queue length remains constant. The operator [ x ]�

denotes the element-wise minimum of the zero vector and x. Hence, db 2 �IN
S and db = o if and

only if b 2 IN
S . For  in [0,1], the -process is the process on 
 with the following transitions:

(n; i)! (n+ b; j) with rate �bj(n; i); for b 2 Z<;

(n; i)! (n+ b; j) with rate rb �bj(n; i); for b 2 Z�;

(n; i)! (n+ db; j) with rate ( 1� rb ) �bj(n; i); for b 2 Z�;

for all (n; i); (n + b; j); (n + db; j) 2 
. In this -process, the transitions in Z< have the same

rate as in the original Markov process. The transitions in Z� are still possible but the original

rate is multiplied by rb and the corresponding transition db is made with the original rate

multiplied by (1�rb). So from each state, the total transition rate is the same as in the original

Markov process, but each upward transition is replaced by a downward transition or a seloop

with probability (1� rb). The 1-process (that is the -process with  = 1) is the same as the

original Markov process; the 0-process (the -process with  = 0) is a Markov process with only

downward transitions and seloops. If the -process is ergodic, the steady-state distribution is

uniquely determined by the balance and normalization equations:

p(; n) �A(n) =
P

b2Z<

p(; n� b) Ab(n� b)

+
P

b2Z�

rb p(; n� b) Ab(n� b)

+
P

b2Z�

( 1� rb ) p(; n� db) Ab(n� db);

P
n2IN

S

p(; n)e = 1;

(1)

for n 2 IN
S and  2 [0; 1].

The most important part of the transformation is that the rates of transitions that increase the

total number of customers by r are multiplied by r (r = be > 0). As a consequence of this, the

steady-state probabilities satisfy

p(; n) 2 O(ne); for  # 0; n 2 IN
S ; (2)

which will be proved in section 4. It will also be shown that the p(; n) are analytic in , so that

they can be represented by their power-series expansions (3). Property (2) then implies that the
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coe�cients corresponding to r are zero for all states with more than r customers in the system,

so for each �xed r there are only �nitely many non-zero coe�cients.

The second part of the transformation is that transitions that keep the total number in the

system constant (be = 0) are multiplied by . Without this, in the r-th step of the algorithm

one large set of equations would have to be solved with, in general, size I �
�r+S�1

S�1

�
, while now�r+S�1

S�1

�
sets of equations with size I need to be solved, which is usually much easier.

Finally, the extra transitions db are added, for b 2 Z�, unlike in all previous algorithms where

only the non-zero transition rates were transformed. These transitions are added to extend the

class of Markov processes that can be handled. In section 3, it is shown that the algorithm is

well de�ned if the 0-process has a single recurrent class consisting of only empty states. Since the

extra transitions are non-positive, these extra transitions extend the class of models for which

this assumption is satis�ed. For example, without these extra transitions only feed-forward net-

works could be analyzed, while now networks with general Markovian routing can be studied [10].

Example. Consider a network with 2 queues. Customers arrive simultaneously at both queues

according to a Poisson process with rate �. At queue 1 the service rate is �1 and after service all

customers go to queue 2. At queue 2 the service rate is �2 and after service all customers leave

the network. For this model the transition diagram is given in �gure 1.
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Figure 1: The untransformed queueing network
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In the transformed model, the arrival rate is multiplied by 2. The associated transition db is a
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seloop with rate (1� 2)�, which doesn't inuence the steady-state behaviour. After service at

queue 1, customers now go to queue two with probability  and leave the network with probability

1� .
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Figure 2: The transformed queueing network
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3 The Power-Series Algorithm

In this section an algorithm will be proposed to calculate the expansions of the steady-state

probabilities of the -process. For now, assume that these probabilities are analytic functions

of  at  = 0 satisfying the order property (2), so that their power-series expansions exist and

converge:

p(; n) =
X
r�ne

ru(r; n); for n 2 IN
S : (3)

In section 4 it will be shown that this assumption is justi�ed under mild conditions on the

transition rates. From the expansions of the steady-state probabilities, the expansions of moments

can be obtained:

E f f(N ; I) g =
X

(n;i)2


pi(; n) f(n; i) =
X
r�0

r
X

(n;i)2
: ne�r

ui(r; n) f(n; i); (4)

for functions f : 
! IR. Examples are:

Pr f N = n g = E f 1(N = n) g =
P

r�ne
ru(r; n)e;

E

�
N t

s

	
=

P
r�0

r
P

ne�r
nts u(r; n)e; for 1 � s � S; t � 0;

E f NsNt g =
P
r�0

r
P

ne�r
nsnt u(r; n)e; for 1 � s; t � S:

(5)

In this paper, the calculation of the coe�cients of (3) and (4) will be considered and the question
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whether these power series converge. An essential part of an e�cient algorithm is formed by

procedures to improve the convergence of these power series, like conformal mappings and the

epsilon algorithm. For a discussion of these techniques, see [3].

The expansions (3) can be inserted into the balance and normalization equations (1). This renders

equalities between functions of . Two analytic functions are only identical if all coe�cients of

their power-series expansions are identical. After some rearrangements this leads to the following

equalities

u(r; n)B(n) =
P

b2Z<

u(r; n� b) Ab(n� b)

+
P

b2Z1

u(r � rb; n� b) Ab(n� b)

+
P

b2Z2

u(r; n� db) Ab(n� db)

�
P

b2Z1

u(r � rb; n� db) Ab(n� db);

u(r; o)e = �
P

0<ne�r
u(r; n)e +1(r = 0)

(6)

for n 2 IN
S and r � ne, with

B(n) = �A(n)�
P

b2IN
S

Ab(n); for n 2 IN
S ;

u(r; n) = o; for n 62 IN
S or r < ne;

Z1 = Z� n fog;

Z2 = Z� n INS :

The coe�cients u(r; n) in the third summation in the right-hand side (RHS) have been brought

to the left (those with b 2 IN
S , so db = o). The coe�cients u(r � rb; n) that cancel out in the

second and fourth summation have been removed (those with b = db = o). For the I coe�cients

of the empty states, there are I + 1 equations. One of them can be ignored, which comes down

to ignoring one of the balance equations. For any matrix A, let A� denote the matrix that is

equal to A but with the �rst column removed. Then, ignoring the balance equation of state (o; 1),

equation (6) for n = o can be reduced to

u(r; o)B�(o) =
P

b2Z<

u(r;�b) A�
b
(�b)

+
P

b2Z2

u(r;�db) A�
b
(�db)

�
P

b2Z1

u(r � rb;�db) A�
b
(�db);

u(r; o)e = �
P

0<ne�r
u(r; n)e;

(7)

for r > 0 and
u(0; o)B�(o) = o;

u(0; o)e = 1:
(8)
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The second summation in the RHS of (6) can be omitted in (7) because �b 62 IN
S for all b 2 Z1.

For r = 0 all summations in the RHS can be omitted because of the order property (2).

The coe�cients u(~r; ~n) in the RHS of both (6) and (7) satisfy either ~r < r or they satisfy ~r = r

and ~ne > ne. Because u(r; n) = o if ne > r, this implies that all coe�cients can be calculated for

increasing values of r and, for each �xed r, for decreasing values of ne starting with ne = r. So

if the expansions of the steady-state probabilities (3) are to be calculated up to the coe�cients

of the R-th power of , the following algorithm can be used:

Power-Series Algorithm

calculate u(0; o) from (8),

for r := 1 to R do

for N := r down to 1 do

for all n 2 IN
S with ne = N do

calculate u(r; n) from (6),

calculate u(r; o) from (7).

This algorithm is well-de�ned if all sets of equations have a unique solution. Necessary and suf-

�cient for this is the following assumption:

Assumption 0. The matrices B(n), for n 6= o, and (B�(o); e) are invertible.

Suppose the size of the supplementary space I is equal to 1. Assumption 0 then reduces to the

assumption that the scalar B(n) is non-zero for all n 6= o. This is the same as assuming that, in

the 0-process, each non-empty state has a positive transition rate. Since the 0-process has only

downward transitions and seloops, this means that the empty state is the only absorbing state

and will eventually be reached. For I � 1, assumption 0 is equivalent to the following assumption:

Assumption 0'. The 0-process has a single recurrent class consisting of only empty states,

which will eventually be reached from any state in 
.

This can be shown by studying the 0-process in more detail. Besides the -processes on 
, Markov

processes will be considered on the �nite sets 
n = fng�f1; : : : ; Ig and �
n = fng�f1; : : : ; I;�g,

where � is an absorbing state.

First, consider the non-empty states. The diagonal elements of B(n) are equal to the rates in

the 0-process out of the states in 
n and the non-diagonal elements are equal to minus the rates

in the 0-process from states in 
n to other states in 
n. Therefore, the elements of the vector

B(n)e are equal to the total rate in the 0-process of transitions from states in 
n to states not

in 
n. Since the 0-process has no upward transitions, these transitions can only be downward

and once the 0-process has left 
n it will never return. Aggregate all states not in 
n into a

single state �. Starting from a state in 
n, the 0-process then reduces to a process on the �nite



9

state space �
n. Entering � corresponds to a downward transition from 
n in the 0-process. The

process on �
n has the following balance and normalization equations:

(�; ��)

 
B(n) �B(n)e

o 0

!
= (o; 0) ; (�; ��)

 
e

1

!
= 1:

If and only if B(n) is invertible, it has the unique steady-state distribution (�; ��) equal to

(�; ��) = (o; 1)

 
B(n) e

o 1

!�1
= (o; 1)

 
B�1(n) �B�1(n)e

o 1

!
= (o; 1) :

The assumption that B(n) is invertible for n 6= o is therefore equivalent to the assumption that,

in each Markov process on �
n, the state � is the only absorbing class. This in turn is equivalent

to the assumption that, in the 0-process, all non-empty states are transient and the empty states

will eventually be reached.

Next, consider the 0-process after it has reached an empty state. Once the 0-process is in the

set 
o, it will never leave 
o. On 
o, the steady-state distribution is determined by the balance

and normalization equations

�B(o) = o; �e = 1: (9)

This set of equations uniquely determines the steady-state distribution if and only if the Markov

process on the �nite state space 
o has only one recurrent class, but also if and only if the matrix

(B�(o); e) is invertible. Therefore, assumption 0 and assumption 0' are indeed equivalent.

There are several ways to overcome the di�culties that arise when assumption 0 is not satis�ed. In

[6], the problem was solved by changing the order of calculation of the coe�cients. In [9, 10] it was

possible to solve the di�culties by obtaining additional equations. These additional equations can,

for example, come from independency or symmetry properties of the model. These approaches

can not be applied in general.

Assumption 0' suggests yet another approach. According to this assumption, problems arise

when the 0-process has several recurrent classes. So the solution to the problem could be to

add more transitions such that the 0-process has only one recurrent class consisting of all empty

states. For instance, this can be done by adding the following transitions to the -process:

(n; i)! ( [ n� eT ]+; i ) with rate �(1� ); for 1 � i � I; n 6= o;

(o; i)! ( o; i mod I + 1 ) with rate �(1� ); for 1 � i � I;

for some �xed � > 0. The operator [ x ]+ denotes the element-wise maximum of the zero-vector

and x. This way, all non-empty states have a transition to a state with less customers, so for

 = 0 the non-empty states can not be recurrent. For the empty states, a set of cyclic transitions

is added so that all the empty states form one recurrent class. The -process with  = 1 is still

equal to the original process. Setting up the balance equations and the recurrence relations for
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the coe�cients of the power-series expansions shows that indeed for this extended transformation

all coe�cients can be calculated recursively with an algorithm similar to the algorithm described

before. Because of the extra transitions, this new transformed process di�ers more from the

original process than the -process described in section 2. For some simple models (satisfying

assumption 0') this led to less e�cient algorithms. This loss of e�ciency could probably be

reduced if the extra transitions for the non-empty states are only added to states (n; i) for which

B(n) is not invertible, but no detailed numerical experiments were made.

Adding the transitions above could also be done for another reason. It was assumed that


 = IN
S �f1; : : : ; Ig. Suppose that 
 is a proper subset of INS �f1; : : : ; Ig. Because of the extra

transitions db, for b 2 Z�, it could happen that in the -process there is a transition to a state not

in 
. From this state no transition rate has been de�ned. Adding the above transitions solves

this problem.

4 Analyticity of the steady-state probabilities and moments

The basic assumption of the algorithm is that the steady-state probabilities of the -process are

analytic functions of  at  = 0, satisfying the order property (2). It will be shown in two steps

that this assumption is justi�ed. First, in theorem 1, it is proved that the power series produced

by the algorithm converge for small values of . Therefore, the functions corresponding to these

power series are well-de�ned analytic functions at  = 0, and they satisfying the order property.

Then, in theorem 2, it is proved that these functions are the steady-state probabilities of the

-process. In theorem 3, it is shown that the expectation of f(N ; I) is analytic at  = 0 if the

function f(n; i) grows at most exponentially in n.

The theorems only make statements for  in a neighbourhood of  = 0, while the value  = 1

is the value for which the -process is equal to the original Markov process. Therefore, the impor-

tance of the theorems is more theoretical than practical. In practice, techniques like conformal

mappings and the epsilon algorithm [3] need to be applied to extend the convergence region of

the expansions. A necessary condition for these techniques to be helpful is that the steady-state

probabilities or expectations are analytic in a neighbourhood of  = 0, which is what the theo-

rems state.

In the proofs below, the following equalities are repeatedly used:

#
n
n 2 IN

S
��� ne = r

o
=
�
r+S�1
S�1

�
;

P
n2IN

S

pne = (1� p)�S =
P
r�0

pr
�r+S�1

S�1

�
;

for S � 1 and jpj < 1. The last equality follows from the fact that the probabilities of a negative

binomial distribution sum up to 1.
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Let E be the set of all functions f : 
 ! IR for which positive constants a and b exist such

that

jf(n; i)j � abne for all (n; i) 2 
: (10)

The set E contains all functions that grow at most exponentially in n. Since the growth rate b is

allowed to exceed 1, this set of functions is very large.

For an I by J matrix A, de�ne the norm

kAk = max
1�i�I

X
1�j�J

jAij j:

For arbitrary matricesA and B, with well-de�ned sum or product, the following inequalities hold:

kA+ Bk � kAk+ kBk; kABk � kAkkBk;

known as the triangle inequality and consistency. Notice that kxk = xe = 1 if x is a stochastic

row vector, that kek = 1 and that kA�k � kAk.

De�ne, for all n 2 IN
S , the scalars

a(n) =
P

b2Z<

kAb(n� b)k +
P

b2Z1

kAb(n � b)k

+
P

b2Z2

kAb(n� db)k+
P

b2Z1

kAb(n� db)k;

b(n) =

8>><
>>:

B�1(n) ; for n 2 IN
Snfog;

(B�(o); e)�1 ; for n = o:

The scalar a(n) is the sum of the norms of the matrices in the RHS of (6) and (7) and b(n) is

the norm of the inverse of the matrices in the left-hand side (LHS). Assumption 1 is su�cient to

ensure convergence of the power series produced by the algorithm for  small enough:

Assumption 1. sup
n2IN

S

a(n)b(n) <1:

The scalar a(n) is increasing in the rates into states (n; :) and b(n) increasing in the inverse of the

rates out of states (n; :). The assumption requires that the rate-in is not allowed to be too large

compared to the rate-out, so it is related to a stability condition. A su�cient condition for the

supremum to be �nite is that there are only �nitely many di�erent values of a(n) and b(n). For

example, consider a network of queues where the arrival process does not depend on the queue

lengths and the service process only depends on whether queues are empty or not. Then there

can be only 2S di�erent values of a(n)b(n), so assumption 1 is satis�ed. For the same reason,

similar models with a �nite number of servers at each queue are included. But, for example, also

the M=M=1 queue satis�es assumption 1. Near the end of this section, an example is given that
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does not satisfy assumption 1.

Theorem 1. Under assumptions 0 and 1 and in a neighbourhood of  = 0,

all power series produced by the algorithm converge.

Proof. A sequence �u(r; n) will be obtained such that

ku(r; n)k � �u(r; n); for n 2 IN
S ; r � ne; (11)

and such that the series X
r�ne

r�u(r; n) (12)

converge in a neighbourhood of  = 0, for all n 2 IN
S . If such a convergent majorant exists, the

power series produced by the algorithm are absolutely convergent in the convergence region of

the majorant.

Taking norms in (6) and (7) renders

ku(r; n)k � a(n)b(n)max

(
sup
b2Z<

ku(r; n� b)k; sup
b2Z1

ku(r� rb; n� b)k;

sup
b2Z2

ku(r; n� db)k; sup
b2Z1

ku(r� rb; n� db)k

)
;

ku(r; o)k � a(o)b(o)max

(
sup
b2Z<

ku(r;�b)k; sup
b2Z2

ku(r;�db)k; sup
b2Z1

ku(r� rb;�db)k

)

+ b(o)
P

0<ne�r
ku(r; n)k;

for r � ne � 1. De�ne

c0 = sup
n2IN

S

a(n)b(n)

and let the numbers �u(r; n) be such that

�u(r; n) � c0max

(
sup
b2Z<

�u(r; n� b); sup
b2Z1

�u(r� rb; n� b);

sup
b2Z2

�u(r; n� db); sup
b2Z1

�u(r� rb; n� db)

)
;

�u(r; o) � c0max

(
sup
b2Z<

�u(r;�b); sup
b2Z2

�u(r;�db); sup
b2Z1

�u(r � rb;�db)

)

+ b(o)
P

0<ne�r
�u(r; n);

�u(0; o) � ku(0; o)k;

(13)

for r � ne � 1. Then it follows from assumption 1 that ku(r; n)k � �u(r; n), for all n 2 IN
S ; r � ne.

These three inequalities (13) are indeed satis�ed by the sequence

�u(r; n) = c�ne1 c
1(n=o)
2 cr3 1(r � ne; n 2 IN

S);
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with
c1 > maxf1; c0g;

c2 = 1 + b(o)
�

c1
c1�1

�S
;

c3 = c21c2:

The �rst inequality in (13) holds because of the following four inequalities:

c0 sup
b2Z<

c�ne+be1 cr3 = �u(r; n) sup
b2Z<

c0c
be
1 � �u(r; n);

c0 sup
b2Z1

c�ne+be1 c
1(n=b)
2 cr�rb3 = �u(r; n) sup

b2Z1

c0c
be
1 c

1(n=b)
2 c�rb3

� �u(r; n) sup
b2Z1

(c21c2)
rbc�rb3 = �u(r; n);

c0 sup
b2Z2

c�ne+dbe1 cr3 = �u(r; n) sup
b2Z2

c0c
dbe
1 � �u(r; n);

c0 sup
b2Z1

c�ne+dbe1 cr�rb3 = �u(r; n) sup
b2Z1

c0c
dbe
1 c�rb3 � �u(r; n);

for all r � ne � 1. The second inequality in (13) is shown in two steps. In a similar way as for

the �rst inequality, it can be shown that

c0max

(
sup
b2Z<

�u(r;�b); sup
b2Z2

�u(r;�db); sup
b2Z1

�u(r � rb;�db)

)
� cr3: (14)

Also, it is true that

b(o)
X

0<ne�r

�u(r; n) � b(o)cr3
X

n2IN
S

c�ne1 = b(o)cr3

�
c1

c1 � 1

�S

: (15)

The sum of (14) and (15) is equal to �u(r; o):

cr3 + b(o)cr3

�
c1

c1 � 1

�S

= c2c
r
3 = �u(r; o);

for all r � 1, so also the second inequality in (13) holds. Finally, that the third inequality of (13)

holds can be seen from the discussion following assumption 0'. Comparing (8) and (9) shows that

u(0; o) is a stochastic vector, so

ku(0; o)k = 1 < c2 = �u(0; o):

Therefore, it has been checked that all three inequalities (13), and thus (11), are satis�ed.

What remains to be proved is that the series (12) converge in a neighbourhood of  = 0. This

is indeed true: X
r�ne

r�u(r; n) = c�ne1 c
1(n=o)
2

X
r�ne

rcr3 =
c
1(n=o)
2

�
c3
c1

�ne
1� c3

;

for all n 2 IN
S and jj < c�13 . Therefore, �u(r; n) is a convergent majorant of the sequences pro-

duced by the algorithm, which proves the theorem. 2
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De�ne the vector-functions q(; n) as the functions determined by the power series produced by

the algorithm:

q(; n) =
X
r�ne

ru(r; n); for n 2 IN
S :

By theorem 1, these q(; n) are well-de�ned analytic functions of , for  small enough, and the

lower bound on the radius of convergence is uniform for all n 2 IN
S . They are the desired steady-

state probabilities if they satisfy the balance-equations and the -process is ergodic, which will

be proved in theorem 2. The usual ergodicity theorems can not be used here, because it is not

known in advance that the functions q(; n) are non-negative. The following ergodicity lemma

does not make this non-negativity assumption:

Lemma. Let the Markov process fXt; t � 0g on state space C be irreducible with generator

f�ij ; i; j 2 Cg, and �i = ��ii =
P

j2Cnfig

�ij < 1, for i 2 C. If a solution f�i; i 2 Cg exists

such that for some i0 2 C:

�i�i =
X

j2Cnfig

�j�ji; for i 2 Cnfi0g; (16)

X
i2C

�i = 1; (17)

X
i2C

j�ij�i <1; (18)

then the Markov process is ergodic with steady-state distribution f�i; i 2 Cg.

Proof. Summing the balance equations (16) over all i 2 Cnfi0g, reversing the order of summation

and subtracting
P
i2C

�i�i, which is both justi�ed because of (18), renders (16) for i = i0. Therefore,

the balance equations are satis�ed for all i 2 C.

The jump chain is the embedded discrete time Markov chain with transition probabilities

rij =
�ij
�i
1(i 6= j) for i; j 2 C. Since the Markov process is irreducible, this jump chain is also

irreducible. With �i = �i�i, for i 2 C, the balance equations (16) and equation (18) can be

rewritten as
�i =

P
j2C

�jrji; for i 2 C;

P
i2C

j�ij <1:

By theorem I.7.1 in Chung [7] this implies that �i > 0 for i 2 C and that the jump chain is

ergodic. But then also �i > 0 for i 2 C and the Markov process is non-explosive by proposition

II.2.4 in Asmussen[1]. From the normalization (17) it follows that f�i; i 2 Cg is a probability

distribution. By theorem II.4.3 in Asmussen [1] this implies that the Markov process is ergodic

with steady-state distribution f�i; i 2 Cg. 2
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This lemma is a generalization of theorem II.4.4 in Asmussen [1]. In that theorem, it is assumed

beforehand that the solution f�i; i 2 Cg is a probability distribution and therefore non-negative.

In the proof of theorem 2, it will be shown that the functions q(; n) satisfy the conditions of

the lemma if assumption 2 is satis�ed:

Assumption 2. �� 2 E.

This assumption requires that in the 1-process, and therefore in each -process, the total transi-

tion rate from state (n; i) grows at most exponentially in n (see de�nition (10)). Since the growth

rate is allowed to be arbitrarily large, this assumption is very weak.

Theorem 2. Under assumptions 0 to 2 and in a neighbourhood of  = 0,

the -process is ergodic with steady-state distribution fqi(; n); (n; i) 2 
g.

Proof. For  = 0, it will be clear from assumption 0' that the process will always end up in the

single �nite recurrent class of empty states, so it is ergodic. Comparing (8) and (9) shows that

the steady-state probabilities are equal to qi(0; n) = ui(0; o)1(n = o), for (n; i) 2 
. Therefore,

the theorem holds for  = 0. For  > 0 but su�ciently small, it will be checked in the rest of the

proof whether the -process and the functions qi(; n) satisfy the conditions of the lemma.

The 1-process was assumed to be irreducible and non-instantaneous. For  > 0, each transition

in the 1-process is also possible in the -process, so the -process is also irreducible. The total

transition rate in the -process from each state is constant in  (or non-decreasing in  if seloops

are ignored) and therefore �nite for all  2 (0; 1].

By assumption 2, positive constants a1 and b1 exist such that

��(n; i) � a1b
ne
1 for all (n; i) 2 
:

As a consequence of this, the following inequality holds:X
b2Z

kAb(n)k �
X

1�i�I

X
b2ZZ

S

X
1�j�I

�bj(n; i) � I a1 b
ne
1 ; (19)

for all Z � ZZ
S and n 2 IN

S . This will be used in the rest of the proof.

That the balance equations (16) are satis�ed can be shown as follows. Rearranging equations

(6) for n 6= o, renders

u(r; n) �A(n) =
P

b2Z<

u(r; n� b) Ab(n� b)

+
P

b2Z�

u(r� rb; n� b) Ab(n� b)

+
P

b2Z�

u(r; n� db) Ab(n� db)

�
P

b2Z�

u(r� rb; n� db) Ab(n� db);
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for r � ne. Multiplying both sides by r, summing over r � ne and changing the order of

summations rendersP
r�ne

ru(r; n) �A(n) =
P

b2Z<

P
r�ne

r u(r; n� b) Ab(n� b)

+
P

b2Z�

rb
P

r�ne�rb

r u(r; n� b) Ab(n� b)

+
P

b2Z�

P
r�ne

r u(r; n� db) Ab(n� db)

�
P

b2Z�

rb
P

r�ne�rb

r u(r; n� db) Ab(n� db):

(20)

Since u(r; n) = 0 for all r < ne, this is equivalent to

q(; n) �A(n) =
P

b2Z<

q(; n� b) Ab(n� b)

+
P

b2Z�

rb q(; n� b) Ab(n� b)

+
P

b2Z�

( 1� rb ) q(; n� db) Ab(n� db);

which coincides with the balance equations of the -process (1) for the non-empty states. A

similar approach applied to equations (7) and (8) leads to the balance equations of all empty

states, except state (o; 1). So (16) is satis�ed, with i0 = (o; 1), if changing the order of summations

was justi�ed. This is indeed the case when assumption 2 is satis�ed, because then the four terms

in the RHS of (20) are all absolutely convergent for  small enough. In the �rst term the order

of the summations over r and b can be reversed because:P
b2Z<

P
r�ne

rku(r; n� b)Ab(n� b)k

�
P

b2ZZ
S

P
r�ne�be

r c�ne+be1 c2c
r
3 Ia1b

ne�be
1 1(n� b 2 IN

S)

= c2Ia1
1�c3

�
1� c3b1

c1

��S
;

for jj < c�13 and jj < c1(c3b1)
�1. Inequality (19) was used with Z = fbg. In the second term of

(20) the order of summations can be reversed because the summation over b is �nite:

#
n
b 2 Z�

��� n� b 2 IN
S
o
=

 
ne + S

S

!
:

In the third term of (20) the order of summations can be reversed because

P
b2Z�

P
r�ne

rku(r; n� db)Ab(n� db)k

�
P

d2�IN
S

( P
b2Z�:db=d

kAb(n� d)k

) P
r�ne�de

rku(r; n� d)k

�
P

d2�IN
S

Ia1b
ne�de
1

P
r�ne�de

rc�ne+de1 c2c
r
3

= Ia1c2
1�c3

�
c3b1
c1

�ne �
1� b1c3

c1

��S
;
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for jj < c�13 and jj < c1(c3b1)
�1. That in the fourth term of (20) the order of summations can

be reversed can be shown in a similar way as for the third term. This completes the part of the

proof that shows that condition (16) holds.

That the normalization equation (17) is satis�ed can be shown as follows. Rearranging the

normalization parts of equations (7) and (8) renders

X
0�ne�r

u(r; n)e = 1(r = 0);

for r � 0. Multiplying both sides by r, summing over r � 0 and changing the order of the

summations over r and n renders

X
n2IN

S

X
r�ne

ru(r; n)e =
X

(n;i)2


qi(; n) = 1:

Here, the order of summations can be reversed because

P
n2IN

S

P
r�ne

rju(r; n)ej �
P

n2IN
S

P
r�ne

rc�ne1 c2c
r
3

= c2
1�c3

�
1� c3

c1

��S
;

(21)

for jj < c�13 < c1c
�1
3 .

Finally, condition (18) is satis�ed because

P
(n;i)2


jqi(; n)j��(n; i) � I
P

n2IN
S

P
r�ne

r c�ne1 c2c
r
3 a1b

ne
1

= Ic2a1
1�c3

�
1� c3b1

c1

��S
<1;

for jj < c�13 and jj < c1(c3b1)
�1. It has been shown that the -process and the functions qi(; n)

satisfy all conditions of the lemma, which �nishes the proof of theorem 2. 2

The -process is such that upward transitions in the 1-process are replaced by downward

transitions or seloops. From this, it will be obvious in many applications that if the 1-process

is ergodic, then the -process is ergodic for all  in [0,1]. However, this is not true in general as

can be seen from the next example.

Example. Consider the Markov process on IN2 illustrated in �gure 3. When no rate is indicated,

the rate equals 1. This process always ends in the cycle (0; 0)! (3; 1)! (2; 0)! (1; 1)! (0; 0),

so it is ergodic. The transition-diagram of the corresponding -process (without the seloops)

is given in �gure 4. For  = 0, the process will always end up in the origin, so assumption 0 is

satis�ed. Assumption 1 is satis�ed if supk �k <1. Assumption 2 is satis�ed if �k grows at most

exponentially in k.

When the process is in a state (2k; 0), with k � 1, then in two steps the process will go either

up to state (2k + 2; 0) or down to state (2k � 2; 0). The probability of going up is equal to
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Figure 3: The untransformed process

�k() = (1� ) �k
3(1 + �k

3)�1, which is the probability of going �rst to state (2k� 1; 0) and

then to state (2k + 2; 0).
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Figure 4: The transformed process

First, take �k � � < 2048=27. Then �k() <
1
2 , for all k � 1 and  in [0,1] and the -process

is ergodic for all  in [0,1].

Next, take �k � � � 2048=27. Then the equation �k() =
1
2 has solutions 1 and 2 with

0 < 1 �
3
8 � 2 < 1

2 . The -process is ergodic for  2 [0; 1) [ (2; 1], null-recurrent for

 2 f1; 2g and transient for  2 (1; 2). Therefore, the -process is ergodic at  = 1 (as was

assumed in section 2) and in a neighbourhood of  = 0 (as was proved in this section), but it is

not ergodic in between.

Finally, take �k = k, for k � 1. Then lim
k!1

�k() = 1�  > 1
2 , for all  in (0; 12). On the other

hand, �k() < 1 �  � 1
2 , for all k � 1 and  in [12 ; 1]. Therefore, the -process is ergodic for

 2 f0g[ [12; 1] and transient for  2 (0; 12) . That the -process is not ergodic in a neighbourhood

of  = 0 is not in contradiction with theorem 2, because assumption 1 is not satis�ed.

In this example, the transient behaviour of the -process can be avoided by not consid-

ering the original process as a process on IN
2 but as a process on IN � f0; 1g. On IN

2, the

transition (2k; 0) ! (2k � 1; 1) is an upward transition and hence redirected to the transition

(2k; 0)! (2k�1; 0). From the state (2k�1; 0), the process has a high probability to go up to state



19

(2k+2; 0). This way, replacing upward transitions by downward transitions results in more visits

to states from which large upward transitions are likely. Considered as a process on IN� f0; 1g,

the transition (2k; 0)! (2k�1; 1) is downward instead of upward, and is therefore not redirected.

The next theorem proves that the expectation E f f(N ; I) g is analytic at  = 0 if the function

f(n; i) grows at most exponentially in n (see de�nition (10)). This implies that the power-series

expansions can be calculated in the way suggested by formula (4). The examples (5) in section 3

are all polynomial in n, so they satisfy this assumption.

Assumption 3. f 2 E.

Theorem 3. Under assumptions 0 to 3 and in a neighbourhood of  = 0,

the expectation E f f(N ; I) g is analytic in .

Proof. By assumption 3, positive constants a2 and b2 exist such that

jf(n; i)j � a2b
ne
2 for all (n; i) 2 
:

The expectation is analytic because its power-series expansion (4) is absolutely convergent:

P
r�0

r

����� P
(n;i)2
: ne�r

ui(r; n) f(n; i)

����� �
P
r�0

r
P

ne�r
I c�ne1 c2c

r
3 a2b

ne
2

= c2a2I
1�c3

�
1� c3b2

c1

��S
;

for jj < c�13 and jj < c1(c3b2)
�1. 2

5 Conclusions

The applicability of the Power-Series Algorithm has been extended to a wide class of Markov

processes. A transformation has been proposed that can be used in many cases, and it was

shown that if it is not applicable then usually a similar transformation can be found that does

apply. Su�cient conditions were derived to ensure that the steady-state probabilities are analytic

in the transformation parameter. These conditions are weak and satis�ed for most queueing

models. Numerical results can be found in [10] and the signi�cance and exibility of the method

is illustrated by the many di�erent models it has been applied to.
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